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Abstract: Today’s spread of power distribution networks, with the installation of a significant number
of renewable generators that depend on environmental conditions and on users’ consumption profiles,
requires sophisticated models for monitoring the power flow, regulating the electricity market, and
assessing the reliability of power grids. Such models cannot avoid taking into account the variability
that is inherent to the electrical system and users’ behavior. In this paper, we present a solution for the
generation of a compressed surrogate model of the electrical state of a realistic power network that is
subject to a large number (on the order of a few hundreds) of uncertain parameters representing the
power injected by distributed renewable sources or absorbed by users with different consumption
profiles. Specifically, principal component analysis is combined with two state-of-the-art surrogate
modeling strategies for uncertainty quantification, namely, the least-squares support vector machine,
which is a nonparametric regression belonging to the class of machine learning methods, and the
widely adopted polynomial chaos expansion. Such methods allow providing compact and efficient
surrogate models capable of predicting the statistical behavior of all nodal voltages within the network
as functions of its stochastic parameters. The IEEE 8500-node test feeder benchmark with 450 and
900 uncertain parameters is considered as a validation example in this study. The feasibility and
strength of the proposed method are verified through a systematic assessment of its performance in
terms of accuracy, efficiency, and convergence, based on reference simulations obtained via classical
Monte Carlo analysis.

Keywords: high-dimensional problems; least-squares support vector machine; polynomial chaos
expansion; power distribution network; power-flow analysis; principal component analysis;
uncertainty quantification; surrogate models

1. Introduction

Nowadays, the reliability assessment of a power distribution network (PDN) must incorporate
the effects of the unavoidable fluctuation of load consumption on the node voltages. Typical examples
are represented by the pervasive spread of distributed generators (DGs), for which the injected power
depends on (1) weather conditions; (2) the impact of hubs for charging electrical vehicles, located in
different points of the network; and (3) the unpredictable user behavior, in a scenario in which both users
and buildings play an active role in the continuous monitoring of the fluid electricity fees, and modify
their power consumption accordingly [1–4]. Therefore, the inherent statistical nature of the problem
makes a deterministic interpretation unsuitable, and demands for stochastic methodologies for the
uncertainty quantification (UQ) [5–7].
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Monte Carlo (MC) simulation represents the most straightforward way of performing a statistical
load flow analysis of a power grid with uncertain loads [8–14]. The underlying idea is to run a large
set of deterministic simulations in which the power level of each uncertain node is drawn according
to its probability density function (PDF). Despite its simplicity and accuracy, a naive MC simulation
turns out to be extremely expensive in terms of simulation time because of its slow convergence rate.
Indeed, it requires a huge number (typically, on the order of thousands) of samples, which makes its
direct application to a full-computational model unfeasible for realistic scenarios.

This reason motivated the growing interest, expressed by the electrical and electronic engineering
community during the last fifteen years, in the development of enhanced and efficient alternatives
to MC simulation for both the worst-case and the statistical assessment of the stochastic responses of
complex systems [15–17]. Among the state-of-the-art approaches, polynomial chaos expansion (PCE)
can be considered as the reference technique for UQ [18,19]. The underlying idea is to represent the
relationship between the uncertain variables and the outputs of interest in terms of an expansion of
suitable orthogonal polynomial basis functions [20]. The expansion coefficients can be computed by
means of least-square regression, starting from a limited set of random “training samples” obtained
from the full-computational model. The resulting surrogate model allows an expedite statistical
assessment of the original system. However, similar to most parametric regression methods, in which
the number of unknowns depends on the number of input parameters, the application of classical PCE
becomes impractical for systems with a large number of uncertain parameters, as the number of basis
functions, and thus of regression coefficients, grows exponentially. For example, a second-order PCE
for 500 uncertain variables requires the estimation of ~250k coefficients: this is the so-called “curse of
dimensionality”. Fortunately, owing to the sparsity-of-effects principle, most of the model coefficients
are in practice negligible. This led to the development of sparse algorithms [21–24], which reduce the
number of unknowns and allow dealing with hundreds of uncertain variables (see, e.g., in [25]).

Recently, advanced machine learning (ML) methods [26,27] have been also employed for the
UQ of several realistic problems in electrical engineering [28,29]. Specifically, flexible and powerful
ML regressions, such as support vector machine (SVM) [30,31], least-square support vector machine
(LS-SVM) [32], and Gaussian processes [33], were effectively applied to build accurate surrogate
models starting from a limited set of training samples [34–37]. The resulting surrogate model is able to
predict both the deterministic and the stochastic behavior of the system output for any configuration
of the uncertain input parameters. As opposed to PCE-based methods, the above ML techniques allow
constructing nonparametric surrogates in which the number of regression unknowns is independent
from the dimensionality of the input space (i.e., the number of uncertain parameters) [32,33]. Therefore,
ML methods appear to be an attractive solution to mitigate the curse of dimensionality and provide a
powerful alternative for tackling UQ problems with a huge number (e.g., thousands) of variables.

Based on the above discussion, the load flow analysis of a power distribution network represents a
perfect example for which sparse PCE methods and ML techniques can be applied. Indeed, the network
typically involves thousands of nodes and a very large number of possible uncertain variables. This is
an extreme situation for which MC simulation is definitely inefficient, and yet traditional surrogate
modeling techniques like standard PCE fail to deal with more than a few tens of uncertain parameters
(see, e.g., in [38]). On the other hand, the direct application of the aforementioned advanced modeling
methods is limited in this case by the huge number of output variables of interest. As the model
parameters have to be optimized separately for each output variable, the computational complexity is
proportional to the number of variables of interest which, for a power distribution network, usually
amount to thousands of steady-state voltages at the network nodes. To overcome this detrimental
limitation, principal component analysis (PCA) is used to compress the number of output variables that
need to be effectively modeled [39], thus reducing the model building cost typically by some order
of magnitude.

In particular, a large benchmark network based on the Institute of Electrical and Electronics
Engineers (IEEE) 8500-node test feeder [40] is considered in this paper. Sparse PCE and LS-SVM
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regression are employed in conjunction with PCA compression to build a surrogate model of the nodal
voltages of the power distribution network with a large number of uncertain parameters consisting of
power loads and renewable sources. The performance of the proposed modeling scheme in terms of
efficiency, accuracy, and convergence, is thoroughly investigated by means of two scenarios with 450
and 900 uncertain parameters.

The remainder of this paper is organized as follows. Section 2 outlines the goal of this work.
Section 3 presents the simulation scheme that is used to carry out the power-flow analysis. In Section 4.1,
the mathematical background of LS-SVM regression and sparse PCE, as well as the PCA compression,
are briefly introduced. The performance of the proposed methodology is investigated in Section 5 by
considering the UQ of a complex benchmark network with an increasing number of training samples
and of uncertain parameters. Finally, Section 6 concludes the paper.

2. Goal Statement

Without loss of generality, we consider the IEEE-8500 distribution feeder benchmark network [40],
depicted in Figure 1, as test case for the proposed analysis. It is a three-phase radial distribution
network consisting of medium and low voltage levels, with unbalanced loads, transformers, capacitors,
and regulators. The network is modified by the addition of 200/400 photovoltaic (PV) distributed
generators randomly connected at the load nodes. The uncertain variables are the values of real
power for a set of Nload network loads and Npv PV generators, thus leading to a problem with
d = (Nload + Npv) uncertain parameters, which we denote with vector x = [x1, . . . , xd]

T ∈ Rd.

Figure 1. One line diagram of the IEEE-8500 Node Test Feeder [40].

The goal of our analysis is to quantify the impact of the uncertain parameters on the magnitude
of the network nodal voltages, hereafter referred to as the output vector y = [y1, . . . , yM]T ∈ RM.
The output vector is an implicit function of x, which we denote as

y =M(x), (1)

whereM : Rd → RM generically indicates the full-computational model that is used to calculate y
for a given configuration of x. It is important to point out that we are targeting applications with
d ∼ 102, 103 and M ∼ 103, 104, for which both standard and advanced surrogate modeling techniques
usually fail.
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3. Power-Flow Analysis

This section describes the simulation technique that is used in the context of this paper as
the full-computational model (1) for the power flow analysis of a power distribution network.
The approach is illustrated in Figure 2. It relies on a nonlinear circuital interpretation of the distribution
network in the phasor domain, see, for example, Figure 3a, in which the loads are replaced by nonlinear
blocks characterized by their real and reactive power [41]. The circuit in Figure 3a can be interpreted as
the interconnection of a linear and a nonlinear part, as shown in Figure 3b. The linear part is composed
by the two-terminal elements Yn, which represent the lumped (e.g., RL) equivalents of the transmission
lines, and by the ideal feeding voltage source. The loads are considered as nonlinear elements in which
the I-V characteristics are defined according to their complex absorbed power. As an examples, the I-V
characteristic for the n-th load reads

În = f (V̂n; Pn, Qn, ω) =

(
Pn + jQn

V̂n

)∗
, (2)

where În and V̂n are the phasors of the node voltage and current, respectively, while Pn and Qn

represent the real and reactive power absorbed by the node, respectively. The resulting nonlinear
circuital equivalent can be also reinterpreted as shown in Figure 3c, where the linear and nonlinear
blocks have been decoupled by means of controlled sources. This schematic is readily described in
matrix form by means of the modified nodal analysis (MNA) formulation [42].

Figure 2. Graphical illustration of the proposed simulation approach for the power-flow analysis [41].

Unfortunately, a closed-form solution of the resulting nonlinear equation is not available, and a
numerical solution must be considered. To this aim, the problem is solved by means of the waveform
relaxation technique [43], leading to the simplified circuital interpretation shown in Figure 3d.
The above circuital interpretation turns out to be equivalent to a fixed-point iteration scheme:{

M̂Ŵ(i) = Â0 + Â(i)

Â(i+1) = Â(Ŵ(i)),
(3)

where, with reference to Figure 3d,

• M̂ is the MNA matrix, which is constructed by circuit inspection and incorporates the
characteristics of the circuit elements;

• Ŵ is a complex vector collecting the nodal voltages V̂(i)
n ;

• Â(i) is a vector collecting the amplitude Î(i)n of the independent current sources; and

• Â(i+1) is a vector collecting the phasors of the currents that flow through the controlled
voltage sources.
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Iterating (3) over index i leads to the following update rule.

Ŵ(i+1) = M̂−1(Â0 + Â(Ŵ(i))). (4)

The iterations are terminated when a given error threshold ε is reached, such that

‖Ŵ(i+1) − Ŵ(i)‖∞ ≤ ε. (5)

As discussed in [41], the linear portion of the system needs to be solved only once at the beginning
of the iteration (i.e., the inverse matrix M̂−1 must be computed once), and the computation of the
Jacobian matrix of the system is not required, thus simplifying the implementation. The circuital
interpretation of Figure 3d is readily implemented in any SPICE-type solver to obtain the AC solution
at a single frequency point.

Figure 3. Circuital interpretation of a generic power distribution network; (a) the example adopted
for the analysis, and panels (b–d) are transformations and interpretations of panel (a), as illustrated in
the text.

The outlined simulation framework is implemented in MATLAB (R2019b, Mathworks, USA).
It has been thoroughly validated and proven to be a viable solution for large networks [41]. At this
point, it should be noted that any deterministic tool for load-flow analysis could be alternatively
adopted as full-computational model.

4. Surrogate Models

We introduce here the surrogate models that will be used in conjunction with the power-flow
analysis method of Section 3 for the UQ of the distribution network introduced in Section 2. For the
sake of simplicity, we base the discussion on a system (1) with a scalar output (i.e., M = 1), and we
assume that a set of L training pairs {(xi, yi)}L

i=1 is available, where yi =M(xi) ∈ R, ∀i = 1, . . . , L.
At this stage, it is understood that for a multi-output system (M > 1), the procedure is repeated
for each output component. A compression strategy is introduced later, in Section 4.3, to handle
multi-output systems more effectively.

4.1. LS-SVM Regression

This section introduces the underlying idea and the essential mathematical background of the
LS-SVM regression in its primal and dual space formulations [32], along with its application to the
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construction of a surrogate model for UQ. It is worth mentioning that the code for the construction of
LS-SVM surrogate models is available within the MATLAB toolbox LS-SVMLab, (version 1.8) [44].

4.1.1. Primal Space Formulation

The primal space formulation of the LS-SVM suggests approximating the actual responses of (1)
with the surrogate model

y ≈MLS-SVM(x) =
N

∑
n=1

wnφn(x) = 〈w, φ(x)〉+ b, (6)

where φ(x) = [φ1(x), . . . , φN(x)]T is a vector collecting N basis functions φn(x) : Rd → RN , w =

[w1, . . . , wN ]
T is a vector with the respective coefficients, and 〈·, ·〉 is the inner product in RN . The

regression coefficients w and the scalar parameter b are computed as the solution of the following
optimization problem,

minimize
1
2
‖w‖2 + γ

1
2

L

∑
i=1

e2
i

subject to yi = 〈w, Φ(xi)〉+ b + ei, ∀i = 1, . . . , L
(7)

where ei =MLS-SVM(xi)−M(xi) is the model error on the training samples and γ is a parameter
that provides a trade-off between the accuracy of the model and its flatness, thus reducing the
overfitting [30,32].

From (7), it is noted that the primal space formulation is equivalent to ridge regression [26].
Furthermore, as in the classical least-squares regression [19], the number of coefficients (i.e., the size
of vector w) coincides with the number of basis functions in (6). The above feature makes this
implementation suffer from the curse of dimensionality and demands for an alternative formulation,
which is briefly outlined in the next section.

4.1.2. Dual Space Formulation

The LS-SVM in the dual space formulation is a nonparametric regression [32]. The introduction
of the kernel function K(·, ·) : Rd ×Rd → R, defined as

K(xi, xj) = 〈Φ(xi), Φ(xj)〉, (8)

allows recasting (6) as

y ≈MLS-SVM(x) =
L

∑
i=1

αiK(xi, x) + b, (9)

where the coefficients αi become, together with the bias term b, the new unknowns. These are estimated
by inverting the matrix equation [

0 1T

1 Ω + I/γ

] [
b
α

]
=

[
0
y

]
, (10)

where α = [α1, . . . , αL]
T, y = [y1, . . . , yL]

T, 1 = [1, . . . , 1]T ∈ RL, I ∈ RL×L is the identity matrix,
Ω ∈ RL×L is the kernel matrix with elements Ωij = K(xi, xj) for i, j = 1, . . . , L, and γ is the same
parameter as defined in (7). Several kernels can be used, the most commons of which are

• linear kernel: K(xi, x) = xT
i x,

• polynomial kernel of order q: K(xi, x) = (1 + xT
i x)q, and

• Gaussian radial basis function (RBF) kernel: K(xi, x) = exp
(
−‖xi − x‖2/2σ2).
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It is important to remark that in this nonparametric dual space formulation, and thanks to the
so-called “kernel trick”, the number of unknowns αi in (9) is completely independent of the number of
parameters and basis functions considered in the LS-SVM regression model, and it always equals the
number of training samples L that are used for the regression. For this reason, the LS-SVM regression
in the dual space is an attractive candidate for the UQ of high-dimensional problems [37].

4.2. Sparse PCE

This section briefly introduces the fundamentals of (sparse) PCE approximation. Moreover, in this
case, a MATLAB toolbox, i.e., UQLab, is available for building PCE surrogate models [45].

Similarly to (6), a generic PCE model reads

y ≈MPCE(x) = ∑
κ∈K

cκ ϕκ(x) =
K

∑
k=1

ck ϕk(x), (11)

where two equivalent and interchangeable indexing notations are used:

• κ = (k1, . . . , kd) is a vectorial multi-index belonging to set K ⊆ Nd, and
• k is a scalar index pointing to the elements of K, which are typically assumed to be sorted

according to the graded lexicographic ordering.

With the above definitions, there is a one-to-one correspondence between k and κ, and the number
of basis functions K corresponds to the cardinality of K, i.e., K = |K|. The latter notation is more
convenient to define the basis functions ϕκ(x), which are d-variate polynomials constructed as

ϕκ(x) =
d

∏
j=1

φkj
(xj). (12)

The functions φkj
(xj) are univariate polynomials satisfying the orthogonality condition

〈φkj
, φmj〉 =

∫
R

φkj
(xj)φmj(xj)ρ(xj)dxj =

{
1 k j = mj
0 otherwise,

(13)

where ρ(xj) is the PDF of the uncertain variable xj.
For quantities exhibiting a finite second-order moment (variance), the model (11) with K ≡ Nd

(or, equivalently, K → ∞) is exact. However, the model is truncated for obvious practical reasons.
The truncation is defined by bounding a given u-norm of the multi-indices with a given order p,
leading to the set

K = {κ : ‖κ‖u ≤ p}. (14)

Common truncation schemes are (in order of popularity)

• Total-degree truncation (u = 1), leading to K = (p + d)!/p!d! terms;
• Hyperbolic truncation (0 < u < 1), which leads to an increasingly sparser expansion as u is

decreased;
• Tensor-product truncation (u = ∞), which is usually avoided because of the exorbitant number of

K = (p + 1)d terms.

Given one of the above predefined truncations, a sparse PCE is intended as a model (11) in which
some (typically many) of the coefficients ck are further identified to be negligible, with a pattern that
is not a priori known, or, equivalently, in which a reduced set K̆ ⊂ K of basis function is adaptively
identified when calculating the coefficients.
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The PCE model (11) is particularly suitable for UQ, as its accuracy is defined in statistical terms.
Indeed, the quadratic error obeys [20]

lim
p→∞

∫
Rd

(MPCE(x)−M(x))2 ρ(x)dx = 0, (15)

where ρ(x) = ∏d
j=1 ρ(xj) is the joint PDF of the uncertain parameters x. As the local error is weighted

by the distribution of the uncertain parameters, a larger error is tolerated for unlikely parameter values
without compromising the overall statistical accuracy. Moreover, average and variance of the output y
are calculated directly from the PCE coefficients cκ as

E{y} ≈ E{MPCE} = c0 (16)

Var{y} ≈ Var{MPCE} = ∑
κ∈K\0

c2
κ, (17)

where 0 = (0, . . . , 0) is the null element of Nd, corresponding to a zero-degree (i.e., constant)
polynomial.

Several approaches are available for the calculation of the PCE coefficients. For full-blown PCEs,
one of the simplest and most popular methods is by least-square regression [19], i.e., by minimizing
the norm of the residual on the training samples, i.e.,

minimize
L

∑
i=1

(MPCE(xi)−M(xi))
2 =

L

∑
i=1

(
K

∑
k=1

ck ϕk(xi)− yi

)2

. (18)

The solution to the above minimization problem is found as the classical and well-known
least-square solution

c∗ = arg min
c
‖Ψc− y‖ = Ψ+c (19)

where c = (c1, . . . , cK)
T, Ψ ∈ RL×K is a matrix with elements Ψik = ϕk(xi), and Ψ+ = (ΨTΨ)−1ΨT

is its Moore–Penrose pseudo-inverse. As the regression problem needs to be overdetermined,
i.e., L > K (typically, at least L = 2K [19]), the number of training samples grows dramatically
for high-dimensional problems.

For sparse PCEs instead, the non-zero coefficients or, equivalently, the subset K̆ of significant basis
functions, are identified as a part of the optimization process using, e.g., least-angle regression [22]. As
the number of unknowns that has to be calculated is greatly reduced, a much smaller training set can
be used for the regression.

4.3. PCA Compression

The surrogate modeling techniques of Sections 4.1 and 4.2 were introduced for a single output
system (M = 1). For multi-output systems (M > 1), a naive approach is to repeat the pertinent
optimization process for each component of the output vector y to build the corresponding surrogate
model. Clearly, the computational cost scales roughly linearly with the number of variables M, thus
becoming impractical for systems with thousands of outputs. An exception is the full-blown PCE for
which, if the same set of basis functions is used for all outputs, the optimization process (19) can be
easily vectorized and solved at once by stacking the training data column-wise. However, as already
mentioned, full-blown PCEs are impractical for high-dimensional problems (large number of inputs).

To overcome this limitation, we introduce a compression strategy based on PCA [39,46]. Let us
consider again a set of L training pairs {(xi, yi)}L

i=1, where now yi = M(xi) ∈ RM. We organize
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the training responses yi column-wise into a matrix Y ∈ RM×L, which therefore has elements Ymi =

[M(xi)]m. We further define the zero-mean dataset Ỹ with elements Ỹmi = Ymi − µm, where

µm =
1
L

L

∑
i=1

Ymi (20)

is the column-wise mean, and we calculate its “economy-size” singular value decomposition (SVD)

Ỹ = UΣVT, (21)

with U ∈ RM×L and Σ, V ∈ RL×L. Matrix Σ is diagonal and collects the singular values {σi}L
i=1 of Ỹ in

descending order. By defining threshold ε and n̄ such that

σi
σ1

< ε ∀i > n̄, (22)

the SVD of (21) can be approximated by retaining only the n̄ most significant singular values (the
“principal components”). This leads to a matrix Û ∈ RM×n̄ that retains only the first n̄ columns of U
and that is used to define a compressed version of modelM in (1) as

z =MPCA(x) = ÛT (y− µ) = ÛT (M(x)− µ) , (23)

where MPCA : Rd → Rn̄ and µ = (µ1, . . . , µM)T. Now, the output z of model (23) has only n̄
components compared to the M output components of (1). As the singular values decay rather fast, it
is found that n̄� M, typically by two to four orders of magnitude. As such, any surrogate modeling
technique suitable for high-dimensional problems (in terms of number of input parameters d), like
the LS-SVM regression or the sparse PCE, can be applied with a limited computational effort to the
components of z. Once the surrogate model ofMPCA is available, let us generically denote it with M̃,
the value of the original outputs y is recovered from (23) as

y ≈ µ + Ûz ≈ µ + ÛM̃(x). (24)

The flowchart of Figure 4 summarizes the main steps of the proposed methodology. For the model
generation (left panel), a (limited) number of training output responses (in this case, phasor nodal
voltages) are obtained from the full-computational model of the PDN for some random configurations
of the input uncertain parameters (power of loads and DGs). These training responses are compressed
using matrix Û, which is obtained by truncating the SVD of the dataset matrix according to the
magnitude of its singular values. Finally, a surrogate model is trained for this reduced dataset. For the
model evaluation (right panel), the process is reversed. A (usually large) number of samples of the
uncertain input parameters is drawn. The surrogate model is used to inexpensively compute the
corresponding compressed data. Finally, this compressed data is mapped back to the original data by
applying the inverse transformation.
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Figure 4. Flowchart of the proposed modeling methodology.

5. Application Examples

In this section, the LS-SVM and sparse PCE regressions are applied in conjunction with PCA
compression to the test case of Section 2, which has M = 3798 network nodes. A compact surrogate
model is obtained, capable of predicting the behavior of the nodal voltages of this complex PDN in
which a high number of loads/DGs are considered as uncertain parameters. All the simulations have
been performed using MATLAB on a workstation with Intel Core i7 CPU running at 3.6 GHz and
32 GB of RAM.

The statistical properties of the network voltage profile are investigated by considering two cases:

• Case 1: d = 450 uncertain parameters, i.e., Nload = 250 loads and Npv = 200 PV generators.
• Case 2: d = 900 uncertain parameters, i.e., Nload = 500 loads and Npv = 400 PV generators.

For each case, the network nodes with uncertain load or PV generator have been randomly chosen.
For the loads, the real power follows a Gaussian distribution with a relative standard deviation of 80%
from its nominal value, and samples with negative value are discarded. The corresponding reactive
power is calculated by assuming a constant power factor. Therefore, the variability of the active and
reactive power is not independent. Nevertheless, the generalization to independent variations of the
active and reactive power components is straightforward. For the PV generators, the solar radiation r
is typically described with a beta distribution [47]. Specifically, a beta distribution with parameters
α = 0.90 and β = 0.85 is considered here. In turn, the active power Ppv of the PV generator is expressed
as a function of the solar radiation r as discussed in [48]. The rated power of each PV is 100 kVA.
The PV generators are assumed to be operating at a unitary power factor [48], and therefore their
reactive power is considered to be zero in this study, with a capacity penetration level of 17.5%.

The variability of the node voltages is shown in Figure 5 for the test case with 450 uncertain
parameters (Case 1). The plot highlights the large variation of the nodal voltages due to the uncertainty,
with a maximum variation on phase A of about 20%. On the other hand, the variability turns out to be
very small for some nodes. In particular, for 283 out of the 3798 nodes, connected to one of the phases
A, B, or C, the relative variation turns out to be less than 1%.
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Figure 5. Overall voltage profile of the network generated by considering a subset of 1000 Monte Carlo
simulations (gray curves). The solid black curves correspond to the nominal network response.

Next, a subset of L = 450 responses is considered as “training samples”. Figure 6 shows the
normalized singular values of the corresponding zero-mean dataset matrix Ỹ. The dashed horizontal
lines represents the thresholds ε = 10−i, for i = 1, 2, 3, 4, 5. The singular values cross the lowest
threshold of ε = 10−5 at index n̄ = 38. This indicates that the compressed training responses retain
only 38 out of the 3798 original components, with a compression rate of 100×. The impact of the
PCA compression is illustrated in Figure 7, which shows the scatter plots of the actual training
responses paired with the responses reconstructed from a PCA truncation with an increasing number
of components. Ideally, the points should line on the diagonal. A very high accuracy in reproducing
the training samples is observed starting from a threshold of ε = 10−4 and n̄ = 23 coefficients only.
Therefore, this threshold is used in the following analyses. For Case 2, this leads to n̄ = 39.
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Figure 6. Normalized singular values of a training dataset for Case 1 with L = 450 responses (solid
blue curve). The horizontal dashed lines indicate different thresholds for the PCA truncation.
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Figure 7. Scatter plots showing the actual training samples versus their reconstruction from PCA
truncations with increasing number of components as shown in the plot headers.

Compressed training datasets with different sample size L are then used to train both LS-SVM
and second-order (p = 2) sparse PCE surrogate models. The performance of the proposed modeling
methodology is investigated by comparison with reference results generated with a MC simulation
featuring 10,000 samples.

Figures 8 and 9 provide a deterministic assessment for Case 1 and Case 2, respectively, by showing
the correlation between the reference outputs from the MC simulation and the corresponding
predictions obtained with the LS-SVM and PCE surrogate models for an increasing number of training
samples. The best model is the one in which the cloud of points lies along the diagonal (black dashed
line). A good correlation is observed for both the LS-SVM and PCE models with L = 900 for Case 1 and
L = 1800 for Case 2. In this case, the two surrogate models provide comparable accuracy. When using
smaller training datasets instead, the LS-SVM model exhibits superior accuracy, while a larger error is
observed for the PCE model. This could be explained by the fact that the PCE is not primarily intended
for parametric modeling, since it allows a large error for unlikely samples, as discussed in Section 4.2.
Indeed, scatter plots assess the accuracy of the model in reproducing the system behavior for a wide
range of parameter configurations, disregarding their actual probability of occurrence.

Figures 10 and 11 provide instead a probabilistic analysis. The PDFs of the ensemble of all nodal
voltages (i.e., all the entries of the output vector y) calculated from 10,000 MC samples (gray bars) are
compared to the predictions obtained with the proposed PCA-compressed LS-SVM (solid red curve)
and sparse PCE (dashed black curve) surrogate models, both of which provide excellent accuracy.
A notable effect on the distribution shape, due to the additional set of uncertain parameters included
in Case 2, is observed. The results highlight the capability of both surrogate models of accurately
providing the statistical information about the expected distribution of nodal voltages for such a
heterogeneous situation described by the presence of a large variability in the load and DG power.
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This statistical analysis is extremely helpful since it provides a single global picture on the possible
critical behavior of the network, at least in terms of the values of the nodal voltage magnitudes in
the lower and in the upper part of the distribution. A similar assessment can be done by considering
other sensitive parameters such as the phase of the nodal voltages or the branch power, using the same
modeling methodology.

Figure 8. Scatter plots of the network node voltages for Case 1 (d = 450 uncertain parameters)
predicted by LS-SVM regression (top three panels) and sparse PCE (bottom three panels) surrogate
models trained with an increasing number of samples, versus the results of MC simulation.

Figure 9. Scatter plots of the network node voltages for Case 2 (d = 900 uncertain parameters)
predicted by LS-SVM regression (top three panels) and sparse PCE (bottom three panels) surrogate
models trained with an increasing number of samples, versus the results of MC simulation.
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Figure 10. PDF of the per-unit (p.u.) magnitude of the nodal voltages calculated for Case 1 from the
MC samples and with the compressed LS-SVM and sparse PCE surrogate models.

Figure 11. PDF of the per-unit (p.u.) magnitude of the nodal voltages calculated for Case 2 from the
MC samples and with the compressed LS-SVM and sparse PCE surrogate models.

In order to provide a more detailed validation, Table 1 collects quantitative information on the
performance. Specifically, the root mean squared error (RMSE) between the reference MC responses
and the surrogate model predictions, as well as the CPU time required by (i) the generation of the
training samples (indicated next to the number of training samples L), (ii) the model generation (tmodel),
and (iii) the model evaluation for 10,000 validation samples (tcost), are reported for both test cases.
The above figures confirm that the LS-SVM provides better accuracy for smaller training set sizes,
whereas both methods yield similar RMSE for the largest training dataset. Moreover, it is possible to
conclude that the efficiency of the LS-SVM model is much better than the one of the sparse PCE, with a
dramatic benefit especially when the number of training samples L increases. For the largest training
dataset with L = 1800 output responses and d = 900 input parameters, the amount of time required
by the generation of the LS-SVM model is 23.8 min, i.e., over one order of magnitude faster than for
the sparse PCE (5.9 h). It should be noted, however, that overall training cost is in this case largely
dominated by the time required by the simulation of the training responses (3.4 h). The evaluation
time is instead almost negligible for both techniques. At this point, it is also important to remark that
the direct application of the surrogate models to the original output datasets with 3798 nodal voltages
would be definitely unfeasible.
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Table 1. Modeling performance in terms of accuracy and efficiency for different training set sizes.

d = 450 L = 250 (cost = 28.7 min) L = 450 (cost = 51.6 min) L = 900 (cost = 1.7 h)

Method RMSE tmodel tcost RMSE tmodel tcost RMSE tmodel tcost

MC − − 19.1 h − − 19.1 h − − 19.1 h

LS-SVM (RBF) 0.0127 18.8 s 3.3 s 0.0054 48.1 s 5.1 s 0.0028 3.6 min 8.9 s

Sparse PCE 0.0265 5.6 min 1.6 min 0.0124 8.9 min 1.6 min 0.0031 23.8 min 1.7 min

d = 900 L = 450 (cost = 51.6 min) L = 900 (cost = 1.7 h) L = 1800 (cost = 3.4 h)

Method RMSE tmodel tcost RMSE tmodel tcost RMSE tmodel tcost

MC − − 19.1 h − − 19.1 h − − 19.1 h

LS-SVM (RBF) 0.0166 55 s 7.8 s 0.0077 4 min 12.8 s 0.00401 22.7 min 22.7 s

Sparse PCE 0.0313 44.1 min 3.4 min 0.0294 1.7 h 3.5 min 0.00445 5.9 h 3.8 min

6. Conclusions

This paper addressed the challenging problem of constructing compact, accurate,
and fast-to-evaluate surrogate models of a complex PDN, able of predicting the effect of a large set of
uncertain parameters on its nodal voltages. Specifically, the benchmark three-phase IEEE 8500-node
test feeder with 450 and 900 uncertain parameters, consisting in either loads or renewable distributed
solar generators, has been considered as an application test case with the aim of highlighting the
strength and feasibility of the advocated methodology.

The surrogate models are built from a limited number of training samples via a well-established
two-step scheme. First of all, PCA is applied to remove the redundant information on the output
samples, thereby leading to a compression of the training set. For the application test cases considered
in this work, a PCA with a relative truncation threshold of ε = 10−4 on the singular values allowed
reducing the number of output variables (i.e., the nodal voltages) from 3798 to 23 for case 1 and
to 39 for case 2, respectively, thus achieving a compression rate of ~100×. Then, the compressed
training datasets were used to build compact surrogate models based on either LS-SVM regression or
sparse PCE.

For each of the two test cases, the performance of the surrogate models was investigated in terms
of accuracy, efficiency, and convergence, by comparing the predictions of the models obtained with
different training set sizes against reference results from MC simulations. Concerning the accuracy,
the LS-SVM regression outperforms the sparse PCE for all the considered test cases and training set
sizes, although they converge to similar RMSEs for large training sets. The LS-SVM regression is also
more efficient in the model construction. However, the overall training cost was dominated by the
simulation of the training responses.

The results provided in this paper demonstrate that the proposed modeling methodology provides
an effective alternative to MC simulations, with an overall speed-up between 2× and 4.9× (including
the cost required for the generation of the training samples). At this point, it is important to remark
that the surrogate models inherently provide also a close-form parametric model, as opposed to the
“blind” MC method. In summary, the modeling strategy presented in this work can be considered as a
viable and robust solution for the generation of an accurate surrogate model for both the UQ and the
parametric analysis of a PDN with a large number of nodes and of uncertain parameters.
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Abbreviations

The following abbreviations are used in this manuscript.

DG Distributed Generator
PDN Power Distribution Network
UQ Uncertainty Quantification
MC Monte Carlo
PDF Probability Density Function
PCE Polynomial Chaos Expansion
ML Machine Learning
SVM Support Vector Machine
LS-SVM Least-Square Support Vector Machine
PCA Principal Component Analysis
IEEE Institute of Electrical and Electronics Engineers
PV Photovoltaic
MNA Modified Nodal Analysis
RBF Radial Basis Function
RMSE Root mean squared error
p.u. per unit
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