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Abstract

Despite their effectiveness in a wide range of tasks, deep

architectures suffer from some important limitations. In

particular, they are vulnerable to catastrophic forgetting,

i.e. they perform poorly when they are required to update

their model as new classes are available but the original

training set is not retained. This paper addresses this prob-

lem in the context of semantic segmentation. Current strate-

gies fail on this task because they do not consider a peculiar

aspect of semantic segmentation: since each training step

provides annotation only for a subset of all possible classes,

pixels of the background class (i.e. pixels that do not belong

to any other classes) exhibit a semantic distribution shift.

In this work we revisit classical incremental learning meth-

ods, proposing a new distillation-based framework which

explicitly accounts for this shift. Furthermore, we intro-

duce a novel strategy to initialize classifier’s parameters,

thus preventing biased predictions toward the background

class. We demonstrate the effectiveness of our approach

with an extensive evaluation on the Pascal-VOC 2012 and

ADE20K datasets, significantly outperforming state of the

art incremental learning methods. Code can be found at

https://github.com/fcdl94/MiB.

1. Introduction

Semantic segmentation is a fundamental problem in

computer vision. In the last years, thanks to the emergence

of deep neural networks and to the availability of large-

scale human-annotated datasets [11, 39], the state of the art

has improved significantly [20, 8, 38, 19, 37]. Current ap-

proaches are derived by extending deep architectures from

image-level to pixel-level classification, taking advantage

of Fully Convolutional Networks (FCNs) [20]. Over the

years, semantic segmentation models based on FCNs have

been improved in several ways, e.g. by exploiting multiscale

representations [19, 37], modeling spatial dependencies and

contextual cues [6, 5, 8] or considering attention models [7].

Figure 1: Illustration of the semantic shift of the back-

ground class in incremental learning for semantic segmen-

tation. Yellow boxes denote the ground truth provided in the

learning step, while grey boxes denote classes not labeled.

As different learning steps have different label spaces, at

step t old classes (e.g. person) and unseen ones (e.g. car)

might be labeled as background in the current ground truth.

Here we show the specific case of single class learning

steps, but we address the general case where an arbitrary

number of classes is added.

Still, existing semantic segmentation methods are not

designed to incrementally update their inner classification

model when new categories are discovered. While deep nets

are undoubtedly powerful, it is well known that their capa-

bilities in an incremental learning setting are limited [16].

In fact, deep architectures struggle in updating their parame-

ters for learning new categories whilst preserving good per-

formance on the old ones (catastrophic forgetting [23]).

While the problem of incremental learning has been tra-

ditionally addressed in object recognition [18, 17, 4, 28, 15]

and detection [32], much less attention has been devoted

to semantic segmentation. Here we fill this gap, proposing

an incremental class learning (ICL) approach for semantic

segmentation. Inspired by previous methods on image clas-

sification [18, 28, 3], we cope with catastrophic forgetting

by resorting to knowledge distillation [14]. However, we

argue (and experimentally demonstrate) that a naive appli-

cation of previous knowledge distillation strategies would
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not suffice in this setting. In fact, one peculiar aspect of

semantic segmentation is the presence of a special class,

the background class, indicating pixels not assigned to any

of the given object categories. While the presence of this

class marginally influences the design of traditional, offline

semantic segmentation methods, this is not true in an in-

cremental learning setting. As illustrated in Fig. 1, it is

reasonable to assume that the semantics associated to the

background class changes over time. In other words, pix-

els associated to the background during a learning step may

be assigned to a specific object class in subsequent steps or

vice-versa, with the effect of exacerbating the catastrophic

forgetting. To overcome this issue, we revisit the classical

distillation-based framework for incremental learning [18]

by introducing two novel loss terms to properly account for

the semantic distribution shift within the background class,

thus introducing the first ICL approach tailored to semantic

segmentation. We extensively evaluate our method on two

datasets, Pascal-VOC [11] and ADE20K [39], showing that

our approach, coupled with a novel classifier initialization

strategy, largely outperform traditional ICL methods.

To summarize, the contributions of this paper are as follows:

• We study the task of incremental class learning for se-

mantic segmentation, analyzing in particular the prob-

lem of distribution shift arising due to the presence of

the background class.

• We propose a new objective function and introduce

a specific classifier initialization strategy to explicitly

cope with the evolving semantics of the background

class. We show that our approach greatly alleviates the

catastrophic forgetting, leading to the state of the art.

• We benchmark our approach over several previous

ICL methods on two popular semantic segmentation

datasets, considering different experimental settings.

We hope that our results will serve as a reference for

future works.

2. Related Works

Semantic Segmentation. Deep learning has enabled great

advancements in semantic segmentation [20, 8, 38, 19, 37].

State of the art methods are based on Fully Convolutional

Neural Networks [20, 2] and use different strategies to con-

dition pixel-level annotations on their global context, e.g.

using multiple scales [38, 19, 6, 5, 37, 8] and/or modeling

spatial dependencies [6, 12]. The vast majority of semantic

segmentation methods considers an offline setting, i.e. they

assume that training data for all classes is available before-

hand. To our knowledge, the problem of ICL in semantic

segmentation has been addressed only in [26, 27, 33, 24].

Ozdemir et al. [26, 27] describe an ICL approach for medi-

cal imaging, extending a standard image-level classification

method [18] to segmentation and devising a strategy to se-

lect relevant samples of old datasets for rehearsal. Taras

et al. proposed a similar approach for segmenting remote

sensing data. Differently, Michieli et al. [24] consider ICL

for semantic segmentation in a particular setting where la-

bels are provided for old classes while learning new ones.

Moreover, they assume the novel classes to be never present

as background in pixels of previous learning steps. These

assumptions strongly limit the applicability of their method.

Here we propose a more principled formulation of the

ICL problem in semantic segmentation. In contrast with

previous works, we do not limit our analysis to medical

[26] or remote sensing data [33] and we do not impose any

restrictions on how the label space should change across

different learning steps [24]. Moreover, we are the first to

provide a comprehensive experimental evaluation of state of

the art ICL methods on commonly used semantic segmen-

tation benchmarks and to explicitly introduce and tackle the

semantic shift of the background class, a problem recog-

nized but largely overseen by previous works [24].

Incremental Learning. The problem of catastrophic for-

getting [23] has been extensively studied for image clas-

sification tasks [9]. Previous works can be grouped in

three categories [9]: replay-based [28, 3, 31, 15, 34, 25],

regularization-based [17, 4, 36, 18, 10], and parameter

isolation-based [22, 21, 30]. In replay-based methods, ex-

amples of previous tasks are either stored [28, 3, 15, 35] or

generated [31, 34, 25] and then replayed while learning the

new task. Parameter isolation-based methods [22, 21, 30]

assign a subset of the parameters to each task to prevent

forgetting. Regularization-based methods can be divided in

prior-focused and data-focused. The former [36, 4, 17, 1]

define knowledge as the parameters value, constraining the

learning of new tasks by penalizing changes of important

parameters for old ones. The latter [18, 10] exploit dis-

tillation [14] and use the distance between the activations

produced by the old network and the new one as a regular-

ization term to prevent catastrophic forgetting.

Despite these progresses, very few works have gone be-

yond image-level classification. A first work in this direc-

tion is [32] which considers ICL in object detection propos-

ing a distillation-based method adapted from [18] for tack-

ling novel class recognition and bounding box proposals

generation. In this work we also take a similar approach

to [32] and we resort on distillation. However, here we pro-

pose to address the problem of modeling the background

shift which is peculiar of the semantic segmentation setting.

3. Method

3.1. Problem Definition and Notation

Before delving into the details of ICL for semantic seg-

mentation, we first introduce the task of semantic segmen-
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Figure 2: Overview of our method. At learning step t an image is processed by the old (top) and current (bottom) models,

mapping the image to their respective output spaces. As in standard ICL methods, we apply a cross-entropy loss to learn

new classes (blue block) and a distillation loss to preserve old knowledge (yellow block). In this framework, we model the

semantic changes of the background across different learning steps by (i) initializing the new classifier using the weights of

the old background one (left), (ii) comparing the pixel-level background ground truth in the cross-entropy with the probability

of having either the background (black) or an old class (pink and grey bars) and (iii) relating the background probability given

by the old model in the distillation loss with the probability of having either the background or a novel class (green bar).

tation. Let us denote as X the input space (i.e. the image

space) and, without loss of generality, let us assume that

each image x ∈ X is composed by a set of pixels I with

constant cardinality |I| = N . The output space is defined

as YN , with the latter denoting the product set of N -tuples

with elements in a label space Y . Given an image x the goal

of semantic segmentation is to assign each pixel xi of image

x a label yi ∈ Y , representing its semantic class. Out-of-

class pixels can be assigned a special class, i.e. the back-

ground class b ∈ Y . Given a training set T ⊂ X ×YN , the

mapping is realized by learning a model fθ with parameters

θ from the image space X to a pixel-wise class probabil-

ity vector, i.e. fθ : X 7→ IRN×|Y|. The output segmenta-

tion mask is obtained as y∗ = {argmaxc∈Y fθ(x)[i, c]}
N
i=1,

where fθ(x)[i, c] is the probability for class c in pixel i.
In the ICL setting, training is realized over multiple

phases, called learning steps, and each step introduces

novel categories to be learnt. In other terms, during the

tth learning step, the previous label set Yt−1 is expanded

with a set of new classes Ct, yielding a new label set

Yt = Yt−1 ∪ Ct. At learning step t we are also provided

with a training set T t ⊂ X × (Ct)N that is used in conjunc-

tion to the previous model fθt−1 : X 7→ IRN×|Yt−1| to train

an updated model fθt : X 7→ IRN×|Yt|. As in standard

ICL, in this paper we assume the sets of labels Ct that we

obtain at the different learning steps to be disjoint, except

for the special void/background class b.

3.2. Incremental Learning for Semantic Segmenta
tion with Background Modeling

A naive approach to address the ICL problem consists in

retraining the model fθt on each set T t sequentially. When

the predictor fθt is realized through a deep architecture, this

corresponds to fine-tuning the network parameters on the

training set T t initialized with the parameters θt−1 from

the previous stage. This approach is simple, but it leads

to catastrophic forgetting. Indeed, when training using T t

no samples from the previously seen object classes are pro-

vided. This biases the new predictor fθt towards the novel

set of categories in Ct to the detriment of the classes from

the previous sets. In the context of ICL for image-level clas-

sification, a standard way to address this issue is coupling

the supervised loss on T t with a regularization term, either

taking into account the importance of each parameter for

previous tasks [17, 31], or by distilling the knowledge using

the predictions of the old model fθt−1 [18, 28, 3]. We take

inspiration from the latter solution to initialize the overall

objective function of our problem. In particular, we mini-

mize a loss function of the form:

L(θt) =
1

|T t|

∑

(x,y)∈T t

(

ℓθ
t

ce(x, y) + λℓθ
t

kd(x)
)

(1)

where ℓce is a standard supervised loss (e.g. cross-entropy

loss), ℓkd is the distillation loss and λ > 0 is a hyper-

parameter balancing the importance of the two terms.

As stated in Sec. 3.1, differently from standard ICL set-

tings considered for image classification problems, in se-

mantic segmentation we have that two different label sets Cs

and Cu share the common void/background class b. How-

ever, the distribution of the background class changes across

different incremental steps. In fact, background annotations

given in T t refer to classes not present in Ct, that might be-

long to the set of seen classes Yt−1 and/or to still unseen

classes i.e. Cu with u > t (see Fig. 1). In the following, we
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show how we account for the semantic shift in the distribu-

tion of the background class by revisiting standard choices

for the general objective defined in Eq. (1).

Revisiting Cross-Entropy Loss. In Eq.(1), a possible

choice for ℓce is the standard cross-entropy loss computed

over all image pixels:

ℓθ
t

ce(x, y) = −
1

|I|

∑

i∈I

log qtx(i, yi) , (2)

where yi ∈ Yt is the ground truth label associated to pixel

i and qtx(i, c) = fθt(x)[i, c].
The problem with Eq.(2) is that the training set T t we

use to update the model only contains information about

novel classes in Ct. However, the background class in T t

might include also pixels associated to the previously seen

classes in Yt−1. In this paper, we argue that, without ex-

plicitly taking into account this aspect, the catastrophic for-

getting problem would be even more severe. In fact, we

would drive our model to predict the background label b for

pixels of old classes, further degrading the capability of the

model to preserve semantic knowledge of past categories.

To avoid this issue, in this paper we propose to modify the

cross-entropy loss in Eq.(2) as follows:

ℓθ
t

ce(x, y) = −
1

|I|

∑

i∈I

log q̃tx(i, yi) , (3)

where:

q̃tx(i, c) =

{

qtx(i, c) if c 6= b
∑

k∈Yt−1 qtx(i, k) if c = b .
(4)

Our intuition is that by using Eq.(3) we can update the

model to predict the new classes and, at the same time, ac-

count for the uncertainty over the actual content of the back-

ground class. In fact, in Eq.(3) the background class ground

truth is not directly compared with its probabilities qtx(i, b)
obtained from the current model fθt , but with the proba-

bility of having either an old class or the background, as

predicted by fθt (Eq.(4)). A schematic representation of

this procedure is depicted in Fig. 2 (blue block). It is worth

noting that the alternative of ignoring the background pixels

within the cross-entropy loss is a sub-optimal solution. In

fact, this would not allow to adapt the background classifier

to its semantic shift and to exploit the information that new

images might contain about old classes.

Revisiting Distillation Loss. In the context of incremen-

tal learning, distillation loss [14] is a common strategy to

transfer knowledge from the old model fθt−1 into the new

one, preventing catastrophic forgetting. Formally, a stan-

dard choice for the distillation loss ℓkd is:

ℓθ
t

kd(x, y) = −
1

|I|

∑

i∈I

∑

c∈Yt−1

qt−1
x (i, c) log q̂tx(i, c) , (5)

where q̂tx(i, c) is defined as the probability of class c for

pixel i given by fθt but re-normalized across all the classes

in Yt−1 i.e.:

q̂tx(i, c) =

{

0 if c ∈ Ct \ {b}

qtx(i, c)/
∑

k∈Yt−1 qtx(i, k) if c ∈ Yt−1 .

(6)

The rationale behind ℓkd is that fθt should produce acti-

vations close to the ones produced by fθt−1 . This regular-

izes the training procedure in such a way that the parameters

θt are still anchored to the solution found for recognizing

pixels of the previous classes, i.e. θt−1.

The loss defined in Eq.(5) has been used either in its

base form or variants in different contexts, from incremen-

tal task [18] and class learning [28, 3] in object classifica-

tion to complex scenarios such as detection [32] and seg-

mentation [24]. Despite its success, it has a fundamental

drawback in semantic segmentation: it completely ignores

the fact that the background class is shared among differ-

ent learning steps. While with Eq.(3) we tackled the first

problem linked to the semantic shift of the background (i.e.

b ∈ T t contains pixels of Yt−1), we use the distillation loss

to tackle the second: annotations for background in T s with

s < t might include pixels of classes in Ct.

From the latter considerations, the background probabil-

ities assigned to a pixel by the old predictor fθt−1 and by the

current model fθt do not share the same semantic content.

More importantly, fθt−1 might predict as background pixels

of classes in Ct that we are currently trying to learn. Notice

that this aspect is peculiar to the segmentation task and it

is not considered in previous incremental learning models.

However, in our setting we must explicitly take it into ac-

count to perform a correct distillation of the old model into

the new one. To this extent we define our novel distillation

loss by rewriting q̂tx(i, c) in Eq.(6) as:

q̂tx(i, c) =

{

qtx(i, c) if c 6= b
∑

k∈Ct qtx(i, k) if c = b .
(7)

Similarly to Eq.(5), we still compare the probability of a

pixel belonging to seen classes assigned by the old model,

with its counterpart computed with the current parame-

ters θt. However, differently from classical distillation, in

Eq.(7) the probabilities obtained with the current model are

kept unaltered, i.e. normalized across the whole label space

Yt and not with respect to the subset Yt−1 (Eq.(6)). More

importantly, the background class probability as given by

fθt−1 is not directly compared with its counterpart in fθt ,

but with the probability of having either a new class or the

background, as predicted by fθt (see Fig. 2, yellow block).

We highlight that, with respect to Eq.(6) and other simple

choices (e.g. excluding b from Eq.(6)) this solution has two

advantages. First, we can still use the full output space of
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the old model to distill knowledge in the current one, with-

out any constraint on pixels and classes. Second, we can

propagate the uncertainty we have on the semantic content

of the background in fθt−1 without penalizing the probabil-

ities of new classes we are learning in the current step t.

Classifiers’ Parameters Initialization. As discussed

above, the background class b is a special class devoted to

collect the probability that a pixel belongs to an unknown

object class. In practice, at each learning step t, the novel

categories in Ct are unknowns for the old classifier fθt−1 .

As a consequence, unless the appearance of a class in Ct

is very similar to one in Yt−1, it is reasonable to assume

that fθt−1 will likely assign pixels of Ct to b. Taking into

account this initial bias on the predictions of fθt on pixels

of Ct, it is detrimental to randomly initialize the classifiers

for the novel classes. In fact a random initialization would

provoke a misalignment among the features extracted by the

model (aligned with the background classifier) and the ran-

dom parameters of the classifier itself. Notice that this could

lead to possible training instabilities while learning novel

classes since the network could initially assign high proba-

bilities for pixels in Ct to b.

To address this issue, we propose to initialize the clas-

sifier’s parameters for the novel classes in such a way that

given an image x and a pixel i, the probability of the back-

ground qt−1
x (i, b) is uniformly spread among the classes in

Ct, i.e. qtx(i, c) = qt−1
x (i, b)/|Ct| ∀c ∈ Ct, where |Ct| is the

number of new classes (notice that b ∈ Ct). To this extent,

let us consider a standard fully connected classifier and let

us denote as {ωt
c, β

t
c} ∈ θt the classifier parameters for a

class c at learning step t, with ω and β denoting its weights

and bias respectively. We can initialize {ωt
c, β

t
c} as follows:

ωt
c =

{

ωt−1
b

if c ∈ Ct

ωt−1
c otherwise

(8)

βt
c =

{

βt−1
b

− log(|Ct|) if c ∈ Ct

βt−1
c otherwise

(9)

where {ωt−1
b

, βt−1
b

} are the weights and bias of the back-

ground classifier at the previous learning step. The fact

that the initialization defined in Eq.(8) and (9) leads to

qtx(i, c) = qt−1
x (i, b)/|Ct| ∀c ∈ Ct is easy to obtain from

qtx(i, c) ∝ exp(ωt
b
· x+ βt

b
).

As we will show in the experimental analysis, this sim-

ple initialization procedure brings benefits in terms of both

improving the learning stability of the model and the final

results, since it eases the role of the supervision imposed

by Eq.(3) while learning new classes and follows the same

principles used to derive our distillation loss (Eq.(7)).

4. Experiments

4.1. ICL Baselines

We compare our method against standard ICL baselines,

originally designed for classification tasks, on the consid-

ered segmentation task, thus segmentation is treated as a

pixel-level classification problem. Specifically, we report

the results of six different regularization-based methods,

three prior-focused and three data-focused approaches.

In the first category, we chose Elastic Weight Consolida-

tion (EWC) [17], Path Integral (PI) [36], and Riemannian

Walks (RW) [4]. They employ different strategies to com-

pute the importance of each parameter for old classes: EWC

uses the empirical Fisher matrix, PI uses the learning trajec-

tory, while RW combines EWC and PI in a unique model.

We choose EWC since it is a standard baseline employed

also in [32] and PI and RW since they are two simple ap-

plications of the same principle. Since these methods act at

the parameter level, to adapt them to the segmentation task

we keep the loss in the output space unaltered (i.e. stan-

dard cross-entropy across the whole segmentation mask),

computing the parameters’ importance by considering their

effect on learning old classes.

For the data-focused methods, we chose Learning with-

out forgetting (LwF) [18], LwF multi-class (LwF-MC) [28]

and the segmentation method of [24] (ILT). We denote

as LwF the original distillation based objective as imple-

mented in Eq.(1) with basic cross-entropy and distillation

losses, which is the same as [18] except that distillation

and cross-entropy share the same label space and classi-

fier. LwF-MC is the single-head version of [18] as adapted

from [28]. It is based on multiple binary classifiers, with

the target labels defined using the ground truth for novel

classes (i.e. Ct) and the probabilities given by the old model

for the old ones (i.e. Yt−1). Since the background class is

both in Ct and Yt−1 we implement LwF-MC by a weighted

combination of two binary cross-entropy losses, on both the

ground truth and the probabilities given by fθt−1 . Finally,

ILT [24] is the only method specifically proposed for ICL

in semantic segmentation. It uses a distillation loss in the

output space, as in our adapted version of LwF [18] and/or

another distillation loss in the features space, attached to

the output of the network decoder. Here, we use the vari-

ant where both losses are employed. As done by [32], we

do not compare with replay-based methods (e.g. [28]) since

they violate the standard ICL assumption regarding the un-

availability of old data.

In all tables we report other two baselines: simple fine-

tuning (FT) on each T t (e.g. Eq.(2)) and training on all

classes offline (Joint). The latter can be regarded as an

upper bound. In the tables we denote our method as MiB

(Modeling the Background for incremental learning in se-

mantic segmentation). All results are reported as mean
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Table 1: Mean IoU on the Pascal-VOC 2012 dataset for different incremental class learning scenarios.

19-1 15-5 15-1

Disjoint Overlapped Disjoint Overlapped Disjoint Overlapped

Method 1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all

FT 5.8 12.3 6.2 6.8 12.9 7.1 1.1 33.6 9.2 2.1 33.1 9.8 0.2 1.8 0.6 0.2 1.8 0.6

PI [36] 5.4 14.1 5.9 7.5 14.0 7.8 1.3 34.1 9.5 1.6 33.3 9.5 0.0 1.8 0.4 0.0 1.8 0.5

EWC [17] 23.2 16.0 22.9 26.9 14.0 26.3 26.7 37.7 29.4 24.3 35.5 27.1 0.3 4.3 1.3 0.3 4.3 1.3

RW [4] 19.4 15.7 19.2 23.3 14.2 22.9 17.9 36.9 22.7 16.6 34.9 21.2 0.2 5.4 1.5 0.0 5.2 1.3

LwF [18] 53.0 9.1 50.8 51.2 8.5 49.1 58.4 37.4 53.1 58.9 36.6 53.3 0.8 3.6 1.5 1.0 3.9 1.8

LwF-MC [28] 63.0 13.2 60.5 64.4 13.3 61.9 67.2 41.2 60.7 58.1 35.0 52.3 4.5 7.0 5.2 6.4 8.4 6.9

ILT [24] 69.1 16.4 66.4 67.1 12.3 64.4 63.2 39.5 57.3 66.3 40.6 59.9 3.7 5.7 4.2 4.9 7.8 5.7

MiB 69.6 25.6 67.4 70.2 22.1 67.8 71.8 43.3 64.7 75.5 49.4 69.0 46.2 12.9 37.9 35.1 13.5 29.7

Joint 77.4 78.0 77.4 77.4 78.0 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4 79.1 72.6 77.4

Intersection-over-Union (mIoU) in percentage, averaged

over all the classes of a learning step and all the steps.

4.2. Implementation Details

For all methods we use the Deeplab-v3 architecture [6]

with a ResNet-101 [13] backbone and output stride of 16.

Since memory requirements are an important issue in se-

mantic segmentation, we use in-place activated batch nor-

malization, as proposed in [29]. The backbone has been

initialized using the ImageNet pretrained model [29]. We

follow [6], training the network with SGD and the same

learning rate policy, momentum and weight decay. We use

an initial learning rate of 10−2 for the first learning step and

10−3 for the followings, as in [32]. We train the model with

a batch-size of 24 for 30 epochs for Pascal-VOC 2012 and

60 epochs for ADE20K in every learning step. We apply

the same data augmentation of [6] and we crop the images

to 512 × 512 during both training and test. For setting the

hyper-parameters of each method, we use the protocol of

incremental learning defined in [9], using 20% of the train-

ing set as validation. The final results are reported on the

standard validation set of the datasets.

4.3. PascalVOC 2012

PASCAL-VOC 2012 [11] is a widely used benchmark

that includes 20 foreground object classes. Following

[24, 32], we define two experimental settings, depending

on how we sample images to build the incremental datasets.

Following [24], we define an experimental protocol called

the disjoint setup: each learning step contains a unique set

of images, whose pixels belong to classes seen either in the

current or in the previous learning steps. Differently from

[24], at each step we assume to have only labels for pixels of

novel classes, while the old ones are labeled as background

in the ground truth. The second setup, that we denote as

overlapped, follows what done in [32] for detection: each

training step contains all the images that have at least one

pixel of a novel class, with only the latter annotated. It is

important to note a difference with respect to the previous

setup: images may now contain pixels of classes that we

will learn in the future, but labeled as background. This is a

more realistic setup since it does not make any assumption

on the objects present in the images.

As done by previous works [32, 24], we perform three

different experiments concerning the addition of one class

(19-1), five classes all at once (15-5), and five classes se-

quentially (15-1), following the alphabetical order of the

classes to split the content of each learning step.

Addition of one class (19-1). In this experiment, we per-

form two learning steps: the first in which we observe

the first 19 classes, and the second where we learn the tv-

monitor class. Results are reported in Table 1. Without

employing any regularization strategy, the performance on

past classes drops significantly. FT, in fact, performs poorly,

completely forgetting the first 19 classes. Unexpectedly, us-

ing PI as a regularization strategy does not provide benefits,

while EWC and RW improve performance of nearly 15%.

However, prior-focused strategies are not competitive with

data-focused ones. In fact, LwF, LwF-MC, and ILT, out-

perform them by a large margin, confirming the effective-

ness of this approch on preventing catastrophic forgetting.

While ILT surpasses standard ICL baselines, our model is

able to obtain a further boost. This improvement is remark-

able for new classes, where we gain 11% in mIoU, while

do not experience forgetting on old classes. It is especially

interesting to compare our method with the baseline LwF

which uses the same principles of ours but without model-

ing the background. Compared to LwF we achieve an av-

erage improvement of about 15%, thus demonstrating the

importance of modeling the background in ICL for seman-

tic segmentation. These results are consistent in both the

disjoint and overlapped scenarios.

Single-step addition of five classes (15-5). In this setting

we add, after the first training set, the following classes:

plant, sheep, sofa, train, tv-monitor. Results are reported in

Table 1. Overall, the behavior on the first 15 classes is con-

sistent with the 19-1 setting: FT and PI suffer a large perfor-

mance drop, data-focused strategies (LwF, LwF-MC, ILT)

outperform EWC and RW by far, while our method gets the
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Table 2: Mean IoU on the ADE20K dataset for different incremental class learning scenarios.

100-50 100-10 50-50

Method 1-100 101-150 all 1-100 100-110 110-120 120-130 130-140 140-150 all 1-50 51-100 101-150 all

FT 0.0 24.9 8.3 0.0 0.0 0.0 0.0 0.0 16.6 1.1 0.0 0.0 22.0 7.3

LwF [18] 21.1 25.6 22.6 0.1 0.0 0.4 2.6 4.6 16.9 1.7 5.7 12.9 22.8 13.9

LwF-MC [28] 34.2 10.5 26.3 18.7 2.5 8.7 4.1 6.5 5.1 14.3 27.8 7.0 10.4 15.1

ILT [24] 22.9 18.9 21.6 0.3 0.0 1.0 2.1 4.6 10.7 1.4 8.4 9.7 14.3 10.8

MiB 37.9 27.9 34.6 31.8 10.4 14.8 12.8 13.6 18.7 25.9 35.5 22.2 23.6 27.0

Joint 44.3 28.2 38.9 44.3 26.1 42.8 26.7 28.1 17.3 38.9 51.1 38.3 28.2 38.9

Table 3: Ablation study of the proposed method on the

Pascal-VOC 2012 overlapped setup. CE and KD denote

our cross-entropy and distillation losses, while init our ini-

tialization strategy.

19-1 15-5 15-1

1-19 20 all 1-15 16-20 all 1-15 16-20 all

LwF [18] 51.2 8.5 49.1 58.9 36.6 53.3 1.0 3.9 1.8

+ CE 57.6 9.9 55.2 63.2 38.1 57.0 12.0 3.7 9.9

+ KD 66.0 11.9 63.3 72.9 46.3 66.3 34.8 4.5 27.2

+ init 70.2 22.1 67.8 75.5 49.4 69.0 35.1 13.5 29.7

best results, obtaining performances closer to the joint train-

ing upper bound. For what concerns the disjoint scenario,

our method improves over the best baseline of 4.6% on old

classes, of 2% on novel ones and of 4% in all classes. These

gaps increase in the overlapped setting where our method

surpasses the baselines by nearly 10% in all cases, clearly

demonstrating its ability to take advantage of the informa-

tion contained in the background class.

Multi-step addition of five classes (15-1). This setting is

similar to the previous one except that the last 5 classes are

learned sequentially, one by one. From Table 1 we can ob-

serve that performing multiple steps is challenging and ex-

isting methods work poorly for this setting, reaching perfor-

mance inferior to 7% on both old and new classes. In par-

ticular, FT and prior-focused methods are unable to prevent

forgetting, biasing their prediction completely towards new

classes and demonstrating performances close to 0% on the

first 15 classes. Even data-focused methods suffer a dra-

matic loss in performances in this setting, decreasing their

score from the single to the multi-step scenarios of more

than 50% on all classes. On the other side, our method is

still able to achieve good performances. Compared to the

other approaches, MiB outperforms all baselines by a large

margin in both old (46.2% on the disjoint and 35.1% on the

overlapped), and new (nearly 13% on both setups) classes.

As the overall performance drop (11% on all classes) shows,

the overlapped scenario is the most challenging one since it

does not impose any constraint on which classes are present

in the background.

Ablation Study. In Table 3 we report a detailed analy-

sis of our contributions, considering the overlapped setup.

We start from the baseline LwF [18] which employs stan-

dard cross-entropy and distillation losses. We first add to

the baseline our modified cross-entropy (CE): this increases

the ability to preserve old knowledge in all settings with-

out harming (15-1) or even improving (19-1, 15-5) perfor-

mances on the new classes. Second, we add our distilla-

tion loss (KD) to the model. Our KD provides a boost on

the performances for both old and new classes. The im-

provement on old classes is remarkable, especially in the

15-1 scenario (i.e. 22.8%). For the novel classes, the im-

provement is constant and is especially pronounced in the

15-5 scenario (7%). Notice that this aspect is peculiar of

our KD since standard formulation work only on preserv-

ing old knowledge. This shows that the two losses provide

mutual benefits. Finally, we add our classifiers’ initializa-

tion strategy (init). This component provides an improve-

ment in every setting, especially on novel classes: it dou-

bles the performance on the 19-1 setting (22.1% vs 11.9%)

and triplicates on the 15-1 (4.5% vs 13.5%). This confirms

the importance of accounting for the background shift at the

initialization stage to facilitate the learning of new classes.

4.4. ADE20K

ADE20K [39] is a large-scale dataset that contains 150

classes. Differently from Pascal-VOC 2012, this dataset

contains both stuff (e.g. sky, building, wall) and object

classes. We create the incremental datasets T t by splitting

the whole dataset into disjoint image sets, without any con-

straint except ensuring a minimum number of images (i.e.

50) where classes on Ct have labeled pixels. Obviously,

each T t provides annotations only for classes in Ct while

other classes (old or future) appear as background in the

ground truth. In Table 2 we report the mean IoU obtained

averaging the results on two different class orders: the order

proposed by [39] and a random one. In this experiments, we

compare our approach with data-focused methods only (i.e.

LwF, LwF-MC, and ILT) due to their gap in performance

with prior-focused ones.

Single-step addition of 50 classes (100-50). In the first ex-

periment, we initially train the network on 100 classes and

we add the remaining 50 all at once. From Table 2 we can

observe that FT is clearly a bad strategy on large scale set-

tings since it completely forgets old knowledge. Using a

distillation strategy enables the network to reduce the catas-

trophic forgetting: LwF obtains 21.1% on past classes, ILT
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Figure 3: Qualitative results on the 100-50 setting of the ADE20K dataset using different incremental methods. The image

demonstrates the superiority of our approach on both new (e.g. building, floor, table) and old (e.g. car, wall, person) classes.

From left to right: image, FT, LwF [18], ILT [24], LwF-MC [28], our method, and the ground-truth. Best viewed in color.

22.9%, and LwF-MC 34.2%. Regarding new classes, LwF

is the best strategy, exceeding LwF-MC by 18.9% and ILT

by 6.6%. However, our method is far superior to all others,

improving on the first classes and on the new ones. More-

over, we can observe that we are close to the joint training

upper bound, especially considering new classes, where the

gap with respect to it is only 0.3%. In Figure 3 we report

some qualitative results which demonstrate the superiority

of our method compared to the baselines.

Multi-step addition of 50 classes (100-10). We then evalu-

ate the performance on multiple incremental steps: we start

from 100 classes and we add the remaining classes 10 by 10,

resulting in 5 incremental steps. In Table 2 we report the re-

sults on all sets of classes after the last learning step. In this

setting the performance of FT, LwF and ILT are very poor

because they strongly suffers catastrophic forgetting. LwF-

MC demonstrates a better ability to preserve knowledge

on old classes, at the cost of a performance drop on new

classes. Again, our method achieves the best trade-off be-

tween learning new classes and preserving past knowledge,

outperforming LwF-MC by 11.6% considering all classes.

Three steps of 50 classes (50-50). Finally, in Table 2 we

analyze the performance on three sequential steps of 50

classes. Previous ICL methods achieve different trade-offs

between learning new classes and not forgetting old ones.

LwF and ILT obtain a good score on new classes, but they

forget old knowledge. On the contrary, LwF-MC preserves

knowledge on the first 50 classes without being able to learn

new ones. Our method outperforms all the baselines by a

large margin with a gap of 11.9% on the best performing

baseline, achieving the highest mIoU on every step. Re-

markably, the highest gap is on the intermediate step, where

there are classes that we must both learn incrementally and

preserve from forgetting on the subsequent learning step.

5. Conclusions

We studied the incremental class learning problem for

semantic segmentation, analyzing the realistic scenario

where the new training set does not provide annotations

for old classes, leading to the semantic shift of the back-

ground class and exacerbating the catastrophic forgetting

problem. We address this issue by proposing a novel objec-

tive function and a classifiers’ initialization strategy which

allows our network to explicitly model the semantic shift

of the background, effectively learning new classes with-

out deteriorating its ability to recognize old ones. Results

show that our approach outperforms regularization-based

ICL methods by a large margin, considering both small and

large scale datasets. We hope that our problem formulation,

our approach and our extensive comparison with previous

methods will encourage future works on this novel research

topic.
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