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Abstract

twoWayGPBEFoam is an open-source mescoscopic Eulerian QBMM solver for monokinetic bub-

bly flows. The solver is implemented within the OpenFOAM software framework. Unlike

the existing macroscopic two-fluid model (TFM) solver twoPhaseEulerFoam, it can predict

the size segregation phenomenon and the size-conditional velocities of the disperse phase,

although it will not be able to predict the particle trajectory crossing (PTC). On theo-

retical grounds, the evolution of the disperse phase in multiphase flows is dictated by the

generalized population balance equation (GPBE), which can be transformed into moment

transport equations and solved using the finite-volume method with higher-order realizable

spatial-discretization schemes and time-integration schemes. In order to address the closure

problem of the size-conditional spatial flux, the size-conditional velocities need to be mod-

elled. In many previous works, these are assumed to be identical with the disperse phase

velocity predicted by the TFM. In this work, the size-conditional velocities were modelled

using the velocity polynomial approximation (VPA), for which the velocity polynomial coef-

ficients (VPCs) can be obtained from the moments themselves. By carrying out several test

cases with both one-way and two-way coupling, we show that the results predicted by our

solver agree well with the analytical solutions and the existing experimental data.
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PROGRAM SUMMARY/NEW VERSION PROGRAM SUMMARY

Program title: twoWayGPBEFoam and oneWayGPBEFoam

Licensing provisions: GNU General Public License 3 (GPL)

Programming language: C++

Nature of problem: twoWayGPBEFoam and oneWayGPBEFoam have been developed to help investigate

multiphase flows using the Eulerian QBMM. It provides an easily extended, parallelised, Eulerian

QBMM environment.

Solution method: The continuous phase is solved by the Eulerian approach. The disperse phase

is solved by the QBMM. These equations are one-way coupled in oneWayGPBEFoam and two-way

coupled in twoWayGPBEFoam.

Additional comments including restrictions and unusual features: All appropriate methodological

references are contained in the section entitled References.

1. Introduction

Multiphase flows are omnipresent in a variety of industrial applications. Knowledge

about the flow can be gained by using computational fluid dynamics (CFD) models. In

this work we are concerned with polydisperse multiphase flows made up of a disperse phase

and a continuous phase [1]. In the past, different approches have been developed, namely

the two-fluid model (TFM) [2] and the Eulerian-Lagrangian (E-L) method [3], as reported

in Fig.1. In both the TFM and E-L methods, the continuous phase is described by mass,

momentum and energy balance equations, leading to equations similar to the Navier-Stokes

equations for single-phase flows. The difference lies in the modelling of the disperse phase,

whose evolution is governed by the generalized population balance equation (GPBE). In the

TFM, the disperse phase is modelled via a small sub-set of transport equations derived from
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the GPBE, corresponding to the low-order moments (up to the first or second order) of the

underlying number density functions (NDFs). The resulting closure problem is frequently

overcome by using approximations; namely, it is assumed that all the elements of the disperse

phase share the same mass (or size) and velocity. In the E-L approach, the motion of

individual or groups of bubbles is simulated by solving the force balance on that bubble.

The trajectories combined with the continuous phase each represent one of the possible

realizations of the multiphase flow and, in the case of pseudo-stationary flows, averaged

measurable quantities characteristic of the flow can be determined via the ergodic theorem

and time averages. The TFM and E-L methods rose to great popularity in the past and

have been employed for many different applications [4, 5, 6, 7, 8, 9, 10].

Although the TFM and E-L methods are the most popular CFD models in the field

of multiphase flows, both of them have disadvantages. Due to the approximation adopted

to overcome the closure problem (i.e. all elements of the disperse phase share the same

mass/size and velocity), the TFM, with just two phases, loses the capability to predict

polydispersity effects, and it cannot be applied to the cases in which the Knudsen number

(Kn) of the elements of the disperse phase is larger than 0.1 [1, 11]. On the other hand,

the E-L method, based on solving the GPBE via Lagrangian tracking, is characterized by

large computational costs. Moreover, statistical noise cannot be avoided, and the results

can be highly dependent on mesh size [12]. In order to alleviate the drawbacks of the TFM

and E-L methods, another method can be employed. In this method, the evolution of the

disperse phase is described via moments of the GPBE, which are solved with an alternative

method, known as the quadrature-based moments method (QBMM) [1, 13]. In the QBMM,

the GPBE is transformed to the moment transport equations, as with the standard TFM;

however, now more moments are transported and an accurate closure strategy is assumed.

It is worth mentioning that the manner in which moments are advected in space is crucial.

When the velocity of the elements of the disperse phase is assumed to be known, the moment

transport equations can be solved easily. The most simple and widely used assumption is that
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all elements of the discrete phase have the same velocity. This approach is often known as

CFD-PBE or CFD-PBM coupling [14, 15, 16, 17, 18, 19, 20, 21, 22]. It should be mentioned

that QBMM is not the only way to solve the GPBE in this context. Another interesting

approach is to use a class method, e.g. the MUSIG approach [23, 24, 25].

CFD modeling of the 

multiphase system

Direct numerical 

simulation 
Approximation methods

Continuous phaseDisperse phase

Mass, momentum and 

energy balance equations
Lagrangian particle tracking Moments method for the generalized 

population balance equation

Mass, momentum and 

energy balance equations

Two-fluid model Eulerian-Lagrangian model

Quadrature based moments method 

Eulerian-QBMM model

Figure 1: Algorithms for multiphase flows.

Traditional CFD-PBE coupling also has some drawbacks, the most important being that

all the elements of the disperse phase move with the same velocity as mentioned above.

Possible solution is to employ a moment/multi-fluid methods [26] or determines the bubble

velocities from a linear interpolation between the averaged bubble velocity with the gas

phase velocity [27, 28]. Another interesting solution is to treat both size/mass and velocity

as internal coordinates in the GPBE. This is what was proposed in the original formulation

of the direct quadrature method of moments (DQMOM) [29]. This method is similar to

the inhomogenerous MUSIG model [23, 24, 25], and it has been employed to predict sprays

and fluidized beds in other works [30, 31]. However, the disadvantage of this method is that

other internal coordinates are difficult to include. Another previously proposed solution is to

model the dependence of the NDF on velocity with presumed distributions (e.g., Gaussian
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distribution), then transform the GPBE to the moment transport equations together with the

conditional quadrature method of moments (CQMOM) [32] to obtain the multi-dimensional

velocity abscissas. Other internal coordinates (e.g., particle size) can also be included in this

method, and it has been employed to predict the PTC in gas-particle flows [33, 34, 35].

In this work we focus on a different method, which is numerically more stable and less

complex. A relationship between the mass/size and velocity of the elements of the disperse

phase is assumed. This relationship takes the form of an algebraic polynomial dependency

resulting in a size-conditional velocity polynomial approximation (VPA) [1]. Using this

method, the particle velocities can be calculated from the moments. By employing QMOM

or EQMOM, the higher-order spatial unclosed mixed-moments flux can be updated, and the

mixed-moments system can be solved. The essence of this method is that it can provide

a continuous velocity distribution, which implies that the reconstructed particle velocity is

continuous with respect to the particle size. Once the self-closed moments system is solved,

it can be coupled with the governing equations of the continuous phase. Here, this method is

labelled “Eulerian QBMM” with the “Eulerian” referring to the approach for the continuous

phase and “QBMM” denoting the solution method for the discrete phase. It should be

noted that the transported equations both for the continuous phase and disperse phase in

the E-QBMM are also solved under the Eulerian framework. However, it is our intention to

differentiate the E-QBMM with the classical macroscopic TFM, since only mesoscopic closure

is employed for the disperse phase. With adequate closure (e.g., using CQMOM to model

the velocity distribution instead of the VPA approach), the E-QBMM can be used to predict

the PTC which can never be predicted by the TFM. In some other works, the “Eulerian” is

somewhat neglected and only the “QBMM” is retained to highlight the mesoscopic closure

[34, 35].

The algorithm and code discussed in the present form only apply to monokinetic bubbly

flows. This is because the monokinetic assumption for bubbly flows is reasonable, since a

unique relationship between the bubble velocity and size exists at small Stokes numbers,
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which implies that only one bubble velocity for a certain bubble size will be observed at

any point in the flow at a given time. Moreover, we neglect the coalescence and breakage

process, which was proven to have no impact on our test cases’ results, although including

them is straightforward. On the other hand, additional kinetic terms from particulate kinetic

theory need to be implemented if one wants to simulate multiphase particle flows. To the

authors’ knowledge, the Eulerian QBMM with the VPA has only been investigated by Yuan

et al. [36], who employed the EQMOM with two primary nodes and three secondary nodes

to simulate 2-D bubbly flows, but their source codes have not been made publicly available.

Firstly, we systematically verify and validate the specific formulation of the Eulerian

QBMM to verify the numerical attributes, then implement the algorithms in the open-

source CFD code OpenFOAM-5.x. Two open-source solvers are released under the GNU

General Public License in a publicly available software repository that includes detailed

tutorials. In the one-way coupled solver oneWayGPBEFoam, the effects of the disperse phase

on the continuous phase were neglected. This solver can be used to simulate passive scalar

transport problems. In the two-way coupled solver twoWayGPBEFoam, the disperse phase

and the continuous phase are fully coupled via the momentum interface exchange terms. In

contrast to uniform velocities, both solvers can be employed to solve the size-segregation

problems due to their capability to predict the size-conditional velocity by employing the

VPA. Meanwhile, the reconstructed particle velocity is continuous with respect to the particle

size. One one-way test case and three two-way test cases were included to verify the algorithm

and the implementation. The predicted results were compared with the analytical solutions

and experimental data. The remainder of the document is structured as follows, in Section

2, the governing equations for the disperse phase and continuous phase are revisited. The

fully coupled algorithm is comprehensively discussed. The solver’s structure is described in

Section 3. In Section 4, the one-way coupled code oneWayGPBEFoam and the fully two-way

coupled code twoWayGPBEFoam are validated by different test cases. Finally, conclusions are

drawn in Section 5.
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2. Governing equations and the coupling procedure

2.1. Eulerian method for the continuous phase

The mass conservation equation for the continuous phase is described by the continuity

equation [2]:

∂ (αcρc)

∂t
+∇ · (αcρcUc) = 0, (1)

where αc is the phase fraction of the continuous phase, ρc is the density, and Uc is the velocity.

The momentum conservation can be described by the volume-averaged momemtum equation

[2]:

∂ (αcρcUc)

∂t
+∇ · (αcρc (Uc ⊗Uc))−∇ · (αcρcRc) = − αc∇p+ αcρcg −Md, (2)

where Rc represents the stress tensor, p is the average pressure, g is the gravity acceleration

vector, and Md is the momentum interface exchange term, which will be discussed in next

section. Readers are referred to other work for more information on the Eulerian method

[37].

2.2. GPBE/QBMM for the disperse phase

In the GPBE, the internal coordinates include both active and passive variables, namely

the velocities and sizes. Although the released codes in this work were implemented in 3D,

in order to make the algorithm clearer, equations are presented in 2D. The 3D NDF with

the 2D velocity components u and v and the diameter d is written as n(t, x, y, u, v, d), in

which the three internal coordinates are u, v, and d. The GPBE for the disperse phase can

be written as [1]

∂n

∂t
+∇X · (Udn) +∇Ud

· (An) = S, (3)

where Ud = (u, v) is the transported velocity, S is the possible source term accounting for

bubble collision, coalescence and breakup, which are neglected in this work, and A is the
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acceleration term. Following [1], it is given by

A = − 1

ρd

∇pc + g +
1

τ
(Uc −Ud) , (4)

where ρd is the disperse phase density, pc is the pressure of the continuous phase, g is the

gravity acceleration vector and τ is the relaxation time. The GPBE equation reported in

Eq. (3) is also the same fundamental equation for the disperse phase in the multiphase phase

particle-in-cell (MP-PIC) method [38]. In order to obtain a numerical solution, Eq. (3) is

often written in terms of the moments of the NDF, defined by

mj,k,i =

∫
ujvkdindudvdd. (5)

Applying the transformation to Eq. (3) leads to the moment transport equations, which are

solved in this work using the operator splitting procedure in this work [1]. In the first step

of the operator splitting procedure, the convection part of Eq. (3) is solved,

∂n

∂t
+
∂un

∂x
+
∂vn

∂y
= 0. (6)

Eq. (6) is transformed into the following mixed-moments transport equations by the defini-

tion reported in Eq. (5):

∂mj,k,i

∂t
+
∂mj+1,k,i

∂x
+
∂mj,k+1,i

∂y
= 0. (7)

Depending on the value of j, k, and i, Eq. (7) has a specific physical meaning. For example,

if i = j = k = 0 then Eq. (7) becomes the transport equation of the total particle number

density, defining the evolution in space and time of the number of particles per unit volume.

Higher-order moments have other physical meanings; readers are referred to [1] for further

details.

When mj,k,i are being solved, the mj+1,k,i and mj,k+1,i need to be known, which implies
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that Eq. (7) is not closed. In this work, it is closed using the quadrature method of moments

(QMOM) [39], in which any higher-order mixed moment can be calculated as

mj,k,i =
N∑
β=1

wβu(dβ)jv(dβ)kdiβ, (8)

where wβ and dβ are the weights and abscissas, and N is the number of the nodes. The

weights and abscissas can be calculated using the moments inversion algorithm (e.g., the

Wheeler algorithm [40]) from the initial pure moments m0,0,i. In Eq. (8) it is moreover

assumed that the velocity of the elements of the disperse phase depends on size only via

the algebraic functions u(d) and v(d). A suitable approximation [1] is to use a second-order

polynomial:

u (dβ) = u0 + u1dβ + u2d
2
β, v (dβ) = v0 + v1dβ + v2d

2
β. (9)

Eq. (9) is the particle velocity, conditioned on the particle size, and the right-hand side is

a local second-order velocity polynomial approximation (VPA) of this conditional velocity.

The coefficients ui and vi are the velocity polynomial coefficients (VPCs). Once the VPCs are

determined, the conditional particle velocities can be calculated, then the mixed-moments

transport equations reported in Eq. (7) are closed and ready to be solved. As explained

above this assumption is valid only for moderate Stokes numbers. This is indeed the case

for gas bubbles moving in a liquid, but this assumption does not have to be valid for general

multiphase flows.

The VPCs can be obtained by rewriting the joint NDF as [1, 36]

n(u, v, d) = n(d)δ (u− u(d)) δ(v − v(d)). (10)

Substituting Eq. (9) into Eq. (10) leads to:

n(u, v, d) = n(d)δ(u− u0 − u1dβ − u2d
2
β)δ(v − v0 − v1dβ − v2d

2
β), (11)
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and the mixed moments can be calculated by

mj,k,i =
N∑
β=1

wβ
(
u0 + u1dβ + u2d

2
β

)j (
v0 + v1dβ + v2d

2
β

)k
diβ. (12)

For example, in the expanded form of Eq. (12) the velocity component u can be written as

the following equations:

m1,0,0 = u0m0,0,0 + u1m0,0,1 + u2m0,0,2,

m1,0,1 = u0m0,0,1 + u1m0,0,2 + u2m0,0,3,

m1,0,2 = u0m0,0,2 + u1m0,0,3 + u2m0,0,4.

(13)

The velocity component ui in Eq. (13) can be obtained by solving the following linear system:


u0

u1

u2

 =


m0,0,0 m0,0,1 m0,0,2

m0,0,1 m0,0,2 m0,0,3

m0,0,2 m0,0,3 m0,0,4


−1 

m1,0,0

m1,0,1

m1,0,2

 . (14)

As long as the initial pure moments and the initial particle velocity are given, the VPCs for u

component can be calculated using Eq. (14). The VPCs for v component can be calculated

in a similar way. After the VPCs are calculated, the remaining spatial moments can be

calculated by the QMOM, and the pure convection mixed-moments transport equations can

be solved. It should be stressed here that when Eq. (7) is solved using the finite-volume

method, the flux of the mixed moments should be able to ensure that the mixed moments

can be realized for the next time step. In this work, the higher-order realizable flux split

scheme developed by Vikas et al. [41] was employed. It is called the Vikas scheme for

simplicity.

The original Vikas scheme was developed for the kinetic equation, in which the velocity

is the internal coordinate. However, it is straightforward to extend the Vikas scheme for

the GPBE, in which a joint NDF distribution is employed in this work. The spirit of the
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Vikas scheme is to employ the monotonic upwind scheme for conservation laws (MUSCL)

type of reconstruction to the moments flux at the grid interface, which is calculated by the

piecewise linear (or polynomial) reconstruction of the weights and the piecewise constant

reconstruction of other variables. It can be divided into two main steps:

1. Discretize the 1-D version of Eq. (7) using an explicit time-marching scheme:

M I,t+∆t
j,k,i = M I

j,k,i −
∆t

∆x

(
F I+1/2 − F I−1/2

)
, (15)

where M I,t+∆t
j,k,i is the average value of mj,k,i over the Ith grid at t + ∆t, F I+1/2 and

F I−1/2 are the moments flux functions defined at the interface I + 1/2 and I − 1/2 for

Ith grid, respectively.

2. Instead of interpolating the flux from the moments, the Vikas scheme calculates from

the weights and abscissas as follows:

F I+1/2 =
N∑
β=1

max(uIβ, 0)∆S

(
wIβ + σIβ

∆x

2

)(
dIβ
)i(
uIβ
)j(

vIβ
)k

+
N∑
β=1

min(uI+1
β , 0)∆S

(
wI+1
β − σI+1

β

∆x

2

)(
dI+1
β

)i(
uI+1
β

)j(
vI+1
β

)k
, (16)

where ∆S = ∆y∆z, which is the grid interface surface normal to the x plane. The flux

calculation corresponds to the flux-vector splitting procedure: the first term on the

R.H.S of Eq. (16) denotes the bubbles moving from the Ith grid crossing the I + 1/2

interface, whereas the second denotes the bubbles moving from the I+1th grid crossing

the I + 1/2 interface. The flux at I − 1/2 can be calculated in a similar way.

Readers may find the Vikas scheme only achieves 1st-order accuracy over time. Fol-

lowing the spirit of total variation diminishing (TVD) time stepping, multi-stage explicit

time-integration schemes can be used in practice to obtain a higher-order time scheme (the
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subscripts are omitted for brevity):

m∗ = m+ F (m),

m∗∗ = m∗ + F (m∗),

mt+∆t =
1

2
(m∗ +m∗∗) ,

(17)

where F is the flux function. It can easily be proven that the two-stage second-order Runge-

Kutta method combined with the flux calculation based on the Vikas scheme, as in the

equations above, can ensure that the moments are realizable.

The solution procedure (operator splitting step 1) described above can be used to sim-

ulate pure convection problems, i.e. where no other acceleration forces are considered. If

acceleration is included, the operator splitting step 2 cannot be omitted, as discussed below.

After the convection step, the pure moments m0,0,i and the mixed moments m1,0,i can be

used to compute the so-called sample VPCs u∗1 and v∗1 based on Eq. (14). Further, the

sample size weights w∗
β and abscissas d∗β need to be calculated. Then, the sample velocities

corresponding to each d∗β are calculated by

u∗
(
d∗β
)

= u∗0 + u∗1d
∗
β + u∗2d

∗
β

2, v∗
(
d∗β
)

= v∗0 + v∗1d
∗
β + v∗2d

∗
β

2. (18)

The velocities calculated in Eq. (18) correspond to the new particle velocity after the mo-

ments convections. Afterwards, the sample velocities need to be updated due to the acceler-

ation term A. In the case of a single particle with the particle size abscissas d∗β, the sample

velocity can be updated by the following ordinary differential equation (ODE):

md∗β

dUd∗β

dt
= md∗β

g −
md∗β

ρd∗β
∇pc +

md∗β

ρd∗β

1

τ

(
Uc −Ud∗β

)
, (19)

where Ud∗β
=
(
u∗
(
d∗β
)
, v∗
(
d∗β
)
, 0
)

for 2-D cases. The first term and the second term on

the R.H.S. of Eq. (22) represent the gravity/buoyancy force and the drag force, respectively.
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Substituting the Bernoulli equation

∇pc = ρcg (20)

into Eq. (22) leads to

md∗β

dUd∗β

dt
= md∗β

g

(
1− ρc

ρd∗β

)
+
md∗β

ρd∗β

1

τ

(
Uc −Ud∗β

)
. (21)

The analytical solution of Eq. (21) is

Ut+∆t
d∗β

= Ud∗β
e
−τ−1·∆t/ρd∗

β +

Uc +
g
(

1− ρc/ρd∗β

)
τ

(1− e−τ ·∆t/ρd∗β
)
. (22)

It should be noted here that other temporal integration schemes can be applied to solve

Eq. (22), such as the Euler implicit method and the Euler explicit method. After the

velocities have been updated by the ODE, the mixed moments for the next time step can be

calculated with Eq. (8).

In summary, the GPBE for the disperse phase can be transformed into the moment

transport equations, which can be solved using the following procedure:

1. From the given particle diameters and the velocities, calculate the initial pure moments

and mixed moments with Eq. (8).

2. Calculate the higher-order mixed moments with Eq. (12) using QMOM.

3. Update the mixed moments as reported in Eq. (7) for the next time step. Points 1 to

3 constitute the first step of the operator splitting procedure.

4. Re-calculate the weights and abscissas with the moments inversion algorithm. Re-

calculate the sample VPCs with the linear system as reported in Eq. (14) from the

updated pure moments and mixed moments.

5. Calculate the sample velocities as reported in Eq. (22).

6. Re-calculate the mixed moments with Eq. (8); they are ready to enter the next time

step. Meanwhile, update the sample VPCs and the sample velocities for the next time
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step. Points 4 to 6 constitute the second step of the operator splitting procedure.

On theoretical grounds, to solve the multivariate NDF transported equation, the CQ-

MOM can be used as an alternative method. Therefore, it is interesting to compare the

VPA with the CQMOM. For simplicity, considering the bivariate NDF n(x, t, u, d), the mixed

moments in the CQMOM can be computed with

mj,k =

Nβ∑
β=1

wβd
i
β

(
Nγ∑
γ=1

wβ,γu
j
β,γ

)
, (23)

where wβ,γ and uβ,γ are the conditional weights and velocity abscissas for dβ, respectively,

while Nβ and Nγ are the node numbers for the diameter and velocity, respectively. If one

node is employed for the velocity abscissas, Eq. (23) degenerates into the following

mj,k =

Nβ∑
β=1

wβd
k
βu

j
β, (24)

since wβ,γ = 1. In order to calculate the unknown uβ, Eq. (24) can be expanded in the

following form:

m1,0 = w1u1 + w2u2 + w3u3,

m1,1 = w1d1u1 + w2d2u2 + w3d3u3,

m1,2 = w1d
2
1u1 + w2d

2
2u2 + w3d

2
du3.

(25)

The velocity abscissas can be solved in the following matrix form:


u1

u2

u3

 =


w1 w2 w3

w1d1 w2d2 w3d3

w1d
2
1 w2d

2
2 w3d

2
3


−1 

m1,0

m1,1

m1,2

 . (26)

The unknown uβ (β = 1, 2, 3) are actually the velocity conditional moments. Readers may

14



find that if a first-rank VPA is employed (the second and third VPCs equal to 0), Eq. (24)

is identical with Eq. (12) for bivariate NDF and the velocities which are conditional on the

bubble diameter are exactly the same. This implies the one-node CQMOM is equivalent

with the first-rank VPA. However, the VPA approach offers some advantages compared to

the CQMOM in particular if the EQMOM is employed to reconstruct the NDF, in which

both the NDF and the velocity conditioned on size has a continuous shape, and the moments

flux based on any bubble diameter can be calculated. Further, if more velocity nodes are

employed in the CQMOM, additional moments inversion step to find the secondary velocity

weights and abscissas from the velocity conditional moments uβ cannot be avoided which will

increase the computational costs. The dimensional splitting procedure should also be used to

update the moments transport equations. Moreover, different CQMOM permutation should

be considered for 3D velocity phase. These drawbacks comes with an advantage that the

multi-nodes CQMOM can be employed to predict the PTC, which will never be predicted

by the VPA approach. However, the implementation of the VPA, no matter first-rank or

higher-rank, is identical with the one-node CQMOM, and the secondary moments inversion

step in the multi-nodes CQMOM can be avoided due to monokinetic assumption.

2.3. Coupling procedure of the Eulerian QBMM

The coupling procedure of the Eulerian QBMM resembles the procedure of the E-L

method. In the one-way coupling, the disperse phase can be seen as a passive scalar. There-

fore, the phase fraction αc in Eq. (1) and Eq. (2) is assumed to be 1.0, and the momentum

interface exchange terms for the continuous phase are assumed to be null. Due to the sim-

plicity of the one-way coupling, in the following we focus on the two-way coupling.

The first step is to obtain the pressure Poisson equation from the continuity equation of

the continuous phase. The semi-discretised form of Eq. (2) can be written as:

aPUP −
Ut
P

∆t
+
∑

aNUN = −αc∇
pc

ρc

− 1

ρc

Md, (27)
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where aP is the matrix diagonal coefficients, aN is the matrix non-diagonal coefficients,

UP is the unknown velocity defined at the cell center, UN is the known velocity for the

cell neighbours. Here, we assume that the continuous phase is incompressible, and the

gravity body force is neglected since buoyancy is only relevant for the disperse phase. It is

straightforward to extend the incompressible code into a compressible one by retaining the

density within these terms instead of dividing it out. The predicted velocity is defined as:

HbyA =
1

aP

(
Ut
P

∆t
−
∑

aNUN

)
. (28)

Substituting Eq. (28) in Eq. (27), we have:

UP = HbyA− αc

aP
∇pc

ρc

− 1

aPρc

Md. (29)

It should be stressed here that the momentum interface exchange term Md in the Eulerian

QBMM is different with the modeling in the TFM. This is indeed the essence of the Eulerian

QBMM. In the Eulerian QBMM, particles of different sizes make their own contributions.

Therefore, Md can be decomposed into their separate contributions:

Md =
N∑
β=0

(
αβ

3

4

CD,dβρc

dβ
|Uc −Udβ |

(
Uc −Udβ

))
, (30)

where αβ, CD,dβ and Udβ are the phase fraction, drag coefficients and the velocity of the

particles with a diameter dβ, respectively. Obviously, the momentum interface exchange

term in the Eulerian QBMM as reported in Eq. (30) is different from that calculated with

the TFM method. Moreover, if the abscissas are identical, the Md in the Eulerian QBMM

will degenerate into the Md in the TFM method.

As some of the drag contribution can boost the diagonal dominance of the continuous

phase momentum equation, Eq. (30) is decomposed into two parts and Eq. (29) can be
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re-written as

UP = HbyA− αc

aP
∇
(
pc

ρc

)
− 1

aPρc

N∑
β=0

(
αβ

3

4

CD,dβρc

dβ
|Uc −Udβ |Uc

)
. (31)

This mathematical manipulation is usually called the momentum predictor step, and Eq. (31)

provides the predicted velocity HbyA, which is not divergence-free since the pressure has

not been updated yet. Substituting Eq. (31) into Eq. (1) leads to

∂αc

∂t
+∇ · αc

(
HbyA− αc

aP
∇
(
pc

ρc

)
− 1

aP

N∑
β=0

3αβCD,dβ

4dβ
|Uc −Udβ |Uc

)
= 0. (32)

Re-arranging Eq. (32), the pressure Poisson equation can be written as follows:

∇ ·
(
α2

c

aP
∇
(
pc

ρc

))
=
∂αc

∂t
+∇ · αc

(
HbyA− 1

aP

N∑
β=0

3αβCD,β

4dβ
|Uc −Udβ |Uc

)
. (33)

The pressure predicted in Eq. (33) can be used to update the new velocity as reported in

Eq. (31) by adding back the contribution of the drag force in the disperse phase. In the

spirit of the PISO algorithm [42], 2 or 3 inner iterative steps will ensure that the continuous

phase velocity field is divergence-free.

Different sparse linear system solvers can be employed to solve the discretized equations.

For the moments equations, a non-iterative diagonal solver can be used due to explicit time

marching in the Vikas scheme, and the diagonal matrix is constructed. The preconditioned

bi-conjugate gradient (PBICG) solver is usually chosen to solve for the continuous phase

velocity and turbulence-related equations (e.g., k and ε equations) since a non-symmetric

sparse linear system is constructed due to the existence of the convection term. For the

Poisson pressure equation, the preconditioned conjugate gradient (PCG) solver can be used

due to the symmetric structure of the equation. Moreover, the geometric algebraic multi-grid

(GAMG) solver can be also used in certain cases to speed up the simulations.
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3. Solver structure

In this section, we briefly introduce the code twoWayGPBEFoam. The main feature of

twoWayGPBEFoam is its strict adherence to OpenFOAM coding practices, meaning that its

design is entirely in the form of C++ classes. The strong power of the C++ object-oriented

programming (OOP) technique implies that the solvers can be extended easily, as seen in

other works [43, 44, 45]. For example, in force/drag, we implemented different drag models:

the SchillerNaumann, Grace and constantDrag models. Other drag models can easily be

implemented by copying the existing drag model, then implementing the specific CeRe()

function in the .C file.

In the code, readers will find three different folders: src, solvers and tutorials. Most of the

GPBE/QBMM solving algorithms are encapsulated in several classes in src. The coupling

between the disperse phase and the continuous phase was implemented in solvers, in which

oneWayGPBEFoam and twoWayGPBEFoam are included. The tutorials folder includes several

test cases investigated in this work. Let us examine twoWayGPBEFoam as an example of the

structure of the implementation. In twoWayGPBEFoam.C, the GPBE class can be provoked

by simply including the header file, and created with an auto pointer:

#include "MOM.H"

...

autoPtr<MOM> GPBE(MOM::New(mesh, GPBEProperties));

...

The 3D moment transport equations were solved by the solve() pointer function:

GPBE->solve();

This function actually invokes the solve() function defined in MOM.C and located at src, in

which the moment transport equations were solved using the finite volume method:
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/* * * * * * * * * * * * Moments advection step * * * * * * * * * * * */

forAll(M_[0], cellI)

{

//- Update weighs and abscissas

calculateAbs(cellI);

//- Update VPCs

updateVPC(cellI);

//- Update bubble velocities

updateVelocity(cellI);

}

//- Correct boundaries and update mean diameter

correctBoundaryAndCells();

//- Update flux by realizable high-order scheme

realizableMom_.correctFlux

(

weis_,

abs_,

M_,

mFluxX_,

mFluxY_,

mFluxZ_,

particleU_,

pureMomentsNumber_,

nodes_
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);

Info<< "Solving for moments advection";

forAll(M_, kth)

{

scalarField& psiIf = M_[kth];

const scalarField& psi0 = M_[kth].oldTime();

const scalar deltaT = mesh_.time().deltaT().value();

psiIf = 0.0;

surfaceScalarField phiPsi =

mFluxX_[kth] + mFluxY_[kth] + mFluxZ_[kth];

//- Update moments explicitly

fvc::surfaceIntegrate(psiIf, phiPsi);

psiIf = (psi0/deltaT - psiIf)*deltaT;

M_[kth].correctBoundaryConditions();

}

Ud_.correctBoundaryConditions();

Info<< ", End moments advection " << nl

<< "Solving for moments force updating";

The mFluxX_[kth] and other similar fluxes (e.g., mFluxY_[kth] and mFluxZ_[kth]) are cal-

culated from Eq. (16) in Vikas.C. For the procedure of determing the weights and abscissas,

the mathematical eigenValue and eigenVector calculation codes were taken from another

open-source code, OpenQBMM, written by Passalacqua et al. [46]. After the moments were

convected, the operator split step 2 was launched:
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/* * * * * * * * * * * * Force computing step * * * * * * * * * * * * */

if (forceTerm_)

{

updateMomentsForce();

}

Info<< ", End moments updating\n";

updateMomentsForce() function was defined in MOM.C, in which the operator split step 2

was implemented:

forAll(M_[0], cellI)

{

...

//- (1)

calculateAbs(cellI);

//- (2)

updateVPC(cellI);

//- (3)

updateVelocity(cellI);

//- (4)

velocityODE(cellI, Uc[cellI], muc[cellI], rhoc[cellI], dT, g,

curlUc[cellI], gradPhaseFrac, bPGrad, k[cellI], nut[cellI]);

//- (5)

mixedMomentsUpdate(cellI);

...

}

Afterwards, the disperse phase fraction was updated and fed into the continuous phase

momentum equation:
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alphac = GPBE->alphac();

...

//- Construct the momentum equation

fvVectorMatrix UcEqn

(

fvm::ddt(GPBE->alphac(), Uc) + fvm::div(alphaPhic, Uc)

- fvm::Sp(fvc::ddt(GPBE->alphac()) + fvc::div(alphaPhic), Uc)

+ continuousPhaseTurbulence->divDevRhoReff(Uc)

==

- fvm::Sp(pre, Uc)

Finally, the pressure Poisson equation was constructed and solved using the transient PISO

algorithm [42]:

fvScalarMatrix pEqn

(

fvm::laplacian(sqr(alphacf)*rAUcf, p)

==

fvc::ddt(GPBE->alphac()) + fvc::div(alphacf*phiHbyA)

);

...

pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));

...

//- Update the continuous phase velocity

Uc = HbyA + rAUc*fvc::reconstruct

((phicForces - pEqn.flux()/alphacf)/rAUcf);

}

To compile the libraries and the solver, the reader should make sure that OpenFOAM-5.x

is successfully installed, then run the Allwmake script located at GPBEFoam. If the reader
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wants to run some test cases, all of them can be launched by the Allrun script in each

tutorial test case.

It should be noted here that another open-source multi-phase solvers were provided in the

OpenQBMM suite by Passalacqua et al. [46]. However, the closure and coupling procedure of

our code is different from theirs. On the basis of the solver structure, the codes implemented

in this work are based on the existing OpenFOAM solver DPMFoam, in which an E-L method

is implemented. The typical multi-phase solver in the OpenQBMM, namely the so-called

polydisperseBubbleFoam, is based on the existing OpenFOAM solver twoPhaseEulerFoam,

in which an TFM is implemented. Therefore, in our code, the momentum equation of the

disperse phase is discarded, in which the disperse phase volume fraction is transported.

Strictly speaking, the momentum equation of the disperse phase can be seen as the 3rd mo-

ment transport equation if the internal coordinate is the bubble diameter. However, in our

code, all the moments transport equations are solved in the form of Eq. (7). Moreover, the

velocity in our code is calculated by the VPA. It can be seen as a one-node CQMOM algo-

rithm, in which the Vandermonde matrix algorithm can be discarded due to the monokinetic

limit.

4. Test cases

4.1. One-way coupled test case: particle size segregation

Let us first investigate the one-way coupling. We simulate the movement of particles

along the x direction as reported in Fig. 2. Only the drag force is included in this example.

Initially, all the particles are at a certain location, with an equal velocity of 1 m/s. The

continuous phase velocity was set at 0 m/s. As coupling is only one-way, the state of the

continuous phase will not change. This implies that the continuous phase velocity will

constantly be 0 m/s. When the particles move, they should stop due to the drag force at

a certain time. The key point is that, since the drag force depends on the particle size,

particles of different sizes decelerate differently; this is called size segregation. It becomes
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obvious that this kind of segregation can only be predicted using the GPBE with the self-

closure of the size-conditioned velocity. Otherwise the bubble transport velocity is unknown

and no solution can be obtained. Therefore, the classical CFD-PBE cannot be used for such

problems. By the use of the VPA approach, the size-conditioned velocity can be calculated

from the moments and the equation system can be calculated.

Figure 2: Particle size segregation phenomenon due to the different drag forces exerted on particles of
different sizes.

In this specific case, an analytical solution can be obtained starting out from the La-

grangian equation:

du(d)

dt
= −u(d)

τ(d)
, (34)

dx = u(d)dt, (35)

in which x denotes the travel distance. The analytical solutions of Eq. (34) and Eq. (35) are

u(d) = exp

(
− t

τ(d)

)
u0(d), (36)

and

x(d) =

∫ t

0

exp

(
− t

τ(d)

)
dt, (37)

in which the u0(d) represents the initial particle velocity (1 m/s).

The initial moments are reported in Table 1. It should be noted that highly accurate

values (e.g., with 16-digit numbers by binary format) should be provided, otherwise mo-

ments corruption occurs and the moment inversion algorithm fails. In order to generate

the moments from a mean Sauter diameter, one way is to calculate the moments with 16
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digital numbers from the given abscissas and weights by Eq. (8). Another way is to assume

a log-normal NDF distribution, and the moments with 16-digit numbers can be computed

using the following equation:

mj,k,l,i = ujvkwl exp
(
iµlog + i2σ2

log/2
)
, (38)

where µlog and σlog are the mean and variance, respectively. They are the two parameters

defining the log-normal distribution:

µlog = log

(
dmean

2√
vlog + d2

mean

)
, (39)

σlog =

√
log

(
vlog

d2
mean

+ 1

)
, (40)

where dmean is equal to the mean diameter,
√
vlog is the user-defined standard deviation (e.g.,

15%). In this work, we employed the second method.

For the first test case, three-node QMOM was employed and moments were generated

from dmean = 0.5 mm. The corresponding values of the abscissas are 0.40305 mm, 0.52275

mm and 0.67801 mm, respectively. The relaxation time τ was simply set to be 10d2/3,

as implemented in the constantDrag model. From these known parameters, the distance

reported in Eq. (37) can be obtained. All the simulations were run for 30 seconds. From the

analytical solution, the particles of the largest size (d = 0.67801 mm) should move 7.55 mm.

The particles of the smallest size (d = 0.40305 mm) should move 5.43 mm. Other particles

(d = 0.52275 mm) should move 6.43 mm. The comparison of the predicted weights with

an analytical solution using the quasi-second-order Vikas scheme and the first-order upwind

scheme were reported in Figs. 3 and 4. It can be seen that the unavoidable numerical

dissipation due to the upwind scheme is decreased by the quasi-second-order Vikas scheme.

Therefore, the following simulations are performed with the Vikas scheme to reduce the

numerical diffusion. Meanwhile, both the predicted results agree well with the analytical
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Moments order One-way coupled flow Sudden enlargement Bubble plume
m0 1.0000× 10−1 mm−3 ≈ 1.1165× 107 m−3 ≈ 6.9359× 106 m−3

m1 5× 10−2 mm−2 ≈ 2.2331× 104 m−2 ≈ 3.5026× 104 m−2

m2 ≈ 2.5562× 10−2 mm−1 ≈ 4.5668× 101 m−1 ≈ 1.8086× 102 m−1

m3 ≈ 1.3362× 10−2 mm0 ≈ 9.5492× 10−2 m0 ≈ 9.5492× 10−1 m0

m4 ≈ 7.1426× 10−3 mm1 ≈ 2.0416× 10−4 m1 ≈ 5.1552× 10−3 m1

m5 ≈ 3.9037× 10−3 mm2 ≈ 4.4634× 10−7 m2 ≈ 2.8457× 10−5 m2

Table 1: The initial moments for all test cases (test case 1: one-way coupled flow, test case 2: sudden
enlargement, test case 3: bubble plume).

solution, which confirms the suitability of the algorithm and verifies its implementation.
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Figure 3: Comparison of the weights’ location (coloured lines) predicted by the quasi-second-order Vikas
scheme with the analytical solution (coloured blocks) at different times (from top to bottom).
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Figure 4: Comparison of the weights’ location (coloured lines) predicted by the first-order upwind scheme
with the analytical solution (coloured blocks) at different times (from top to bottom).

4.2. Two-way coupled test case: pipe with sudden enlargement

Next, we investigate a test case with two-way coupling. The test case studied here is

that of a bubbly air/water upward flow through a pipe with a sudden enlargement, for

which experiments have been carried out by Bel F’dhila [47], and simulations with the TFM

have been reported by Rusche [48]; Oliveira and Issa [49]; Behzadi et al. [50]; Ullrich [51].

The feature of this test case is that there is a large separation zone at the bottom of the

pipe. This case has been employed extensively to verify the two-fluid model algorithms and
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implementations [50, 49, 52, 51]. Therefore, it is a good test case to compare the TFM

and Eulerian QBMM algorithms. The geometry is depicted in Fig. 5. The diameters of

the two pipe sections are 50 mm and 100 mm, respectively. An axial-symmetric uniform

mesh (∆z = 5 mm, ∆x = 2.5 mm), which provides a mesh-independent solution compared

with the results predicted by higher-resolution mesh, was generated by blockMesh. At the

inlet, the mean liquid and gas velocities are 1.57 and 1.87 m/s. The inlet phase fraction

is characterised by a wall peak in experiments. However, as such experimental data is not

available, the average value of the phase fraction at the inlet was given as 5% and the mean

Sauter diameter was assumed to be 2 mm, as suggested in other works [49, 48].

Figure 5: Schematics of the setup for the sudden enlargement test case.

The corresponding moments are calculated by assuming an initial log-normal bubble size

distribution, following the calculation reported in our previous work [17]. The approximate

values are given in Table 1. It should be noted that the reader should provide highly accurate

values (e.g., with 16-digits numbers by binary format), otherwise moments corruption occurs
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and the moment inversion algorithm fails. The gas phase is assumed to be balanced by the

buoyancy and drag force. The drag coefficient was calculated following the work of Schiller

and Naumann [53]. The k − ε turbulence model with standard wall function correction

was used. The turbulence kinetic energy of the liquid phase is calculated from the inlet

velocity fluctuations (≈ 0.05) assuming isotropy. The velocity and pressure were updated

using the PISO algorithm [42]. Unless otherwise stated, all the two-way coupled simulations

are performed with the calculation/configuration described above.

Fig. 6 shows the profiles of the axial liquid velocities at five different cross-sections at z =

0.13, 0.18, 0.25, 0.32 m downstream of the sudden enlargement predicted by twoPhaseEulerFoam

(TFM) and twoWayGPBEFoam (Eulerian QBMM). It can be seen that the liquid velocity is

quickly diffused and, further downstream at z = 0.32 m, is almost uniform over the pipe

radius. This is because of the increased turbulence viscosity along the streamline. Both the

results predicted by twoPhaseEulerFoam and twoWayGPBEFoam agree well with the exper-

imental data. The predicted axial liquid velocity at the lower cross-section near the pipe

center is slightly underestimated. This underestimation can be improved by adjusting the

mean inlet liquid velocity and the inlet phase fraction to a given “wall peak” value which

is more consistent with the experimental data. The predicted profiles of the axial bubble

velocities and the phase fractions are shown in Fig. 7. It can be seen that the bubbles are

accelerated by the buoyancy along the pipe’s axial direction, and the large bubbles move

faster than the small bubbles due to the size-dependent drag coefficients. This phenomenon

can only be predicted by the size-conditional velocities implemented in twoWayGPBEFoam.

However, since all the bubbles are theoretically assumed to be equal in size, they move with

the same velocity as predicted by the TFM solver twoPhaseEulerFoam. The contour plots

and the profile plot at z = 0.18m of the turbulent kinetic energy and the turbulent viscosity

predicted by twoPhaseEulerFoam and twoWayGPBEFoam are reported in Fig. 8 and 9. It is

interesting to note that most of the turbulent diffusion is produced far from the enlargement,

and the results predicted by twoWayGPBEFoam is consistent with twoPhaseEulerFoam, which
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confirms that the QBMM is successfully coupled with the N-S equations of the continuous

phase.
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Figure 6: Comparison of the mean axial liquid velocity predicted by the TFM (red line) and the Eulerian
QBMM (black line) with experimental data (circles) at different positions.
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Figure 7: Comparison of the bubble velocities predicted by the TFM (red line) and the Eulerian QBMM
(blue line for smallest bubbles, green line for medium bubbles, black line for largest bubbles) at z = 0.18 m
(left) and z = 0.32 m (right).

30



Figure 8: The contour plots of the turbulent kinetic energy and the turbulent viscosity predicted by the
Eulerian QBMM (left) and the TFM (right), respectively.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.01  0.02  0.03  0.04  0.05

k
 (

m
2
/s

2
)

Radius (m)

 0

 0.0004

 0.0008

 0.0012

 0.0016

 0  0.01  0.02  0.03  0.04  0.05

n
u

t 
(m

2
/s

1
)

Radius (m)

Figure 9: Comparison of the turbulent kinetic energy (left) and the turbulent viscosity (right) predicted by
the Eulerian QBMM (black line) and the TFM (red line).

The plots of the predicted phase fraction produced by both solvers in Fig. 10 are not

in good agreement with the experimental data. One reason is that the inlet phase fraction

was given as a uniform value (αd = 0.05) instead of the “wall peak” profile visualized in

the experiments, which is not available. Another possible reason is that the wall peak
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phenomenon is a coupled effect of shear, the wake phenomenon and deformation of the lift

force and the turbulence of the liquid phase. These necessary momentum interface exchange

terms (such as the lift force and the turbulent dispersion force) need to be implemented and

investigated in the future to predict the phase fraction accurately. It was also shown in other

works that the predicted phase fraction is highly dependent on the turbulence model [50].

As this work focuses on the coupling procedure of the Eulerian QBMM, we show that such

complex phenomenon cannot be predicted by only including the drag force.

It is also interesting to compare the computational cost between the twoPhaseEulerFoam

and twoWayGPBEFoam. We run the sudden enlargement test case on a i7-5820k CPU in serial.

twoPhaseEulerFoam and twoWayGPBEFoam took 401s and 1452s, respectively. It can be seen

that the E-QBMM requires more computational resources than the TFM. It can be explained

by that the higher-order Vikas scheme needs to evaluate the fluxes for all moments by explicit

interpolation at the cell interface. For example, as is seen in Eq. (7), overall 15 moments

transport equations need to be updated, which implies that 15× 2× 3× 3 = 270 moments

flux mj,k,l,i need to be evaluated at the cell interface. Here, the second 2 denotes the upwind

and downwind flux, the third 3 denotes three dimensions and the last 3 denotes the moments

flux corresponding to each diameter if 3 nodes are employed. Moreover, we compared the

computational efficiency between the preconditioned conjugate gradient (PCG) solver and

the geometric algebraic multi-grid (GAMG) for the pressure Poisson equation. In each time

step, around 30 times and 7 iterations are typically needed for these two methods. Thus,

the simulation time difference between these different pressure Poisson solvers is negligible.
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Figure 10: Comparison of the phase fraction predicted by the TFM (red line) and the Eulerian QBMM
(black line) with the experimental data (points) at z = 0.18 m (left) and z = 0.32 m (right).

4.3. Two-way coupled test cases: bubble plume

In this section, let us investigate another important gas-liquid mixing phenomenon: the

periodically oscillating bubble plume. It is often used for industrial multiphase mixing

[54]. Moreover, it is a suitable test case to verify the two-way coupling implementation

in twoWayGPBEFoam, since the liquid velocity is stagnant initially, and liquid vortices are

generated by the coupling between the phases. Last but not least, it was proven that the

periodically oscillating bubble plumes can be predicted simply by adding the drag forces

[55, 56] without breakage and coalescence [57].

The first bubble column experiments were carried out by Dı́az et al. [55]. The experimen-

tal setup included a 0.2-m-wide, 1.8-m-high, and 0.04-m-deep rectangular bubble column,

which was filled with water (H=0.45 m) at room temperature and atmospheric pressure,

while air was fed at different velocities from the gas chamber through a sparger (eight cen-

tered holes of 0.001 m in diameter and 0.006 m in pitch). A fully orthogonal hexahedral

grid measuring 40 (height) × 17 (width) × 7 (depth) cells was employed, as we confirmed

that the non-uniform hexahedral grids measuring 17 cells in width, 40 cells in height and 7

cells in depth are enough to capture the plume oscillations in our previous investigation [57].

The area of the sparger through which gas enters the domain was modeled as a rectangle

with an area equal to 0.000108 m2. This simplification has been proven to be efficient for

meshing [55, 4, 58]. The mean Sauter diameter of the particles entering the computational
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domain was set to 0.00505 m for the three-dimensional simulations, which is the same as

in the literature [55]. The phase fraction was set to be 0.5, and the inlet bubble velocity

calculated by the given superficial velocity (0.0024 m/s and 0.0071 m/s). The corresponding

moments were given in Table. 1. Breakage and coalescence are not considered. Other nec-

essary aspects of the setup are essentially the same as outlined in the sudden enlargement

test case in the previous section and are not repeated here for simplicity.

The instantaneous phase fraction, continuous phase velocity vectors and streamlines are

reported in Fig. 11. It can be seen that the oscillating bubble plumes were successfully

captured and the vortices were generated as a result of the two-way coupling. The predicted

horizontal liquid velocities at two different points and different superficial velocities are

reported in Figs. 12 and 13. All the horizontal liquid velocities predicted by the Eulerian

QBMM show periodic behavior. Not only the period but also the peak horizontal liquid

velocity predicted by twoWayGPBEFoam agree well with the experimental data [55] and the

simulated results predicted by the TFM [55, 57]. The global hold-up and the plume oscillation

periods (POPs) predicted by twoWayGPBEFoam are reported in Table 2. All of them agree well

with the experimental data. Moreover, it can be seen in Figs. 12 and 13 that the predicted

vertical velocities for small (d ≈ 4 mm), medium (d ≈ 5.2 mm) and large bubbles (d ≈ 6.7

mm) are different, and can be only predicted by the size-conditional velocity algorithm

implemented in twoWayGPBEFoam, since different drag forces are exerted on the bubbles of

different sizes.
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Figure 11: Contour plots from left to right of the instantaneous phase fraction, liquid velocity vectors and
liquid velocity streamlines predicted by twoWayGPBEFoam.
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Figure 12: Left: The prediction of the horizontal liquid velocity by twoWayGPBEFoam at two different points
(superficial velocity is 0.0024 m/s). Black line: x = 0.1 m, y = 0.225 m, z = 0.02 m. Blue line: x = 0.05
m, y = 0.225 m, z = 0.02 m. Right: the prediction of the vertical buble velocities by twoWayGPBEFoam for
small bubbles (black line), medium bubbles (blue line) and large bubbles (red line) at x = 0.1 m, y = 0.225
m, z = 0.02 m.
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Ug Sim. hold-up Exp. hold-up Sim. POP Exp. POP
0.0024 m/s 0.006 0.0064 12.9 11.38
0.0071 m/s 0.012 0.018 6.31 5.69

Table 2: Comparison of the predicted global hold-up and POPs with the experimental data at different
superficial velocities.
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Figure 13: Left: The prediction of the horizontal liquid velocity by twoWayGPBEFoam at two different points
(superficial velocity is 0.0071 m/s). Black line: x = 0.1 m, y = 0.225 m, z = 0.02 m. Blue line: x = 0.05
m, y = 0.225 m, z = 0.02 m. Right: the prediction of the vertical bubble velocities by twoWayGPBEFoam for
small bubbles (black line), medium bubbles (blue line) and large bubbles (red line) at x = 0.1 m, y = 0.225
m, z = 0.02 m.

To further validate the two-way coupling algorithm, the experiments carried out by

Pfleger et al. [59] were considered, to compare the results. This test case has been proven

suitable to investigate bubbly flows and used in a number of studies to validate numerical

models [60, 61, 62]. Moreover, the vertical liquid velocity was monitored using Laser Doppler

Anemometry (LDA) and these results can be used for comparison with the simulations. The

calculations were performed with an air flow rate of 48 l/h, and the mean Sauter diameter

is 2 mm. All other numerical settings are identical to the previous test case. The predicted

averaged vertical liquid velocities are reported in Fig. 14. It can be observed that the re-

sulting time-averaged flow pattern consists in a non-uniform velocity distribution presenting

an upward flow in the column center and a downward flow along the column walls: a liquid

circulation mode, commonly referred to as the “Gulf-stream” or “Cooling tower” flow regime

[63, 55]. This type of flow differs considerably from the instantaneous flow pattern previously

described. It is therefore essential to capture the dynamic nature of the flow to accurately
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describe the hydrodynamics as well as mixing and transfer processes in bubble columns.
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Figure 14: Comparison of the averaged vertical liquid velocity predicted by twoWayGPBEFoam (black line)
with the experimental data (circle point) at different cross-sections in the work of Pfleger et al. [59]. From
left to right: y = 13 cm, y = 25 cm, y = 37 cm.

5. Conclusion

In this work, a two-way coupled solver twoWayGPBEFoam has been developed, together

with a one-way coupled testing solver oneWayGPBEFoam, in which the Eulerian QBMM was

implemented. The latter is designed entirely within the OpenFOAM software framework and

is a highly extensible and fully object-oriented C++ based approach. The code is released

under the same license as the OpenFOAM base, at a publicly available software repository

that includes documentation and example tutorials. It is intended to be a research platform

for those interested in the Eulerian QBMM.

oneWayGPBEFoam has been used in this work to verify the particle size segregation phe-

nomenon, and good agreement with the analytical solutions was obtained, implying that

the QBMM algorithm which was implemented is correct. A turbulent bubbly air/water

upward flow through a pipe with a sudden enlargement was employed to verify the results

predicted by the two-way coupled Eulerian QBMM and the TFM. Both of them predict

good results compared with the experimental data. To complete the two-way verifications,

two classic bubble column experiments with different superficial velocities were employed, as

used by Dı́az et al. [55] and Pfleger et al. [59]. It was shown that the results predicted by

twoWayGPBEFoam (e.g., the bubble plume period, the global phase fraction and the averaged

vertical liquid velocity) agree well with the experimental data.
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The development of twoWayGPBEFoam is still ongoing. Other momentum interface ex-

change models was also implemented and investigated in other works [64]. Optimisations

and bug fixes are often applied to the repository. It is also worth mentioning that, besides

twoWayGPBEFoam, readers are also referred to the open-source code (OpenQBMM) developed

by Passalacqua et al. [46], which includes different QBMM algorithms and well-organized

test cases, although the two-way coupling procedure used in their work is different to ours.

It is our hope that these open-source QBMM-based CFD codes, as strong supplements of

the existing TFM and E-L method, will be used and be extended by different research and

industrial groups from different disciplines.
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Appendix. Particle size segregation problem by continuous size distribution

In the previous test case, three-node QMOM was used to approximate the size NDF.

Considering a univariate NDF, it can be represented as

n(d) =
N∑
β=1

wβδ(d− dβ). (41)

If no other source terms (e.g., breakage or coalescence) were considered, the particle sizes were

fixed as three distinct values and the particles stopped at three different locations. Even this

is a rigid assumption due to the QMOM algorithm, we further proved that using a three-node

QMOM is enough for our bubbly flow test cases and the computing procedure is relatively

fast. In order to remove this rigid assumption, the extended QMOM (EQMOM) can be used

to cover the full spectrum of particle sizes. In the EQMOM, the NDF is continuous and is
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spread parameter m0 m1 m2

0.02 1 0.5 0.0251
0.1 1 0.5 0.02525

Table 3: Spread parameter and moments for the test cases.

more consistent with the VPA method investigated in this work. Specifically, we employ log-

normal distribution as the EQMOM kernel function since the particle size is strictly larger

than 0. Other EQMOM kernel functions may introduce problems (e.g., the Gaussian kernel

function will predict negative particle sizes). In log-normal EQMOM, the univariate NDF

can be represented as

n(d) =
N∑
β=1

wβδσ(d, dβ) =
N∑
β=1

wβ

(
Nθ∑
θ=1

wθδ(d− dβθ)

)
(42)

where δσ(d, dβ) is the standard log-normal distribution, σ is the spread parameter, which

controls the shape of the NDF. The smaller σ is, the narrower the shape of the NDF is. wθ

is the secondary weights and dβθ is the secondary abscissas. In the field of kinetic equation,

the primary nodes can be seen as large-scale velocities and the secondary nodes can be seen

as small-scale velocity dispersions [33, 65]. In this work, the primary nodes and secondary

nodes can be seen as main particle size and particle size dispersions. The dispersion nodes

can be used to cover the possible particle sizes. The more secondary nodes were employed,

the moments calculation is more accurate. Readers are referred to other works for more

information of the EQMOM [66, 1, 17].

A similar one-way coupled test case as reported in section 4.1 was investigated. Physi-

cally, the small particles trails behind the leading large particles. The initial moments were

calculated from Eq. (38) with
√
vlog = 0.02 and

√
vlog = 0.1 , which corresponds to a small

spread parameter (narrow NDF shape) and a large spread parameter (wide NDF shape).

One primary node and four secondary nodes were employed since it predicts identical results

when more secondary nodes were employed. The calculated kth moments are reported in

Table 3. Since the EQMOM covers the continuous NDF, analytical solution can be hardly
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obtained. Fig. 15 shows the comparison of the predicted m0 for small spread parameter and

large spread parameter test cases. The solution calculated by the QMOM was not shown for

brevity as it was investigated in section 4.1. It can be seen that the predicted m0 is more

spreading for the large spread parameter test case. It was consistent with the theory since

a large spread parameter corresponds to a wide NDF. Last but not least, the shape of the

predicted m0 is continuous instead of three blocks predicted by the QMOM as was shown in

Fig .3.
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[16] Z. Gao, D. Li, A. Buffo, W. Podgórska, D. Marchisio, Simulation of droplet breakage

in turbulent liquid–liquid dispersions with CFD-PBM: Comparison of breakage kernels,

Chemical Engineering Science 142 (2016) 277–288.
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