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Abstract: Plasmonic organic hybrid electro/optic modulators are among the most innovative
light modulators fully compatible with the silicon photonics platform. In this context, modeling
is instrumental to both computer-aided optimization and interpretation of experimental data.
Due to the large computational resources required, modeling is usually limited to waveguide
simulations. The first aim of this work to investigate an improved, physics-based description of
the voltage-dependent electro/optic effect, leading to a multiphysics-augmented model of the
modulator cross-section.
Targeting the accuracy of full-wave, 3D modeling with moderate computational resources, the
paper presents a novel mixed modal-FDTD simulation strategy that allows to drastically reduce
the number and complexity of 3D-FDTD simulations needed to accurately evaluate the modulator
response. This framework is demonstrated on a device inspired by the literature.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Short range, high-speed communications probably are the most critical issue for the formulation
of the forthcoming ICT strategies. Indeed, the present zettabyte age has been possible thanks
to the centralized computation paradigm based on data centers, which has been enabled by
high-speed, low-power optical interconnects [1]. This is why short-range communications are
becoming as important as their consolidated long-haul counterparts, still necessary to deliver
services at the end users [2]. Silicon photonics (SiPh) is one of the most viable platforms towards
the hypothetically-coming yottabyte age, with its promise of the synergistical, low-cost and
CMOS-compatible integration of electrical and optical systems [3].

Remarkable examples of SiPh-compatible devices are plasmonic-organic hybrid (POH)
electro/optic (E/O) devices such as Mach-Zehnder [4] or ring [5] modulators for 1.3 𝜇m and
1.55 𝜇m communications, or disk resonators [6] for optical neural networks for deep learning.
Focusing on Mach-Zehnder modulators (MZMs), the non-diffraction limited characteristics of
the plasmonic waveguide enable nanoscale cross-sections and microscale total lengths, allowing
chip-scale integration [7,8]. Such small cross-sections lead to very large radiofrequency (RF)
electric fields with reduced driving voltages, enhancing the E/O effect and allowing for sub-
THz bandwidths. These exceptional features are paid with the very strong propagation losses
characterizing plasmonic modes, which are about 1 dB/𝜇m. Nevertheless, the extremely compact
achievable footprints enable an energy consumption of the order of fJ/bit, making these devices
attractive for low-power communication systems [9–11].

In POH modulators, the E/O material is based on chromophore molecules dispersed in a host
polymer medium, that are previously oriented by a static poling electric field [12–14]. Modulation
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Fig. 1. Left: 3D representation of the device under test, including all the relevant
geometrical and material details, whose values can be found in Tables 1–2. Right:
sketch of the (𝑥, 𝑦) cross-section of the device under test, including the RF voltage
circuit.

of the material refractive index is enabled by applying a RF electric field to the poled material.
This material fills the phase shifters slots, which are designed to support plasmonic modes [15].

It is therefore clear how a comprehensive model should predict the electro-optic modulation
from RF electrical simulations, whose results are used to obtain a complex, position-dependent
refractive index profile as the input of the optical model. A simplified model based on this
principle could exploit 2D modal simulations to obtain the modulator static/dynamic response [16].
Yet, such an approach cannot account some effects, such as slot coupling and power losses related
to surface plasmons pertinent to the top/bottom waveguide walls. Describing these details would
require a 3D full-wave model of the entire geometry, which is very challenging because of the
extremely severe memory and computational requirements.

The aim of this work is to present a critical appraisal of the available simulation approaches for
POH MZ modulators. In Section 2 a reference device inspired to the literature is described (with
the geometry details reported in Appendix A) and waveguide-only simulations are presented
for both the cold regime (no applied RF input voltage) and electro/optic operation, opening
a discussion of advantages and shortcomings of semi-analytic approaches compared to more
sophisticated mode simulations, and emphasizing the importance of a multiphysics simulation
framework. The only way to overcome the limitations of waveguide-based models is to move
towards 3D full-wave modeling, leading however to huge computational costs and times. To
mitigate the issue of CPU intensity, Section 3 presents an efficient multiphysics 3D approach
based on a mixed modal-FDTD (MFDTD) simulation strategy, yielding accurate simulations
with a drastic reduction of the computational burden, also made possible by the mode-matching
technique formulated in Appendix B. Section 4 draws some final remarks on this work.

2. Multiphysics waveguide simulations

The device under analysis, sketched in Fig. 1, is a POH E/O MZM similar to the one presented
in [19]. The structure is fabricated on a SiO2 layer 3 𝜇m thick, grown on a Si substrate (not
shown in the figure but included in the electrical simulations). The two arms of the MZM are the
slot waveguides embedded between the central gold island and the two lateral gold rails. The
optical input signal is assumed to be the fundamental mode of the input (left) Si waveguide.
This mode reaches a splitter, consisting of a couple of facing tapers (left in Si, right in Au),
which convert the dielectric waveguide mode into the plasmonic modes supported by the slots.
The device is symmetrical with respect to the central 𝑧 section (the center of the gold island),
so that, after propagating in the slots, the plasmonic modes are recombined and couple to the



Fig. 2. Top: effective index of an isolated slot waveguide versus slot width performed
with no E/O effect (𝑉RF = 0 V). Bottom: 0 V phase shift of a MZM with 𝐿mod = 6 𝜇m
with one slot width fixed to 100 nm and varying the other. The simulations have been
performed at 𝜆 = 1.55 𝜇m. The blue curve has been simulated with an electromagnetic
mode solver based on FEM [17], including all the geometrical details presented in
Fig. 1(right) for 𝑥 ≥ 0. The red curve has been obtained approximating the geometry as
a metal-insulator-metal waveguide and using semi-analytical expressions from [18, Ch.
10].

output Si waveguide. The device is immersed in the DLD-164 non-linear optic (NLO) material,
with thickness ℎNLO. Modulation is achieved through the electro/optic effect induced by the
RF voltage, which is applied to the central island contact. The RF field changes the effective
refractive index of the plasmonic modes in the phase shifters, leading to a voltage-dependent
interference at the output combiner, which ranges from constructive (ON state) to destructive
(OFF state).

The phase modulators are driven in push-pull operation by a single signal, using the coplanar
ground-signal-ground transmission line sketched in Fig. 1(right) [8, 20–22]. This is obtained
by aligning the poling field for the E/O polymer to the modulation RF field, the latter having
opposite polarity in each modulator arm. By inspecting the geometrical details reported in Table
1, one can notice that the two slot widths are different. This comes from a precise choice, as it
allows to tune the MZM to operate around the quadrature point (where linearity is maximum) at
zero bias voltage [19].

2.1. Cold (zero voltage) device simulations

A preliminary investigation of these aspects can be performed on the basis of Fig. 2(top), which
shows the effective index of a slot waveguide, at zero applied voltage, as a function of the slot
width. Here, the results of two models are presented at 𝜆 = 1.55 𝜇m. The blue curve has
been obtained by simulating the 2D cross-section of an isolated slot (i.e., simulating the (𝑥, 𝑦)
cross-section shown in Fig. 1(right), just for 𝑥 ≥ 0). The simulation of plasmonic slot waveguides
has been widely addressed in the literature, with a broad spectrum of techniques including
the effective index method [23], circuit approaches [24, 25], finite difference schemes either
in time [26] or in frequency [27] domains, finite elements [28], Fourier modal methods [29],
and integral-equation schemes [30]. In this work, waveguide simulations have been performed
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(cit. Bertazzi). Notare che a 0 V le curve dash-dotted e solide sono 
giustamente coincidenti: no E/O e quindi il modello è uguale.

Fig. 3. Effective refractive index versus RF voltage 𝑉RF. The green dashed curves
are obtained simulating two isolated slots (just like in Fig. 2) and the red dash-dotted
curves considering in the cross section both the slots; both these simulations have been
performed under the approximation (4). The solid blue curves have been performed
including mode coupling effects and the multiphysics description (3) of the E/O effect.

with an in-house electromagnetic mode solver based on the finite element method (FEM) [17].
On the other hand, the red curve has been obtained with a much simpler and widely-available
model, based on approximating the slot geometry as a metal-insulator-metal waveguide (therefore,
𝑦-invariant) and using semi-analytical expressions from [18, Ch. 10]. From the top panel one
could deduce that the simpler model, even though capturing the general trend vs. the slot width, is
inadequate for design purposes. This is partially contradicted by the analysis in the bottom panel.
Here, recalling that the phase shift of a single MZM arm at 0 V applied voltage is Φ = 𝑘0𝑛eff𝐿mod,
we plot the phase difference between the two arms (where one of the arms is 100 nm wide), as a
function of the width of the other arm:

ΔΦ(𝑤slot) = 𝑘0𝐿mod |𝑛eff (𝑤slot) − 𝑛eff (100 nm) | , (1)

where 𝑘0 = 2𝜋/𝜆, and the phase modulator lengths are assumed to be 𝐿mod = 6 𝜇m. Obviously,
ΔΦ = 0◦ at 𝑤slot = 100 nm, which corresponds to the symmetric MZM case. While the
semi-analytic model fails to predict ΔΦ for wider slots, it is pretty accurate for narrower cases.
Targeting at ΔΦ = 90◦, i.e., setting the half-power point at 𝑉RF = 0 V, both models predict
𝑤slot ' 85 nm (indicated with the blue and red open bullets), with a deviation smaller than 1 nm.
Intuitively, this partial success of the semi-analytic approach could be ascribed to the slot aspect
ratio (ℎslot = 220 nm). Being the slots narrow, they are quite similar to metal-insulator-metal
(MIM) waveguides, justifying the partial validity of the simplification that results useful to
perform preliminary optical characterizations of passive plasmonic slots before their electro-optic
implementation in a POH MZM [31].

2.2. Multiphysics-augmented waveguide simulations

The results discussed in the previous subsection pertain cold device operation; because of the
absence of the modulating radiofrequency field, optical-only simulations are sufficient in this
case. Modulation is enabled by imposing an RF electric field, which causes the optical dielectric
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Fig. 4. Left: 𝑛eff (𝑉RF) curves for the device under analysis, for different central island
widths; the red, blue and orange curves are obtained for 𝑤island = 200 nm, 400 nm
(nominal device) and 600 nm, respectively. The plot shows the definition of Δ𝑛eff , i.e.,
the difference of the effective indexes at the ON voltage𝑉ON. Right: Δ𝑛eff as a function
of 𝑤island. These simulations have been performed with the multiphysics model.

permittivity of the E/O material to change according to

𝜀NLO (𝑥, 𝑦, 𝑧) = (𝑛NLO + Δ𝑛mat (𝑥, 𝑦, 𝑧))2 =

' (𝑛NLO + Δ𝑛mat (𝑥, 𝑦))2, (2)

where 𝜀NLO is the element of the permittivity matrix relating the optical electric field along the
poling direction with the displacement field along the same direction. To achieve (2), we neglected
the 𝑧-dependence of the electro-optic coefficient. This is acceptable in the splitter/recombiner,
where the electric field profile is much weaker than in the slots. It is to be remarked that, even if
the device under study is simplified (vertical slot walls, isotropic permittivity), in the transverse
(𝑥, 𝑦) plane this model can describe complex geometries, e.g., including slanted walls such
as in [32, Fig. 10(c)], and sophisticated electromagnetic properties, e.g., position-dependent
anisotropic permittivity. On the other hand, (2) ignores a possible 𝑧-dependence of the poling
field, which could arise for example from fluctuations of the slot width/height. The experimental
characterizations (see the SEM image from [32, Fig. 10(b)]) suggest that it is reasonable to
simulate an average slot width. With this hypothesis, the device geometry can be designed
on the basis of parametric simulation campaigns, and only the final design verification could
be performed by a full 3D electro-opto simulation, limiting the overall computational cost.
Because the modulator length is much shorter than the RF wavelength, its frequency response
can be reasonably approximated with that of a 𝑅𝐶 circuit, 𝑅 being the device and driver total
equivalent resistance and 𝐶 its static capacitance. This allows to reduce the electrical analysis to
a quasi-static problem in the 2D cross-section, as shown in Fig. 1(right), and to introduce this
𝑧-independent E/O effect only in the phase modulators. Here, Δ𝑛mat can be evaluated as [33]:

Δ𝑛mat =
1
2
𝑟33𝑛

3
NLO sign (𝑥)

√︃��𝐸𝑥,RF
��2 + ��𝐸𝑦,RF

��2, (3)
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Fig. 5. Top: ΔΦ(𝑉RF) characteristics evaluated with (5) using the waveguide simulations
shown in Fig. 3, assuming 𝐿mod = 6 𝜇m. The green dashed, red dash-dotted and blue
solid curves are obtained considering the slots isolated, coupled, and coupled including
multiphysics effects, respectively. The horizontal arrows indicate the 𝑉𝜋 definitions for
the three simulations. Bottom: the curves show the behaviour of 𝑉𝜋 versus 𝐿mod using
the definition indicated in the top panel.

where 𝑟33 is the component of the E/O tensor (in contracted index notation) that affects 𝑛mat
due to an RF electric field applied along the poling direction (consider that in a quasi-TEM
approximation the RF and DC field patterns coincide), and sign (𝑥) takes into account that it has
opposite signs in the two slots (refer to the RF circuit sketched in Fig. 1(right)). It is understood
how (3) leads to a multiphysics treatment, since the position-dependent 𝐸𝑥,RF, 𝐸𝑦,RF field
components should be assessed through electrical simulations. Then, they should be interpolated
on the optical problem mesh to evaluate Δ𝑛mat in its cross-section (the one simulated to produce
Fig. 2), thus requiring a coupled, multiphysics approach.

To avoid this sort of complications, recalling that in MIM waveguides plasmonic modes are
TM, with a dominant transverse component of the optical field, and that the RF field in the slots
is mainly orthogonal to the slot walls, i.e., only the perpendicular (𝑥) component survives, the
following approximation is sometimes adopted (see, e.g., [31]):

Δ𝑛mat '
1
2
𝑟33𝑛

3
NLO sign (𝑥)

��𝐸𝑥,RF
��2

' 1
2
𝑟33𝑛

3
NLO sign (𝑥) 𝑉RF

𝑤slot
, (4)

yielding a constant, non-zero Δ𝑛mat only in the slot.
Figure 3 shows the effective refractive index versus the RF voltage 𝑉RF. There are three groups

of curves, obtained with different degrees of approximations. The green dashed curves are
obtained simulating the two slot waveguides separately, treating them as isolated just like in
Fig. 2, and the approximated E/O refractive index variation model in (4) has been adopted. These
curves clearly are straight lines, intersecting at 𝑉RF ' 4 V, which corresponds to the MZM ON
state (i.e., the two slot line optical fields are in phase, having the same optical path length).

Still within the approximation (4), the dash-dotted red curves have been obtained simulating
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Fig. 6. Left: RF electric field map simulated with the QS solver. The black lines are
used to indicate the device geometry, to assist the direct comparison with Fig. 1(right).
The three dashed horizontal lines intersect the slot center (blue, 𝑦 = 110 nm), the slot
top (red, 𝑦 = 220 nm), the end of the NLO material (orange, 𝑦 = 300 nm). Right:
cuts of the maps on the left (the small oscillations result from the interpolation of the
different meshes, necessary to perform the multiphysics coupling (3)). The three cuts
correspond to the horizontal lines intersecting the slot center (blue, 𝑦 = 110 nm), the
slot top (red, 𝑦 = 220 nm), the end of the NLO material (orange, 𝑦 = 300 nm).

a cross-section including both slots. Rather than being straight lines, these curves exhibit an
almost-parabolic behavior in the proximity of the ON state, and become linear far from it,
with almost the same slope of the dashed green lines. Because the two 𝑛eff curves are not
intersecting, the corresponding phase shift is not zero, suggesting that operation at 𝑉RF ' 4 V
should be a quasi-ON state, characterized by an excess loss; this point is further discussed in
Section 3.3. Finally, the solid blue curves have been obtained including mode coupling and the
full description of the E/O effect from (3). Here, the RF fields have been simulated with our
in-house quasi-static (QS) FEM electric solver [34]. Compared to the dash-dotted red curve, the
multiphysics simulation result exhibits a higher slope, which makes the ON voltage to be shifted
at about 3.5 V. In this view, it is clear that (4) underestimates the E/O effect.

The parabolic behaviour of the red and blue curves is caused by coupling effects between
the two slot modes. Despite in the device under study the slots are quite far away, separated
by the gold island, mode coupling is fostered by the surface plasmons of its top/bottom walls.
Such behaviour, commonly referred to as anticrossing, is indicative of coupling between two
modes [35]. This occurs in several EM structures, such as dielectric and photonic crystal
waveguides [36,37] and high-contrast gratings [38–40], but also in semiconductor crystals where
coupling between waveparticle modes is present [41].

The strong losses of the top surface plasmonic mode make the anticrossing strongly dependent
on the slot separation 𝑤island. This is investigated in Fig. 4. In particular, the left panel shows the
𝑛eff (𝑉RF) characteristics curves for three different island widths. Here, the blue curve corresponds
to the reference (𝑤island = 400 nm) case reported with the same color in Fig. 3. Instead, the
red curve (𝑤island = 200 nm) exhibits a much broader 𝑛eff splitting, Δ𝑛eff (definition in the
figure), as a consequence of the increased mode coupling. On the other hand, the orange curves
(𝑤island = 600 nm) are almost intersecting, therefore tending to the isolated slot case of Fig. 3.
A more quantitative information is provided by the right panel, showing Δ𝑛eff as a function of
𝑤island.

Waveguide simulations can be tentatively used to perform preliminary estimates of the MZM
performance. To this aim, in Fig. 5, the electro/opto simulation results from Fig. 3 have been



used to obtain a first estimate of the modulator 𝑉𝜋 . To this aim, the top panel shows the phase
shift ΔΦ(𝑉RF) between the two MZM modes at the recombiner section computed as

ΔΦ(𝑉RF) = 𝑘0𝐿mod
��𝑛eff,1 (𝑉RF) − 𝑛eff,2 (𝑉RF)

�� , (5)

where 𝑛eff,1, 𝑛eff,2 come from the effective index curves reported in Fig. 3. The 𝑉𝜋 has been
approximated as the difference between the OFF voltage, at which ΔΦ(𝑉OFF) = 180◦, and the
ON voltage, at which ΔΦ(𝑉ON) is minimum (zero, in the isolated slots case). Remarkably, the
estimate obtained with the multiphysics-augmented simulation (blue curve) are very close to the
experimental findings discussed in [19, 31].

To further clarify the importance of a multiphysics treatment, the bottom panel of Fig. 5
shows 𝑉𝜋 as a function of the modulator length 𝐿mod, evaluated as in the top panel. From these
results it is not possible to appreciate significant differences between the isolated (green dashed)
and coupled (red dash-dotted) slot cases. Instead, it appears that the multiphysics simulation
might lead to relevant variations of 𝑉𝜋 , which can reach almost 4 V for short modulators. These
differences can be understood by analyzing the results reported in Fig. 6(left), showing the
magnitude of the electric field simulated the the QS solver.

The slots can be identified as the regions where the electric field is stronger (tending to red).
Moreover, it could be noticed that the field level is slightly higher in the left slot (i.e., the narrower
one). The electric field is non-vanishing also out of the slots, which cannot be taken into account
by (4). This can be better appreciated in Fig. 6(right), which shows field cuts performed in
the slot center (blue, 𝑦 = 110 nm), at the slot top (red, 𝑦 = 220 nm), and the end of the NLO
material (orange, 𝑦 = 300 nm). From the blue curves it can be seen that the estimate (4) is very
accurate inside the slot (considering 𝑉RF = 1 V, the left slot field is 11.1 V/cm, the right one
is 10 V/cm). Looking at the red curve, one could notice that the optical field diverges at the
slot corners [42, 43]. However, the most relevant effect in this context is the non-vanishing field
corresponding to the island, which is related to a residual 𝑦 field component associated to the
island surface plasmons. This is even more evident at the end of the NLO material.

3. Efficient comprehensive 3D simulation

In the previous section, the𝑉𝜋 voltage has been estimated only on the basis of the effective refractive
indexes obtained from waveguide simulations, emphasizing how a multiphysics-augmented
framework is instrumental to reproduce the experimental findings. Simple system-level models
for the slot optical fields interference at the output combiners, also accounting for the plasmonic
loss in each slot (see, e.g., [16, Sect. 6.4]), are customarily exploited to provide an estimate
of other important device figures of merit, as the modulator insertion loss (IL) and extinction
ratio (ER). However, such simple models neglect a number of effects related to both slot mode
coupling and the detailed description of the splitter and recombiner sections, which feed the
plasmonic phase modulators and extract the signal from it.

From this viewpoint, the maximum realism is provided by 3D full-wave simulations of the
entire device, which in principle can be carried out by commercially-available electromagnetic
simulators implementing the finite-difference time-domain method (FDTD), such as RSoft
FullWave [44] and Lumerical FDTD Solutions [45] (all the 3D-FDTD simulations used in this
work have been performed with the latter). Lumerical, starting from a defined input field source
(in this case the Si waveguide mode in the input splitter), returns the position-resolved 3D profile
of the vector electromagnetic field on the entire device. The MZM response can be defined
by post-processing this information. Because the modulator is embedded within a complex
optical system featuring grating couplers and other components which can filter out spurious
contributions, it is reasonable to base this definition on the fundamental mode of the output
waveguide. By projecting the total (3D) field on it, a mode transmission coefficient 𝑆21 can be
defined, whose absolute value squared can be interpreted as a 𝑃out/𝑃in.
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Fig. 7. Top-left: (𝑧, 𝑥) view of the device under study, where the splitter and
the modulator+recombiner blocks have been emphasized with red and blue dashed
boxes. Bottom-left: schematic representation of a bimodal Fabry-Pérot interferometer,
indicating the correspondence with the blocks of the MZM on top. Right: top view of
the 3D model of the splitter to be simulated for the MFDTD strategy, where colors are
equal to Fig. 1, and the orange walls indicate the end of the simulation domain; below
it, the S′ splitter scattering matrix is sketched (both figures present a dashed red line,
indicating the splitter end; at its right a transmission line section with length 𝐿port is
included to enhance the simulation stability, to be de-embedded with (7)).

3.1. Introducing mixed modal-FDTD simulation and cold splitter characterization

Even though the compact footprint of POH MZMs makes such an all-in-one approach not
impossible, it is rather prohibitive, considering that each RF voltage level requires a different
3D-FDTD simulation. By inspecting the top view of the device in Fig. 7, one can imagine an
intermediate strategy between all-in-one 3D-FDTD and waveguide-only simulations: instead of
modeling numerically the entire device, it is possible to focus the 3D-FDTD simulations only on
the splitter/recombiner (which are actually equal, just mirrored), and the central part by means
of waveguide simulations and transmission line theory. Since the phase modulators consist of
two waveguides, this device resembles a bimodal Fabry-Pérot interferometer (BFPI) [46], whose
concept is sketched in the bottom part of Fig. 7. Here, the cavity transmission lines describe
the plasmonic modes supported by the MZM, whose voltage-dependent dispersion properties
have been presented in Section 2 and now are be re-used to avoid to simulate by 3D-FDTD the
phase modulators, minimizing the simulation number and cost, and are coupled mutually and
to the outer ports (fundamental Si waveguide modes) by the scattering matrices describing the
splitter/recombiner. Then, the device response can be computed as the cascade of the splitter,
cavity and recombiner transmission matrices.

The first step of this mixed modal-FDTD (MFDTD) strategy requires simulating, with the
3D-FDTD, only the section sketched in Fig. 7(right), at 𝑉RF = 0 V. This starts from the input
waveguide, and is terminated after a length 𝐿port from the splitter end, as indicated by the dashed
vertical line; this transmission line segment is introduced just to avoid problems that originate
from terminating the device too close to metal corners. This simulation provides by itself



interesting data, such as an estimate of the coupling losses due to photonic-plasmonic interference
(PPI) (see [31, Fig. 11]). In the following sections it will be discussed how, combining this
simulation to the waveguide-only analysis presented in Section 2, it is possible to perform a
full-device simulation, similar to that presented in [31, Fig. 8(b)], but including also 3D effects
such as mode coupling through the surface plasmons of the top island walls.

Considering only 2 internal modes to describe the modulator response, Lumerical allows
to compute, through the S-parameter sweep functionality, a 3 × 3 matrix where, e.g., port 1
indicates the fundamental mode of the Si waveguide, and ports 2 and 3 the two plasmonic modes
considered for the slot waveguides. This matrix can be re-arranged as

S
L
=


𝑆

L
oo S

L
oi

S
L
io S

L
ii

 =

𝑆11 𝑆12 𝑆13

𝑆12 𝑆22 𝑆23

𝑆13 𝑆23 𝑆33


. (6)

Coherently with Fig. 7(left), the subscripts “o” and “i” are used to indicate the ports located
outside and inside the modulator cavity, respectively. In (6), the superscripts “L” are used to
remark that the scattering matrix blocks include the transmission line segment long 𝐿port indicated
in Fig. 7(right). In order to obtain the final 0 volt splitter matrix S

0
, one should de-embed such

transmission lines, requires defining (at 𝑉RF = 0 V) the phase shift matrix Eport as:

Eport = diag
𝑖=1,2

{
exp

(
−j𝑘0 (𝑛eff,i − j𝜅𝑖)𝐿port

)}
,

where 𝑛eff,i, 𝜅𝑖 can be obtained from (possibly multiphysics) waveguide simulations analogous to
those shown in Fig. 3. Finally, de-embedding is performed by applying:

𝑆
0
oo = 𝑆

L
oo

S
0
io = E−1

port S
L
io

S
0
oi = S

L
oi E−1

port

S
0
ii = E−1

port S
L
ii E−1

port.

(7)

3.2. Voltage-dependent mode coupling effects

The superscript “0” in (7) indicates that the matrices (7) are computed and valid only for𝑉RF = 0 V.
Even under the hypothesis (stated at the beginning of Section 2) of introducing the E/O effect in
the phase modulators only, the splitter/recombiner scattering matrix depends on voltage, since
the ports and transmission line parameters are defined starting from modal basis of the phase
modulators, whose elements are voltage-dependent.

This is shown in Fig. 8, which reports the cuts of the real part of 𝐸𝑥 in the slot center
(𝑦 = 110 nm) for the two modes. Invoking the molecular orbital taxonomy, the coupled slots
supermodes 1 and 2 are antibonding- and bonding-like, respectively. Three 𝑉RF values are
considered: 0 V (green dash-dotted curves: cold regime), 𝑉ON = 3.5 V (blue dashed curves),
and 8 V (red solid curves). The mode topographies are clearly voltage-dependent. In fact, at
𝑉RF = 0 V modes are mostly localized in the left and right slots, respectively. At 𝑉RF = 8 V,
modes are still localized, but with switched order. Instead, at 𝑉ON modes tend to assume odd
and even parities. This is a signature of mode coupling, just like the parabolic-like behaviour
of 𝑛eff (𝑉RF) in Fig. 3: coupling is strongest at 𝑉ON and decreases at smaller or lower applied
voltages. For this reason, the matrix S

0
from (7) differs from the S

′
ii indicated in Fig. 7, as it does
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Fig. 8. Cuts of the real part of 𝐸𝑥 in the slot center (𝑦 = 110 nm) reported for the
two modes. The top and bottom panels show mode 1 (antibonding-like) and mode 2
(bonding-like), respectively, for three 𝑉RF values: 0 V (green dash-dotted curves: cold
regime), 𝑉ON = 3.5 V (blue dashed curves), and 8 V (red solid curves)

not take into account such mode coupling. Therefore, obtaining the voltage-dependent S
′
from

S
0

still requires a change of basis matrix W(𝑉RF) from the modes computed for the cold device
to those with a non-zero E/O effect:

𝑆
′
oo (𝑉RF) = 𝑆

0
oo

S
′
io (𝑉RF) = WH (𝑉RF) S

0
io

S
′
oi (𝑉RF) = S

0
oi W(𝑉RF)

S
′
ii (𝑉RF) = WH (𝑉RF) S

0
ii W(𝑉RF),

(8)

Computing the 2 × 2 change of basis matrix W(𝑉RF) in principle requires a mode-matching
technique, where the field continuity at the interface between cold and biased waveguide sections
should be performed including the complete mode spectrum. This is the case occurring, e.g., in
high-contrast gratings: even if their operation can be described just by 3 × 3 scattering matrices,
computing their entries requires a mode-matching with a large number of modes to expand/project
the fields at the bar-air discontinuities [47]. In the case of dielectric waveguides this is even
more troublesome, since the electromagnetic problem is theoretically unbounded, and one should
include also the continuum part of the mode spectrum. A possibility is mimicking free-space by
closing the problem within a very large computational box, whose modal expansion is known
analytically [48]. A handier, still very general approach is through 3D-FDTD simulations of
a discontinuity between a plasmonic slot without/with E/O effect. In practice, this could be
achieved by simulating two short transmission line segments, and then de-embedding the lines in
a similar fashion to (7).

As it could be appreciated in the cuts reported in Fig. 8, the mode topographies are very
localized, which is a signature of their plasmonic character. Moreover, voltage introduces just a
mild dielectric discontinuity within the slots, without introducing any other significant change in
the geometry. This explains why the mode topographies without/with voltage are so similar. In
this view, in these devices, one can approximate the mode basis at a given voltage as a linear
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Fig. 9. Excitation coefficients at the onset of the modulator section (end of the splitter)
versus voltage; the solid and dashed curves are obtained for 𝐿mod = 6 𝜇m and for a
very long modulator (𝐿mod > 40 𝜇m).

combination of the elements of the basis at a different voltage. This consideration allows the
matrix W(𝑉RF) to be derived from the coefficients of this linear combination, which can be
obtained solving a least-squares problem, whose formulation is reported in Appendix B. It
has been verified that the change-of-basis matrices obtained with the two methods agree well,
enabling to use both approaches with similar results.

The effect of the voltage-dependent mode coupling on the plasmonic modulator feed can be
appreciated in Fig. 9. Here, the dashed curves are obtained plotting S

′
oi (𝑉RF), which corresponds

to the case of a very long modulator (𝐿mod ≥ 40 𝜇m). The solid curves are obtained plotting
(I − S

′
iiS

′′
ii )−1S

′
io for 𝐿mod = 6 𝜇m, i.e., including cavity effects (which are instead negligible

in long interferometers due to the high plasmonic losses). In both cases, the curves can be
interpreted as the excitation coefficients of the modes (being, more specifically, the magnitudes
of the progressive waves) at the onset of the modulator section, with/without cavity effects. It
should be noticed how two groups of curves exhibit similar trends for every 𝑉RF, and are almost
equal in the 𝑉ON region. This suggests that in opposite to 𝑉OFF, which is strongly affected by
the modulator length, the 𝑉ON and the corresponding mode excitation coefficients are quite
independent on it.

3.3. Evaluating the modulator response

Once S
′
is determined, it can be used to find the matrix S

′′
as:

𝑆
′′
oo (𝑉RF, 𝐿mod) = 𝑆

′
oo (𝑉RF)

S
′′
io (𝑉RF, 𝐿mod) = Emod S

′
io (𝑉RF)

S
′′
oi (𝑉RF, 𝐿mod) = S

′
oi Emod (𝑉RF)

S
′′
ii (𝑉RF, 𝐿mod) = Emod S

′
ii (𝑉RF) Emod,

(9)

where 𝐸mod depends both on 𝑉RF and on the modulator length 𝐿mod:

Emod = diag
𝑖=1,2

{
exp

(
−j𝑘0 (𝑛eff,i (𝑉RF) − j𝜅𝑖 (𝑉RF))𝐿mod

)}
.
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Fig. 10. Modulator response simulated with the all-in-one 3D-FDTD model (solid
red curve), and with the MFDTD approach (dashed black curve). The 3D-FDTD and
MFDTD curves have been evaluating |𝑆21 |2 from (10). The figure reports also the
definitions of extinction ratio (ER) and insertion loss (IL).

Finally, the modulator reflection (𝑆11) and transmission (𝑆21) coefficients can be obtained by
cascading the two matrices from (8) and (9):

𝑆11 = 𝑆
′
oo + S

′
oiS

′′
ii (I − S

′
iiS

′′
ii )−1S

′
io

𝑆21 = S
′′
oi (I − S

′
iiS

′′
ii )−1S

′
io.

(10)

The validation of the MFDTD is performed versus the all-in-one 3D-FDTD results, as shown
in Fig. 10. Each of the all-in-one simulations (one different 3D-FDTD simulation for each RF
voltage) consist of 144 millions Yee nodes, requiring about 7 hours on a HP ProLiant DL560
Gen9 computer (featuring 512 GB RAM), parallelizing on all the Intel Xeon E5-4627 v3 (10-core)
four CPUs. On the other hand, MFDTD requires a single 3D-FDTD simulation performed at
𝑉RF = 0 V, involving just the splitter section (48 millions Yee nodes), which are combined to the
multiphysics-augmented waveguide simulations to trace the full (voltage-dependent) modulator
response.

The responses simulated with the two methods are reported with solid red and dashed black
curves. The 3D-FDTD simulations (both all-in-one and splitter-only) have been performed using
a uniform mesh (5 nm step in all directions) within the modulator section (central island, slots,
part of the rails and gold tapers), and with the Lumerical auto non-uniform setting, with mesh
accuracy parameter set to 5 (high accuracy). In the phase modulators, the E/O effect is evaluated
from 2D quasi-static analyses (multiphysics approach) just like in Fig. 3, blue curve. The figure
shows also the definitions of extinction ratio (ER) and insertion loss (IL), which are about 14.5 dB
and 4.7 dB, agreeing qualitatively with the experimental findings from [19,31] (measured ER is
20 dB, measured IL is 5 dB).

The remarkable agreement between the two curves, even at −18 dB levels is validating not just
the MFDTD algorithm, but demonstrates also the bimodal character of the MZM under study. It
is to be remarked that the MFDTD algorithm could be extended, in a straightforward fashion, to
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Fig. 11. Left: plot of the MZM response for different modulator lengths: the blue, red,
and orange curves refer to 𝐿mod = 3 𝜇m, 5 𝜇m, and 7 𝜇m, respectively. Right: plot
of the extinction ratio (ER, thinner blue curve, referred to the left axis) and insertion
loss (IL, thinner red curve, referred to the right axis) as a function of 𝐿mod, obtained
from 𝑆21 from the simulated modulator response (10). The thicker curves are used to
emphasize the average trends. The top abscissas axis shows the corresponding 𝑉𝜋 .

devices whose operation involves a higher number of modes. In such cases, the rightmost matrix
in (6) would be larger than 3× 3, but it could be still possible grouping the parameters as 𝑆L

oo, S
L
oi,

S
L
io, and S

L
ii . Even though these blocks would have different dimensions, eqs. (7)–(10) could be

still applicable.
This method allows parametric investigations versus the modulator length at no additional

computational cost. As an example, Fig. 11(left) shows the modulator responses obtained for
𝐿mod = 3 𝜇m, 5 𝜇m, and 7 𝜇m (blue, red, and orange curves, respectively). Considering the
longer modulators (smaller𝑉𝜋), it appears that the curves are almost periodic. It is to be remarked
that neither the orange nor the purple curves exhibit appreciable differences between the ILs
evaluated at the two ON states, which instead could be expected from the waveguide simulations
reported in Fig. 3. This could be understood from the analysis of Fig. 9: at the first ON voltage
(about 3.5 V) the first, antibonding-like supermode, which in this case is quasi-odd (see Fig.8,
top), is weakly excited. On the other hand, the bonding-like supermode is strongly excited. Being
one supermode almost suppressed, no interference between the supermodes takes place at the
recombiner, and the field propagates in both slots only according to the lower 𝑛eff from Fig.3.
This is why no excess loss can be observed. At the higher 𝑉ON, the modes are strongly decoupled,
i.e., localized in the single slots (as one can infer from Fig.8), and the output power results from
their constructive interference at the recombiner, which in this situation can be estimated with (5).

A synthetic representation of the relation between the three fundamental figures of merit is
reported in Fig. 11(right): 𝑉𝜋 , ER, IL. Focusing on the abscissas, Fig. 5(bottom) suggests that it
can be, in first approximation, interpreted as 1/𝐿mod, as reported on the upper horizontal axis.
(Indeed, according to a simplified modulator model, the product𝑉𝜋𝐿mod is constant). The thinner
curves exhibit an oscillatory behaviour, which is particularly evident in the ER curve, whose
calculation involves the logarithm (dB) of small quantities. These oscillations can be ascribed to
cavity effects (also visible in the results of Fig. 9); as a matter of fact, their amplitude decreases
at increasing 𝐿mod (and therefore at increasing losses in the phase modulators). Focusing on
the average trends (thicker curves), the lower plasmonic losses in shorter modulators lead to
reduced insertion loss. The interpretation of the trend of the ER (generally decreasing with 𝑉𝜋



and correspondingly increasing with 𝐿mod) is less obvious. Longer modulators are characterized
by lower 𝑉𝜋 , therefore closer to 𝑉ON, which is independent of 𝐿mod. In this case, the excitation of
the even mode at𝑉𝜋 increases (approaching the mode 2 peak at 3.5 V in Fig. 9), thus deteriorating
field extinction.

This analysis provides some guidelines towards the design of these devices. In MZMs, mode
coupling is a detrimental effect, impacting in particular on the ER. As suggested by Fig. 4,
which characterizes mode coupling on the basis of Δ𝑛eff at 𝑉ON, better performance could be
achieved for large 𝑤island. As an example, the device presented in [49], exhibiting ERs greater
than 20 dB, falls in this situation (slot separation of about 100 𝜇m). In order to achieve good
ERs without increasing the transverse footprint, Fig. 11 suggests to sacrifice 𝑉𝜋 and design short
interferometers. In this way the resulting modulator will have good IL, due to the moderate
plasmonic losses, and reduced mode coupling at 𝑉𝜋 . As a different route, one could investigate
coupler modulators where, as opposite to MZMs, mode coupling is the enabling physical
mechanism [50]. Future works will deal with a comparison of the performance achievable by
optimum MZM and coupler modulator designs.

4. Conclusions

The aim of the paper is to present a hierarchy of models for plasmonic-organic-hybrid electro/optic
Mach-Zehnder modulators, applied to the simulation of a device inspired by the literature. The
importance of a multiphysics approach has been investigated post-processing the results of
waveguide mode simulations. Augmenting these models with electrical simulations of the RF
field enables accurate predictions of 𝑉𝜋 , which are sufficient to characterize the E/O performance
of the modulator.

Estimating the insertion loss and extinction ratio requires moving towards computationally-
intensive full-wave simulations of the entire device. The all-in-one simulations produce results
compatible with the experimental findings. Further refinements of the model would require
detailed and accurate descriptions of the device, as well as of the material parameters (in particular,
metal), which are not available at present and out of the scope of this work.

Aiming to reduce the number of 3D-FDTD simulations and their cost, a mixed modal-FDTD
strategy has been formulated, invoking the analogy of the POH MZM with a bimodal Fabry-Pérot
interferometer. The remarkable agreement between 3D-FDTD and MFDTD results demonstrates
the bimodal character of the investigated device. In this work, the MFDTD has been applied to a
specific device, but it could describe any Mach-Zehnder modulator. More in general, the method
can in principle be extended to simulate modulators based on plasmonic rings. In fact, ring
modulators can be divided into blocks (directional couplers and a ring phase shifter consisting
in a single plasmonic slot), to be characterized either by a scattering matrix (the couplers) or
through “azimuthal” (rather than standard) transmission line theory.

A. Geometry and material parameters

This appendix provides details about the geometry and material parameter used in this work.
More specifically, Tables 1–2 contain the parameters of the geometry sketched in Figs.1 and
1(right).

The refractive indexes adopted in the simulations, mostly coming from typical literature values,
are listed in Table 3. In particular, Au in the electrical simulation is treated as an impedance
boundary condition, with conductivity 𝜎 = 4.1×107 S/m. Even though not visible in Fig. 1(right),
the Si substrate has been included in the electrical simulations. The complex dielectric constant
used for Au has been taken from [19], valid at 𝜆 = 1.55 𝜇. Also the DLD-164 polymer optical
refractive index has been taken from the same reference. However, to the best of our knowledge
no information is provided about its radiofrequency response (all the details we have found come



from [32, Fig. 4]), so we assumed 𝑛NLO = 1.83, with no dielectric losses, also in the quasi-static
RF problem.

Table 1. Geometrical parameters of the cross-section shown in Fig. 1(right).

Quantity 𝑤slot,1 𝑤slot,2 ℎslot ℎNLO 𝑤island 𝑤rail

Value, unit 90 nm 100 nm 220 nm 300 nm 400 nm 520 nm

Table 2. Parameters of the geometry shown in Fig. 1(left) not reported in Table 1.

Quantity 𝐿mod 𝐿rail 𝐿t,Au 𝑑t 𝐿t,Si 𝐿WG ℎWG 𝑤WG

Value, unit 6 𝜇m 12 𝜇m 1 𝜇m 500 nm 1 𝜇m 4 𝜇m 200 nm 440 nm

Table 3. Refractive indexes used in the simulations.

Material 𝑛electrical 𝑛optical

Au – 0.2524 − j10.4386

Si 3.42 3.5

SiO2 1.97 1.44

DLD-164 1.83 1.83

B. Voltage-dependent change of basis:
least-squares formulation

The approach described in this appendix could be seen as a mode-matching technique, where
only two modes are used to represent the transverse field at the discontinuity. In other words, the
modes of a waveguide subjected to E/O effect, |𝑉1〉, |𝑉2〉, are expressed as a linear combination
of the zero-voltage modes |𝑍1〉, |𝑍2〉 (the situation at which the splitter 3D-FDTD is simulated):

|𝑉1〉 = 𝑊11 |𝑍1〉 +𝑊12 |𝑍2〉
|𝑉2〉 = 𝑊21 |𝑍1〉 +𝑊22 |𝑍2〉 .

(11)

Because this equation involves four coefficients 𝑊𝑖 𝑗 , their determination requires formulating
a 4 × 4 linear system, which is obtained projecting these two equations on two functions. In
standard mode-matching techniques great attention is put on the projectors’ definitions. In this
case, being the system quite small, it is sufficient that the projecting modes are independent. For
this reason, we choose to project the equations on 〈𝑍1 | and 〈𝑍2 |, leading to

〈𝑍1 |𝑉1〉 = 𝑊11 〈𝑍1 |𝑍1〉 +𝑊12 〈𝑍1 |𝑍2〉
〈𝑍2 |𝑉1〉 = 𝑊11 〈𝑍2 |𝑍1〉 +𝑊12 〈𝑍2 |𝑍2〉
〈𝑍1 |𝑉2〉 = 𝑊21 〈𝑍1 |𝑍1〉 +𝑊22 〈𝑍1 |𝑍2〉
〈𝑍2 |𝑉2〉 = 𝑊21 〈𝑍2 |𝑍1〉 +𝑊22 〈𝑍2 |𝑍2〉

, (12)

where the bra-ket notation indicates the dot product



〈𝐴|𝐵〉 =
∫
𝑆

At · B∗
t d𝜎,

where, as in the standard mode-matching, 𝑆 is the (𝑥, 𝑦) cross-section of the waveguide
discontinuity, the star superscript indicates complex conjugation, and At, Bt are the transverse
fields, which must be continuous to satisfy the boundary conditions of Maxwell’s equations.

It can be noticed that the first and last groups of two equations are independent, leading to two
uncoupled linear systems: 

〈𝑍1 |𝑍1〉 〈𝑍1 |𝑍2〉

〈𝑍2 |𝑍1〉 〈𝑍2 |𝑍2〉



𝑊11

𝑊12

 =

〈𝑍1 |𝑉1〉

〈𝑍2 |𝑉1〉

 , (13)


〈𝑍1 |𝑍1〉 〈𝑍1 |𝑍2〉

〈𝑍2 |𝑍1〉 〈𝑍2 |𝑍2〉



𝑊21

𝑊22

 =

〈𝑍1 |𝑉2〉

〈𝑍2 |𝑉2〉

 . (14)

The solutions of the systems (13), (14) are the elements of the matrix W in (8).
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