POLITECNICO DI TORINO
Repository ISTITUZIONALE

iINNvestigate-GUI - Explaining neural networks through an interactive visualization tool

Original

iNNvestigate-GUI - Explaining neural networks through an interactive visualization tool / Garcea, Fabio; Famouri, Sina;
Valentino, Davide; Morra, Lia; Lamberti, Fabrizio. - STAMPA. - 12294:(2020), pp. 291-303. (Intervento presentato al
convegno 9th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2020) tenutosi a
Winterthur, Switzerland nel September 2-4, 2020) [10.1007/978-3-030-58309-5_24].

Availability:
This version is available at: 11583/2839527 since: 2020-10-06T00:01:15Z

Publisher:
Springer

Published
DOI:10.1007/978-3-030-58309-5_24

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
Springer postprint/Author's Accepted Manuscript

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’'s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/978-3-030-58309-5 24

(Article begins on next page)

23 April 2024

iNNvestigate-GUI - Explaining Neural Networks
Through an Interactive Visualization Tool

Fabio Garceal[0000700037346075297]’ Sina, Farnouril[000700027116476363]7 Davide

Valentinol , Lia Morral [0000—0003—2122—7178]
Lambertil [0000—0001—7703—1372]

, and Fabrizio

Politecnico di Torino, Dipartimento di Automatica e Informatica, Turin, Italy
{fabio.garcea, sina.famouri, lia.morra, fabrizio.lamberti}@polito.it,
davide.valentino@live.it

Abstract. In recent years, deep neural networks have reached state of
the art performance across many different domains. Computer vision in
particular has benefited immensely from deep learning. Despite their high
performance, deep neural networks often lack interpretability and are
mostly regarded as a black box. Therefore, the availability of tools capa-
ble to provide insights into the models and identify potential errors is cru-
cial. Such tools need to seamlessly integrate within the workflow of data
scientists and ML researchers. In this paper we propose iNNvestigate-
GUI, an open-source graphical toolbox which offers an extensive set of
functionalities for users to compare different networks behavior and give
an explanation to their outputs.

Keywords: deep learning - convolutional neural networks - visualization
- explainable artificial intelligence

1 Introduction

Deep learning has become a fundamental tool for a variety of applications.
Thanks to easy-to-use libraries like Keras [5], a deep neural network (DNN)
can be implemented in few lines of code, and many practitioners from a variety
of fields can use DNNs despite limited knowledge and background in machine
learning. However, practitioners still need crucial insights into the trained mod-
els. Typical examples that occur within the development life cycle include de-
bugging models that do not converge or perform poorly on the target labels, or
finding samples which the model cannot handle correctly for the specified task.
Given that DNNs are large models with millions of parameters trained on
thousands of data points, visual analytics is emerging as a powerful tool to aid
the inspection of DNNs and tackle the amount of data generated during their
training [6, 13]. For instance, tools as Tensorboard allow to visualize gradients,
activations, losses, etc. focusing on the training and optimization process.
Another important aspect of training DNNs is having insights into their
properties, e.g., determining the most important features for classification. To

2 F. Garcea et al.

compensate for the black-box nature of DNNs, many eXplainable Artificial Intel-
ligence (XAI) techniques have been designed to provide post hoc explanations of
predictions. Techniques and algorithms that can provide visual interpretations
are particularly effective, especially for DNNs targeting image interpretation
[13]. Yet, there is a lack of tools to easily integrate such techniques in the de-
velopment cycle. Activis [8] is one of the most comprehensive GUIs (Graphical
User Interfaces) available for this purpose, but unfortunately, it is not publicly
available. We argue that similar open source and publicly available interfaces are
crucial to support the integration of XAl techniques in the development of deep
learning models.

In this paper, we present iNNvestigate-GUI', an open-source, user-friendly,
visual analytics tool for DNNs, especially tailored to computer vision. It is built
upon the open-source iNNvestigate library [2], which provides a reference im-
plementation of several visualization algorithms. Our aim is to provide a GUI
which simplifies model interpretation by providing easy, code-free access to a
comprehensive pool of visualization methods.

Designing such software has its challenges. First of all, visual comparison of
several DNNs will be computationally expensive. The target users are diverse,
with varying levels of machine learning knowledge and needs, so visual inter-
pretability is a key factor. The tool should be easily integrated in the research
and development workflow. Last but not least, as a crucial step towards XAlI,
when comparing DNNs one should not only take into account the final perfor-
mance but also the reason behind the outputs.

We will explain how iNNvestigate-GUI fits into the literature in Section 2.
In Section 3, the design challenges are explained in detail. Section 4 gives an
overview of implementation details and design goals. The tool was tested with a
group of non-expert users (computer science students). As described in Section
5, it reached a usability score of 73.34 according to the SUS scale.

2 Related Work

In this section we will first describe the currently available GUI-based tools and
libraries to perform visual analysis in deep learning applications. Previous works
have been categorized according to their license, availability and target audience,
as detailed in Table 1.

2.1 Visual Analytic Tools for Deep Learning

Open-source tools for experienced users. This group covers the majority of visual
analytic tools in literature and collects most of the most popular applications
used for deep learning applications. The well known TensorFlow Graph Visu-
alizer [21] for instance, which is part of the widely adopted TensorFlow frame-
work, allows visualizing a neural network as a directed graph embedding other

! code is available at https://gitlab.com/grains2/innvestigate-gui/

iNNvestigate-GUI 3

crucial information like layers hyperparameters in a single scalable view. Em-
bedding Projector [17] is another recent visualization tool developed by Google
and included in the TensorFlow framework that allows plotting tensors in space
through different dimensionality reduction techniques. Chung et al. proposed a
dynamic real-time visual system to monitor the 2D representation of the filters
learned by different layers and an interactive approach to steer the model con-
figuration during the training process [4]. The Deep Visualization Toolbox [22]
provides a matrix-like grid-view representation of the activations of the neurons
in a given layer for a specific input image or video. A similar approach has been
recently adopted in Summit [7], a tool developed to let practitioners and experts
visualize neuron activations, thus enhancing the interpretability of the models.
Several visualization tools targeting neural networks focus on the training and
optimization phase. For instance, DeepEyes [11] supports the interpretation of
the features learned by a CNN model during the training phase. As evident from
Table 1, most of these tools allow visualization of gradients and activations and
are more suited to effectively monitoring the training process than towards XAl

Other recent visualization tools like LSTMvis [18] and GANviz [19] are in-
stead focused on specific types of networks (such as LSTM or GANSs), whereas
in this work we are aiming at a more general purpose tool.

Proprietary tools for experienced users. ActiVis [8] is an example of propri-
etary Web application developed by Facebook that represents a comprehensive
alternative to TensorFlow Graph Visualizer. It allows visualizing a neural net-
work through a node-graph representation and performing behavioral analysis
at different levels, from a subset of samples to a single instance and down to
the activation of a single neuron. However, it is deployed on FBLearner Flow,
the machine learning platform of Facebook, and is available only for internal
researchers and practitioners. In [9], Shixia Liu et al. proposed a tool named
CNNVis, which allows to visualize a clustered representation of the features
learned by neurons and the connections between neurons at different layers with
a minimal representation aimed at reducing the visual clutter caused by a high
number of links between nodes. This tool has however no public implementation
and only an online demo is currently available.

Educational tools. Some visualization tools are designed to help students bet-
ter understand how neural networks work and, more in general, to be used for
educational purposes [16,20]. An an example, TensorFlow Playground is a web
application developed by Google researchers, that allows manipulating interac-
tively a simple model, including the structure, hyper-parameters and data points,
to appreciate directly their effect on the decision boundaries learnt by the net-
work. However, such tools are not adequate to visualize complex networks and
datasets typical of real-life projects, even for inexperienced researchers.

2.2 Libraries of Visualization Algorithms

DNNs are generally regarded as black boxes due to their lack of explicit in-
terpretability. To tackle this issue, several visualization algorithms have been

4 F. Garcea et al.

Table 1. Summary of the main deep learning visualization tools and comparison with
the proposed tool.

TF Graph|Embedding
Visualizer |Projector |ActiVis|DeepVis|CNNVis|ReVACNN DeepEyes|Summit|iNNvestigate-GUI

Visualization
Node-Link Graph v
Embeddings v
Activations
Gradients

Hyperparameters v
Attributions v v
Training History v

EINENENEN

<
<
ANENENEN

Framework
TensorFlow v v v
Keras v v v
FBlearner Flow v
ConvNetJS v
Caffe v v

User Interface
GUI (web-app) v v v v v v
GUI v v
Command Line

Availability
Open Source v v v v v v v
Proprietary v

proposed to help understanding why a model is producing a certain output for a
given input [13]. These techniques visualize aspects such as the filters learned by
a specific layer of the network, the activation of a certain neuron, or the gradients
flowing through the layers. Perturbation-based methods stimulate and visualize
changing network behavior by perturbing the input of the model. These meth-
ods rely on different visual paradigms varying from heatmaps to pixel display
grids. Since the seminal work by Zeigler & Fergus [10], the number of available
visualization techniques has been increasing steadily given the growing interest
in XAIL. A complete review is outside of the scope of this paper, and the reader
is referred to many excellent surveys available [13, 6].

In practice, the applicability of visualization techniques is often hindered by
a lack of publicly available reference implementations [2]. A few libraries have
been recently proposed to gather and unify different visualization techniques
in a common framework, including Keras Explain [1], DeepExplain [3] and iN-
Nvestigate [2]. As detailed in Table 2 all include a variety of gradient-based (like
DeepLIFT [15]), model-independent methods (like LIME [12]) and perturbation-
based methods. Still, their integration in the model development cycle can be
greatly simplified by providing a graphical interface, and presents several chal-
lenges which are discussed in Section 3.

3 Design Challenges

A series of joint design sessions were conducted by involving researchers and
practitioners with different levels of expertise. Moving from the analysis of ex-
isting tools, illustrated in Section 2, we highlighted several critical gaps to be

iNNvestigate-GUI 5

Table 2. Summary of the available libraries of visualization algorithms.

Keras Explain|DeepExplain|iNNvestigate

Visualization Technique
Gradient/Saliency maps v v
SmoothGrad
DeconvNet
Guided Backpropagation v
PatternNet
GradCAM v
Guided GradCAM v
Input * Gradient
LRP v
Integrated Gradients v
DeepTaylor
DeepLIFT v
Pattern Attribution
Prediction Difference v

Grey-box Occlusion v v
LIME v

Shapley Value Sampling v

ANENENEN

ENENEN

ENENENENENEN

addressed, with an emphasis on open-source solutions. A seconded set of design
challenges (C1-C5) was identified.

C1.

C2.

C3.

C4.

Resource demanding visualizations. Training and evaluating DNNs is
computationally expensive, especially when working with images. The time
required to produce the visualizations should be limited in order to enhance
user acceptability, but many of the existing visualization techniques are
computationally intensive. Likewise, large datasets are usually involved in
running deep learning experiments. Targeting the open-source community,
the proposed implementation should allow a variety of computing setups,
to access the provided visualization techniques.

Diversified set of users. Designing a tool that is easy to use and accom-
modates both expert and non-expert users is challenging. Many of the avail-
able tools either target very inexperienced users and are mostly intended as
teaching aids, or are designed to work in an industrial R&D environment
where users are likely to have similar experience levels. Open-source tools
target users who may have different needs and preferences. The workflow
should follow a clear and simple structure; the different views of the inter-
face should be self-explanatory and the visualizations designed with clarity,
yet being capable of producing useful insights in non trivial projects.
Performing instance-based and dataset-based analysis. Several XAl
techniques are designed to provide a post hoc explanation of the predictions
on a specific instance. However, as mentioned before, DNNs are trained and
tested on very large datasets, and it is impractical for the user to manually
comb through the dataset to find critical samples. A suggestion system is
needed to rapidly identify data instances that are worthy of inspection.
Simplify integration in R&D. The practical adoption of XAl techniques
is often hindered by i) the lack of a reference, readily-available implemen-
tation and ii) the need to design and implement specific code for their

6 F. Garcea et al.

integration in the model development pipeline. A graphical tool should al-
low to produce the expected results significantly faster than writing code
from scratch and, in general, generate the required visualization through a
limited number of clicks.

C5. Model complexity and variety. Many visual analytics tools are designed
to evaluate a single model, and often assume a relatively simple architec-
ture. In practice, dozens of different models may need to be trained and
compared, and we argue that this comparison should take into account not
only performance but also the quality of the prediction and the presence of
systematic biases [14].

4 Implementation

In this section, a detailed description of the functionalities offered by the iNNvestigate-
GUI visualization tool is reported. In Section 4.1, the main design goals (G1 -

G4) are described and motivated. Then, we move on to illustrate how these goals
were achieved by designing a workflow for easy visualization of DNNs (Section

4.2) and for navigating a large dataset for sample selection (Section 4.3).

4.1 Design Goals

G1. Offering to researchers and practitioners a fast code-free tool
for interpreting their models. Available visualization libraries repre-
sent different attempts to create a common reference implementation to
tackle models explainability and interpretability [2]. Their use, however,
passes through an Application Programming Interfaces (API); hence, time
is needed to read the documentations and write ad hoc code. A visual
analytics tool offers a ready-to-use common GUI to multiple visualization
methods. It has to support inspections at different levels of depth, from the
entire model to single layers and units.

G2. Easy graphical comparison of multiple models. It is common during
a deep learning project to train and evaluate multiple models with differ-
ent architectures, hyper-parameters and configurations. Since there is no
consensus as to which visualization methods have the most desirable prop-
erties [2], the visualization tool must provide an easy interface to compare
the pool of XAI techniques on multiple models.

G3. Allowing navigation of large scale datasets and identification of
poorly classified and borderline data instances. Deep learning models
are in general trained and validated on large scale datasets, whereas most
visualization methods (with the notable exception of embeddings) operate
at the instance level. Selecting interesting input instances for analysis is not
straightforward. Random sampling is time consuming and may be lead to
missed errors. The proposed tool must provide an intuitive and effective way
to select samples that are worthy of further analysis, e.g., instances that
the DNNs cannot classify correctly. This approach could both save the time

iNNvestigate-GUI 7

needed to perform an ad hoc analysis of the samples, and highlight crucial
instances that may remain unnoticed, eventually increasing the capability
of the tool to provide insights on the model behavior.

G4. Web-based implementation to tackle computationally demanding
tasks. Although visualization is less computationally intensive than train-
ing, some visualization techniques still require an ad hoc training phase
and indeed, a large number of samples may need to be processed. To em-
power users with different resources requirements and availability in terms
of memory, disk space and computational power, we chose to develop the
tool as a web application. The advantage of this approach is the capabil-
ity to demand computationally demanding tasks to a back-end, possibly
equipped with GPUs, while providing to the users a lightweight front-end
accessible from anywhere through a web browser. This framework is already
adopted by many popular tools (e.g., Tensorboard, Embedding Projector),
and accommodates both users equipped with high-end workstations as well
as those exploiting cloud computing services (e.g., Amazon Web Services).

4.2 Explaining Custom Models Through Visualization Methods

In this subsection, we describe the complete process to explain the behavior
of DNNs through one or more visualization methods. Based on the analysis in
Section 2, we selected the iNNvestigate [2] package as the reference implemen-
tation, and provided an ad hoc implementation for methods not included in
this library, i.e., GradCAM and Guided GradCAM [14]. In addition, it is pos-
sible to visualize the output activations of a given neuron. These methods were
included because they can produce particularly intuitive and easy-to-interpret
visualizations especially suited to novice and non-expert users.

The iNNvestigate-GUI workflow starts by uploading the dataset and the
pre-trained model(s). It is possible to analyze both models trained by the user
or directly select the ImageNet-trained models available in the Keras library,
which could be useful also for teaching purposes. For the visualization methods,
all the options and all the required configurations parameters are provided as
scroll-down lists to enhance the intuitiveness of the GUI. The tool also allows to
specify a single layer or a single neuron to visualize the activation.

Once the setup is completed, the selected visualizations are generated and
displayed to understand the DNNs behavior. The visualization panel is divided
in multiple boxes, one for each of the models loaded in the configuration phase.
The visualization method is applied to the output of the selected layer (the last
convolutional layer by default) or neuron, for each data instance. Through an
interactive panel it is thus possible to inspect the produced visualizations in a
synchronized fashion, allowing fast and intuitive comparison between the behav-
ior of multiple networks. For each data sample and DNN, the top predictions
and their scores are shown next to the visualization output (see Fig. 1).

8 F. Garcea et al.

1/1

10 10

0.6 > 0.6 >
0.4 0.4
0.2 0.2

- model: VGG16 0o « model: Xception 00

« selected class: sea snake (id: 65) « selected class: sea_snake (id: 65)

Model prediction: Model prediction:

+ sea_snake (65) with probability 53.00% + sea_snake (65) with probability 77.00%

« water_snake (58) with probability 14.00% » water_snake (58) with probability 5.00%

« African_crocodile (49) with probability 6.00% * hognose_snake (54) with probability 4.00%

« rock_python (62) with probability 6.00% » rock_python (62) with probability 2.00%

- diamondback (67) with probability 4.00% « ringneck_snake (53) with probability 2.00%

Fig. 1. Comparison of different model predictions for one of the images included in
T1. The two models exploit different visual features to make the classification. The
overlapping heatmaps have been produced using the GradCAM technique.

4.3 Suggesting Useful Data Samples for Analysis

iNNvestigate-GUI allows the user to easily identify useful samples to analyze
thanks to the Suggestion panel (see Fig. 2). We assumed that the users should
analyze the predictions for a mix of data instances with different properties: for
instance, incorrectly classified samples allow the user to investigate the source of
possible errors. Moving from these observations, the Suggestion panel categorizes
available samples in order to allow the user to select a mix of samples with
different properties for inspection. We identified two operating modalities based
on i) whether a single or multiple models are compared and ii) whether the
ground truth labels are available.

In the multiple model setting, the Suggestion panel shows a scatter plot of
the input samples according to the confidence and agreement of the different
models, as reported in Fig. 2. The mean prediction score across all models is
reported on the z axis, and the number of predicted classes on the y axis. While
hovering with the mouse over one of the data points in the scatter plot it is
possible to have a visual preview of the examples. Based on their position in the
chart different types of data instances can be distinguished.

Samples in the right-lower corner are images that are classified in the same
way by all the evaluated models with a high prediction score. Samples in this are
are classified in the same class with high confidence by all the models, and thus
are likely to be correctly classified. Still, they could be interesting to inspect in
order to exclude the presence of systematic biases in the dataset.

iNNvestigate-GUI 9

iNNvestigate-GUI

Home Suggest[0]

. Suggestion

Classification overview for multiple
models. Each dot represents an input image.
On the x axis the mean confidence for a
given image. On the y axis the number of
2 different classifications.

n classification

Click on a dot to check the corresponding
image and the classifications made by the
selected models.

)

am ;7

10 2 30 40 50 E) 70) % 104
confidence [%]
ILSVRC2012_val 00000074.JPEG

Fig. 2. Suggestion panel of iNNvestigate-GUI. A scatter plot represents the input
dataset processed by multiple neural networks and guides the user towards select-
ing meaningful samples for further analysis. The average prediction score (x axis) is
plotted against the number of different classes (y axis) predicted by the models. This
visualization allows to identify data samples with high/low agreement among different
models, as well as those predicted with high/low confidence.

Samples in the top-left corner (low agreement / low confidence) are probably
borderline cases, or correctly classified by only a subset of the DNNs.

Samples in the top-right corner are predicted in different classes (low agree-
ment) but with high prediction scores. They could include out-of- distribution
samples on which DNNs are likely to misbehave, samples that may easily fool
one or more of the models (including adversarial samples), or again, samples cor-
rectly classified only by a selection of models. Under this structure, users could
focus their attention on the top-left and top-right quadrants.

In the single model setting, the Suggestion panel shows a simpler histogram
plot. The user can choose to visualize the distribution of the activations for a
pre-defined layer, e.g., to select the images that mostly excite a specific layer.
Alternatively, for of labelled data, it is possible to plot the distribution of the
difference between the prediction and the correct label (typically 1.0 for classi-
fication models) to identify samples that are correctly or incorrectly classified.

5 A Usability Test Case

To better evaluate the usability of the tool, two tasks have been prepared and
submitted to a group of 9 computer engineering students (with a previous back-
ground in deep learning) at Politecnico di Torino. All students had at least a

10 F. Garcea et al.

basic knowledge of CNNs and attended at least one course in machine learning.
A set of questions was prepared to guide the users through the completion of the
two tasks. After completing the tasks, all users were administered a question-
naire according to the SUS (System Usability Scale) approach. The two tasks
are summarized as follows:

T1. Evaluate the visual features used by different models to predict
the same subset of input images. This task emulates the comparison of
different trained models. A subset of 100 data samples from the ImageNet
ILSVRC2012 dataset was selected for this task.

T2. Assess whether multiple models use appropriate visual features
to classify a subset of inputs of the same class. This task emulates the
search for visual biases. For instance, a network may inadvertently learn to
predict an object based on co-occurring background features. For this task
a subset of 15 images belonging to the golden_retriever class was randomly
selected from the ImageNet ILSVRC2012 dataset.

The users had to compare three popular models available in Keras (VGG16,
ResNet50 and Xception) with varying level of complexity. In order to reduce
the time needed to complete the task, available visualization algorithms where
restricted to Gradient/Saliency, Guided Backpropagation, GradCAM e LRP-z.

During task T1, all users could successfully use the Suggestion panel to iden-
tify images where the models agreed /disagreed or had low/high prediction confi-
dence. In particular, users focused their search in the right-lower quadrant (high
agreement /high confidence, see Fig.3) and left-top quadrant (low agreement/low
confidence). In both cases, users found GradCAM to be the easiest method to
interpret (66.7% and 55.6% of the users, i.e. 6 out of 9 and 5 out of 9 respec-
tively).

In task T2, the participants were asked to identify samples that were classi-
fied correctly by all the models and samples with inconsistent behavior. Results
showed that 77.8% (7/9) of the participants relied on the histogram chart to
identify both, while 22.2% of the users (2/9) also relied on the scatter plot. In
this case the most intuitive algorithm for the analysis of visual features of images
classified with the correct labels by most of the models was Guided Backpropa-
gation (55.6% of the votes, i.e. 5/9). On the other side, when analyzing images
that were incorrectly classified, the most popular choice was again GradCAM
(66.7% of users, i.e. 6/9).

In task T2, users were asked to rate the visual explanations on a scale from
1 (completely agreeing) to 5 (completely disagreeing). 55.6% (5/9) of the par-
ticipants was completely satisfied by the visual explanations for the VGG16 and
ResNet50 models (meaning they found the proposed attributions appropriate for
the label), whereas only 44.4% (4/9) were satisfied with the Xception network.

The mean usability score was 73.34%, which according to the SUS usability
scale is above average (any value above 68% is considered above the average).

Moreover, 77.8% (7/9) of the participants declared that they would have not
been able to easily solve both tasks without iNNvestigate-GUI, while only 22.2%
(2/9) stated they could solve the same tasks writing ad hoc code.

iNNvestigate-GUI 11

Fig. 3. Visual comparison of the predictions made by the three models in T1. The
overlapping heatmap has been produced by the GradCAM algorithm. This is image
was selected by the majority of the participants from the Suggestion view as an example
of high confidence and high agreement classification. All the models are focusing on
similar visual features to classify the frame. Best seen in RGB; consider brighter areas
of the frames in case of gray scale visualization.

6 Conclusion

This paper proposed a new GUI-based Web application featuring a comprehen-
sive pool of XAI visualization algorithms, and intended to compare and under-
stand multiple DNN models. The tool leverages an existing open-source library,
named iNNvestigate, for existing implementation of visualization algorithms.

In contrast to other existing tools, the proposed GUI allows a fast comparison
between multiple models at different levels of depth and implements a suggestion
strategy to highlight the most critical data samples. The target users for the tool
span from the inexperienced learner to researchers and deep learning practition-
ers. As demonstrated by preliminary user experiments, it can be exploited by
inexperienced users to improve and speed up DNNs development.

We plan to extend iNNvestigate-GUI by adding support for deep learning
frameworks other than Keras and implementing additional visualizations, such
as node-link diagrams, to simplify the selection and inspection of individual
layers. More complex use cases are needed to demonstrate how visual analytics
can prevent biases and errors to be introduced during model training.

References

1. Keras Explain (2018), https://github.com/primozgodec/keras-explain

2. Alber, M., Lapuschkin, S., Seegerer, P., Hagele, M., Schiitt, K.T., Montavon, G.,
Samek, W., Miiller, K.R., Ddhne, S., Kindermans, P.J.: iNNvestigate neural net-
works! J. Mach. Learn. Res. 20(93), 1-8 (2019)

3. Ancona, M.: DeepExplain (2017), https://github.com/marcoancona/DeepExplain

4. Chung, S., Suh, S., Park, C., Kang, K., Choo, J., Kwon, B.C.: Revacnn: Real-
time visual analytics for convolutional neural network. In: KDD 16 Workshop on
Interactive Data Exploration and Analytics. pp. 30-36 (2016)

5. Gulli, A., Pal, S.: Deep learning with Keras. Packt Publishing Ltd (2017)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

F. Garcea et al.

Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual analytics in deep learning;:
An interrogative survey for the next frontiers. IEEE transactions on visualization
and computer graphics 25(8), 2674-2693 (2018)

Hohman, F., Park, H., Robinson, C., Chau, D.H.P.: S ummit: Scaling deep learning
interpretability by visualizing activation and attribution summarizations. IEEE
transactions on visualization and computer graphics 26(1), 1096-1106 (2019)
Kahng, M., Andrews, P.Y., Kalro, A., Chau, D.H.P.: Activis: Visual exploration
of industry-scale deep neural network models. IEEE transactions on visualization
and computer graphics 24(1), 88-97 (2017)

Liu, M., Shi, J., Li, Z., Li, C., Zhu, J., Liu, S.: Towards better analysis of deep
convolutional neural networks. IEEE transactions on visualization and computer
graphics 23(1), 91-100 (2016)

Matthew, D., Fergus, R.: Visualizing and understanding convolutional neural net-
works. In: Proceedings of the 13th European Conference Computer Vision and
Pattern Recognition, Zurich, Switzerland. pp. 6-12 (2014)

Pezzotti, N., Hollt, T., Van Gemert, J., Lelieveldt, B.P., Eisemann, E., Vilanova,
A.: Deepeyes: Progressive visual analytics for designing deep neural networks. IEEE
transactions on visualization and computer graphics 24(1), 98-108 (2017)
Ribeiro, M.T., Singh, S., Guestrin, C.: ” why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135-1144 (2016)
Seifert, C., Aamir, A., Balagopalan, A., Jain, D., Sharma, A., Grottel, S., Gumhold,
S.: Visualizations of deep neural networks in computer vision: A survey. In: Trans-
parent Data Mining for Big and Small Data, pp. 123-144. Springer (2017)
Selvaraju, R.R., Cogswell, M., Das, A., et al.: Grad-cam: Visual explanations from
deep networks via gradient-based localization. In: Proc. of the IEEE International
Conference on Computer Vision. pp. 618-626 (2017)

Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70. pp. 3145-3153. JMLR. org (2017)
Smilkov, D., Carter, S., Sculley, D., Viégas, F.B., Wattenberg, M.: Direct-
manipulation visualization of deep networks. arXiv:1708.03788 (2017)

Smilkov, D., Thorat, N., Nicholson, C., Reif, E., Viégas, F.B., Wattenberg, M.:
Embedding projector: Interactive visualization and interpretation of embeddings
(2016)

Strobelt, H., Gehrmann, S., Pfister, H., Rush, A.M.: Lstmvis: A tool for visual
analysis of hidden state dynamics in recurrent neural networks (2016)

Wang, J., Gou, L., Yang, H., Shen, H.-W.: Ganviz: A visual analytics approach to
understand the adversarial game. IEEE transactions on visualization and computer
graphics 24(6), 1905-1917 (2018)

Wang, Z.J., Turko, R., Shaikh, O., Park, H., Das, N., Hohman, F., Kahng, M.,
Chau, D.H.: Cnn explainer: Learning convolutional neural networks with interac-
tive visualization. arXiv preprint arXiv:2004.15004 (2020)

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J., Mane, D., Fritz, D.,
Krishnan, D., Viégas, F.B., Wattenberg, M.: Visualizing dataflow graphs of deep
learning models in tensorflow. IEEE transactions on visualization and computer
graphics 24(1), 1-12 (2017)

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

