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Abstract  

Stabilisation diagrams have become a standard tool in the linear system identification, 

due to the capability of reducing the user interaction during the parameter extraction 

process. Their use in the presence of nonlinearity was recently introduced and it was 

demonstrated to be effective even in presence of non-smooth nonlinearities and high 

modal density. However, some variability of the identification results was reported, in 

particular concerning the quantification of the nonlinear effects, because of the presence 

of spurious modes, due to an over-estimation of the system order. 

In this paper the impact of spurious poles on the nonlinear subspace identification is 

investigated and some modal decoupling tools are introduced, which make it possible to 

identify modal contributions of physical poles on the nonlinear dynamics. An 
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experimental identification is then conducted on a multi-degree-of-freedom system with 

a local nonlinearity and the significant improvements of the estimates obtained by the 

proposed approach are highlighted. 

 

Keywords: nonlinear identification; stabilisation diagrams; modal mass; subspace 

methods. 

1. Introduction 

It is well known that conventional linear estimators give contaminated results in 

presence of nonlinearities and the extraction of the underlying linear system properties 

hence becomes a difficult task. To solve this problem, in the last three decades several 

nonlinear identification methods have been developed, most of them being applicable to 

single-degree-of-freedom (SDOF) systems. More recently, multi-degree-of-freedom 

(MDOF) systems have been successfully dealt with [1]; however, only a limited number 

of nonlinear terms and degrees of freedom were included, due to the complexity of 

algorithms and required computational effort. To overcome these problems, the method 

called nonlinear subspace identification (NSI) has been proposed [2], by using the 

perspective of nonlinearities as unmeasured internal feedback forces [3]. This time 

domain method exploits the robustness and high numerical performances of algorithms, 

i.e., the basis of the stochastic subspace identification (SSI), successfully adopted in 

many linear applications [4-10]. A dual approach has been developed in the frequency 

domain, termed frequency-domain nonlinear subspace identification (FNSI) method 

[11], which allows to discriminate frequencies according to information content and 

signal-to-noise ratio (SNR), thus increasing the accuracy and reducing the 
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computational burden. 

It is a matter of fact that system identification results are improved by over-specifying 

the model order [6], computing system poles and then removing spurious poles. This is 

usually performed with the help of stabilisation diagrams, constructed by estimating 

poles with increasing model order and by plotting only those poles for which the 

relative difference in modal frequency, damping ratio and shape is below a user-defined 

value. In order to make stabilisation diagrams clearer, the modal transfer norm was 

proposed in [7] for a combined deterministic-stochastic subspace identification. 

Moreover, different techniques were introduced to reduce the user interaction: a 

clustering algorithm was proposed in [12], a component energy index was defined in [9] 

to estimate the model order and a hierarchical clustering algorithm was adopted in [10] 

for analyzing continuously collected data of a bridge. 

The use of stabilisation diagrams in the presence of nonlinearity was first introduced in 

[13] and it was demonstrated to be effective for retrieving linear system parameters 

from nonlinear data generated by numerical experiments, even in presence of non-

smooth nonlinearities, high modal density and high non-proportional damping. 

However, some variability of the identification results was reported, in particular 

concerning the quantification of the nonlinear effects. 

The objective of the present paper is to investigate the role of spurious poles, to show 

how they affect the estimates of the nonlinear contributions to the system dynamics and 

how to improve the estimates. For this investigation, a modal decoupling procedure is 

introduced and the modal mass is computed for system poles. This procedure is 

illustrated by processing experimental measurements conducted on a scaled building 

connected to a metallic wire, which adds strong nonlinear effects. A new perspective is 

finally introduced, based on the identification of modal contributions due to physical 
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poles on the nonlinear dynamics. 

The paper is organised as follows. The theoretical background of the NSI is outlined in 

Section 2. This is followed by the description of modal decoupling tools (Section 3), 

which act in conjunction with stabilisation diagrams to remove spurious poles. A 

numerical validation is conducted in Section 4, where a system of low dimensions is 

studied. The experimental work is finally described in Section 5, where the parameter 

estimation is conducted both with low excitation level (linear identification) and high 

excitation level (nonlinear identification). The conclusions of the present study are 

summarised in Section 6. 

2. Nonlinear subspace identification 

Let us consider the equation of motion of a dynamical discrete system with h degrees of 

freedom, carrying lumped nonlinear springs and dampers: 

 

          ttgttt j

p

j
njjv fLKzzCzM  

1

  (1) 

 

where M, Cv and K are the mass, viscous damping and stiffness matrices respectively, 

 tz is the generalised displacement vector and  tf  the generalised force vector, both of 

dimension h, at time t. The nonlinear term       tgtt j

p

j
njj




1

, LzzN   is expressed as the 

sum of p components, each of them depending on the scalar nonlinear function  tg j , 

which indicates the class of the nonlinearity, through a location vector Lnj, whose 

elements may assume the values 1, -1 or 0. By moving the nonlinear terms of Eq. (1) to 

the right hand side 
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              tttgtttt nlj

p

j
njjv ffLfKzzCzM  

1

  (2) 

 

the original system may be viewed as subjected to the external forces  tf  and the 

internal feedback forces caused by nonlinearities  tnlf . This perspective, already chosen 

in [3] to develop the frequency domain method called nonlinear identification through 

feedback of the outputs (NIFO), is on the basis of the present time domain identification 

method, referred to as NSI [2]. In the case of measurements y involving displacements 

only, the state-space formulation of the equation of motion is 
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          Tp
T

hhhhhhhh tgtgt 







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z
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corresponding to the state vector  TTT zzx   (superscript T denotes transposition) 

and to the input vector       Tp
T tgtgt  1fu or, in a more compact form 

 
DuCxy

uBxAx


 cc

 (5) 

This continuous model may be converted into the following discrete state-space model, 

assuming zero-order hold for the input u with sampling period t : 

 
kkk

kkk

DuCxy

BuAxx



1  (6) 

where 

 tc AA e  (7) 

is the dynamical system matrix, 
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   cchh
tc BAIB A 1

22e 


   (8) 

is the input matrix, which represents the linear transformation by which the inputs 

influence the next state, C is the output matrix, that describes how the internal state is 

transferred to the measurements ky , and D is the direct feedthrough matrix. 

The nonlinear subspace identification procedure is based on the estimation of the state 

space matrices A, B, C and D obtained within a similarity transformation, by a subspace 

method in the time domain [4], and on the subsequent computation of system 

parameters from the matrix 

 

     ti1
22 , 

   ez-z hhE BAICDH  (9) 

 

here defined “extended” frequency response function (FRF) matrix, because it also 

includes nonlinear terms in the multiple input multiple output (MIMO) model. From 

this matrix, which is invariant under the similarity transformation, system parameters 

(and in particular j ) may be extracted, making it possible to predict the nonlinear 

system response to a measured input. After some mathematical manipulations [2] it can 

be proven that: 

    nppnE μμ LHLHHH 11  (10) 

where  

     12i


 MCKH  v  (11) 

is the underlying linear system receptance matrix. Similar steps are needed in the case 

where accelerations are measured [14]. The nonlinear coefficients identified from 

 EH  are complex-valued and frequency-dependent. However, in the absence of 

modelling errors and noise and by assuming an infinite number of available data, the 
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real parts of the coefficients converge to their exact values with no frequency 

dependence, and the imaginary parts converge to zero. An appropriate selection of the 

nonlinear functional forms gj(t) should therefore make the imaginary parts much smaller 

than the corresponding real parts and the frequency dependence of the coefficients 

should also remain small [13]. 

3. Stabilisation diagrams and modal contributions 

Subspace methods take advantage of robust numerical techniques such as QR 

factorisation and singular value decomposition (SVD) by using geometric tools such as 

the oblique projections of the row space of matrices. These methods have been 

successfully adopted in many experimental cases [5-10]. For a complete description of 

the estimating procedure see [4]. 

A crucial step of the stochastic subspace identification, as of many other identification 

methods, is the selection of the appropriate model order to capture the modes present in 

the frequency range of interest. In numerical examples concerning discrete vibrating 

systems [2] this model order can be selected by inspecting the singular value plot, since 

a jump of many orders of magnitude may be observed, in particular when the SNR is 

high. However, for real structures this criterion usually cannot be applied because no 

jump is evident in the singular value plot. Moreover, in order to obtain accurate 

estimates of the modal parameters an over-specification of the model order is needed, 

because of the presence of noise in the data, but this results in a number of spurious 

numerical modes. Models of increasing order are determined by rejecting fewer singular 

values, thus producing a set of modal parameters, which can be plotted in a stabilisation 

diagram. 

As pointed out in [8], there are many origins of uncertainty on the identified system 
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parameters, including the limited number of data samples, non-stationary effects (e.g. 

moving masses), analogue or digital filtering, measurement noise and nonlinear 

modelling errors that result in spurious poles. Part of the bias error may be removed by 

using stabilisation diagrams and, for this reason, they have become one of the most 

widely used tools to detect physical poles and extract modal parameters afterwards. 

System modal parameters can be computed starting from the eigenvalue decomposition: 

 1 ΨΛΨA     (12) 

 
where A is the discrete-time state matrix, related with its continuous-time counterpart 

by tc AA e ;  is the diagonal matrix of discrete eigenvalues (1 ,..., n). These can be 

transformed into continuous eigenvalues ci  of the mechanical system as follows 

  ici t
 ln

1


   (13) 

The natural frequency and modal damping ratio are calculated as  

 


2

ci
if     and   

 
ci

ci
i 




Re
  (14) 

while the mode shapes i  evaluated at the sensor locations are the columns of Φ , which 

is given by 

 CΨΦ    (15) 

In order to select the physical modes, stabilisation diagrams for both eigenfrequencies 

and damping ratios are needed; stabilisation between two consecutive extracted mode 

shapes, is also evaluated by computing, for instance, the modal assurance criterion: 

   j
H
ji

H
i

j
H

i

jiMAC



,   

(16) 

where the superscript H denotes the complex transposed. 
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As shown in [5] in case of close eigenfrequencies, a peculiar strategy has to be adopted 

to split the modes. As the model order increases, the extracted mode shapes are 

compared with those of the previous step by means of the MAC: the mode shape giving 

the higher MAC is accepted. 

Generally only those poles, for which the relative difference in eigenfrequency and 

damping ratio is below a user defined threshold value, and also showing a sufficiently 

high MAC, are plotted in the stabilisation diagram: this is often sufficient to eliminate 

spurious modes with no physical meaning. Other indicators such as very high damping 

ratio, complex and/or unrealistic mode shape may help to remove spurious poles. 

One of the advantages of the state-space description is that the contributions of different 

modes to the system FRFs can be easily decoupled. As will be demonstrated in the 

experimental application, this property is fundamental to remove the contributions of 

spurious poles, which can dramatically affect the estimates of the nonlinear coefficients 

j . 

To this purpose, the state-space model (6) can be rewritten by exploiting a similarity 

transform of the system matrix A [7] 

 
k

m
k

m
k

k
mm

k
m
k

DuxCy

uBΛxx



1  (17) 

where 1 ΨΛΨA  is the spectral decomposition of A, Eq. (12), k
m
k xΨx 1 , 

BΨB 1m  and CΨC m . Since the eigenvalue matrix Λ  is diagonal, a new 

expression of the extended FRF matrix can be written if the measured outputs are 

displacements or velocities  0D  : 

     ti

1

1 , 



 


  


 ez

z
-z

n

i i

m
i

m
imm

E

bc
BΛICH    (18) 
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where m
ic is the ith column of mC and  m

ib  the ith row of  mB . If only accelerations are 

measured the FRF can be decoupled as: 

      
  

ti

1

1 ,
1

1 



 



  


 ez

z

z
-z

n

i ii

m
i

m
immm

E

bc
BΛICDH  (19) 

Both expressions were originally derived for linear systems (p = 0) [7]. In order to 

introduce the modal contributions let’s consider a scalar (linear) FRF corresponding to 

the input q and response p degrees of freedom, in case of underdamped modes: 

   



















2/

1
*

*

ii

n

r cr

pqr

cr

pqr
pq

AA
H


  (20) 

where qrprrpqr QA   is the residue of the rth mode, rQ is the modal scaling, pr  and 

qr  are modal coefficients, superscript * denotes complex conjugate. The driving-point 

residue, 2
qrrqqr QA   is used to derive the modal scaling. For proportionally damped 

systems, the rth modal mass can be defined as [15]: 

 
drr

r Q
M

i2

1


 (21) 

dr  being the damped natural frequency of the rth mode. Let’s consider a vibrating 

system consisting of N masses with no rotational motion (as in the experimental case, 

Section 5). If the largest scaled modal coefficient is equal to unity, the modal mass 

computed according to Eq. (21) will be a number between zero and the total mass of the 

system. Indeed the rth modal mass can be computed as: 

    
 
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
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because 12 jr . By applying this modal vector scaling (or a different one), the modal 

mass can be used as an extra criterion in stabilisation diagrams, as supposed in [7]. If 

measurements are performed in terms of velocity over force or acceleration over force, 

Eq. (21) will have to be altered accordingly. 

First the residues and then the modal masses are obtained considering that the modal 

decomposition, Eq. (18) (discrete-time parameters) and Eq. (20) (continuous-time 

parameters) should match [7] for each element pqH of the underlying linear system FRF 

matrix H . In the same manner it is possible to compute the modal mass when 

accelerations are measured, starting from the receptance (20) weighted by 2 . 
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Table 1  

Numerical example parameters 

Mass  

(kg) 

Linear stiffness  

(N/m) 

Damping  

(Ns/m) 

Nonlinear stiffness 

(N/m3) 

m1 = 25; m2 = 18; 

m3 = 15; m4 = 25 

k1 = 3104; 

k2 = k3 = k4=5104; 

k5 = k6= k7 = 5104 

c1 = c2 = c3= 10; 

c4 = c5 = c6 = c7 = 10; 

 

knl = 51010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 4-DOF nonlinear system with a cubic stiffness located between DOF 1 and 3. 
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4. Numerical application 

A numerical example with a single cubic nonlinear stiffness is considered hereafter to 

validate the procedure discussed in the previous section. The four-degree-of-freedom 

nonlinear system shown in Fig. 1 is excited at DOF 2 only; a nonlinear term is included 

in the equation of motion (1): 

      313111 0101 zzktg T
nln L  

 (23) 

with system parameters summarised in Table 1. In this case the extended FRF matrix is 

    11 nE LHHH    

 (24) 

where H is the FRF matrix of the underlying linear system. Since the force is applied at 

DOF 2, only the second column of this matrix can be estimated. However, the 

reciprocity relationships 1221 HH  , 3223 HH  and 4224 HH   (which hold true because 

H is related to a linear system) can be applied, and this is sufficient to compute 1  from 

the second element of the following vector (the symbol ? denotes unknown terms) 
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The estimate of the nonlinear term coefficient is given by: 

  
   
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
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
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  (26) 

It is important to recall that both numerator and denominator can be expressed as a sum 

of “modal contributions”, computed by using Eq. (19). Each of them is given by two 
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terms, built by complex conjugate elements in presence of underdamped modes only 

(see also Eq. 20). However, this makes it difficult to give an appropriate definition for 

the actual contribution of each mode to the coefficient knl, which appears as a complex 

function of the real variable ω, in the form of ratio of two sums. 

In a first simulation, the exact matrices built on the system parameters (Table 1) have 

been used to construct the extended FRF matrix: obviously, the exact model order n = 8 

is chosen and no error is found. The coefficient of the cubic nonlinearity as it is “seen” 

by each of the four physical modes can be defined as follows: 

    
  4,3,2,1,  r

den

num
k

r

rr
nl 

  (27) 

These coefficients are depicted in Fig. 2, which is very useful to demonstrate that, a well 

identified physical mode can be used to obtain information about the nonlinearity. The 

figure also shows that, in the case of perfect identification, no frequency dependence of 

the nonlinear coefficient is expected. 

 

Figure 2: Numerical example with exact matrices. Real and imaginary parts of the coefficient r
nlk as 

computed by the contribution of the rth mode only (model order n = 8). The curves for the four 

modes are superimposed. 
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Figure 3: Eigenfrequencies of the underlying linear system for the numerical example, extracted by 

NSI with increasing model orders (a); histogram of the frequency occurrences (b). The modal mass 

associated to each pole is indicated by different markers. 

 

Afterwards, the system is excited by a zero-mean Gaussian random force (with r.m.s. = 

50 N), time histories are obtained by a Runge-Kutta numerical integration and 1% of 

zero-mean Gaussian noise is added to each simulated acceleration, with sampling 

frequency of 4 kHz and duration of 80 s. The eigenfrequencies of the underlying linear 

system extracted by NSI with increasing model orders (from 2 to 50, even values only) 

are shown in Fig. 3 together with the associated modal masses. The modal mass is 

computed by imposing the largest scaled modal coefficient equal to unity: as discussed 

in Section 3, with this scaling criterion the modal mass has a physical significance, 

being always less than the total mass of the system. In the frequency range between 0 

and 18 Hz, spurious poles are not present, while they appears at higher frequencies (the 

situation is more complicated in experimental cases, as shown later). 
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The present test case shows that poles with frequency higher than 18 Hz (definitely 

spurious ones) are associated with modal masses which are negative or higher than the 

total mass of the system (83 kg) in 98% of the cases. In fact, the modal masses of 

spurious poles are usually negative or higher than those of physical poles (differences 

are often of several orders of magnitude): however, a theoretical evidence to support 

this particular property is hard to be given. 

In classical stabilisation diagrams (Fig. 4) system poles are defined as “stable” if by 

increasing the model order the relative difference in modal frequency, damping ratio 

and shape is below a user-defined value. However, these diagrams give partial 

information  

 

 

Figure 4: Stabilisation diagram computed by NSI for the numerical example. Stabilisation 

thresholds for natural frequency, damping ratio and MAC are 0.5 %, 5 % and 0.98, respectively. 
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Figure 5: Stabilisation diagrams computed by NSI for the numerical example. (a) real part; (b) ratio 

between the real and the imaginary parts of the spectral mean for the single-mode coefficient r
nlk ; 

(c) modal masses of the four physical poles (each pole is indicated by a different marker); (d) ratio 

ρ between the real and the imaginary parts of the modal mass associated to each pole. 

 

about the identification of the underlying linear system FRFs and about the nonlinear 

coefficients. For this reason, more powerful stabilisation diagrams are proposed as shown in 

Fig 5: figures 5a and 5b show the real part and the ratio between the real and the imaginary 

parts of the spectral mean (from 1 Hz to 50 Hz) for the single-mode coefficient r
nlk ; figures 5c 

and 5d show the modal mass Mr associated to each pole and the corresponding ratio 

 
 r

r

Mimag

Mreal
 . These diagrams can be used to select the model order properly: they indicate 
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that for some model orders results are not reliable, because the imaginary part of the nonlinear 

coefficient is too high (Fig. 5b) and because the imaginary part of the modal mass is too high 

(Fig. 5d). Actually, the last criterion only holds when the linear damping distribution is 

proportional to the mass and stiffness distributions. This assumption (real modes and real-

valued modal mass) is compatible with the presence of weak damping as in the present case 

(the maximum damping ratio is 1.1%). In the general case of nonproportional damping the 

“modal A” and “modal B” should be used instead [15]. 

Note that using classical stabilisation diagrams in the nonlinear identification could be 

misleading: from Fig. 4 four “stable” poles are identified after n = 12, but for example the 

nonlinear coefficient for the model order n = 28 is completely wrong (the minimum error is 

obtained from the fourth pole as 312114 N/m102.2i105.7 nlk , which is out of the scale of 

Fig. 5a). In fact, with the use of Figures 5b-c-d, this pole would be discarded. A good choice 

could be n = 22 and in this case the underlying linear system FRFs are synthesised by using 

the modal decomposition (Eq. 19): the FRF shown in Fig. 6 is in excellent agreement with the 

theoretical solution (errors are four orders of magnitude smaller than the true values). Finally, 

Fig. 7 shows the single-mode nonlinear coefficients r
nlk : the frequency dependence is 

minimum and the imaginary part is very small, which confirms the quality of the 

identification. More precisely, the maximum error of the spectral mean is 0.26% for the real 

part estimated by the first mode, while the maximum imaginary part is 1.9% of the true knl 

value for the contribution of the fourth mode. 
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Figure 6: Magnitude of the true H42 (solid line), four-modes synthesis residue of the underlying 

linear system FRF estimated by NSI with model order n = 22 (dashed line). The residue has been 

computed as actual-estimated . 

 

 

Figure 7: Real and imaginary parts of the four coefficients r
nlk as computed by the contribution of 

the rth mode only (model order n = 22). 
 

5. Experimental application 

The investigated structure is constructed with aluminium decks linked by thin steel 
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beams (see Fig. 8), whose properties are summarised in Table 2. The rig may be 

reasonably considered as a 5 DOFs vibrating system, because the plate stiffness is 

considerable and each horizontal displacement zi is only associated to the flexural 

stiffness of the vertical beams. The structure shown in Fig. 9a is excited by means of an 

electrodynamic shaker acting on the second floor. A thin metallic wire with small 

pretension is connected to the fifth floor (Fig. 9b), whose amplitude of motion, if high 

enough, makes the restoring force nonlinear. It is assumed that the force produced by 

the wire has the form 3
55 zkzkf nllnl  , which corresponds to the Taylor-series 

expansion to the third order of the restoring force, with a good degree of approximation 

in practical cases [16]. 

The acceleration of each floor and the force applied by the shaker were measured with 

different levels of band-limited noise between 0.5 and 40 Hz, with sampling frequency 

of 409.6 Hz and duration of 300 s (122880 samples per channel). An estimate of the 

fifth floor displacement was obtained by integrating twice the corresponding 

acceleration and then by filtering the resulting signal (between 2 and 160 Hz) to remove 

the spurious components introduced by the integration procedure. The displacement of 

the fifth floor when the system is excited by a linear sine sweep between 3 and 7 Hz in 

300 s (Fig.10) clearly indicates a jump phenomenon, which highlights the nonlinear 

behaviour [17]. 
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Figure 8: Multi-storey building with nonlinearity produced by a thin wire. 

 

 

Table 2 

Structure characteristics 

element  

i 

plate vertical beam 

mass  

(kg) 

width  

(mm) 

length  

(mm) 

thickness 

(mm) 

length  

(mm) 

cross sectional 

area (mm2) 

1 4.32 270 250 24 50 600.3 

2 2.14 270 250 12 30 600.3 

3 1.89 270 250 10 60 600.3 

4 1.82 270 250 10 60 600.3 

5 1.95 270 250 10 60 600.3 

 

(a) 

m1 

f2 m2 
z2 

m3 
z3 

m4 
z4 

m5 
z5 

kl, knl 

z1 
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(b) 

 

Figure 9: The experimental setup (a) and the string connected to the fifth floor (b). 
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Figure 10: Response to a swept-sine force input. 

 

5.1. Linear analysis 

The stochastic subspace identification (SSI) [4] is adopted for a preliminary linear 

analysis, i.e., 0p  in Eq. (1) and  tfu  . The chosen time histories for the linear 

analysis correspond to the lowest excitation level (0.76 Nrms), because in this case the 

dynamic behaviour of the building may be considered linear, as also demonstrated by an 

approximately unitary coherence between input and outputs. 

Modal parameters extracted by means of the linear analysis are summarised in Table 3 

for the five modes, the experimental mode shapes are depicted in Fig. 11 and the 

classical stabilisation diagram is shown in Fig. 12. 

Figure 13 shows the measured driving-point FRF of the system 22H  with the fifth floor 

connected to the string and low excitation. 
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Table 3 

Linear modal parameters of the building with string (low excitation) 

Mode number I II III IV V 

Frequency (Hz) 2.94 6.13 10.23 14.61 27.58 

Damping (%) 1.1 0.4 0.2 0.2 0.4 

 

 

 

Figure 11: Linear mode shapes of the building with string (low excitation). 
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Figure 12: Stabilisation diagram computed by SSI for the system with string and low excitation 

level (0.76 Nrms). Stabilisation thresholds for natural frequency, damping ratio and MAC are 0.5 %, 

5 % and 0.98, respectively. 

 

Estimated FRFs are synthesised by summing contributions of the five modes with 

model orders spanning from 20 to 80: the mean and the standard deviation computed 

over these model orders are also shown in the figure, together with the residue, to give 

information about the difference between the measured and modelled FRFs. Small 

differences are only detectable next to the antiresonances, where the SNR is low. 

In Fig. 14a the eigenfrequencies extracted with increasing model orders (from 2 to 200), 

are depicted and the modal mass is computed by imposing the largest scaled modal 

coefficient equal to unity. Table 2 indicates that a first estimate of the total mass is less 

than 12.5 kg and actually all physical poles are below this threshold, while the modal 

masses associated with spurious poles are generally larger. The histogram of the 

frequency occurrences (Fig. 14b) also indicates that physical poles are very stable, while 

spurious solutions do not stabilise as the model order increases and only give some 
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“noise” in the stabilisation diagram. These spurious modes appear at different 

frequencies, depending on the input  

 

 

Figure 13: Driving-point FRF of the system with string and low excitation level (0.76 Nrms). Curve 

calculated using a linear estimator (mean between H1 and H2), solid line (a). Five-modes synthesis 

computed by SSI: eigenfrequencies with (even) model orders from 20 to 80 (asterisks, from bottom 

to top of the figure (a)), mean (dash dotted line (a)) and standard deviation (b) computed over these 

model orders; residue (c). 
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Figure 14: System with string and low excitation level (0.76 Nrms): eigenfrequencies extracted by 

SSI with increasing model orders (a); histogram of the frequency occurrences (b). The modal mass 

associated to each pole is indicated by different markers. 

 

signal and on the noise level. It is interesting to note that two stable poles are identified 

around 8 Hz and 12 Hz, respectively. They correspond to modes of the heavy optical 

table supporting the building and indeed their modal masses are higher than the building 

total mass. No particular advantage is gained from their inclusion in the model. 



 

 29 
 

 

Figure 15: Magnification around the fifth mode of the driving-point FRF estimate with 

increasing force level, no string is connected. 

5.2. Nonlinear analysis 

A preliminary analysis conducted without the string showed that the fifth mode is 

affected by nonlinearity, which cannot be considered negligible. As shown in Fig. 15, 

by increasing the excitation level the fifth resonance peak moves to the left, while the 

other four peaks remain almost constant. This phenomenon would need a further study: 

it is probably due to the prominent relative displacement between the first and the 

second floor in the fifth mode (see Fig. 11), which is high in comparison with the length 

of the columns between the same floors of the building (the shortest ones, see Table 2). 

Each column is also subject to a compressive load due to the weight of the floors and 

moreover the columns between first and second floor were found not to be perfectly 

vertical at rest. The same behaviour is found after the string is mounted: the string has 

not a great influence on the resonance peak, because the fifth floor is next to a node of 
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the fifth mode (see Fig. 11). 

Before performing the NSI analysis, the conventional linear FRF estimators H1 and H2 

are computed, with parameters defined in Table 4 both for the linear and nonlinear case, 

to show distortions induced by nonlinearity. Figures from 16 to 19 show that these 

estimators give highly contaminated results in presence of nonlinearities and the 

extraction of underlying linear system properties is thus difficult or even impossible: in 

particular, there are considerable peak shifts and reduced amplitudes, harmonics appear 

and most of the antiresonances are masked as an effect of such nonlinear distortions. 

 

Table 4 

Signal processing parameters for H1 and H2 estimates 

∆t 

(ms) 

Blocksize Averages Nyquist 

frequency 

(Hz) 

Percent 

overlap 

Window 

2.44 214 35 204.8 81 Hann 

 

 

The equation of motion of the 5 DOFs vibrating system with a single nonlinearity 

between the fifth mass and ground is: 

          ttgttt nv fLKzzCzM  111  (28) 

where nlk1 ,   3
51 ztg  ,  Tn 100001 L  and  Tf 0000 2f  
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Figure 16: Comparison between linear estimates of H22 (mean between H1 and H2) of the building 

with string at low (0.76 Nrms, solid line) and high (20.95 Nrms, dotted line) excitation level. 

 

Figure 17: Comparison between linear estimates of H32 (mean between H1 and H2) of the building 

with string at low (0.76 Nrms, solid line) and high (20.95 Nrms, dotted line) excitation level. 
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Figure 18: Comparison between linear estimates of H42 (mean between H1 and H2) of the building 

with string at low (0.76 Nrms, solid line) and high (20.95 Nrms, dotted line) excitation level. 

 

Figure 19: Comparison between linear estimates of H52 (mean between H1 and H2) of the building 

with string at low (0.76 Nrms, solid line) and high (20.95 Nrms, dotted line) excitation level. 

The first column of the extended FRF matrix, Eq. (10), is built by the second column of 

the underlying linear system FRF matrix, because the force is applied at the second 
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floor only: 

  TE HHHHH 52423222121 H  (29) 

Moreover, the reciprocity relationship qppq HH  , which holds true since H is related to 

a linear system, can be applied and this allows computing nlk1  from the second 

element of the following vector: 
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The estimate of the nonlinear term coefficient is given by: 

 
 
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



  (31) 

The eigenfrequencies of the underlying linear system extracted by NSI with increasing 

model orders (from 2 to 200, even values only) are shown in Fig. 20 together with the 

associated modal masses. By comparing this figure with Fig. 14, an increased number 

of spurious poles is evident, but their modal masses are usually negative or higher than 

those of physical poles (differences are often of several orders of magnitude). For this 

reason, and also exploiting classical stabilisation diagrams, they can be easily removed, 

making the identification task less difficult. 
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Figure 20: System with string and high excitation level (20.95 Nrms): eigenfrequencies of the underlying 

linear system extracted by NSI with increasing model orders (a); histogram of the frequency occurrences 

(b). The modal mass associated to each pole is indicated by different markers. 

 

For example, a spurious pole around 2 Hz is visible, which corresponds to the low 

frequency of the filter used to obtain the fifth floor displacement from the acceleration: 

the corresponding modal mass is negative or very high (the damping is also negative). 

From the stabilisation diagram in Fig. 21 five stable modes are identified and the 

underlying linear system FRFs are synthesised using modal decomposition (Eq. 19).  
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Figure 21: Stabilisation diagram computed by NSI for the system with string and high excitation 

level (20.95 Nrms). Stabilisation thresholds for natural frequency, damping ratio and MAC are 0.5 

%, 5 % and 0.98, respectively. 

 

Results concerning the driving-point FRF are depicted in Fig. 22 with model orders 

spanning from 30 to 60: the mean and the standard deviation computed over these 

model orders are also shown in the figure, together with the residue, to give information 

about the difference between the measured and modelled FRFs. The driving-point FRF 

shown in Fig. 22 is in good agreement with the low level excitation result and is quite 

insensitive to the model order, provided it is high enough. 

Table 5 shows the relative errors in natural frequency and damping ratio between the 

low- and high-level models, together with the MAC between their mode shapes. Slight 

frequency shifts for the first four modes are found, while the fifth mode is affected by a 

higher frequency shift for the resonance peak: this is not surprising, since this mode 

showed 
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Figure 22: Driving-point FRF of the system with string. Curve calculated using a linear estimator for 

the low level excitation (0.76 Nrms), solid line (a). Five-modes synthesis computed by applying NSI to 

the high level excitation case (20.95 Nrms): eigenfrequencies with (even) model orders from 30 to 60 

(asterisks, from bottom to top of the figure (a)), mean (dash dotted line (a)) and standard deviation (b) 

computed over these model orders; residue (c). 

 

a nonlinear behaviour also without the string (see Fig. 15) and it is clear that this 

nonlinearity cannot be captured by the function   3
51 ztg   alone. Larger errors in the 

damping estimation are found, as reported by previous studies [13]. 

Table 5 

Relative errors (NSI in the high level case vs. SSI in the low level case of Table 3) on 
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the estimated linear natural frequencies and damping ratios (in %) and diagonal MAC 

values  

Mode Error on f (%) Error on ζ (%) MAC 

1 -0.58 -7.19 1.00 

2 -0.75 91.12 1.00 

3 -0.56 40.38 1.00 

4 -0.34 53.20 1.00 

5 -1.63 -6.30 1.00 

 

The stabilisation diagram (Fig. 21) indicates that the lowest model order giving stable 

poles is n = 26 and this could be a reasonable choice. The poles corresponding to this 

model order give, by using Eq. (31), the coefficient of the cubic nonlinearity, as plotted 

in Fig. 23a. Unfortunately, none of the requirements for a successful identification is 

met: the imaginary part is not smaller than the corresponding real part and the frequency 

dependence of the coefficient isn’t limited. However, a magnification of this figure 

between 2 and 15 Hz (Figure 24) indicates that the frequency variation is less 

pronounced in that frequency range, where the prominent contribution is given by the 

four physical (and well-identified) modes. A spectral mean in that range could then be a 

reasonable choice, and this was actually done in several numerical and experimental 

applications [1, 2, 3, 11, 13, 14, 17]. In the present case the spectral mean between 2 and 

15 Hz is knl = 5.84·107 – i1.09·107 N/m3, which could be considered as a first estimate. 
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Figure 23: Coefficient of the cubic nonlinearity for the system with string and high excitation, 

model order n = 26 and all poles included. Real and imaginary part of the ratio (a), numerator (b), 

denominator (c). 

 

However, it is interesting to explain the reason of the frequency dependence and 

complex-valuedness, which in most cases don’t have any physical meaning. To better 

understand the origins of this behaviour, both numerator and denominator of the Eq. 

(31) are represented in Fig. 23b and in Fig. 23c, respectively. Both real and imaginary 

parts of coefficient knl show anomalous peaks around 25 Hz, which are due to an error 

in the antiresonance 
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Figure 24: Real and imaginary parts of the coefficient nlk computed by the contribution of all poles 

with model order n = 26 (magnification of figure 23a). 

 

frequency, that should be around 16 Hz (recall that the denominator is H52 of the 

underlying linear system, see Fig. 23c). Note that, by increasing the model order, this 

specific error becomes smaller (the antiresonance moves to the left), but additional 

spurious poles appear. Moreover, in Fig. 23a some anomalous peaks are evident around 

30 Hz, which seem to be caused by corresponding peaks in the numerator (the ratio 

would be constant if the numerator had the same form as the denominator). A deeper 

analysis is conducted to highlight the impact of the extracted poles on coefficient knl. By 

means of the tools proposed in this paper, the contribution of each pair of complex 

conjugate poles can be identified separately. Figure 25 shows the thirteen modal 

contributions to numerator (a) and denominator (b): spurious poles do not affect the 

denominator considerably (i.e., the underlying linear system FRF), their contributions 

being some orders of magnitude less than those of physical poles. 
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Figure 25: Modal contributions to the numerator (a) and denominator (b) of the cubic nonlinearity for 

the experimental system with string and high excitation (20.95 Nrms), model order n =26. Physical 

poles (solid line), spurious poles (dashed line). 

 

 On the contrary, contributions of spurious poles may be not negligible for the 

numerator (around 30 Hz in this case) and their removal is necessary. This task can be 

alleviated by computing the modal mass associated with each pole, as summarized in 

Table 6: most of the spurious poles can be removed by simply comparing their modal 

masses with the threshold value of 12.5 kg or even checking the sign. 

Table 6 

Underlying linear system modal parameters extracted by NSI for the system with string, 
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high excitation and model order n = 26 

Pole 

number 

r 

Physical 

(Ph) 

or spurious 

(Sp) 

Frequency 

fr (Hz) 

Damping 

ratio 

ζr (%) 

Modal mass 

Mr (kg) 

 
 r

r

Mimag

Mreal
  

1 Ph 2.96 1.43 6.74 3.53 

2 Ph 6.09 0.96 9.23 93.05 

3 Sp 8.03 6.93 129.32 2.26 

4 Ph 10.17 0.28 3.83 113.23 

5 Sp 11.08 6.99 264.61 17.06 

6 Ph 14.56 0.31 3.24 325.06 

7 Sp 14.57 2.42 1.48 0.02 

8 Sp 26.66 1.06 -76.62 4.89 

9 Ph 27.13 0.38 3.32 78.22 

10 Sp 28.10 1.42 215.05 0.96 

11 Sp 29.45 1.17 -1127.97 2.06 

12 Sp 31.13 11.25 -288.21 1.33 

13 Sp 50.70 5.63 -152.29 1.75 

 

If no information about the total mass is available, a stabilisation diagram of the modal 

masses can be used to remove spurious poles. In that case the modal mass can be 

adopted as extra stabilisation criterion in addition to the classical ones (frequency, 

damping and MAC). Note that even pole number 7 in Table 6 could be removed, 

although its frequency only differs from the previous one by 0.07%: in fact the last 

column of Table 6 indicates that the imaginary part of the seventh pole modal mass is 
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four orders of magnitude larger than that of the sixth pole, this helping in the removal of 

the former. 

 

Figure 26: Stabilisation diagrams computed by NSI for the system with string and high excitation 

level. (a) real part; (b) ratio between the real and the imaginary parts of the spectral mean for the 

single-mode coefficient r
nlk ; (c) modal masses of the four physical poles (each pole is indicated by a 

different marker); (d) ratio ρ between the real and the imaginary parts of the modal mass associated 

to each pole. 

In order to remove spurious poles, some user interaction is needed (thresholds should be 

defined for frequency and modal mass ranges) and clearly not all spurious poles can 

always be removed. It should be also mentioned that small errors, which are always 

existent in estimating the modal contributions from experimental data, induce some 
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frequency dependence in the coefficients of the nonlinear terms, even when all spurious 

poles have been removed. For this reason, the authors propose a new perspective: rather 

than assembling the nonlinear coefficient as the ratio of two sums, it can be estimated 

by a single physical mode only. In fact, numerical simulations (shown in Section 4) 

confirmed that if a certain mode is influenced by nonlinear effects, then this mode alone 

can be used to identify such nonlinearity. 

To show how the identification procedure benefits by this approach, the spectral mean 

in the range between 2 and 40 Hz is computed for the coefficient of the cubic 

nonlinearity as it is “seen” by the first four modes, as follows: 

    
  4,3,2,1,  r

den

num
k

r

rr
nl 

  (32) 

(the fifth mode is not included because the nonlinearity does not depend upon the 

presence of the string). As for the numerical example, more powerful stabilisation 

diagrams than the classical ones are proposed in Fig 26: Fig. 26a and Fig. 26b show the 

real part and the ratio between the real part and the imaginary part of the spectral mean 

for the single-mode coefficient r
nlk ; Fig. 26c and Fig. 26d show the modal mass Mr 

associated to each pole and the corresponding ratio  
 r

r

Mimag

Mreal
 . Also in the 

experimental case, as well as in the numerical example, these diagrams indicate that for 

some model orders results of NSI are not reliable, while this information is missing in 

classical stabilisation diagrams. 

The real parts of these spectral means are depicted in Fig. 26a as functions of the model 

order. There is some variability in r
nlk , which seems to be correlated to the variability of 

the corresponding modal mass (Fig. 26c): both quantities in fact are computed by using 

the same matrix B of the state space model identified by NSI.  

A stable coefficient is found by computing the “modal contribution” of the third mode 
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( 3
nlk ), which is depicted in Fig. 27 as a function of the frequency for the model order n = 

30. It corresponds approximately to the mean value of the coefficient with n spanning 

from 30 to 160. The frequency dependence has practically vanished and the imaginary 

part is small (the real part of 3
nlk is 6.28·107 N/m3, the imaginary part is -4.7·105 N/m3). 

In Table 7 the mean and standard deviation (with n spanning from 30 to 160) for the 

single-mode nonlinear coefficients are summarised: as also confirmed by Fig. 26a, the 

variability is minimum for the third mode and maximum for the fourth mode. In fact, 

estimates based on the fourth mode should not be considered reliable on the basis of the 

information contained in Fig. 26: in general, and in contrast to third mode, the fourth 

mode shows the highest imaginary part for both the nonlinear coefficient and the modal 

mass. This is an indication of identification problems, as also found in the numerical 

application (Fig. 5). 

Finally, the comparison of Figures 27 and 23a reveals that substantial improvements can 

be obtained by NSI if spurious poles are removed and if well identified modes only are 

included in the estimation of nonlinear effects. 

 

 

 

 

Table 7 

Nonlinear coefficient estimates (model orders from 30 to 160, even values only) 

Mode 

r 

r
nlk  (N/m3) 

mean std 

1 5.97·107 3.39·106 
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2 6.41·107 2.59·106 

3 6.28·107 9.81·105 

4 5.11·107 1.06·107 

 

 

Figure 27: Real and imaginary parts of the coefficient 3
nlk computed by the contribution of the third 

mode only (eigenfrequency around 10.17 Hz) with model order n = 30. 

 

 

5.3. Softening nonlinearity affecting mode 5 

The nonlinear analysis conducted so far illustrates a new decoupling strategy and 

introduces new tools to understand the contributions of the different poles. The last part 

of the study is concerned with the softening nonlinearity affecting the fifth mode. To 

this purpose, the model of Eq. (28) is modified as follows, to take into account the 

nonlinearity originating from the relative displacement between the first and the second 
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floor: 

              ttgtgtgttt nnnv fLLLKzzCzM  333222111   (33) 

where   3
51 ztg  ,  Tn 100001 L ,    2122 zztg  ,    3123 zztg  and 

 Tnn 1001132  LL . 

Figure 28 shows the estimates computed by NSI as functions of the frequency. As 

expected, the coefficient µ1 is again quite constant in the frequency range up to 15 Hz 

(likewise as depicted in Fig. 24); on the contrary, the coefficients µ2 and µ3 manifest a 

high variability in the same low frequency range, while they are quite constant after 15 

Hz, where the fifth mode contribution is dominant. 

Figure 29 shows the nonlinear contributions to the stiffness curves computed by NSI 

with n = 26: the spectral mean 367
1 N/m10i1.681032.6   is obtained between 2 and 

15 Hz for the first coefficient; 245
2 N/m10i1.161048.8   and 

378
3 N/m10i1.841077.1   are obtained between 15 and 50 Hz for the second and 

third coefficient, respectively.   
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Figure 28: Real and imaginary parts of the coefficients 321 ,,  in Eq. 33, computed by NSI for the 

experimental system with string and high excitation (20.95 Nrms), model order n =26. 

 

In particular, Fig. 29b indicates a non-symmetrical behaviour: a softening effect for 

negative relative displacements and a little hardening effect for positive relative 

displacements. However, it should be stressed that relative displacements were not 

directly measured but obtained by twice integrating the corresponding accelerations and 

then by filtering the resulting signal (between 2 and 160 Hz), to remove the spurious 

components introduced by the integration procedure. Consequently, the true mean value 

of the time histories cannot be obtained and a displacement sensor would be desirable to 

properly capture the nonlinearity, as usually done in presence of non-symmetrical 



 

 48 
 

behaviour [14]. 

 

 

Figure 29: NSI estimates of the nonlinear contributions to the stiffness curves of the 

experimental system with string and high excitation (20.95 Nrms), model order n =26. Nonlinear 

contribution due to the string (a), nonlinear contribution originating from the relative 

displacement between the first and the second floor (b). 

 

5. Conclusions 

Aim of the present study is to introduce modal decoupling tools in the nonlinear 

subspace identification (NSI). This method provides a means of obtaining a set of 

parameters related to the underlying linear system in addition to nonlinear 

characteristics. Previous works on this subject reported the presence of artefacts in the 

parameter estimates of the nonlinear terms, which are returned in the form of frequency-
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dependent and complex-valued coefficients. 

In the paper it is shown that spurious modes, due to an over-estimation of the system 

order, may affect the estimates of the nonlinear coefficients and are among the factors 

which cause their frequency dependence and complex-valuedness. They should be 

removed once their contributions to the system dynamics have been identified. At the 

same time, the tools developed in the paper make it possible to identify and to assess 

modal contributions of physical poles on the nonlinear dynamics. This capability paves 

the way for a new perspective, which is adopted here for the experimental identification 

of a multi-degree-of-freedom system connected to a thin metallic wire. 

Comparing Figures from 16 to 19 with Fig. 22 and Fig. 27 proves that the experimental 

case is challenging and the identification tool very effective: significant improvement of 

the estimates is achieved by NSI, which now incorporates most of the tools adopted by 

standard linear identification procedures. 
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