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Abstract: The sub-Saharan climate is experiencing a marked increase in temperature and intensification
of precipitation intensity and variability. Besides, longer dry spells are compromising the reliability
of local agricultural practices. The present study provides a comprehensive investigation about
the benefits induced by using indigenous rainwater harvesting techniques (RWHT) against
hydrometeorological threats affecting the Sahelian areas. Different RWHT have been tested in
term of runoff retention, infiltration increase into the root zone, and soil water stress mitigation.
To achieve these purposes, hydrological processes at the field scale have been investigated using
a two-dimensional distributed hydrological model. To make the study representative of the whole
Sahelian areas, several simulations were carried out adopting a wide range of input parameters
based on conventional values of those areas. The results reveal that RWHT may lead to a runoff

retention up to 87% and to double the infiltration. Intercepting and storing runoff, RWHT increase the
water content in the root zone and the right design can diminish the crop water stress. Furthermore,
the results show that adopting RWHT makes it possible to extend the growing season up to 20 days,
enhancing the yield. These benefits contribute to the reduction of the climate-related water stress and
the prevention of crop failure.

Keywords: climate-smart agriculture; sustainable land and water management; rainwater harvesting
techniques; hydrological modeling; water balance; crop water stress; Sahel

1. Introduction

Sub-Saharan countries are the poorest regions in the world. Notwithstanding, sub-Saharan
Africa has one of the highest fertility rates with 5.4 children per woman, which results in extremely
fast population growth [1,2]. The Food and Agriculture Organization of the United Nations (FAO)
reports that roughly 30% of the population is undernourished and 40% of infants risk their life due
to malnutrition. To face the constant hazard of famine, farmers strive to boost the local agricultural
production in their scarcely fertile lands, naturally poor in organic matter. During the last 50 years,
the increase in food production was achieved mainly by expanding the extent of cropland but with
a scarce cereal yield compared with the rest of the world, since the artificial fertilizers were too
expensive for the majority [3,4]. Moreover, the ongoing climate changes are forcing Sahelian farmers
to find innovative strategies to deal with droughts, unpredictable rainfall, and depletion of soil
nutrients. Climate scientists are studying how global warming is intensifying the hydrological cycle [5].
The warmer atmosphere can store a higher degree of moisture and generate catastrophic rainstorms.
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The study of Taylor et al. [6] showed how the higher temperature is responsible for tripling the
frequency of extreme storms in West African Sahel. The Sahelian storms are among the most powerful
on the planet, with intensities exceeding hundreds of mm per hour [7]. The higher frequency of
extreme events tied with the incessant land cover changes is leading to severe floods [8–10]. Evident
examples are the massive downpour that deposited 263 mm of rain over the capital of Burkina Faso,
flooded half of the city, and forced 150,000 people to leave their homes, in 2009, and the Niger River
flood of 2012, the highest flood ever registered in the Middle Niger Basin. On the other side, studies
have confirmed that the amount of precipitation that falls every year is slightly increasing [11,12].
This suggests that more resource is available in a place where the most used farming system is
rainfed agriculture. In response, innovative farmers are starting to adopt improved land and water
management practices to gain benefits from this climate pattern. Many studies have demonstrated how
agroforestry, such as farmed managed natural regeneration (FMNR), and sustainable land and water
management (SLWM) practices can help farmers to deal with ecological degradation and significantly
boost the food production in drylands [13–18]. Recently these techniques have been labeled as
climate-smart agriculture for the attitude of mitigating the impacts of climate changes [19,20].

According to the WRI’s investigation (World Resources Institute) [3], improving water and land
management on just 25% of sub-Saharan Africa’s cropland would provide an additional 22 million tons
of food, moving towards food security. In this paper, we focus on Rainwater Harvesting Techniques as
practices used by African farmers to capture rainfall, increase the water use efficiency, reduce crop
water stress, and increase the crop survival expectation. The characteristics of simplicity, adaptability,
replicability, and the low cost of realization and maintenance make the usage of rainwater harvesting
techniques (RWHT) apt in a wide variety of contexts [21]. Furthermore, nearly two-thirds of the
sub-Saharan population is employed in the agropastoral sector and could potentially put their effort
into expanding the use of these techniques on a wider range of drylands [22].

Among various techniques, some practices have demonstrated to be very effective such as
half-moon and planting pits, known locally as demi-lunes and zai/tassa. They are widely used in
Burkina Faso, Ethiopia, Mali, and Niger. The study of Zouré et al. [23] clearly showed the multiple
benefits of using these farming practices in mitigating the effect of dry spells and improving the crop
yield. The functions of catching surface runoff, reducing erosion of fertile topsoil, and increasing
infiltration are effective in contrasting the ongoing desertification that affects drought-prone areas [24].

The majority of the investigations related to RWHT are carried out on experimental sites in
which experimental plots are instrumented and records are analyzed [23,25–29]. On the contrary,
very few research studies have investigated the effect of RWHT through numerical modeling.
Welderufael et al. [30] set up a Morin and Cluff (MC) runoff model with the purpose of exploring the
rainfall–runoff relationships on treated/nontreated fields in Dera, Ethiopia. The software HYDRUS-2D
(distributed by PC Progress, Prague, Czech Republic) was used by Verbist et al. [31] to assess the
effectiveness of an infiltration trench installed in a Chilean hillside.

This paper continues previous investigations carried out in the study of RWHT through the
numerical modeling approach [32]. The study aims to solve some previous constraints and provides
further eco-hydrological analyses. The numerical model chosen for the hydrological analysis is Iber [33].
The capability of simulating the entire hydrological balance permitted to span the temporal scale
of analyses from the single event to the entire hydrological season and investigate the subsurface
processes. To achieve the objectives and include ecological investigations, a new methodology to
account for the crop life cycle into the water balance was implemented in the model and tested.

Two different implementations were carried out in this work aiming to afford an assessment of (1)
the hydrological performances of RWHT in terms of infiltration and storage increase, and how the
physical characteristics of the site affect them; (2) the ecological benefit induced by the mitigation of
crop water stress.

The outcomes show the remarkable benefits induced by the use of such RWHT practices.
The enhanced infiltration provides a faster recharge of groundwater, which is available early for
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crop and later represents a precious storage for plants with a deeper root system. In terms of water
management, this means an increase in green water availability for the benefit of a reduction in blue
water consumption (groundwater extracted for irrigation) [34,35]. Additionally, the increment of the
soil water content prevents crops from reaching the condition of soil water stress, maximizing the
yield. Upscaling the diffusion of these simple and affordable techniques would represent the first step
towards the enactment of adaptation strategies to cope with climate changes and food scarcity.

The paper is structured into four parts. The first part reports the contextualization of this study.
The second describes the core of the numerical model and delineates the methodology. The third part
sets out outcomes. Section 4 argues the discussions came out from the results. In the last section,
conclusions and future perspectives are drawn.

2. Geographical and Climatological Context

The Sahel, a semiarid area set in a fragile context, has been undergoing dramatic climate and
land-use changes since the middle of the 20th century. The Sahelian belt stretches from the parallel
17◦ N to 10◦ N, from north to south, and spans from the Atlantic Ocean coasts to the coasts of Red Sea,
from west to east (Figure 1). Its climate is predominantly arid at the border with the Sahara Desert,
with rainfall almost absent, and semiarid towards the south with an annual pluviometry that ranges
from 600 to 800 mm [36,37]. In the next years, this area will be one of the most affected by climate
changes [5]. The study conducted by the University of Notre Dame showed that the Sahelian countries
are among countries with the highest level of vulnerability to climate changes [38]. Indeed, countries
such as Niger, Chad, Sudan, and Mali occupy the last positions in the global rankings.

The study of Todzo et al. [39] reveals that, over the Sahel, a faster increase of temperature and
precipitation than the global average is expected. Moreover, accordingly also with the findings of
Seidou [12], the rainfall pattern is expected to become more intense and less frequent, leading to
lengthening of dry spells and increase the likelihood of droughts. Different studies showed that
roughly 50% of annual precipitation falls in the occurrence of a small number of extremely intense and
short rainstorms [7,40]. This type of climate and future perspective are not in favor of a farming system
based on rainfed agriculture. In the paper “Climate change and variability in the Sahel region: impacts
and adaptation strategies in the agricultural sector” it is reported that two Sahelian countries, Chad and
Niger, could likely lose nearly all their agriculture that depends on rain by 2100 [41]. For these reasons,
farmers living in arid or semiarid areas and Non Governmental Organizations (NGOs) operating in
these areas are striving to develop suitable and efficient water management practices.

Along with the harsh climate, the ongoing land degradation due to desertification and anthropic
deforestation is reducing the land fertility and increasing the exposure of soil to crustification.
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3. Materials and Methods

3.1. The Numerical Model

Iber is a two-dimensional distributed model originally developed for hydraulic computations of
overland and river flow [33,43], and later on expanded to the simulation of hydrological processes
of rainfall–runoff transformation [44,45] and subsurface flow [46,47]. The surface runoff depth and
velocity fields are obtained from the resolution of the 2D shallow water equations (SWEs), computing
the bed friction with the Manning formulation, and including rainfall and infiltration as source terms.
The equation system can be written as follows:
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where h is the water depth, qx,y are the unit discharge components along x and y, respectively, R is the
rainfall intensity, I is the infiltration rate, g is the gravity acceleration, zs is the free surface elevation,
and n is the roughness coefficient of Manning. The model equations are solved with an unstructured
finite volume solver. The spatial domain is represented by an unstructured mesh with cells sizes
proportional to the analyzed geometry. The Courant–Friedrichs–Lewy (CFL) stability criterion controls
the computational time step based on the flow velocity, the water depth, and the computational
cell size. In order to guarantee a high level of stability, the Courant number was set to 0.5 for all
analyses. For further details on the model equations and numerical schemes see the studies of Cea and
Bladé [33,43,44].

The infiltration is evaluated through the Green-Ampt method [48]. The formulation allows
calculating the infiltration rate from the water depth over the surface, computed through the resolution
of SWEs, and the physical properties of the soil. The soil characteristics are described by several
parameters: the saturated hydraulic conductivity (ks), the suction head in the nonsaturated layer (Ψ ),
the soil porosity (∅), and the initial soil moisture content (θi).

The Green-Ampt model allows linking the spatio-temporal distribution of surface water with the
subsurface flow through the soil water content variation. The mass conservation between the surface
and subsurface is based on the 2D Boussinesq equation-based model for homogeneous unconfined
aquifer and can be written as

∅∂b
∂t

=
∂
∂x

(
T
∂H
∂x

)
+

∂
∂y

(
T
∂H
∂y

)
+ I −DP− ET (2)

where ∅ is the soil porosity, b is the saturated soil thickness, T is the horizontal transmissivity, H is the
hydraulic head, DP is the deep percolation rate, and ET is the evapotranspiration rate. The first term
represents the variation of the soil moisture over time, considering the following relation guaranteed
by the infiltration model:

θ = ∅ b
ds

(3)

where θ is the soil moisture and ds is the soil depth. Note that the saturated thickness (b) is always
smaller or equal to the soil depth (ds) and thus, the soil moisture is always smaller or equal to the
soil porosity. Considering the small scale of the spatial domain in our study case (see Section 3.2.1),
the horizontal transmissivity was neglected.

The water that percolates out of the considered soil layer towards deeper layers is estimated by
using the relation proposed by Famiglietti and Wood [49]
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DP = ks,p

(
θ
∅

)(3+2/λ)
(4)

where ks,p is the saturated hydraulic conductivity of the deep soil, and λ is a model parameter,
meaning the pore size distribution index based on the soil layer texture. The soil structure might
change along with the vertical profile, varying its permeability. Seeing as how the infiltration and
percolation processes occur at a different depth, distinct values of hydraulic conductivities were
adopted. The infiltration model’s ks represents the topsoil-saturated hydraulic conductivity that
controls the partition of rain between runoff and infiltration. On the other hand, the percolation
model’s ks,p is the saturated hydraulic conductivity that characterizes deep percolation.

The evapotranspiration rate was calculated combining the potential evapotranspiration computed
through the empirical relation reported in the work of Doorenbos and Pruitt [50] adjusted following the
FAO 56 single-crop coefficient method [51], in order to consider the phenological properties of crops.

The present approach follows three steps:

1. The potential evapotranspiration equation is based on a single climatic data widely available, the
temperature:

ETP = −2 + b [ξ (0.46 T + 8.13)] (5)

where T is the air temperature in ◦C, ξ is the percentage of total daytime hours in which the
evapotranspiration occurs (approximately 12 h) out of total daytime hours of the year (365 × 12 h),
and b is a parameter for calibration.

2. The ETP is adjusted for a specific crop using a crop coefficient Kc, resulting in:

ETc = ETP Kc,i j (6)

where ETc represents the crop evapotranspiration under standard conditions and Kc,i j is the
crop coefficient that accounts for the evapotranspiration capability during each growth stage i of
an individual crop j. Values of Kc are listed in the FAO Irrigation and drainage paper 56 [51].

3. When the soil becomes dry, a limited amount of water is available for plant root extraction. If the
depletion of the soil water storage overcomes a threshold, the crop is said to be water stressed
and its crop transpiration capability is reduced by a water stress coefficient Ks

ET = ETc Ks (7)

4. The water stress coefficient Ks [0,1] can be determined by the equation

Ks =
θ− θWP

(θFC − θWP)(1− p)
(8)

where θWP and θFC are the water content at wilting point and field capacity, respectively, and p is
the soil water depletion fraction, which is characteristic for each crop and represents the fraction
of the total available water that the plant can uptake without suffering stress.

3.2. Model Set-Up

The present study applies the numerical model described in the previous section in two different
analyses. The first analysis aims to assess the entire range of possible hydrological performances
of RWHT, evaluating multiple scenarios typical of Sahelian agricultural fields, at the time scale of
the single rainfall event. In the second, the hydrological balances over the entire wet season were
performed for each RWHT, and the potential crop water stress mitigation was evaluated. The first and
second analyses will be called “short-term analysis” and “long-term analysis”, respectively, throughout
the manuscript.
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3.2.1. Geometry

Many RWHT have been developed by Sahelian farmers over the centuries. Common practices
are small planting pits (zai, tassa), small basins (negarims, meskats, half-moons), semicircular bunds,
hand-dug trenches, mechanized Vallerani trenches, or eyebrow terraces. Precisely, we focused on the
two most used microcatchment RWHT (half-moons and planting pits) as described in the guidelines of
Mekdaschi Studer and Liniger [52].

The geometrical inputs that were used to represent each RWHT follow the conceptualization of
the agricultural field delineated in Tamagnone et al. [32]. RWHT were shaped following the technical
specification reported into the Global Database on Sustainable Land Management [53]. Frequently,
semicircles with a radius of 4 m, spaced 2 m, are dug for half-moons, while circles with a diameter of
0.4 m, spaced about 1 m, are dug for small planting pits. The geometrical schemes and features of the
spatial domains are reported in Figure A1 (see Appendix A). Moreover, supplementary simulations
were carried out varying the entity of the excavation in order to observe how the storage volume affects
their hydrological performances.

The hydrological efficiency of these RWHT was compared to a plain configuration that represents
the case in which no agricultural technique is implemented.

For the long-term analysis, the plain configuration was manipulated to simulate the traditional
sowing method used by Sahelian farmers. This method consists of breaking the surface crust along
rows with rudimentary hand hoes or pickaxes (locally called “iler” or “daba”). The rows are commonly
tilled 1 m apart transversely to the slope.

Identification codes were used to label each configuration, as shown in Table 1.

Table 1. Characteristic and identification codes for the different rainwater harvesting techniques
(RWHT) configurations analyzed.

Configurations Excavation Depth (cm) Identification Code

Plain 0 PL
Traditional sowing method 0 TM

Half-moon
10 HM10
20 HM20
30 HM30

Planting pits 10 PP10
20 PP20

3.2.2. Meteorological Data

Iber is a fully distributed hydrological model which needs meteorological inputs to compute
the intensity of incoming and outgoing hydrological fluxes from the study domain [44]. The spatial
and temporal resolution of these inputs depends on the timescale of the simulations. Regarding
rainfall, the typical evolution of Sahelian storms can be associated to an Organized Convective System
(OCS) [54]. It generates hyetographs characterized by very fast and high-intensity peaks (frequently
shorter than 1 h) followed by a low-intensity tail [7]. Thus, a high-resolution of rainfall records is
necessary to detect every cloudburst. Consequently, hyetographs with a time resolution of 5 min were
generated for both analyses.

In the short-term analysis, the extreme rainfall hyetograph calculated in the previous work of
Tamagnone et al. [32] was adopted. This hyetograph is characterized by a rain depth of 40 mm with
a peak intensity of 80 mm/h (Figure 2a).

Instead, for the long-term analysis, a hyetograph representative of a rainy season was used.
The representative wet season was identified from the analysis of rainfall time series recorded at
a gauging station placed in central Sahel (Koyria station, 1997–2016), extracted from the AMMA-CATCH
(Analyse Multidisciplinaire de la Mousson Africaine—Couplage de l’Atmosphère Tropicale et du
Cycle Hydrologique) database [55]. From this time series, a representative year was selected as the
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one with the highest correlation with the following three statistical parameters of the complete time
series: the average of annual rainfall depth, the average of maximum hourly rainfall intensity, and the
average number of rainy days.

The second meteorological input needed to evaluate the water balance is the air temperature.
The variability of temperature over one characteristic year was calculated as the mean temperature
registered in the decade 2004–2014 at the Wankama gauging station [55], with a time resolution of
30 min. The rainfall and temperature data used in the long-term simulations are displayed in Figure 2b.
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3.2.3. Input Parameters

In order to investigate a vast range of cases characterizing the Sahelian farm fields, multiple Monte
Carlo simulations were run using different sets of model parameters. The parameter sets were sampled
using the Latin Hypercube Sampling (LHS) method [56,57]. Many authors have revealed that LHS can
significantly cut down on processing time versus a standard Monte Carlo random sampling [58].

For the short-term analysis, 300 parameter sets were generated within defined ranges. Each set is
composed of six parameters that we identified as the most influential on model performance. The first
one is the roughness expressed by the Manning’s coefficient and the others are parameters of the
infiltration model. The parameter ranges are listed in Table 2.

Table 2. Parameter ranges used in the Monte Carlo simulations.

Parameter Sampling Range Unit Source

Manning coefficient (n) [0.02–0.7] s/m1/3 [59–61]
Suction (Ψ ) [110–290] mm [48]

Total porosity (∅) [0.33–0.48] - [26,48]
Initial saturation (Is) [0.07–0.1] - [62]

Hydraulic
conductivity

(ks,sur f ace) [0.5–3] crusted 1
mm/h [48,59,60,62,63]

(ks,hole) [10–40] tilled 1

1 in order to simulate the effect of crusted surface and tilled surface, two different sets of parameters were generated
for such zones.

The set of parameters adopted for the long-term analysis is composed of:

- the previous six parameters, corresponding to the simulation closest to the mean model behavior,
and the four soil parameters (Table 3);

- the phenological parameters for each analyzed crop (Table 4). During the growing period,
the evapotranspiration potential of the given crop will vary accordingly to the development of
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its height and leafage. The growing season can be divided into four different growth stages
labeled as follows: L1 (initial), L2 (development), L3 (mid-season), L4 (late-season). To each stage
is associated a distinct value of crop coefficient Kc.

Table 3. Parameters used in the long-term analysis [51,64].

Parameter Values Unit

Manning coefficient (n) 0.34 s/m1/3

Suction (Ψ ) 122.16 mm
Total porosity (∅) 0.3 -

Initial saturation (Is) 0.5 -

Hydraulic conductivity
(ks,sur f ace) 0.89

mm/h(ks,hole) 18.11
(ks,p) 0.5

Pore size distribution index 0.5 -
Field capacity 0.25 -
Wilting point 0.15 -

Table 4. Phenological parameters used to describe the growth stages of selected crops.

Type Crop
Depletion

Factor
(-)

Crop Coefficient
(days)

Lengths of
Growth Stages (days) Growing Season

Kc,j
1ini Kc,j

1Mid Kc,j
1End L1 L2 L3 L4

Length
(Days) Period

Cereals Millet 0.55 0.3 1 0.3 15 25 40 25 105 Jul–Oct
Oil seed Sesame 0.6 0.35 1.1 0.25 20 30 40 20 110 Jun–Sep

Root crop Sweet potato 0.65 0.5 1.15 0.65 15 30 50 30 125 Jun–Oct
1 linear variation between extremes.

3.3. Evaluation of the Hydrological Efficiency

The impact of the analyzed configurations in the hydrological processes related to rainfall–runoff

transformation was evaluated in terms of three different efficiency measures:

- outflow reduction: calculated as the reduction on the cumulated volume of water that
flows out of the domain with and without the implementation of RHWT (Vol.outRWHT and
Vol.outPL, respectively)

φV = 1−
Vol.outRWHT

Vol.outPL
(9)

- infiltration increase: calculated as the increase on the cumulated volume of water infiltrated in
the subsurface with and without the implementation of RHWT (IRWHT and IPL, respectively)

φI =
IRWHT

IPL
− 1 (10)

- stress mitigation: calculated as the increase on soil moisture needed to reach the availability
threshold with and without the implementation of RHWT (θRWHT and θTM, respectively)

φS =
(θRWHT − θTM)

(p·θFC − θWP)
·100 (11)

4. Results

4.1. Hydrological Behaviour

The hydrological behavior of each RWHT configuration was analyzed in terms of surface runoff

generated, water retention, and infiltration, using for that purpose the output of the Monte Carlo
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simulations performed with the fully distributed hydrological model. The computed hydrographs at
the outlet of the considered Sahelian farming plot, as well as the cumulative infiltration in the field are
displayed in Figure 3, showing the different responses of each RWHT configuration to the extreme
rainfall event. In addition to all the Monte Carlo results, the average and the 25–75% percentiles were
added to each graph.
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The hydrographs computed for the PL and HM30 configurations show a wide difference in
magnitude but a similar shape, since the half-moons do not get filled and just the rainfall that is
not intercepted by them contributes to the outlet hydrograph. On the other hand, the hydrographs
computed for the PP20 configuration show two distinct branches. At the beginning of the event,
the discharge increases very slowly because the planting pits are still being filled with water. Once they
get filled, there is a sharp increase in the hydrographs, reaching peak discharges in between the PL
and the HM30 configurations. This behavior showing two branches and a delayed peak has already
been described in Tamagnone et al. [32], and it also occurs for certain parameter sets in the HM10

configuration (see Figure A2). The outcomes computed for all the RWHT configurations defined in
Table 1 are included in Appendix A.

The amplitude of the results range is directly correlated to the sensitivity of model output to
the input parameters. For the PP configuration, the Monte Carlo simulations produce hydrographs
significantly different from each other, meaning that the hydraulic behavior of this type of configuration
is strongly affected by the input parameters (and thus, by the terrain and soil characteristics). Conversely,
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the HM30 configuration is less affected by the input parameters, being the shape and magnitude of the
hydrograph mostly determined by the configuration geometry.

Observing the infiltration trends in Figure 3, each configuration presents a different behavior.
For the plain PL configuration, given the absence of retention, the infiltration trend follows the rainfall
trend. Thus, the infiltration finishes with the end of the rainfall. For the half-moons, there is, on average,
a return to the dry condition at 300 min (when the curve becomes horizontal), whereas the planting
pits present a positive infiltration trend up to 400 min. The delay between the end of rainfall and
infiltration contributes to the increase of the evaporation of the water retained inside the ponds after
the downburst.

The influence of each input parameter on model output was also investigated. The correlation
between the runoff coefficient, evaluated as the ratio between the volume of water flowing out of the
domain and the cumulated rainfall, and the input parameters show that the hydraulic conductivity
outside of the holes (ks,sur f ace) plays the main role in the formation of the outflow discharge (Table 5).

Table 5. Spearman’s correlation coefficients (ρs) between the runoff coefficient and input parameters
for each configuration.

PL HM30 HM20 HM10 PP20 PP10

Manning coefficient (n) −0.34 −0.13 −0.09 −0.30 −0.41 −0.45
Suction (Ψ ) −0.32 −0.33 −0.33 −0.33 −0.37 −0.37

Total porosity (∅) −0.20 −0.21 −0.21 −0.20 −0.20 −0.20
Initial saturation (Is) 0.01 −0.02 −0.02 0.02 0.02 0.02

Hydraulic
conductivity

(ks,sur f ace) −0.82 −0.86 −0.86 −0.83 −0.73 −0.71
(ks,hole) - 0.08 0.09 0.07 −0.16 −0.15

The differences between the HM and PP configurations show that the influence of ks,sur f ace is
stronger for HM configuration, while the n more heavily affects PP (Figure 4). The explanation lies in
the behavior of PP which get overfilled during the event. When the PP retention fails, more water
flows on the surface between the ponds and this makes the correlation with ks,sur f ace weaker and the
correlation with the roughness coefficient stronger. This is also confirmed by the increase of ρs value
related to n in the HM10 configuration. The specular behavior might be seen in the correlation with
the total volume of water infiltrated during the event. Thus, with all positive correlations. The weak
correlation with ks,hole might be linked with the fact that the entire runoff harvested by the RWHT is
however infiltrated independently by the entity of the hydraulic conductivity.
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4.2. Hydrological Efficiency Assessment

As reported in Section 3.3, the hydrological efficiency of each RWHT analyzed represents the
degree of improvement in water retention, when compared to the plain configuration. The comparison
was made simulation by simulation in order to compare couples of configurations with the same
input parameters.

Considering outflow reduction φV (Figure 5), the HM configurations show an efficiency of more
than 30% higher than the PP configurations. For both RWHT, the configurations with the bigger
excavation have a higher performance than the smaller ones. For half-moons, the efficiency shows
a very slight variation between the three configurations, from 0.87 to 0.85 for the deeper hole and the
shallower hole, respectively. Instead, in the PP configurations, the depth of the holes has a higher
impact on the water volume retained in the plot. Indeed, halving the depth of the excavation leads to
a 15% drop in φV. Moreover, from the results shown in Figure 5, it is clear how the input parameters
strongly influence the PP results, while they slightly impact the efficiency of the HM configurations.
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Figure 5. Boxplot of outflow reduction efficiency. In each box, the upper and lower edges indicate the
first and third quartile, respectively, the red central line is the median and the green x symbol is the
mean. The whiskers length was set equal to the interquartile distance. Outliers have been hidden.

Commonly, the Sahelian storms drop down a consistent amount of rainfall in a few minutes.
Thus, the process of water retention starts with catching the runoff and rainfall inside the micro-basins
and continues with the infiltration of this amount of water into the subsurface. Thus, the infiltration
efficiency φI is dependent on the geometry and changes over time. For this reason, it was evaluated for
different times lags after the extreme event occurs, labeling the results in Figure 6 with the subscript of
the related time lag.

HM configurations have a storage volume large enough to harvest all the water that falls during
the simulated extreme event in almost all simulations, i.e., independently of the input parameters.
This means that each half-moon has the same volume of water that will infiltrate into the soil, although
the infiltration rate will vary depending on the soil parameters. Observing the differences between the
deepest and shallowest HM configurations (HM30 and HM10, respectively), the variation of φI over
time is noticeable (Figure 6). At the end of the event (φI1h), the HM10 shows an efficiency 10% higher
than HM30, meaning that more water has been infiltrated during the rainfall. At such early stages,
the infiltration in the shallower HM is higher due to the conformation of the excavation, that presents
a slightly wider hole bottom than in the HM30. After 6 h (φI6h) the two efficiencies are equal, while later
on the efficiency of HM30 becomes higher than that of HM10. This highlights that, for this RWHT,
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the infiltration process is more affected by the geometry rather than by differences in water depth
inside the hole.

For the PP technique, the difference between the two configurations increases over time. Since both
configurations are overfilled during the event, the PP20 has a higher volume of water retained, and it
will produce more infiltration. Thus, the efficiency of PP20 is only 4% higher than PP10 at a time lag of
1 h (φI1h), while it reaches a difference of 28% at 10 h (φI10h).Water 2020, 12, x FOR PEER REVIEW 12 of 23 
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4.3. Water Stress Assessment

Besides simulating infiltration and runoff for the different configurations, the hydrological model
was used to evaluate the impact of RWHT on soil water dynamics and their influence on the crop
conditions over the growing season.

The rainfall season in the Sahel is always preceded by a long dry period in which no precipitations
occur. Thus, the initial conditions were considered strongly arid, meaning a dry surface and subsurface
with a minimum soil water content equal to the permanent wilting point [23]. With the onset of the wet
season, the soil storage recharge, uptake, and the resulting variation in soil moisture were calculated
over the entire season with the hydrological model.

The analyses aim to investigate the improvement in the reduction of water stress on traditional
Sahelian crops that can be achieved with the use of RWHT compared with traditional sowing methods.
The analyses are focused at two scales: (1) the field scale, in which all simulation results are aggregated
over the whole domain, (2) the small scale, in which hydrological conditions are locally examined
where crop seeds are actually sown.

For the field scale analysis, all simulations were carried out based on millet phenological parameters.
The presence of RWHT markedly increases the fraction of precipitation that infiltrates and fills the
soil water storage. The best improvement is tied to the HM30 with a cumulative infiltration two times
greater than TM. However, the difference between the deepest and shallowest HM is lower than 10%.

Figure 7 shows the soil moisture dynamics over the wet season. The aggregation of zones
influenced by cultivation and not produces a trend that even if it is always below the threshold,
constant permanence of stress condition (red zone), it is closer to the green zone when RWHT are
adopted. The improvement is more marked in correspondence with the highest precipitation when the
effect of retention plays a crucial role.
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Figure 7. Precipitation (blue bars), infiltration trend, and soil moisture trend (colored lines) at the field
scale over the wet season. The red area represents the level of water content lower than the threshold
in which the crop is water stressed. The green area highlights the range in which soil water availability
is enough to meet the demand of the crop. The boundary between the two areas corresponds to the
threshold of readily available water (blue dash-dotted line). The upper and lower limits are the soil
moisture at saturation and permanent wilting point, respectively. The vertical dashed lines represent
the growing period, from the sowing (left) to the harvest (right).

Focusing on the growing period of the analyzed crop, the water stress is stated by a level of soil
moisture lower than the threshold. The threshold is defined as the soil moisture at the field capacity
multiplied by the depletion factor of the crop [51]. The higher level of soil water content induced by
the RWHT indicates that there is an improvement of the hydrological efficiency of the whole system,
meaning the farm field. In terms of water stress mitigation (φS), HM configurations show an efficiency
comprised between 20.7% and 23% while PP lead to significantly lower values of 3.75% and 2.85%
(Table 6).

Table 6. Water stress mitigation efficiency.

RWHT φS(%)

HM30 23.02
HM20 22.92
HM10 20.72
PP20 3.75
PP10 2.85

The presence of zones characterized by different soil physical characteristics indicates a slightly
large spatial variability of hydrological conditions. Downscaling the observation from the field scale
to the single row/pond it is possible to deeply investigate the impact of farming practices on soil
moisture dynamics.

For HM, the soil moisture inside of the pond is higher than the threshold most of the time, avoiding
that the crop sowed inside of the pond is affected by water shortage (Figure 8). Comparing the three
HM configurations it can be noticed that soil moisture in HM30 is close to the saturation most of the
time and never reaches the threshold. Conversely, shallower HM overcome the threshold leading to 2
and 7 days of plant water stress for HM20 and HM10, respectively. In those days, the limitation in soil
water availability induces a condition of stress to the crop which limits its evapotranspiration, implying
a Ks lower than 1. The number of stressed days rises to 60 days in case of traditional sowing method.
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Hence, considering a growing season of 105 days for a millet crop, the crop will suffer water stress
more than half the time whether cultivated with the traditional method. The percentage considerably
decreases to 0%, 2%, and 7% if half-moons are adopted. Instead, both PP configurations show a soil
water content higher than the threshold over the entire growing season.
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Figure 8. Soil moisture trend at the small scale over the wet season. The red area represents the level of
water content lower than the threshold in which the crop is water stressed. The green area highlights
the range in which soil water availability is enough to meet the demand of the crop. The boundary
between the two areas corresponds to the threshold of readily available water (blue dash-dotted line).
The upper and lower limits are the soil moisture at saturation and permanent wilting point, respectively.
The vertical dashed lines represent the growing period, from the sowing (left) to the harvest (right).

What also stands out in Figure 8 is that the soil water content rapidly decreases with the end of
the wet season and the increase of the temperature (see Figure 2). This is due to the high intensity of
outcoming fluxes and absence of inflows. In TM configuration, the soil moisture reaches the threshold
on 8th of October, just 2 days after the last simulated rainfall, and then starts to decrease from the onset
of the dry season. The higher storage induced by the RWHT allows extending the growing season up
to 20 days, avoiding the stress condition almost until the end of the month.

To observe the influence of RWHT on crops, the growing seasons of millet, sesame, and sweet
potato with the conventional sowing method was compared against HM10 practice. The different
phenological parameters of these crops lead to different evapotranspiration trends. The benefit
induced by the presence of RWHT was measured as the reduction of cumulative plant water deficit
(PWD), see Figure 9. PWD was calculated as the difference between the crop evapotranspiration
(evapotranspiration under unstressed condition, see Equation (6)) and the actual evapotranspiration.

The maximum reduction is obtained for the sesame since no deficit is produced when using HM10.
This occurs since the sesame harvesting takes place around mid-September, hence before the end of
rainfalls and increase of temperature. Instead, the longer growing season of sweet potato undermines
the traditional system leading to a higher PWD. On the contrary, HM10 highlights a great efficiency
producing a deficit even lower than for the millet.
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5. Discussion

The principal aim of using RWHT is to intercept the rainfall and surface runoff in order to
maximize the availability of water for crop and to minimize the water deficit during the entire growing
season [22]. In drylands, where food security is the first challenge, reducing water stress means
decreasing the probability of crop failure [65]. The results presented here using numerical modeling
and Monte Carlo simulations provide a deep analysis on the functioning of indigenous RWHT under
a wide range of possible scenarios that might be faced in Sahelian rural areas.

In the case of choosing PP, the wide range of variation of the numerical results highlights the
importance of field surveys and sampling to evaluate the correct physical parameters characterizing
the site. On the contrary, for HM, the small sensitivity of model output to the soil parameters means
that the hydrological efficiency is mostly controlled by the geometry. Thus, during the planning phase,
the design is more important than the characterization of the site. In fact, from φI results, we can
assert that (under the same hydrological conditions as the simulated ones) it is preferable to shape
RWHT with shallower and wider holes instead of deeper and smaller holes. During the planning
phase, once the project rain has been detected, the critical volume that avoids the overfilling of RWHT
should be calculated and used to define the shape of the optimal agricultural practice.

Since Sahelian countries are among the poorest in the world, farmers have no access to tillage
machines and all phases of the cultivation are handmade. Thus, the entity of the manual labor is
strongly correlated to the RWHT design. The results showed in the previous section show that it is
worth excavating deeper RWHT only if there is a relevant efficiency improvement. Especially for HM,
it would be preferable to choose HM10 instead of deeper ponds, saving in that way many hours of
manual labor, since the volume to dig is almost one-third of HM30. On the contrary, making the effort
of digging deeper planting pits leads to consistent improvements, harvesting more water into the
farming field and promoting soil water storage recharge.

Comparing the common results obtained in this study with the ones of the previous work of
Tamagnone et al. [32], it is possible to appreciate the benefits induced by a hydrological modeling
instead of pure hydraulic modeling. Considering the evaluation of the outlet discharge reduction,
accounting for the infiltration leads to an increase of 17% and 27% for the HM and PP configurations,
respectively. This means that even though the main role is played by the geometrical features
of the RWHT, neglecting the hydrological components of the water balance leads to a consistent
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underestimation. Therefore, future studies cannot disregard the use of a hydrological model for the
study of all processes involved in the runoff formation and propagation.

Observing the relation between parameters and the runoff coefficient, the strong correlation
between the runoff coefficient and ks,sur f ace means that is also important to treat the surface between
ponds in order to reduce the overland flow and to keep the water inside the farm field. As reported in
previous works [23,66], the improvement of soil moisture is a phenomenon spatially limited under
the pond, since the lateral transport is negligible. For this reason, the soil between the ponds is much
drier than below them. Hence, combining RWHT with other surface treatments, such as soil scarifying,
will improve the hydrological efficiency of the whole system. It will also help the recovery of grass
between the basins, for the sustenance of cattle, or the implementation of intercropping. A recent study
showed how the application of intercropping strategies lead to a greater yield as compared with the
monoculture [67].

The great usefulness of RWHT can be observed at the beginning of the rainfall season. With the
first rainfall, there is a fast increase in soil moisture making the soil more suitable to accommodate
new seeds. The higher level of soil moisture enhances the biological activity which contributes to
improving the soil structure avoiding the reduction of hydraulic conductivity [68]. The water balance
also confirms that with the use of RWHT it is not possible to extend the growing season much after
the end of the rains since the high magnitude of outflowing fluxes rapidly empty the soil water
storage. Commonly the rainy season ends at the beginning of October, however, the use of HM or
PP may guarantee a sufficient availability of water up to the end of the month. Furthermore, in such
hydrometeorological conditions, it is preferable to cultivate from the beginning of June to the mid of
September and harvest no later than the end of September.

The analysis at the two spatial scales allowed to appreciate the real effectiveness of RWHT for
agricultural purposes. For PP, the observation at the field scale produced a scarce attenuation of the
soil water stress. On the contrary, at the small scale, the results revealed that both PP configurations
lead to a soil moisture trend even higher than HM.

RWHT have their limitations in the fight against food insecurity. Their advantages mainly concern
the increase in available water for crop and overland flow management. However, they are not able
to improve the nutrient in soils that are naturally poor in organic matter. Thus, in order to increase
the crop yield, the realization of RWHT should be always followed by the addition of manure or
fertilizer [4,17]. However, altering the surface roughness and slowing overland fluxes (runoff and
wind), RWHT help to capture organic debris which provides nutrients for the natural regeneration of
shrubs and agropastoral bush-woodland [24].

6. Conclusions

Water and food scarcity are among the main problems that condition the livelihood of Sahelian
inhabitants. To cope with these threats, a growing number of farmers living in sub-Saharan drylands are
already taking advantages from the use of improved water and soil management practices. This study
exploits advanced numerical models to investigate the hydrological functioning of those RWHT locally
used in the Sahel, solving some limitations recognized in previous investigations [32]. The benefits
induced by the adoption of RWHT, such as the increment of infiltration and the reduction of crop water
stress along the growing season, were analyzed.

Our findings suggest that RWHT always enhance the hydrological efficiency of agricultural fields,
but the level of efficiency is strongly related to their design. Thus, once the location is identified,
the best design should be evaluated based on the meteorological features of that area. Furthermore,
considering the ongoing climate trend, the intensification of rainstorm should be evaluated in the
planning phase. In terms of water stress mitigation, the right design can bring the soil water deficit to
zero, maximizing the crop yield and avoiding the necessity of supplementary irrigation.

The methodology presented here could be very useful to scrupulously plan the irrigation to avoid
crop water stress, in areas where water scarcity makes the value of water even higher. The irrigation
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can be quantified in terms of the amount of water needed to meet the crop demand and scheduled,
introducing the right amount of water when soil water content goes below the threshold. Indeed,
maximizing the water use efficiency and avoiding the crop water stress, the crop yield increases,
approaching the food security in the Sahel. Likewise, the approach used for the evaluation of Sahelian
agricultural practices may be applied to other agricultural studies elsewhere in the world. The high
costs of in-situ studies and the increasing availability of data makes the use of numerical modeling an
effective choice that can be easily replicated for different sites.

To deeply analyze the crop life cycle, the simple formulation chosen to evaluate the potential
evapotranspiration could represent a weakness point since it does not take into account all physical and
physiological factors governing the evapotranspiration process. Notwithstanding these limitations,
it addresses a preliminary ETP calculation coping with the scarcity of data that often characterize
developing countries. Further implementations could involve more complex formulations including
more parameters such as solar radiation, humidity, and wind speed (e.g., the FAO-56 Penman–Monteith
or the Hargreaves–Samani equation).

The present study makes a step forward in the comprehensive investigation of RWHT in the
numerical modeling framework. The methodology proposed would enlarge the field of application of
hydraulic and hydrological models to ecological/agronomic context. Agro-hydrological physically
based models could be effective tools to investigate impacts of climate on the crop life cycle, its health,
and yield, without neglecting the hydrodynamics that controls the transformation from rainfall
to runoff.

In the Sahel, despite the considerable effort in embracing improved land and water management
practices, the adoption of these strategies remains too limited to lead a considerable change in Africa’s
food and environmental security. Thus, this research should encourage to scale up these practices to
make widespread the fight against food/water scarcity and environmental degradation. The present
study demonstrates that, in these contexts, it is not necessary to resort to “high-tech” solutions and
unaffordable strategies to deal with such problems. National policies should invest in the education of
farmers so that they can gain awareness of the benefits derived from appropriate practices.
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