
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An architecture for adaptive task planning in support of IoT-based machine learning applications for disaster scenarios /
Sacco, Alessio; Flocco, Matteo; Esposito, Flavio; Marchetto, Guido. - In: COMPUTER COMMUNICATIONS. - ISSN
0140-3664. - ELETTRONICO. - 160:(2020), pp. 769-778. [10.1016/j.comcom.2020.07.011]

Original

An architecture for adaptive task planning in support of IoT-based machine learning applications for
disaster scenarios

Publisher:

Published
DOI:10.1016/j.comcom.2020.07.011

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2842986 since: 2021-08-06T10:51:39Z

Elsevier B.V.

An Architecture for Adaptive Task Planning in Support
of IoT-based Machine Learning Applications for

Disaster Scenarios

Alessio Saccoa,∗, Matteo Floccob, Flavio Espositob, Guido Marchettoa

aDepartment of Control and Computer Engineering, Politecnico di Torino, Italy
bDepartment of Computer Science, Saint Louis University, USA

Abstract

The proliferation of the Internet of Things (IoT) in conjunction with edge com-

puting has recently opened up several possibilities for several new applications.

Typical examples are Unmanned Aerial Vehicles (UAV) that are deployed for

rapid disaster response, photogrammetry, surveillance, and environmental mon-

itoring. To support the flourishing development of Machine Learning assisted

applications across all these networked applications, a common challenge is the

provision of a persistent service, i.e., a service capable of consistently maintain-

ing a high level of performance, facing possible failures. To address these service

resilient challenges, we propose APRON, an edge solution for distributed and

adaptive task planning management in a network of IoT devices, e.g., drones.

Exploiting Jackson’s network model, our architecture applies a novel planning

strategy to better support control and monitoring operations while the states

of the network evolve.

To demonstrate the functionalities of our architecture, we also implemented

a deep-learning based audio-recognition application using the APRON North-

Bound interface, to detect human voices in challenged networks. The applica-

tion’s logic uses Transfer Learning to improve the audio classification accuracy

∗Corresponding author
Email addresses: alessio_sacco@polito.it (Alessio Sacco), matteo.flocco@slu.edu

(Matteo Flocco), flavio.esposito@slu.edu (Flavio Esposito), guido.marchetto@polito.it
(Guido Marchetto)

Preprint submitted to Computer Communications August 26, 2020

and the runtime of the UAV-based rescue operations.

Keywords: Network of quees, Machine Learning

1. Introduction

Recent years have witnessed the proliferation of mobile computing and Internet-

of-Things (IoT), where billions of mobile and IoT devices are connected to the

Internet, generating large datasets to be consumed by several (distributed) ap-

plications. A subset of these applications requires IoT devices to be separately5

programmed to perform a mission independently. Typical examples of such

scenarios are heterogeneous networks composed by Unmanned Aerial Vehicles

(UAVs), e.g., drones, and other IoT sensors, that together connect a plethora

of sensors, including hyperspectral cameras, microphones, or civilian tablets

and smartphones [1, 2]. These systems have been employed in the past with10

success to support first responders in man-made or natural disaster scenar-

ios [3, 4, 5, 6, 7, 8]. The role of drones in the IoT in general, and in disaster

response in particular, could become even more prominent in the future as they

have the potential to enable, improve, and optimize novel and existing rescue op-

erations and services. More broadly, autonomous and semi-autonomous drones15

will undoubtedly continue to help humans also in other tasks, spanning from

industrial inspection to survey operations to military operation support.

A network of drones can be used to collect large quantities of data, that can

then be uploaded at the edge of the network for heavy audio/video processing,

where resources to execute Machine Learning (ML) algorithms are available [3,20

4].

In the conditions imposed by challenged networks such as those present

after a natural disaster scenario, keeping such IoT devices well-functioning could

be a challenge [9, 3]. Although delay and disruption tolerant protocols and

architectures exist [10], the problem of maintaining an acceptable quality of25

service with stringent delays for these networks depends not only on the quality

of the connectivity, but also on the dynamic nature of the tasks that the drones

2

are required to accomplish.

Both centralized [11, 12] and distributed [13, 14] approaches that allow an

edge network of IoT devices, drones, or robots in general, to provide a persis-30

tent and adaptive service already exist. Some of them focus on the resilient

mission planning problem [14], others on agents’ health-aware solutions [13].

Others yet [12] concentrate on the problem of enabling multi-agent teams to

autonomously tackle complex, large-scale missions, over long time periods in

the presence of actuator failures.35

These solutions have sound design, and they address different failure models

under specific applications, but a unique solution that ensures a resilient drone

mission execution, under all possible failure models and applications probably

cannot exist. To this end, we propose an Architecture for the Programmability

of RObotic Networks (APRON), extending our preliminary results presented40

in [15] with a more in-depth evaluation and a practical example of AI appli-

cation for UAVs. The architecture enables the programmability of different

mechanisms involved in the mission execution problem of UAVs or other edge-

based distributed agents. APRON is a software layer that sits between the

(robotic) operating system (e.g., ROS) [16]) and any IoT software application.45

The APRON architecture contains classical network management mechanisms,

such as network monitoring, repair, and control operations e.g., neighbor dis-

covery, as well as mechanisms specific to the resilient mission execution problem,

e.g. , adaptive control, and neighbor failure estimation. Finally, it provides a

NorthBound interface for application programmers.50

Our contribution in this paper is two-fold. First, we detail our middleware

architecture for IoT device management and propose an optimization algorithm

for task re-scheduling, in case of an IoT device experiencing a failure. Second,

we introduce a disaster response application as an AI use case application that

uses APRON’s underlying resilient network services. Our application is designed55

to detect sounds generated by humans, for example, those that are victims of

a natural or man-made disaster to be rescued, or survivors to locate under an

avalanche, where video alone may be insufficient. In particular, our edge audio

3

processing application uses Deep Neural Networks (DNNs) techniques to classify

the audio sent from the drone fleet and helps locate human sounds. The speed60

is crucial for rescue operations; hence, we explored and exploited the properties

of Transfer Learning to reduce the training time and increase the classification

accuracy (human/non-human sound).

We also used a Mission Allocation Simulator [17], to test the scalability of

our approach, and deployed our solutions over a prototype powered by virtual65

network testbed to evaluate the practicality of APRON.

Throughout this paper, in Section 2 we describe some applications where

APRON can be used. Although inspired by the disaster response use case, our

approach has indeed broader applicability. We present the problem in Section 3,

then we describe in detail the load and failure estimator component (Section 4),70

that leverages a Jackson’s network model to support monitoring and control

operations while the states of the network evolve. The estimator computes a

close form of the average number of tasks in a mission, whether they are queued

or in execution. Such an estimator can then be manipulated by application pro-

grammers to determine the utilization of each drone and the mean queuing time75

(both waiting and execution time) for each task. Such information can then be

used (in conjunction with our APRON API) to design controllers that adapt to

specific applications. We overview the components of our APRON architecture

in Section 5, focusing on its Controller component and how programmability is

achieved.80

The audio processing application is presented in Section 6, providing details

about our enhanced DNNs model. We present our experimental results in Sec-

tion 7, while the presentation of the literature is in Section 8 and Section 9

concludes our paper.

2. Motivating Applications85

Although we mainly focus on the disaster response scenario, we argue this

solution can be utilized in many other use cases, which are affected by com-

4

parable problems. In the following, we briefly describe two applications whose

requirements can be satisfied by using the presented approach.

Disaster Response. Unmanned Aerial System (UAS, i.e., drone) swarms for90

disaster area search and rescue are important examples of intelligent physi-

cal systems that could benefit from APRON: they can autonomously support

high-level semantic interface capabilities in uncertain work environments with a

minimum of operator supervision. UAS search swarms are ideal for quickly lo-

cating survivors and identifying emergent threats following earthquakes or other95

natural (or man-made) disasters that render structures damaged and potentially

unsafe to enter. Search swarm techniques are also broadly applicable to other

surveillance applications such as structural inspection, agricultural surveillance,

and post-disaster family reunification via facial recognition, to name a few. The

need for skilled operators limits how current generation UAS platforms can be100

further integrated alongside first responders, while training and budgetary con-

straints prevent existing lifesaving organizations from adopting this technology

broadly. Autonomous search swarms will integrate with and be usable by or-

ganizations of any size and capability. For such a system to be effective, a

variety of technical challenges must be addressed; UAS platforms are dramati-105

cally resource-constrained with flight times of tens of minutes, limited on-board

computational capacity, power and weight limitations for sensing, and often

unreliable radio links to ground operator stations. Deploying a truly intuitive

tasking mechanism for such a system requires: (1) interpreting high-level seman-

tic commands such as hand gestures or natural language, and the autonomy to110

execute such orders with little to no operator intervention; (2) continuous com-

munication of the swarms’ present capability to execute orders, depending on

the availability of resources such as power and current computational capacity;

and (3) automatic management and maximization of those resources subject to

mission objectives.115

Intelligent Transportation Systems. The application of Information and

Communication Technologies (ICT) to the transport sector made the classic

transportation systems evolving towards an Intelligent Transportation System

5

(ITS). Sensing, analysis, control, and communications technologies are applied

to transportation in order to improve efficiency, sustainability, safety, mobil-120

ity, environment impact, and comfort. Examples of ICT where APRON could

be helpful are Advanced Driving Assistance Systems technologies that provide

collision avoidance and driver aids, such as night vision, driver alertness, and

adaptive cruise control or even fully autonomous driving systems. The rea-

son why APRON can be useful lays in the characteristic of these systems: (i)125

high number of devices and produced data; (ii) wireless communications among

vehicles, and between vehicles and the roadside infrastructure are inherently

unstable and exacerbated by the high mobility of the (IoT) agents; (iii) collab-

oration among agents to exploit the sensory data; (iv) real-time, event-triggered,

asynchronous and periodic generated traffic; (v) reliability and safety; (vi) cost-130

effective and user-friendly. In case of low-latency and location-aware services,

the on-board processing of the data implies a significant processing power that

is not suitable for resource-constraint devices; the processing on a centralized

and far cloud implies problems due to bandwidth and latency; while, a more

viable option is the delegation of the computation to the edge system, because135

the collection and processing of the data closer to its source reduce latencies

and traffic loads to the cloud.

3. Problem Definition: Mobile Task Offloading

One example of a harsh environment where frequent connectivity losses occur

due to infrastructure problems is natural or man-made disaster scenarios. We140

define in this section the general problem of tasks offloading from a fleet of

nodes or agents, e.g., drones, to a close edge computing server. While more

specific scenarios affected by the same issues are mentioned in Section 2, and

Section 6 describes the application that we developed to provide the required

heavy computation for the audio processing.145

6

3.1. Problem Definition

The task offloading solutions enable the execution of complex jobs in nearby

surrogate machines, often called cloudlets, instead of running them on a mobile

node [18]. Typically the cloudlets are near the mobile devices and are reachable

via a small edge network, to ensure low-latency connections. However, in critical150

scenarios, such as for disaster response, two problems need to be addressed:

(i) a large number of failures occur because of hostile conditions, (ii) edge

nodes are scarce and often overloaded. For these reasons, it is likely to observe

unacceptable delays and significant losses, leading to an increase in average job

completion time. We hence face the following challenge:155

Problem 3.1. Given a set of devices offloading a set of computationally inten-

sive jobs on an edge computing server, e.g., Ground Control System (GCS), we

define the Task Offloading Problem as the edge network management problem

minimizing the average completion time of an offloaded set of tasks by effectively

orchestrating the load on the underlying infrastructure.160

The programmable edge computing load orchestration entails two main pro-

cesses: (i) enforcing a given load profile on edge agents, (ii) migrating the tasks

whose expected running time is considerably high to another node that most

likely completes it within a shorter time. Enforcing the load profile means that

the solution aims to balance the load among the nodes of the infrastructure so165

that similar nodes have identical target loads. However, load balancing tech-

niques are inappropriate when severe failures may occur, hence we design the

migration process by using a self-adapting mechanism.

3.2. Task Migration Properties

To solve the Problem 3.1, two questions need to be addressed: when is it170

opportune to offload (both from the mobile device to a GCS and among mobile

nodes), and where should the task migrate to? The solution presented leverages

a proactive, self-adjusting adaptation mechanism that migrates a given task

when its hosting node reaches a threshold. Such a threshold can be customized

7

due to the architecture of the solution (Section 5), but as default, it is set as175

the average number of jobs queued and running across the entire edge system.

When do we migrate a job to another edge agent? Each edge agent

computes such a threshold independently, using Jackson’s network model. This

model can be exploited to estimate the average number of tasks on each edge

computing node i, denoting such a quantity as n̂ = E[ni].180

Where do we migrate the job? The destination node of the job migration

schema is chosen by modeling the network as a network of queues. Task can

migrate from the queue of the source node to the queue of the destination node.

Let pii′ the probability of the migration between the source i and the destination

i′. Mathematically, our strategy can be formalized as follows: let the system be185

composed of Q nodes (queues); the destination node dest where the tasks are

offloaded, is chosen by solving the following equation:

dest = arg max
i′

pii′ (1)

The probability is computed to guarantee efficiency in the offloading proce-

dure, after an evaluation phase about the migration delay overhead calculated

according to the model presented in Section 4.190

Example. Figure 1 shows an example of the task schedule of three agents.

Each drone receives the set of tasks and moves from one location to the next

where it has to accomplish the task. For instance, agent v2 migrates its original

tasks t2 and t7 to the drone v1 and t10 to v3 in order to balance the overall load.

4. Mission Planning via Network of Queues195

The IoT application usually affects the failure models, hence it is considered

as impossible to find a failure model fitting all scenarios. For this reason, instead

of predicting the failure of nodes or links, we leverage the service component to

compute the probability of having a given number of tasks still to be completed.

Thus, the goal is to obtain the average number of tasks in execution and in200

the queue. Such a piece of information can, in turn, be manipulated by the

8

v2

v1
v3

t1

t4

t6

t5

t7

t2

t3

t8

t9

t10 Task of v1

Task of v2

Task of v3

Migrated
task, e.g.,
from v1

to v2

Figure 1: Example of mission planning paths followed by three drones to complete their tasks.

Migration occurs among nodes to balance the overall load. We use this figure with only a few

drones to clarify the migration process and workflow, but we tested APRON’s scalability in

subsequent experiments.

application to establish the instantaneous utilization of each agent and the mean

queuing time for each task. Finally, this knowledge can be used to design a

controller that adapts to the application.

We model the set of potentially failing nodes as a network of queues, accord-205

ing to Jackson network class [19]. The effect of an agent’s fault is the migration

of all its tasks to a different queue. In this context, the completion time of a

task in a non-failing agent is the mere waiting time that the task spends in the

queue. On the other hand, the completion time of a migrated task is the sum of

all the waiting times across the visited agents, plus the time spent in the queue210

of the agent that executes it (holding time). In fact, when a node fails, all its

tasks still to be executed are migrated and reassigned to a new node. Poten-

tially, a task can be reassigned more than once to nodes if the agent’s failure

occurs before its execution.

We model each agent as a single queue storing all the tasks that will be

eventually executed. Thus, the network is modeled with a network of Q queues,

and there is a (directed) edge from queue i to queue q if a task “migrates”

to agent q after agent i’s failure (Figure 2). The system is assumed to be an

9

pik

pki

�k

�i

nk

ni

i

kµk

µi

+

+

pkk

pii
ri

rk

+

Figure 2: Example of open Jackson queue with two agents (e.g. drones): tasks belonging to

failing agents are reassigned.

open task replanning process constituted by Q = {1, 2, . . . , Q} agent’s queues,

a vector n = {n1, n2, . . . , nQ} that indicates the number of tasks belonging to

each of the Q queues, and an operator Tii′ on n:

Tii′ = (. . . , ni − 1, . . . , n′i + 1, . . .) (2)

that removes one element from the agent’s queue i and adds it to queue i,

or exits the system. The term open denotes that tasks may enter or exit the

system. We denote by λq the external arrival to queue q, if any. The vector n

is assumed to be a Markov process with state space:

N = {n : nq ≥ 0, q = 1, . . . , Q} (3)

and transition rates given by:

q(n, Tii′(n)) = pii′ , (4)

where pii′ is the probability of a task to migrate from agent’s queue i to queue215

i′ after agent i’s failure. The Markov process n is irreducible for n > 0, in other

words, each task can potentially migrate from one agent’s queue to any other

queue, and aperiodic, that is, an agent can be only temporarily unavailable, and

hence a task can return to a state i at any (irregular) time. Ultimately, we are

able to show that, at the steady state, the distribution of the number of tasks220

in each queue, or being executed, obeys the “product form” distribution, i.e.,

it can be written as the product of the probability functions depending on the

single agent’s queues:

10

Proposition 4.1. For each agent q, the average arrival rate of a task in

its queue is given by Λq = λq +
∑Q
k=1 pkqΛk. In addition, if we denote with

p(n1, n2, . . . , nQ) the steady state probability that there are nq tasks in the qth

agent’s queue for q = 1, 2, . . . , Q, and if Λk < µq for q = 1, 2, . . . , Q, that is, we

assumed that each agent can execute at most one task at the time, and that the

arrival rate is smaller than the departure rate of task from the system, and so

there is a steady state distribution, then such steady state probability is computed

as:

p(n1, n2, . . . , nQ) = p1(n1)p2(n2) · · · pQ(nQ), (5)

where pq(nq) is the steady state probability that there are nq tasks in the

qth agent’s queue, if such queue is treated as a M/M/1 queuing system with225

an average arrival rate Λq, and average task execution time 1
µq

for each agent.

Furthermore, each agent’s queue q behaves as if it were an independent M/M/1

queuing system with average arrival rate Λq.

Proof. Proposition 4.1 is a straightforward corollary of the Jackson’s theo-

rem [19], in case of a single server per queue.230

Based on Proposition 4.1 and Little’s law [20], hence, we estimate the number

of tasks in each queue at the steady state according to the formula: n̂ = E[ni] =

ρi
1−ρi , where ρi is the utilization factor of agent i’s queue, defined by: ρi = Λi

µi
.

In accordance with this result, the ultimate goal of the controller algorithm

is to balance the utilization of all queues. Consequently, when the utilization235

of queue i becomes too low with respect to the average of the system, the

agent may request a task migration from other agents. When instead the queue

utilization, or the estimated utilization, becomes too high, it means the system

of agents is experiencing a high failure rate. In such a situation, the algorithm

can proactively redistribute the load by increasing the replan frequency and240

migrating tasks to under-loaded nodes. Along with the proactive migration,

when a failure occurs, the system can react by assigning the remaining tasks to

another agent, thanks to a continuous monitoring function implemented by the

11

architecture. Further details about APRON architecture are explained in the

following section.245

5. APRON Architecture

In this section, we present our proposed management layer amongst the Op-

erating System (at the bottom), e.g., Robotic Operating System (ROS) [16], and

the IoT application (at the top). Figure 3 shows the management architecture,

whose mechanisms allow establishing and monitoring the network connectivity,250

to estimate the link and node failures, and to replan the mission via a customiz-

able controller logic. Application atop can take advantage of the provided API

to customize the logic of such controllers, adapting to different failure models,

as well as to customize the mission planning logic, in a centralized or distributed

fashion.255

In the following, we summarize the network components of the solution,

including the API, and the agent mission services offered, while the next section

is about the mission replanning component.

Network Monitoring

Mission Planning Controller

Adaptive Naïve (AN)

Operating System

Adaptive Simple (AS)

State CacheAdaptive Additive and Multiplicative

(AAM)

Service API (SAPI)

TLS Socket &
Identity Manager

Message ParserCustomizable Controller

APRON Architecture

NorthBound
Interface

Transfer Learning Logic

Audio Processing Application
IoT Agent Application IoT Agent Application

Load and Failure
Estimator

Figure 3: APRON Architecture: a management layer between the IoT application and the

operating system to establish and monitor network connectivity, to estimate failures and to

adapt the task (re-)planning based on the customizable controller logic.

12

Network Monitoring. Inspired by the vast majority of networked systems,

the connectivity management component runs a network discovery protocol, and260

a watchdog process running a heartbeat protocol to monitor alive connections.

The architecture does not require an IP address and hence does not inherit

the multihoming and mobility shortcomings of the TCP/IP architecture. As in

recently proposed clean-slate Internet architectures [21, 22], we bind the agent

addresses to the application names, not to the network interfaces.265

TLS Socket & Identity Manager. Since each agent may belong to multiple

overlays, it is necessary to be authenticated ahead of the communication estab-

lishment. This component is responsible for the management of agent identities

across multiple overlay networks and provides secure connectivity through the270

Transport Layer Security (TLS) protocol.

State Cache Manager. This component handles the partially replicated

database while maintaining network states. The database entries are related

either to static states i.e., states that depend merely on the agent, or dynamic275

states i.e., states that depend on the network, configuration, and connectivity

condition. The state cache is also used as a log to store application states, for

example, IoT device battery usage.

Service API. This service supports the customization of two main components:280

(i) the controller logic, that can fit multiple (failure) scenarios, (ii) the logic of

the mission planning algorithm, either in a centralized or distributed fashion.

In such a way, the same program suits different contexts, adapting to different

requirements and network conditions.

285

Message Parser and Object Model. To define our object model, as well as

to implement the logic of message delimiting, serializing and deserializing, we

use Google Protocol Buffers [23], since it is more efficient than other text-based

abstract syntax notation languages as JSON and XML.

13

290

IoT Application. Atop the APRON architecture, the application can run ex-

ploiting the services offered by the architecture. Examples of these applications

are in Section 2. Among them, this paper presents an application of live au-

dio analytic where is present the concept of Transfer Learning, as described in

Section 6.295

NorthBound Interface. The application can communicate with the APRON

Architecture via the APIs that constitute the NorthBound Interface. All the

offered services are indeed accessed through the REST APIs, a standard de-

facto, which exposes the resources by using a uniform and predefined set of

stateless operations.300

Load and Failure Estimator. This component is the core of the architec-

ture as it provides the information required to perform the task migration. By

leveraging the methodology presented in Section 4, it computes the expected

average number of tasks and compares the current state to estimate the failure

rate. The load is redistributed proactively in order to prevent the failure, and,305

when the failure occurs, the tasks previously on the failed queue are migrated

to another agent.

Mission Planning Controller. The framework supports a class of controllers

to tailor the mission replanning rate R(t) of the network of IoT devices, e.g.,

drones. However, our architecture is modular and pluggable, hence it can be310

extended with other user-defined controllers. By controller, we do not mean

a Software-Defined Networking (SDN) controller, but feedback controller. We

already implemented some controllers herein presented, whose rate depends on

n̂(t) that denotes the estimated number of tasks currently into the network and

discussed in Section 4.315

Adaptive Naive (AN) controller. The replanning rate varies with the ratio be-

tween n̂(t) and ń that represents the desired number of tasks in the system at

the steady state, based to the following equation:

R(t+ 1) =
n̂(t)

ń
R(t) (6)

14

Adaptive Simple (AS) controller. The replanning rate varies with n̂(t) and n′

according to the following equation:

R(t+ 1) = k(n̂(t)− ń) (7)

where k is the gain term.

Adaptive Additive and Multiplicative (AAM) controller. The replanning rate

varies with ñ and m̂ that are number of completed tasks and estimated number

of tasks missing the deadline at time t, respectively:

R(t+ 1) =

k
m̂(t)
ñ(t)+1 m̂/(ñ+ 1) > 0

−α otherwise

(8)

where α is a positive constant.

Customizable controller. Aside from the provided strategies that the architec-

ture is equipped with, the replanning rate can follow other policies defined by

the user, for example via the NorthBound Interface.320

6. Drone-sourced live audio analytic

By exploiting the management layer aforementioned, it is possible to develop

applications with resilient drone mission execution in challenged networks. We

implemented a novel application in the context of disaster response scenario,

where a distributed set of drones is managed in a straightforward way.325

Specifically, humans control the swarm of drones to monitor the area after a

disaster. The drones continuously record the audio of the environment sending it

to the GCS. This machine processes the received audio, and if a human presence

is detected, it sends the approximated human location to the drone. The task

of the drone is hence reaching the specified position so that it is possible for the330

human to help survivors if necessary. When drones are used to predict and assess

disaster [24] or supply emergency commodities [25] to survivors, operations must

proceed as quickly and efficiently as possible. The heavy computation of feature

extraction and audio processing, which is based on Neural Networks(NNs), is

15

Ground Control
System (GCS)

Drone Fleet

Monitoring

Audio Processing

Personal Device

Feature Extraction

Video ProcessingAction Selection Audio Processing

Feature Extraction

Figure 4: Overview of the drone system realized exploiting the APRON underlying archi-

tecture. The computation is offloaded to the Ground Control System (GCS) that performs

computationally intensive task.

hence performed by a powerful machine, and the drone agent just records the335

audio and executes the specific commands.

In addition, the user may control a specific drone using speech instead of a

computer or a physical drone controller. The human speaks directly to the per-

sonal device, where an application utilizes Natural Language Processing (NLP)

and Natural Language Understanding (NLU) techniques to discover the intent340

behind users’ words. NLU is instrumental in this process because it allows the

user to speak conversationally to the program rather than memorize specific

commands that are trivially passed on to the drone. These benefits are most

observable when there are multiple kinds of drones that need to coordinate to

solve a single mission. The personal device, e.g., mobile phone, elaborates it345

and sends the proper commands to the selected drone. When the drone receives

the instructions, it starts a new task to perform the requested operation.

Figure 4 sketches the main components of the system, highlighting the func-

tionalities of the elements. The whole fleet is managed by the operator who can

easily instruct drones, fundamental in challenged networked environments, such350

as in response missions following a natural disaster.

16

These situations also require resilient mission systems to manage tasks in

case of failure. However, this complex supervision is hidden from the human

that can only focus on the execution of high-level jobs. On the other hand,

the management layer ensures a resilient distributed system by monitoring and355

estimating the failures for each network component. When failures occur, tasks

running or queued on the damaged node are reassigned to a new agent, and the

user is notified of the update and the estimated effects.

This level of abstraction facilitates the rising of resilient IoT applications.

In the next subsection, we describe the audio processing needed by a disaster360

response application; however, edge computing applications that can benefit

from this processing are not limited to the presented application.

6.1. Human Activity Detector

As a use case, we implemented a binary classifier that predicts the human-

nature of an audio file. We decided to adopt a transfer learning technique365

because it can speed up the time it takes to develop and train a model by

reusing the knowledge of a complex model extensively trained on a comprehen-

sive dataset. This helps speed up the model training process and accelerate

results. Our use case does not strictly require online training, but it can be

implemented in our architecture thanks to the benefit of transfer learning. We370

have also studied the work required to train a model to prove that online train-

ing is possible. We trained our model on the ESC-50 dataset [26], a collection of

2000 environment recordings. This dataset consists of five-seconds-long record-

ings organized into 50 semantical classes (with 40 examples per class) arranged

into five major categories. Among these categories, the one labeled as ”Human,375

non-speech sounds”, represents the set of audio files that should be recognized

by a drone when it is monitoring a disaster scene. Instead, the other classes

refer to animals, natural and water sounds, domestic sounds, and urban noises.

We address the limited size of our dataset and the complexity of audio data

by utilizing the concept of transfer learning. This technique aims to improve a380

learner from one domain by transferring knowledge from a related domain. We

17

choose VGGish [27] as our pre-trained model, a Convolutional Neural Network

trained on Audio Set [28]. Audio Set is a dataset of generic audio events released

in 2017, comprising an ontology of 632 audio event categories and a collection of

1,789,621 labeled ten-seconds-long excerpts from YouTube videos. VGGish is a385

variant of the VGG model, a model used for large-scale image classification. We

chose this model because it is trained on a dataset that comprehends most of the

classes that are present in the ESC-50 dataset. Then, the knowledge acquired

by the VGGish model during its training is useful to generate an internal rep-

resentation of the audio data that is employed by our final model. The changes390

to this model concern the input size, to make it suitable for audio features, and

the final portion of the model: the last group of convolutional layers has been

dropped, and a 128-wide fully connected layer acts as a compact embedding

layer at the very end of the model.

We use VGGish as part of a bigger model: we append a set of convolutional395

layers on top of it, and we train them on the ESC-50 dataset.

7. Evaluation Results

In this section, we evaluate the performance of our solution with the develop-

ment of a C++ event-driven simulator able to run in every machine. Throughout

this evaluation, we consider the use case of a networked fleet of drones deployed400

to accomplish a mission, constituted by a set of actions ordered by the GCS.

Examples of these actions can be geo-locations to reach in order to explore the

area via camera and microphone, sending the streaming that will be elaborated

to locate survivors in disaster response. Each drone receives the instructions

and tries to execute them; at the same time, it determines whether migration405

is necessary by computing a threshold. This value is estimated by using our

Jackson network model and triggers the migration of tasks on board. To this

end, all agents cooperate to complete the assigned jobs in the shortest possible

time. We summarize in Table 1 the configuration parameters utilized during

the following evaluation, where the default values are reported in bold.410

18

Table 1: Parameters setting.

Parameter Values

Number of nodes 10, 50, 100, 150

Nodes’ Average Distance [m] 1, 2, 3, 5, 10

Node failure [%] 0, 10, 50, 90

Number of Trials 30

Confidence Interval [%] 90

10 50 100 150
Number of drones, Q

0

500

1000

1500

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
[s

] No Migration
Random
Closest

(a)

1 2 3 5 10
Task’s Average Distance, [m]

0

500

1000

1500

2000

2500

3000

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
[s

] No Migration
Random
Closest

(b)

0 10 50 90
Node Failure, %

0

200

400

600

800

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
[s

] Random
Closest

(c)

Figure 5: Task completion time of a fleet of drones using APRON with different replanning

policies: (i) no task migration, (ii) random task migration, (iii) closest task migration. The

graphs represent the task completion time at different conditions: (a) number of drones, (b)

task distance, (c) percentage of node failures.

We run experiments on a fleet of different sizes, namely consisting of 10, 50

100, or 150 drones. Tests also consider varying the average distance between

two consecutive geo-location needed to be visited by a drone, which has been

1, 2, 3, 5, or 10 meters. Moreover, we evaluate the performance in case of three

distinct task migration policies: (i) no replanning (task migration): agents in the415

system do not cooperate, but each one tries to accomplish all and only the tasks

in its own queue; (ii) random task replanning: when an agent’s queue exceeds

a set threshold, the next drone which will receive the tasks in excess is selected

randomly; (iii) closest task replanning: when an agent’s queue overcomes the

threshold, the system reassigns its tasks to the closest node. In case there are420

19

10 50 100 150
Number of drones, Q

0.0

0.1

0.2

0.3

0.4

N
um

be
ro

fC
om

pl
et

ed
Ta

sk
s,

X
10

4

% fail = 10
% fail = 50
% fail = 90

(a) Random Policy

10 50 100 150
Number of drones, Q

0.0

0.2

0.5

0.8

1.0

N
um

be
ro

fC
om

pl
et

ed
Ta

sk
s,

X
10

4

% fail = 10
% fail = 50
% fail = 90

(b) Closest Policy

Figure 6: The graphs depicts the endurance, i.e., number of completed tasks before the first

failure, for (a) random policy, and (b) closest policy.

two or more agents at the same distance from the task, the destination node

is the one with fewer tasks in its queue; ties are split at random if two queues

have the same number of tasks.

The results demonstrate how this framework is an effective tool for the

policy-based reallocation problem. A few observation can be deducted from425

Figures 5 - 6 - 7 regarding the overall system performance: (1) Task migration

policies show shorter mission completion time. As can be seen in Figure 5a,

the enforcement of (any) reallocation policy permits the agents to terminate

their tasks in a shorter time. Both migration policies, i.e., random and closest

policy, exploit all the available agents without overloading them. In particular,430

the advantage of the migration policies is higher when the number of nodes in

the topology increases because tasks can be managed by more drones. (2) The

closest agent policy achieves lower completion time with respect to the random

task replanning policy. Figure 5a-b-c exhibit that the closest migration policy

provides better performance taking advantage of all agent geo-location, hence435

a more efficient mission plan. The advantages of the closest policy are even

larger in case of failures, as demonstrated in Figure 5c. This confirms how the

selection of the closest agent produces lower completion time than the migration

of the task to a random one. Nonetheless, when the percentage of failures is

high, the two policies exhibit similar results. Evidence for this is in the same440

Figure 5c, since the confidence intervals of the two policies are slightly over-

20

0 10 50 90
Node Failure, %

0

20

40

A
vg

.k
B

se
nt

pe
rn

od
e Random

Closest

(a)

0 10 50 90
Node Failure, %

0

200

400

600

Ta
sk

C
om

pl
et

io
n

Ti
m

e,
[s

]

Apron
Hap

(b)

Figure 7: (a) Bytes exchanged per node for increasing number of agents in the network. (b)

Comparison with different architectures, in terms of time to complete tasks.

lapped.(3) The task completion time decreases with the agent travel distance.

As expected, by increasing the average distance among two consecutive tasks,

the completion time increases as well, as shown in Figure 5b. (4) The completion

time increases when the drone failure increases. As evident from the Figure 5c,445

when the number of available drones decreases, fewer agents are available for

completing the tasks, therefore the queue’s size increases, leading to an increase

of the time to complete the tasks. (5) The number of failures does not affect the

performance when the number of drones is reasonably low. The evaluation of the

number of tasks accomplished before the failure of the first task shows that the450

performance does not significantly change when the number of drones is lower

than 100. In fact, the points of the random policy for a small Q (Figure 6a)

have the same order of the corresponding values obtained with the closest policy

(Figure 6b). (6) The improved performance of closest policy involves a larger,

yet reasonable, amount of messages exchanged. Figure 7a shows the messages455

exchanged in a centralized configuration, where the controller receives infor-

mation from the agents about their status and location. For the closest task

migration, more frequent packets are sent to the controller compared to the

random policy, respectively every 2 seconds and every 4 seconds.

Furthermore, we compared APRON against HAP [13], a solution aiming to460

anticipate failures at the planning level by establishing close feedback between

the high-level planning based on Markov Decision Processes (MDP) and the

execution level learning capable adaptive controllers. This model is used for

21

replanning to account for failures and degradation. We report in Figure 7b the

time to complete tasks for the two algorithms (closest policy for APRON) at465

varying the percentage of failures, when 50 drones are utilized. We can notice

how APRON can shorten completion time w.r.t. HAP, due to its ability to

control a large number of agents. On the other hand, HAP can tackle more

complex environments, but at the cost of a more complex model to threat.

7.1. Audio Detector Accuracy470

Part of our contribution is the development of an audio speech detector

to detect the presence of possible survivors after a disaster. To evaluate the

performance of each classifier, we plot the ROC curve, a standard tool used for

visual comparison, which shows the trade-off between the true positive and the

false positive rate. The area beneath the ROC curve measures the accuracy of475

the model. A model with perfect accuracy would have an area of 1.0, while a

model closer to the diagonal is less accurate.

A key requirement for an audio surveillance system is the ability to de-

tect events of interest, even in the presence of different background sounds

at different energy levels. In order to address this problem, we have selected480

a dataset where environmental recordings are available in a unified format, 5-

second-long clips, 44.1 kHz [26]. The ESC-50 dataset consists of 2000 labeled en-

vironmental recordings equally balanced between 50 classes (40 clips per class),

grouped in 5 loosely defined major categories (10 classes per category): animal

sounds, natural soundscapes, and water sounds, human (non-speech) sounds,485

interior/domestic sounds, exterior/urban noises. This dataset has been exten-

sively studied in the literature [29, 30, 31], hence a comparison among different

proposed classifiers is straightforward and one of the main advantages of such a

dataset.

To reflect the real scenario, the classes are not balanced, rather the number490

of samples for the Human sounds class is less than the samples for the Non-

Human sounds. Due to the underlying class distribution, we cannot simply

compute the accuracy to check the correctness of results. Thus, we employ

22

RF k-NN Bagging DNNs Tran-DNNs
0.00

0.25

0.50

0.75

1.00
A

U
C

(a)

RF k-NN Bagging DNNs Tran-DNNs
0

100

200

300

Ti
m

e
(s

)

(b)

Figure 8: The graphs shows the advantages of Transfer Learning usage in terms of (a) training

time and (b) AUC of the classifier.

Receiver Operating Characteristics (ROC) curve and Area Under the Curve

(AUC) metrics to measure the accuracy of algorithms. Specifically, AUC is495

the probability that a classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative example. It tells how much the model

is capable of distinguishing between classes, and the higher AUC, the better the

model is at predicting 0s as 0s and 1s as 1s.

Over such a data set, we compared several classifiers: Random Forest Clas-500

sifier (RF), k-Nearest Neighbors (KNN), Bagging Classifier, Deep Neural Net-

works (DNNs). These classifiers are compared against a DNNs enriched with

Transfer Learning (Tran-DNNs). Two models are combined for the classifica-

tion problem, where the first model applied was already trained on a different

dataset. VGGish [27] is our pre-trained model, which outputs an array of 128505

values for each second of the file audio. These features are the input of our

model, which can now receive less but more meaningful information about the

original audio. In figure 8a we demonstrate how this approach can provide a

higher AUC compared to other methods where the Transfer Learning is not

applied. Although the pre-trained model was validated on different data, it is510

extremely useful in pre-processing the audio file and providing a set of features

that simplify further processing. As shown in the graph, the transferred DNNs

achieves an improved AUC w.r.t. the same DNNs without the usage of the prior

model.

23

The number of hidden layers and the number of neurons of DNNs and Tran-515

DNNs is obtained via cross-validation. The optimal configuration is composed

of 3-layers with 128-128-64 neurons, where the output is a binary representation

where “0” means “Human sound”, “1” otherwise. We can hence conclude that

by using Transfer Learning, we can use a simple network for the classification

problem.520

The second benefit brought by the transfer learning technique is the training

time reduction, as can be seen in Figure 8b. Results refer to a training process

performed on Ubuntu, Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz. The model

receives as input a simpler version of features, with a reduced dimensionality but

higher meaningfulness. The transferred model does not need to be re-trained,525

but produces as output an effective set of features, that are the input of the new

classifier.

This demonstrates how Transfer Learning can be used to saving time or

getting better performance, achieving the same performance of other methods

in a shorter amount of time. The same model (DNNs), if applied in conjunction530

with a transferred model, provides higher accuracy and in a shorter amount of

time. The training time of the standard model is indeed more than five-times

the time for the model in the Transfer Learning case.

7.2. Noise Reduction

The task of audio detection also entails a noise reduction processing, which535

is crucial for mitigating the noise originated by the drone rotors. To treat this

aspect, we evaluate performance over a dataset where the background noise is

prominent, similarly to the audio recorded by drones. The data are publicly

available at [32]. Although these samples are not obtained directly from drones,

this dataset is of great value, due to the similar context wherein the events are540

generally mixed with a complex background. Moreover, the availability of the

source makes the reproducibility easier. The set comprises three classes, namely

glass breaking, gun shots, and screams, for a total of 6000 events. Further, these

events are available at 6 different values of signal-to-noise ratio (namely 5dB,

24

RF k-NN Bagging DNNs Tran-DNNs
0.00

0.25

0.50

0.75

1.00
A

U
C

(a)

RF k-NN Bagging DNNs Tran-DNNs
0

100

200

300

Ti
m

e
(s

)

(b)

Figure 9: The graphs show the (a) training time and (b) AUC of the classifier applied after

a noise redaction processing that is needed to mitigate the effect of drone rotors noise. The

figures point out advantages of Transfer Learning usage.

10 50 100 150
Number of drones, Q

0

20

40

60

80

L
os

tt
as

ks
,%

with APRON
without APRON

(a)

1 2 3
Task average distance, [m]

0

10

20

30

L
os

tt
as

ks
,%

with APRON
without APRON

(b)

0 10 50 90
Node failure, %

0

20

40

60

80

100

L
os

tt
as

ks
,%

with APRON
without APRON

(c)

Figure 10: Comparison of application performance using the closest task migration replanning

policies. The graphs represent the percentage of lost tasks when 500 tasks are completed at

different conditions: (a) number of drones, (b) task distance, (c) percentage of node failures.

10dB, 15dB, 20dB, 25dB and 30dB).545

Figure 9 shows how the Transfer Learning approach is beneficial also when a

pre-processing for reducing the effect of drone rotors noise is applied. After the

filter for removing such audio noises is applied, the classifier is trained to cor-

rectly detect the scream class. In this case, the training time encompasses the

filtering process too, leading to an increased time compared to Figure 8b. How-550

ever, the advantages brought by Transfer Learning are even more pronounced

than in Figure 8, where the effects of noise were neglected.

7.3. Application Advantages

In addition to the estimation of the system performance and the compar-

ison of different policies of APRON, we evaluate the tangible benefits for an555

25

edge computing application. We tested specifically the proposed application

(Section 6), in cases where APRON is deployed and not. In this scenario, the

drones are performing the task of reaching a geo-location as in the previous

examples, and the audio recording task in the background. The adverse condi-

tions of challenged networks impose to face tasks that are lost because the node560

that was hosting them failed. The system is able to reassign these tasks, but

the delay perceived by the user drastically increases. For this reason, a layer

such as APRON is effective in mitigating the effects upon a failure. Figure 10

highlights the main 2 advantages of APRON: (i) efficient fault response, (ii)

accurate failure estimation; the management layer offered by APRON allows a565

smaller number of lost tasks in different scenarios. The presence of APRON is

evident especially in critical conditions, i.e., high percentage of node failures,

a high number of drones to control. On the other hand, the distance between

nodes does not notably affect the number of completed tasks.

8. Related Work570

Delivering adaptive and resilient to failures services is crucial in almost every

IoT network, especially for robotics and drones fleet. To tackle this problem,

several solutions have been proposed due to the relevance of the problem and the

many scenarios affected. We describe a few representative solutions to clarify

our contributions to the resilient task planning problem, as well as equivalent575

audio processing applications.

IoT at the edge. The proliferation of IoT devices led to the generation of

a massive amount of data. The processing of collected data and the decisions

making could be performed onboard, but this approach inevitably drains the

battery of the IoT device. On the other hand, central cloud servers are inefficient580

at handling all the collected data because of limited computing, communication,

storage, high overall energy, and, most importantly, latency. To better address

this problem, recent solutions have proposed the offloading of data processing at

the edge of the network. The proximity to the IoT devices is the key enabler of

26

several advantages such as low and predictable latency, reduction of bandwidth585

consumption, context awareness.

When an edge computing service is deployed, several challenges have to

be faced, such as the implementation of an offloading strategy to efficiently

distribute the workload in the system, handle the mobility (or communication

disconnection) while reliable cooperation is guaranteed [33, 34, 35]. In this590

context, the drone itself may be considered as a fog node.

Resilient and Adaptive IoT Systems. Critical applications and the sur-

rounding environment can be affected by problems, e.g., interference, medium

access conflicts, multipath fading, shadowing, which can cause significant packet

losses. More specifically, the disaster response scenario is tied to edge offloading595

and its effectiveness is crucial for some applications. We could mention the real-

time video conferencing with the incident commander featuring face recognition

of disaster victims [36], or the detection of children in an attempt to reunite them

with their guardians [37], whereas virtual beacons can be mainly used to track

their location. In this scenario, the reliability is essential for the effectiveness600

of the applications [38]. [39] and [13] focus on the prediction of failures, where

the former applies a Bayesian-inference probabilistic for the computation of the

estimate failure probability in case of monitored batteries. In the latter, the au-

thors present close feedback between the high-level planning based on Markov

Decision Processes (MDP) and the execution level learning-focused adaptive605

controllers. By exploiting this feedback, the framework anticipates the failures

and reassesses vehicle capabilities after the failures. This proactive behavior al-

lows an efficient replanning to account for changing capabilities. However, our

solution does not predict the failure of links or agents, but it computes a close

form of the average number of tasks in a mission, that can be used to adapt to610

the situation of the system.

Moreover, the adaptability and the persistence of distributed IoT systems

can exploit decentralized approaches [11, 12, 40, 13]. In [41] the authors faced

the problem of task allocation and scheduling over a heterogeneous team of hu-

man operators and robotic agents. The human operator acts as the centralized615

27

component that interacts with unmanned agents. Operator, vehicle, and task

are selected according to a multi-objective optimization function that depends

on a reward assigned when the task is completed, the cost of the vehicle to

perform the task, and the cost of the operator to supervise the task assignment.

As in [41], our solution can also be used to distribute workload efficiently among620

agents, but our predictive system is based on a Jackson network approach. Our

solution is indeed agnostic to the agent architecture and can manage both cen-

tralized and distributed management approaches.

Prediction with a network of queues. The network services have also been

studied for shared (peer-to-peer) storage networks, with the aim of checking625

the robustness. For example, a theoretical control approach to modeling and

predicting data availability through redundancy is proposed in [42]. New re-

dundant fragments need to be introduced in order to ensure a given level of

availability in the event of storage node failures.

Inspired by [42], we leverage a network queuing model to estimate objects630

(tasks) that will temporarily or permanently disappear from the agent’s (peer to

peer) network; however, our failure prediction model is different, as we model

an agent failure and the reassignment of its task with a Jackson network of

queues [19].

Machine Learning for Audio Detection. A key assumption for machine635

learning and data mining algorithm is that the training data must be in the same

feature space and have the same distribution of the predicted data. However, in

certain real-world scenarios, this assumption does not hold. Indeed, collecting

the needed training data that provide the characteristics of the test data can

be difficult and expensive. Thus, related data is usually added to the dataset640

to prevent this problem, but the difference in data affects the prediction of the

learner. In such cases, transfer learning techniques would greatly improve the

performance of the model avoiding many expensive data-labeling efforts [43].

Recent research has widely studied the effectiveness of transfer learning

applied to image classification. Moreover, many pre-trained models ready to645

be used for knowledge transfer are available. For example, Keras, one of the

28

most popular deep learning library, provides model definitions and pre-trained

weights for many popular architectures, such as VGG16 [44], ResNet50 [45],

Xception [46], MobileNet [47], and more.

However, the success of transfer learning applied to the image domain has650

not been ported to the audio domain, due to the complexity of the latter. Audio

signals contain many more features compared to static images. Thus, only a

few complex pre-trained models are available to the research community, and

mostly they are an adaption of popular models for image recognition, such

as VGGish [27]. For this reason, knowledge transfer has not been extensively655

employed in this field, and most of the studies revolve on Music Information Re-

trievial [48, 49, 50] rather than audio classification. In fact, sound detection has

its own uniqueness, which makes it hard to apply and port among different use

cases. Nevertheless, some attempts in voice recognition fields provide very good

results, as in [51] where the spherical k-means algorithm for feature learning is660

adopted for audio signals. Xu et al. presented an interesting work about the

detection of semantic events in soccer video by applying a heuristic mapping.

This is done by means of audio keywords, created from low-level audio features

by using support vector machine learning.

9. Conclusion665

This paper exposes a novel edge computing application which, leveraging

Machine Learning algorithms, is able to detect the presence of humans in disas-

ter scenarios. To speed up the computation and guarantee acceptable reliability

of the application, we also deployed a management architecture whose goal is to

re-plan tasks in the presence of challenged edge networks. Such a layer leverages670

Jackson’s network queues model to estimate the number of tasks, queued or in

execution. Thus, the application can determine the instantaneous utilization

of each IoT device, and the mean queuing time (both waiting and execution

time) for each task to be executed or offloaded to the edge of the network. Our

results demonstrate how this management layer is an effective tool for policy675

29

programmability of the mission re-planning problem for any IoT device deployed

in challenged networked environments. Furthermore, the time for the audio pro-

cessing is reduced when the underlying service is running, since the application

atop can exploit functionalities able to improve the overall performance of the

system.680

Acknowledgement

This work has been partially supported by NSF under Award Numbers

CNS1647084, CNS1836906, and CNS1908574.

References

[1] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, A survey on mobile685

edge computing: The communication perspective, IEEE Communications

Surveys & Tutorials 19 (4) (2017) 2322–2358.

[2] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A

survey, IEEE Internet of Things Journal 5 (1) (2017) 450–465.

[3] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, Z. Oraibi,690

Agra: Ai-augmented geographic routing approach for iot-based incident-

supporting applications, Future Generation Computer Systems 92 (2019)

1051–1065.

[4] A. V. Ventrella, F. Esposito, L. A. Grieco, Load profiling and migration

for effective cyber foraging in disaster scenarios with formica, in: 2018 4th695

IEEE Conference on Network Softwarization and Workshops (NetSoft),

IEEE, 2018, pp. 80–87.

[5] N. H. Motlagh, T. Taleb, O. Arouk, Low-altitude unmanned aerial vehicles-

based internet of things services: Comprehensive survey and future perspec-

tives, IEEE Internet of Things Journal 3 (6) (2016) 899–922.700

30

[6] K. Coleman, F. Esposito, R. Charney, Speeding up children reunification

in disaster scenarios via serverless computing, in: Proceedings of the 2Nd

International Workshop on Serverless Computing, WoSC ’17, 2017, p. 5.

[7] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, F. Esposito, Reunify-

ing families after a disaster via serverless computing and raspberry pis, 2018705

IEEE International Symposium on Local and Metropolitan Area Networks

(LANMAN) (2018) 131–132.

[8] R. L. Charney, T. Rebmann, F. Esposito, K. Schmid, S. Chung, Separated

after a disaster: Trust and privacy issues in sharing children’s personal

information, Disaster medicine and public health preparedness (2019) 1–8.710

[9] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, F. Esposito, Reuni-

fying families after a disaster via serverless computing and raspberry pis,

in: 2018 IEEE International Symposium on Local and Metropolitan Area

Networks (LANMAN), IEEE, 2018, pp. 131–132.

[10] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall,715

H. Weiss, Rfc 4838, delay-tolerant networking architecture, irtf Dtn re-

search group 2 (4) (2007) 6.

[11] J.-S. Marier, C. A. Rabbath, N. Léchevin, Health-Aware Coverage Control

With Application to a Team of Small UAVs, IEEE Transactions on Control

Systems Technology 21 (5) (2013) 1719 – 1730.720

[12] N. K. Ure, G. Chowdhary, Y. F. Chen, M. Cutler, J. P. How, J. Vian,

Decentralized learning-based planning for multiagent missions in the pres-

ence of actuator failures, in: 2013 International Conference on Unmanned

Aircraft Systems (ICUAS), IEEE, 2013, pp. 1125–1134.

[13] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, J. Vian, Health aware725

planning under uncertainty for uav missions with heterogeneous teams, in:

2013 European Control Conference (ECC), IEEE, 2013, pp. 3312–3319.

31

[14] H.-L. Choi, L. Brunet, J. P. How, Consensus-based decentralized auctions

for robust task allocation, IEEE transactions on robotics 25 (4) (2009)

912–926.730

[15] A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, S. Gurura-

jan, Apron: an architecture for adaptive task planning of internet of things

in challenged edge networks, in: 2019 IEEE 8th International Conference

on Cloud Networking (CloudNet), IEEE, 2019, pp. 1–6.

[16] Robotic Operating System, http://www.ros.org/, online.735

[17] Donato Di Paola, The multi-agent robotic simulator (mars)

https://github.com/donatodipaola/mars , online.

[18] M. Satyanarayanan, A brief history of cloud offload: A personal journey

from odyssey through cyber foraging to cloudlets, GetMobile: Mobile Com-

puting and Communications 18 (4) (2015) 19–23.740

[19] J. R. Jackson, Networks of waiting lines, Operations research 5 (4) (1957)

518–521.

[20] K. S. Trivedi, Probability and statistics with reliability, queuing, and com-

puter science applications, Vol. 13, Wiley Online Library, 1982.

[21] J. Day, I. Matta, K. Mattar, Networking is ipc: a guiding principle to a745

better internet, in: Proceedings of the 2008 ACM CoNEXT Conference,

2008, pp. 1–6.

[22] I. Seskar, K. Nagaraja, S. Nelson, D. Raychaudhuri, Mobilityfirst future

internet architecture project, in: Proceedings of the 7th Asian Internet

Engineering Conference, 2011, pp. 1–3.750

[23] Google Protocol Buffers, http://code.google.com/apis/protocolbuffers,

online.

32

[24] M. Erdelj, E. Natalizio, K. R. Chowdhury, I. F. Akyildiz, Help from the

sky: Leveraging uavs for disaster management, IEEE Pervasive Computing

16 (1) (2017) 24–32.755

[25] S. Chowdhury, A. Emelogu, M. Marufuzzaman, S. G. Nurre, L. Bian,

Drones for disaster response and relief operations: a continuous approx-

imation model, International Journal of Production Economics 188 (2017)

167–184.

[26] K. J. Piczak, Esc: Dataset for environmental sound classification, in: Pro-760

ceedings of the 23rd ACM international conference on Multimedia, 2015,

pp. 1015–1018.

[27] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke, A. Jansen, R. C.

Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, et al., Cnn ar-

chitectures for large-scale audio classification, in: 2017 IEEE International765

Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,

2017, pp. 131–135.

[28] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.

Moore, M. Plakal, M. Ritter, Audio set: An ontology and human-labeled

dataset for audio events, in: 2017 IEEE International Conference on Acous-770

tics, Speech and Signal Processing (ICASSP), IEEE, 2017, pp. 776–780.

[29] A. Kumar, M. Khadkevich, C. Fügen, Knowledge transfer from weakly la-

beled audio using convolutional neural network for sound events and scenes,

in: 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), IEEE, 2018, pp. 326–330.775

[30] Y. Tokozume, Y. Ushiku, T. Harada, Learning from between-class examples

for deep sound recognition, arXiv preprint arXiv:1711.10282.

[31] R. N. Tak, D. M. Agrawal, H. A. Patil, Novel phase encoded mel filterbank

energies for environmental sound classification, in: International Confer-

33

ence on Pattern Recognition and Machine Intelligence, Springer, 2017, pp.780

317–325.

[32] P. Foggia, N. Petkov, A. Saggese, N. Strisciuglio, M. Vento, Reliable de-

tection of audio events in highly noisy environments, Pattern Recognition

Letters 65 (2015) 22–28.

[33] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris, J. Henkel, Com-785

putation offloading and resource allocation for low-power iot edge devices,

in: IEEE 3rd World Forum on Internet of Things, IEEE, 2016, pp. 7–12.

[34] M. Chiang, T. Zhang, Fog and iot: An overview of research opportunities,

IEEE Internet of Things Journal 3 (6) (2016) 854–864.

[35] C. Puliafito, E. Mingozzi, G. Anastasi, Fog computing for the internet of790

mobile things: issues and challenges, in: IEEE International Conference on

Smart Computing, IEEE, 2017, pp. 1–6.

[36] H. Trinh, D. Chemodanov, S. Yao, Q. Lei, B. Zhang, F. Gao, P. Calyam,

K. Palaniappan, Energy-aware mobile edge computing for low-latency vi-

sual data processing, in: 2017 IEEE 5th International Conference on Future795

Internet of Things and Cloud (FiCloud), IEEE, 2017, pp. 128–133.

[37] S. Chung, C. Mario Christoudias, T. Darrell, S. I. Ziniel, L. A. Kalish, A

novel image-based tool to reunite children with their families after disasters,

Academic emergency medicine 19 (11) (2012) 1227–1234.

[38] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, In-800

ternet of things: A survey on enabling technologies, protocols, and appli-

cations, IEEE Communications Surveys & Tutorials 17 (2015) 2347–2376.

[39] J. Yu, State-of-health monitoring and prediction of lithium-ion battery us-

ing probabilistic indication and state-space model, IEEE Transactions on

Instrumentation and Measurement 64 (11) (2015) 2937–2949.805

34

[40] S. S. Ponda, H.-L. Choi, J. P. How, Predictive planning for heterogeneous

human-robot teams, in: AIAA Infotech@Aerospace Conference, 2010, p.

3349.

[41] C. J. Shannon, L. B. Johnson, K. F. Jackson, J. P. How, Adaptive mission

planning for coupled human-robot teams, in: American Control Conference810

(ACC), 2016, IEEE, 2016, pp. 6164–6169.

[42] A. Duminuco, E. Biersack, T. En-Najjary, Proactive replication in dis-

tributed storage systems using machine availability estimation, in: Pro-

ceedings of the 2007 ACM CoNEXT conference, 2007, pp. 1–12.

[43] S. J. Pan, Q. Yang, A survey on transfer learning, IEEE Transactions on815

knowledge and data engineering 22 (10) (2009) 1345–1359.

[44] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-

tion, in: The IEEE Conference on Computer Vision and Pattern Recogni-820

tion (CVPR), 2016, pp. 770–778.

[46] F. Chollet, Xception: Deep learning with depthwise separable convolutions,

in: The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 1251–1258.

[47] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,825

M. Andreetto, H. Adam, Mobilenets: Efficient convolutional neural net-

works for mobile vision applications, arXiv preprint arXiv:1704.04861.

[48] P. Hamel, M. E. P. Davies, K. Yoshii, M. Goto, Transfer learning in mir:

Sharing learned latent representations for music audio classification and

similarity, in: 14th International Conference on Music Information Re-830

trieval (ISMIR ’13), 2013, pp. 9–14.

35

[49] A. Van Den Oord, S. Dieleman, B. Schrauwen, Transfer learning by su-

pervised pre-training for audio-based music classification, in: Conference

of the International Society for Music Information Retrieval (ISMIR 2014),

2014, p. 6.835

[50] K. Choi, G. Fazekas, M. Sandler, K. Cho, Transfer learning for music clas-

sification and regression tasks, arXiv preprint arXiv:1703.09179.

[51] J. Salamon, J. P. Bello, Unsupervised feature learning for urban sound

classification, in: 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2015, pp. 171–175.840

36

