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Fretting wear of bolted joint interfaces
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Abstract: Under vibration loading, fretting wear between bolted joint interfaces may change the 

dynamic characteristics of structures. Even the reliability of long-lasting assembly structures could be 

affected. This paper focuses on an experimental study on the fretting wear behavior of bolted joint 

interfaces under tangential loading. A recently developed fretting test apparatus was used to measure 

the hysteresis loops and the bolt preload at different fretting wear cycles. Changes of tangential contact 

stiffness and friction coefficient were estimated from the measured hysteresis loops. Experimental 

results showed a large change in bolt preload, contact stiffness, and friction coefficient due to fretting 

wear. The effect of surface roughness on fretting wear behavior of bolted joint interfaces was discussed. 

A modified Iwan model, comprehensive of wear effects, was proposed to simulate the hysteresis loops. 

Comparison between simulations and experimental results was performed to validate the proposed 

method. Results achieved in this research can provide the basis for the dynamic analysis of long-lasting 

joint structures in which wear plays a fundamental role in modifying the contact parameters.
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1 Introduction

Bolted joints are widely used in mechanical assemblies. Connected parts are brought into contact 

by bolt preload and transmit tangential loads by dry friction. Under oscillating loading, the contact 

interfaces may undergo a relative motion with a small amplitude, which is referred to as fretting. There 

are two main drawbacks associated with fretting: fretting fatigue and fretting wear. Roughly speaking, 

fretting fatigue is associated with small relative displacements (micro-slip regime), whereas fretting 

wear involves large relative displacements (gross slip regime). Fretting fatigue of bolted joints is 

outside the scope of this article but it was studied in many papers[1-3]. The tangential friction force 

plotted as a function of the relative displacement between the contact surfaces give the hysteresis loop. 

This relationship exhibits a nonlinear behavior [4-6]. The area enclosed by the loop is the friction-

induced energy dissipation.

Increasing fretting wear cycles leads to material removal and change in interface topography. 

Therefore, the contact behavior is modified because the contact stiffness and the friction-induced 

damping varies with the fretting wear cycles. These changes significantly affect the dynamic 

characteristics of joint structures [7-10]. At present, modeling fretting wear and its effects on the 

dynamics of mechanical systems is becoming a major challenge in the field of the jointed structures.

A very good understanding of the physical phenomena associated with fretting wear helps in 

modeling the behavior of joint interfaces. Yoon et al. [11] experimentally studied fretting wear in a 

spherical contact subjected to constant normal load and measured the evolution of hysteresis loops. 

The results revealed that the shape of hysteresis loops changed as a function of the number of fretting 

cycles: the amplitude of relative displacement gradually decreased and the tangential force at the gross 

slip stage increased. The dissipated energy per cycle increased in the first 500 cycles and then it 

levelled off. Other similar results can be found in the literature [12, 13]. Fantetti et al. [8] measured 

the hysteretic properties of a flat-on-flat contact pair and studied the effect of fretting wear on structural 

dynamics. They replicated the evolution of hysteresis loops using a modified Bouc-Wen model 

incorporating contact parameters evolution. Eriten et al. [14] investigated the effects of surface 

roughness and lubrication on hysteresis loops at the early stage of the fretting of bolted joints. They 

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118



found the surface roughness influenced the shape of fretting loops and dissipated energy per cycle. 

Lavella et al. [15-17] developed a flat-on-flat fretting test rig with high-temperature capability and 

studied the effect of temperature on wear behavior. The results showed a significant dependence of the 

hysteresis loops on the temperature. 

Two contact parameters, namely the friction coefficient and the tangential contact stiffness, can 

be used to replicate the hysteresis loop. Fretting wear can lead to significant changes in these 

parameters. Almost all experimental studies found that both the friction coefficient and contact 

stiffness rapidly increased during a running-in period [8, 11, 15, 18-23]. This trend was explained with 

the interlocking between protrusions and depressions on the contact surfaces [19, 20]. As the wear 

process continues, studies showed that the friction coefficient reached a peak, decreased and then 

levelled off [20-23]. Other studies showed that the friction coefficient increased approaching a steady 

state asymptote [8, 23]. Hintikka et al. [22] pointed out that the slight drop in the friction coefficient 

was caused by wear debris. A reason for the stabilization in contact parameters was the balance 

between generation and ejection of wear debris [8]. In addition, some works studied the effect of 

surface roughness and high temperature on the evolution of contact parameters with increasing wear 

[14, 15, 18, 21].

All the above-mentioned test cases had a constant normal load. This condition is different from 

what we can find in bolted joints in which fretting wear could vary the preload.

The objective of this work is to investigate the effect of fretting wear on the behavior of bolted 

joints. Fretting tests were performed to capture the evolution of hysteresis loops and of the associated 

contact parameters. Tests were carried out using a recently developed fretting test rig. To evaluate the 

effect of the bolt preload on the fretting behavior, the preload was monitored and recorded during each 

test. The effects of surface roughness and sliding amplitude on fretting response was studied as well. 

Moreover, a contact model was put forward to recreate hysteresis loops under different wear conditions. 

A novel modified Iwan model, comprehensive of wear effects, was developed to simulate the 

hysteresis loops. 

The aim of these analysis was to promote a better understanding of fretting wear behavior of bolted 

joint interfaces and to provide the modeling basis for the dynamic analysis of long-lasting joint 
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structures.

The paper is organized as follows. Section 2 briefly describes the fretting test apparatus used in 

this test campaign and details the wear test plan. Section 3 shows the evolution of measured hysteresis 

loops, bolt preloads and contact parameters with increasing wear cycles. The effects of surface 

roughness on wear evolution are also discussed. Section 4 models the evolution of contact parameters 

and develops a modified Iwan model to replicate the evolution of hysteresis loops. Section 5 discusses 

the experimental findings and highlights the reliability of the numerical method.
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2 Experimental Method

2.1 Description of the test apparatus

Experimental tests were conducted using the fretting test apparatus described in [24]. This rig was 

designed to study friction hysteresis behavior of bolted joint interfaces. Fig. 1 (a) Photographs of the 

test apparatus, (b) Sketch of the test apparatus and main components.Figure 1 shows the test apparatus 

and its main components. The joint is displaced by a piezoelectric actuator that moves one of the 

specimens, denoted as moving specimen, with an oscillating tangential displacement . This ∆𝑥

displacement induces a tangential friction force at the contact surfaces. This force is measured with a 

dynamic load cell located at one end of the other specimen, denoted as fixed specimen. The relative 

displacement is measured by a laser vibrometer whose beam is bent with a prism. The bolt preload is 

measured with a force washer. Additional details and an accurate description of the working principle 

of the rig can be found in [24]. The measured contact friction force and the relative displacement give 

the well-known hysteresis loops. Tangential contact stiffness and friction coefficient can be extracted 

post-processing these loops. 

Fig. 1 (a) Photographs of the test apparatus, (b) Sketch of the test apparatus and main components.

The piezoelectric actuator is closed loop controlled using a built-in strain gauge sensor and a 

position servo controller. This control ensures the stability of excitation during fretting wear tests. The 

force-displacement data were continuously measured during the fretting test to monitor the evolution 
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of hysteresis behavior. The tangential contact stiffness and the friction coefficient were extracted from 

the hysteresis loops. The evolution of the bolt preload with the number of wear cycles was also 

recorded as wear is one of the important reasons why the bolt preload is loosened [24-27].

2.2 Joint specimens

The bolted joint specimens are made of ASTM 304 stainless steel. The nominal contact region is 

a 20 mm×20 mm square excluding the 7 mm diameter through hole. In these tests the bolt was an 8.8 

M6. Figure 2 shows a photograph and a sketch of the bolted joint specimens. 

Fig. 2 (a) Photograph of the joint specimens, (b) Sketch of the joint specimens

Joint specimens were manufactured by wire cutting, which leads to a large roughness of the 

contact surface. The roughness was measured with a portable roughness profilometer. White lines in 

Fig. 2(a) show the measurement paths selected along the sliding direction. The measurement length 

was 4 and 2.4 mm on side and central lines, respectively. The average value of the measured roughness 

was regarded as the roughness of the contact surface.

Specimens were divided into two groups, differing for surface roughness. The contact surfaces of 

the first group were carefully hand-polished using two different grades of sandpaper (first 800 grit and 

then 1200 grit), leading to a roughness Ra of about 1 μm. The contact surfaces of the second group of 

specimens were not treated, and their roughness Ra was about 4 μm. Figure 3 shows photographs of 

rough (second group) and smooth (first group) surfaces.
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Fig. 3 Photograph of the contact surfaces and corresponding surface roughness , (a) rough surface: 𝑅𝑎

, (b) smooth surface: .𝑅𝑎 ≈ 4 μm 𝑅𝑎 ≈ 1 μm

2.3 Wear test plan

Four fretting tests were conducted using different couples of joint specimens. The average 

roughness of the contact surface of each test specimen is shown in Table 1. Two nominal tangential 

displacements, =50 μm and 40 μm, were applied to the contact surfaces. The maximum allowable ∆𝑥

nominal displacement ( =70 μm) on the piezoelectric actuator was not applied as an excessive ∆𝑥

temperature due to long-lasting work could damage the piezoelectric. 

Table 1 Roughness Ra of the joint specimens for the tests 1/2/3/4, unit in μm

Test 1 Test 2 Test 3 Test 4
Fixed specimen 4.34 0.78 4.27 0.81
Moving specimen 5.19 0.92 4.43 0.90

Tests were performed at a frequency of 25 Hz, that is far from resonance in the rig, as explained 

in [24]. The initial bolt preload was about 720 N for all tests, with a 5% scattering among different 

tests. This preload was chosen because it allowed to reach the selected excitation amplitudes and 

induce gross slip regime in the joint interface. Working in gross slip regime is a prerequisite for 

estimating the friction coefficients. Unlike the torque control method, this apparatus directly measures 

the preload using a force washer, so that the value of the preload can be controlled with great accuracy. 

The resulting nominal contact pressure was about 2 MPa. All tests were conducted at 25  and lasted ℃

12 hours (1.08 million wear cycles). Table 2 summarizes the test specifications and operating 

conditions. 

Data acquisition was performed with an in-house code written in LabVIEW 14.0. All forces and 
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displacements were sampled at 5 kHz, and no filtering was applied. It was impossible to record 100% 

of the data because of the limited memory of the hard disk compared with the large amount of measured 

data. Therefore, the following acquisition strategy was used: for the first 20 minutes, 1-second data 

every 5 seconds was recorded; from 20 to 90 minutes, 1-second data every 40 seconds was recorded; 

from 90 to 720 minutes, 1-second data every 200 seconds was recorded. 

Table 2 Summary of the wear test plan

Test 1 / Test 2 Test 3 / Test 4
Material Stainless steel Stainless steel
Roughness, Ra 4 μm / 1μm 4 μm / 1μm
Excitation amplitude, ∆𝑥 50 μm 40 μm
Excitation frequency, f 25 Hz 25 Hz
Bolt preload, Nb 720 N 720 N
Running time 12 hours 12 hours
Temperature 25 ℃ 25 ℃

Before and after each test, the specimens and the bolt were cleaned with alcohol in an ultrasonic 

bath for 30 min to minimize the effects of particles and machine oil on test results. After cleaning, 

microscopic images of contact surfaces were taken with a Leica S9D stereomicroscope. 
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3 Experimental results and discussion

Figure 4 illustrates an example of measured hysteresis loop. The area enclosed by the hysteresis 

loop represents dissipated energy per cycle. The hysteresis loop can be characterized using two contact 

parameters: tangential contact stiffness  and friction coefficient . The tangential contact stiffness 𝑘𝑡 𝜇

is determined by the slope of the force-displacement curve at the stick stage, , see the blue 𝑘𝑡 = ∆𝑇 ∆𝛿

line in Fig. 4. The friction coefficient is usually defined as the ratio between the tangential and the 

normal force during the gross slip regime. Results showed that the tangential force during the gross 

slip regime was not constant, as pointed out by the red lines in Fig. 4. This behavior is due to the 

residual stiffness that is caused by the bending of the bolt shank. A detailed analysis of the residual 

stiffness was done in [24]. Therefore, the friction coefficient was determined in a different way. The 

difference between the tangential force during the loading and unloading gross slip regime was ∆𝑇 =

. This difference is visualized as the distance between the two red lines in Fig. 4. 𝑇GS_load ‒ 𝑇GS_unload

In the difference , the contribution of the residual stiffness is cancelled. The friction coefficient can ∆𝑇

be defined as the ratio between  and twice the bolt preload, .∆𝑇 𝜇 = ∆𝑇 2𝑁𝑏

Fig. 4. Typical hysteresis loop and schematic of the contact parameters extraction method.

3.1 Evolution of hysteresis loops

Figure 5 shows the evolution of the hysteresis loops during one million wear cycles. The shape of 

hysteresis loops changed with increasing wear cycle. These changes were due to two main effects. The 

first effect was the modification of the contact surface and therefore of the friction coefficient and 

contact stiffness. The second effect was the variation of the bolt preload. Variation in the hysteresis 
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loops was more evident in tests 1 and 3 (specimens with high roughness) than in test 2 and 4 (specimens 

with low roughness). As a general trend, the tangential force at the gross slip stage gradually decreases 

with increasing the wear cycles. For tests 1 and 2, the average sliding strokes, namely twice the 

amplitude ,  were 36 μm; in test 3 30 μm and in test 4 the average stroke was 22 μm. Rough 𝛿 ∆𝐴

surfaces (tests 1 and 3) showed average sliding stroke more scattered than smooth surfaces (tests 2 and 

4). Figure 6 shows the normalized hysteresis loops, in which the tangential force was divided by the 

bolt preload. The general trend was reversed with respect to the behavior shown in Fig. 5 and the 

normalized tangential force increases with the wear cycles. The normalized tangential force is related 

to friction coefficient. It will be discussed in section 3.3.

An additional phenomenon can be observed in the tests. The force-displacement curve at the end 

of the gross slip stage exhibits a bulge – stiffness hardening – after about 0.1 million wear cycles. The 

higher the amplitude of the relative displacement, the more evident was the stiffness hardening. This 

phenomenon was observed in several wear experiments [15, 20, 23, 28, 29], but the physical reason 

was not fully understood yet. There are two possible explanations: (i) interaction among wear scars 

that are not present on the new contact surfaces and (ii) the bolt pinning effect, that is, the bolt shank 

getting in contact with the through hole.
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Fig. 5. Evolution of hysteresis loops with increasing wear, (a) Test 1: , (b) ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 4 μm

Test 2: , (c) Test 3: , (d) Test 4: ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 1 μm ∆𝑥 = 40 μm, 𝑅𝑎 ≈ 4 μm ∆𝑥 = 40 μm, 𝑅𝑎

. ≈ 1 μm
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Fig. 6. Tangential force versus bolt preload for different tests, (a) Test 1: , (b) ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 4 μm

Test 2: , (c) Test 3: , (d) Test 4: ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 1 μm ∆𝑥 = 40 μm, 𝑅𝑎 ≈ 4 μm ∆𝑥 = 40 μm, 𝑅𝑎

.≈ 1 μm

Figure 7 plots the evolution of the dissipated energy per cycle Ec as a function of the cumulative 

dissipated energy E. In tests 1 and 3, the dissipated energy per cycle decreased and then gradually 

stabilized. The dissipated energy in the final state is 42% and 25% of the initial value, respectively. In 

tests 2 and 4, the dissipated energy showed a short period of oscillation and then gradually reached a 

steady state. And the change in dissipated energy Ec was much lower. In test 2, the dissipated energy 

Ec in the final state was 84% of the initial value. In test 4, the dissipated energy Ec almost remained 

unchangeable after the initial oscillation. The dissipated energy per cycle in tests 2 and 4 (low 

roughness) was significantly larger than in tests 1 and 3 (high roughness), except for the first thousand 

cycles.
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Fig. 7. Dissipated energy per cycle for the different tests.

3.2 Evolution of bolt preloads

Wear tests are usually performed with a constant normal load [8, 15, 19, 29, 30]. Differently from 

standard test, in this work the normal load was not constant because the bolt preload varied with wear 

cycles. Figure 8 illustrates the variation of bolt preloads with the cumulative dissipated energy. In all 

tests, the bolt preloads showed a trend with a steep descent then it approached to an asymptotic steady-

state value. 
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Fig. 8. Bolt preloads for the different tests.

Tests performed in this work showed that in tests 1 and 3 the reduction in bolt preload was more 

than that in tests 2 and 4. Figure 9 depicts the percentage reduction in bolt preload, Pr=(Nb-initial - Nb-

end)/Nb-initial, where Nb-initial represents the initial value of the bolt preload, and Nb-end its final value. The 

preload reduction was more pronounced for the contact surfaces with higher roughness than for lower 

roughness. In test 3 the reduction even reached 90% of the initial value while in tests 2 and 4 the 

preload reduction was less than 30%. The decrease in bolt preload under transversal vibration was 

widely investigated in the literature. A reasonable explanation of preload loosening is that the peaks 

of micro-protrusions of rough surfaces are cut and flattened during the wear process. The interference 

fit between the contact surfaces is reduced, which in turn results in preload decreasing. Experimental 

results pointed out that rough surfaces experienced greater bolt preload drop off than smooth surfaces. 

Recent investigations [25] revealed that the main cause of preload loosening at the early stage was the 

stress release and the redistribution of threaded teeth. In [25] the effect of roughness was not 

investigated.
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represents its standard deviation.

3.3 Evolution of contact parameters

It is known that the contact stiffness and the friction coefficient are notably affected by the wear 

of contact surfaces [8, 15, 23]. The contact parameters were computed according to the procedure 

described in Section 3 and summarized in Fig. 4. 

3.3.1 Tangential contact stiffness

Figure 10(a) plots the contact stiffness as a function of the cumulative dissipated energy E. Results 

showed a large variation of the contact stiffness. Contact stiffness in test 1 was higher than in test 3 

even if they showed a similar behavior: contact stiffness first experienced a rapid and significant 

increase, reaching a peak at about 13 kJ of dissipated energy, then they decreased. Figure 10(b) 

presents the contact stiffness as a function of the bolt preload and shows that the contact stiffness 

increased even if the bolt preload decreases. Several experimental evidences indicate that higher 

normal load gives higher contact stiffness. On the other hand, theoretical result using the Mindlin 

solution [31] reveals that the contact stiffness is proportional to the radius of the contact area and does 

not depend on the normal load, as shown in Eq.(1)

𝑘𝑡 =
8𝐺𝑎
2 ‒ 𝜗 (1)

where G, a and  denote shear modulus, radius of the contact area and Poisson’s ratio, respectively. 𝜗

Therefore, the relationship between the normal load and the contact stiffness appears to be related to 
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the change in the contact area: increasing the normal load increases the contact area and therefore the 

contact stiffness. In our tests the normal load was variable and diminished with the wear cycles, 

therefore, the contact stiffness was expected to decrease. Due of the wear process, the contact area 

increased and therefore the contact stiffness also increased.

The contact stiffness can also be related to the height of the asperity at the interfaces [8, 19]. The 

initial contact stiffness of the rough surfaces (test 1 and test 3) was significantly greater than that of 

the smooth surfaces (test 2 and test 4). Therefore, the increase in contact stiffness may be mainly 

caused by the increased interaction between wear scars. This interaction increases the resistance to the 

relative motion between the contact surfaces at the stick stage. When the bolt preload drops to a certain 

level, the preload dominates the change in contact stiffness. This resulted in reduced contact stiffness 

after the peak. 

In tests 2 and 4, the contact stiffness also increased at the early stage of fretting wear, then it 

gradually stabilized. The same trend was observed in the experiments reported in [8, 23] where the 

normal load was constant during the wear tests and the contact surface roughness was about 1 μm. In 

these experiments, the reduction in bolt preload was negligible, so that modification of the contact 

surfaces was the main reason for the variation of the contact stiffness.
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Fig. 10. Tangential contact stiffness depending on (a) cumulative dissipated energy, and (b) bolt 

preload.

3.3.2 Friction coefficient

The trend of the friction coefficient for the four tests is shown in Figure 11. Tests 1 and 3 showed 

a similar trend. In test 1, the friction coefficient increased, it reached the peak and then decreased with 

evident fluctuations. In test 3, the friction coefficient peaked at about 3 kJ, the peak value (0.6) was 

about two times the initial value (0.3), then it decreased slowly with evident oscillations. These 

oscillations are due to the production of debris, that increases the friction coefficient, and are then 

discharged reducing the friction. Friction coefficients in tests 2 and 4 showed a similar trend that is 

different from the behavior observed in tests 1 and 3. The friction coefficients increased at the early 

stages and then gradually leveled off. This behavior was observed also in [8, 15, 22, 23, 32]. As 

explained in [33], in the early stage the coefficient of friction increases due to a rapid increase in the 

number of wear particles entrapped between the sliding surfaces. As the wear process go on the 

frictional force decreases, due to the decrease in asperity deformation and ploughing. The steady state 

condition is reached when the generation of new wear particles balance the particles leaving the 

interface and the surface becomes mirror smooth as a result of the wear process. Tests point out the 

role of the roughness. Surface with higher roughness shows a larger variation of the friction coefficient 

than surface with lower roughness. Higher asperities are easier to cut by shear loads and larger debris 

is generated.
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Fig. 11. Evolution of friction coefficients with cumulative energy dissipated.

3.4 Worn surfaces

Microscopic images of contact surfaces were obtained by a stereomicroscope. Figure 12 shows 

the photographs of contact surfaces after fretting wear tests. In these images wear scars are surrounded 

by yellow lines. Wear scars are distributed in different way for different tests. In test 1, the wear scars 

are some vertical stripes that are evenly distributed along the direction of movement. These stripes 

coincide with traces of wire cutting. Most likely, the manufacturing process left the contact surface 

with pronounced waviness. In test 3, the wear scars are mainly found around the through hole, probably 

because of the protrusion of the hole edges due to the drilling process. In tests 2 and 4, wear scars are 

mainly distributed near the left border of the contact surfaces, with only a small part on the right. This 

is probably caused by the hand-polished process. 
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Fig. 12. Contact surface images after fretting wear tests, (a) Test 1: , (b) Test ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 4 μm

2: , (c) Test 3: , (d) Test 4: ∆𝑥 = 50 μm, 𝑅𝑎 ≈ 1 μm ∆𝑥 = 40 μm, 𝑅𝑎 ≈ 4 μm ∆𝑥 = 40 μm, 𝑅𝑎

. ≈ 1 μm
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4 Modeling wear-induced hysteresis loops evolution

In the past decades, several contact models have been developed to replicate friction hysteresis 

loops, such as Iwan model [34-36], Bouc-Wen model [37] and LuGre model [38]. In this work, based 

on the framework of the Iwan model, we introduce parameters that depend on the wear cycles.

4.1 Wear-dependent parameters

The Iwan model [36] can be defined by using 3 parameters: tangential contact stiffness , friction 𝑘𝑡

coefficient  and normal preload . The original Iwan model is not able to simulate the residual 𝜇 𝑁𝑏

stiffness phenomenon, therefore a new parameter, namely the residual stiffness , was introduced. In 𝑘𝑟

this work, the parameters in the Iwan model are formulated as functions of the cumulative dissipated 

energy E. 

To simulate the evolution of parameters with wear (wear-dependent parameters), a set of 

exponential basis functions, reported in Table 3, was selected. The coefficients of these basis functions 

were obtained by fitting the experimental results. The same functions were used for tests 2 and 4. The 

subscript '0',   and , denotes the initial values of contact parameters. The exponents of the 𝑁𝑏0, 𝑘𝑡0 𝜇0

basis functions, c and  were the same for different parameters and were obtained through a best fit 𝑑

procedure with the least square method. Results of the best fit procedure showed that these exponents 

are the same for similar contact conditions, for example tests 2 and 4. Results of the best fit procedure 

are shown in Table A1 (see Appendix A). Coefficients  (i=1, 2, 3) of the basis functions are the 𝑎𝑖

ratio between the final value and the initial value of the contact parameter. Coefficients  (i=1, 2) 𝑏𝑖

are the multiplier of the basis functions and with range [0, 1]. Details about these coefficients can be 

found in Appendix A. The residual stiffness was considered independent of wear cycles as it is related 

to the bending stiffness of the bolt shank that is not affected by the change in bolt preloads [24]. Results 

in Fig. 13(d) support the above assumption.

Figure 13 shows the wear-dependent parameters of tests 2 and 4 as a function of the energy E and 

compares the analytical parameters, as defined in Table 3, with the measured parameters. All 

coefficients and corresponding standard deviations with 95% confidence bounds can be found in 

Appendix A. Taking the evolution of bolt preload (in Test 4) as an example, Figure 13 (a) shows the 

upper and lower limits of the fitting curve considering the coefficient deviation.
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Table 3 Functions of wear-dependent contact parameters

Variables Functions

Bolt preload 𝑁𝑏(𝐸) = 𝑁𝑏0[𝑎1 + (1 ‒ 𝑎1)𝑒𝑐𝐸]

Contact stiffness 𝑘𝑡(𝐸) = 𝑘𝑡0{𝑎2 + (1 ‒ 𝑎2)[𝑏1𝑒𝑐𝐸 + (1 ‒ 𝑏1)𝑒𝑑𝐸]}

Friction coefficient 𝜇(𝐸) = 𝜇0{𝑎3 + (1 ‒ 𝑎3)[𝑏2𝑒𝑐𝐸 + (1 ‒ 𝑏2)𝑒𝑑𝐸]}
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Fig. 13. Wear-dependent parameters for tests 2 and 4: (a) Bolt preload; (b) tangential contact stiffness; 

(c) friction coefficient; (d) residual stiffness.

4.2 Iwan model with wear-dependent parameters

The Iwan model is composed of infinite number of Jinkins elements in parallel. These elements 

have the same contact stiffness and different critical sliding force. The sum of the critical sliding force 

on each element is equal to Coulomb friction force  and it is distributed to each element with a 𝜇𝑁𝑏
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uniform density function. The Iwan model can reproduce stick, micro-slip and gross slip behavior of 

contact surfaces under tangential vibrations. A detailed description of the Iwan model and its recent 

improvement for using in modeling joint can be found in [34-36].

The original Iwan model was modified to consider the effect of the residual stiffness. For a 

monotonic loading case, the force-displacement relationship of the modified Iwan model is written as

𝑇𝑚(𝛿) = {(𝑘𝑡 + 𝑘𝑟)𝛿 ‒
(𝑘𝑡𝛿)2

4𝜇𝑁𝑏
, 𝛿 <

2𝜇𝑁𝑏

𝑘𝑡 + 𝑘𝑟

𝜇𝑁𝑏 + 𝑘𝑟𝛿, 𝛿 >
2𝜇𝑁𝑏

𝑘𝑡 + 𝑘𝑟

(2)

where  is the tangential force and  the tangential relative displacement. For a cyclic loading case, 𝑇𝑚 𝛿

the force-displacement relationship can be obtained by substituting Eq. (2) into Eq. (3), 

𝑇(𝛿) = { ‒ 𝑇𝑚(𝛿𝑚) + 2𝑇𝑚(𝛿𝑚 + 𝛿
2 ), 𝛿 > 0

𝑇𝑚(𝛿𝑚) ‒ 2𝑇𝑚(𝛿𝑚 ‒ 𝛿
2 ), 𝛿 < 0

(3)

where T is the tangential force and  the amplitude of tangential relative displacements. 𝛿𝑚

The wear-dependent parameters are included in the modified Iwan model to simulate the effect of 

wear on the friction behavior. The resulting force-displacement relationship for monotonic loading 

case is 

𝑇𝑚(𝛿, 𝐸) = {[𝑘𝑡(𝐸) + 𝑘𝑟(𝐸)]𝛿 ‒
[𝑘𝑡(𝐸)𝛿]2

4𝜇(𝐸)𝑁𝑏(𝐸), 𝛿 <
2(𝐸)𝑁𝑏(𝐸)

𝑘𝑡(𝐸) + 𝑘𝑟(𝐸)

𝜇(𝐸)𝑁𝑏(𝐸) + 𝑘𝑟(𝐸)𝛿, 𝛿 >
2(𝐸)𝑁𝑏(𝐸)

𝑘𝑡(𝐸) + 𝑘𝑟(𝐸)

(4)

Substituting Eq. (4) into Eq. (3) yields the force-displacement relationship for the cyclic loading 

case. In Eq. (4) there are two independent variables, namely  and , that have different time scales. 𝛿 𝐸

The cumulative dissipated energy is defined over one period of vibration and it is a step function in 

the time function. In the process of calculating hysteresis loops the step size of the cumulative 

dissipated energy E is the period of vibration. 

After each vibration period, the cumulative dissipated energy is recalculated. Then the contact 

parameters are updated for the next vibration period. Performing this operation cyclically results in the 
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hysteresis loops involving wear evolution. Figure 14 depicts the evolution of the hysteresis loops with 

increasing wear simulated by the proposed method. 

To assess the effectiveness of the proposed method, a set of simulated results were compared with 

the experimental counterparts. Figure. 15 shows the results of the comparison that are in good 

agreement with the measured hysteresis loops. 
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Fig. 14. Evolution of simulated hysteresis loops with increasing wear for test 4.

-16 -8 0 8 16
-400

-200

0

200

400
 Experimental
 Simulated

Ta
ng

en
tia

l f
or

ce
, T

 (N
)

Tangential relative displacement, δ (μm)

(a)

E≈0.001 kJ, Nc=100

-16 -8 0 8 16
-400

-200

0

200

400
 Experimental
 Simulated

Ta
ng

en
tia

l f
or

ce
, T

 (N
)

Tangential relative displacement, δ (μm)

(b)

E=2 kJ, Nc=245 k

-16 -8 0 8 16
-400

-200

0

200

400

E=4 kJ, Nc=485 k

(c)
 Experimental
 Simulated

Ta
ng

en
tia

l f
or

ce
, T

 (N
)

Tangential relative displacement, δ (μm)
-16 -8 0 8 16

-400

-200

0

200

400
 Experimental
 Simulated

Ta
ng

en
tia

l f
or

ce
, T

 (N
)

Tangential relative displacement, δ (μm)

(d)

E=6 kJ, Nc=725 k

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298



Fig. 15. Comparison between simulated and experimental hysteresis loops in test 4: (a) , 𝐸 ≈ 1J

Nc=100; (b) , Nc=245k; (c) , Nc=485k; (d) , Nc=725k. Nc is the number of 𝐸 = 2kJ 𝐸 = 4kJ 𝐸 = 6kJ

wear cycle.
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5 Conclusions

Prior works have documented how fretting wear influenced the contact parameters and the 

dynamic behavior of structures. These early studies did not consider the interaction between fretting 

wear and bolt preload. This work investigated the fretting wear behavior of bolted joint interfaces. 

Tests were performed with an apparatus specifically designed to measure the friction hysteresis 

behavior of bolted joint. The tangential contact force and the relative displacements were measured at 

different stages of wear. Contact parameters, tangential stiffness and friction coefficient, were 

extracted from the hysteresis loops and their evolution monitored with wear cycles. Bolt preloads were 

also recorded continuously during the tests.

Experimental results showed that the surface roughness significantly influenced the evolution of 

the contact parameters. For the same sliding amplitude, the higher the surface roughness, the more 

drastic the change in the shape of the hysteresis loop. Hysteresis loops on rough surfaces showed a 

residual stiffness that gradually decreases with wear cycles. Moreover, the tangential force decreased 

with the wear cycles and the gross slip regime became predominant. The preload decreased with wear 

cycles as well and since the tangential force is related to the bolt preload the two results are consistent. 

Preload on rough surface at the end of the test was 10% of the initial preload. Smooth surfaces showed 

a reduction in the preload that was much less than that of the rough surfaces. Higher asperities are 

easily deformed or cut, and these processes led to reduction of the interference fit between the 

connected part, which in turn resulted in reduction of the bolt preload.

The contact stiffness is mainly driven by the true contact area that in turn increases with the normal 

load. Since the contact stiffness increased with decreasing the preload, this is a clear evidence that the 

increase in the contact area due to the wear process overcame the decrease in contact area due to the 

decrease in the preload. Contact stiffness for rough surfaces showed a peak when the preload becomes 

very low. Preload on smooth surfaces did not reach such low values of preload and a comparison is 

not possible.

The friction coefficient of rough and smooth surfaces showed a remarkable different behavior. 

The friction coefficient of smooth surfaces increased and then levelled off. On the other hand, the 
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friction coefficient of rough surface increased up to a peak, decreased and then levelled off. For the 

rough surfaces, the wear process is more prone to produce wear particles. Wear particles entrapped in 

the contact surfaces are the main reason for the increase in friction coefficient in the early state of wear. 

When debris generated by the wear process balance the debris ejected outside the contact, the friction 

coefficient stabilized towards a steady-state value.

In this study, a contact model was developed to simulate the fretting wear behavior of bolted joint 

interfaces. This method reconstructs the evolution of contact parameters using a set of wear-dependent 

coefficients. Dependence on wear was formulated in terms of cumulative dissipated energy. These 

coefficients were introduced in the well-known Iwan model to replicate the evolution of hysteresis 

loops with wear. The simulated and measured hysteresis loops were in good agreement and prove the 

reliability of the proposed numerical method. It should be noted that the proposed wear-dependent 

coefficients can also be combined with other contact models. The developed method can be used to 

simulate the dynamics of bolted joint structures in which fretting wear process heavily alters the 

contact conditions. 
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Appendix A: Coefficients of wear functions

Table A1 lists the parameters of wear functions developed in section 4.1. Table 2 lists the values of all 

fitted coefficients and their standard deviations with 95% confidence bounds. The coefficient 𝑎𝑖

 is defined as the ratio of the final value of contact parameters to the initial value. The  (𝑖 = 1, 2, 3)

coefficients  and  are the exponents of the basis function. Tests 2 and 4 have the same coefficients 𝑐 𝑑

 and . The coefficient  is the multiplier of the basis function and is in the range [0, 𝑎𝑖, 𝑐 𝑑 𝑏𝑖 (𝑖 = 1, 2)

1]. 

Table A1 Parameters of wear functions

Variables Test 2 Test 4
Bolt preload =710 N, 𝑁𝑏0 𝑐 =‒ 0.3 =745 N, 𝑁𝑏0 𝑐 =‒ 0.3
Contact stiffness =105 ,  𝑘𝑡0 N/μm 𝑐 =‒ 0.3, 𝑑 =‒ 5 =115 ,  𝑘𝑡0 N/μm 𝑐 =‒ 0.3, 𝑑 =‒ 5
Friction coefficient =0.3,  𝜇0 𝑐 =‒ 0.3, 𝑑 =‒ 5 =0.34,  𝜇0 𝑐 =‒ 0.3, 𝑑 =‒ 5

Table A2 Fitted coefficients and its standard deviations with 95% confidence bounds

Values with 95% confidence boundsCoefficients
Test 2 Test 4 Test 2 Test 4

𝑎1 0.72 0.72 0.040± 0.031±
𝑎2 1.71 1.31 0.003± 0.003±
𝑎3 1.16 1.12 0.012± 0.010±
𝑏1 0.4 0.8 0.015± 0.020±
𝑏2 0.2 0.5 0.019± 0.014±
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