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Abstract: The present paper is focused on the post processing of the data coming from the Blade
Tip-Timing (BTT) sensors in the case where two very close peaks are present in the frequency response
of the vibrating system. This type of dynamic response with two very close peaks can occur quite
often in bladed disks. It is related to the fact that the bladed disk is not perfectly cyclic symmetric and
the so called “mistuning” is present. A method based on the fitting of the BTT sensors data by means
of a 2 degrees of freedom (2DOF) dynamic model is proposed. Nonlinear least square optimization
technique is employed for identification of the vibration characteristics. A numerical test case based
on a lump parameter model of a bladed disk assembly is used to simulate different response curves
and the corresponding sensors signals. The Frequency Response Function (FRF) constructed at the
resonance region is compared with the traditional Sine fitting results, the resonance frequencies
and damping values estimated by the fitting procedure are also reported. Accurate predictions are
achieved and the results demonstrate the considerable capacity of the 2DOF method to be used as a
standalone or as a complement to the standard Sine fitting method.

Keywords: tip-timing method; blade vibration; dual mode resonance; parameters identification; mistuning

1. Introduction

Turbomachinery blades can reach critical vibration amplitude during operating conditions.
Undesirable vibrations occur when the blade passes through a resonance. Resonances in the blades
can be excited by the fluctuations downstream and upstream of the flow path inducing alternating
aerodynamic loadings, which are the major sources of blade excitations. In resonance conditions,
blades vibrations can be excessively increased with the risk of incurring a High Cycle Fatigue failure.
Measuring the vibration parameters of the rotating blades is therefore of great interest to engineers at
two different levels:

- in the laboratory during the engine test phase, to obtain the natural frequencies and the damping
of the blade and blisk (integrally bladed rotor [1]) in order to have experimental parameters to
update the numerical models;

- in operation for the control of vibrations and for monitoring the health of the engine.

Vibration measurements of rotating blades are traditionally performed by means of strain gauge
technology [2]. This method has been developed over time and successfully employed for an extensive
range of engineering applications. Currently, it is considered as a well-established technology with the
most accurate and reliable results. However the limits of the use of strain gauges are that:
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1. they only measure the deformation of the blades on which they are glued, they must therefore be
glued on all the blades to control them all;

2. they are connected to telemetry/slip ring; this might require important changes to rotating and
stationary parts and implies integration of instrumentation hardware, in order to get accurate
vibration response with the best Signal-to-Noise Ratio (SNR), these modifications are costly and
time consuming;

3. the adaptations required by the strain gauge installation could lead to constraints for some other
turbomachine parameters (for instance, the aerodynamic ones).

To minimize the adverse effects of the strain gauges and in response to the high demands for
having a non-intrusive blade vibration measurement system, non-contact measurement technology
has been developed. Blade Tip-Timing (BTT) is a non-contact measurement method that has attracted
considerable attention in previous decades among turbomachinery specialists. This method is still
under development in order to enhance its capabilities to become the reference technique for
measurement of vibrations in rotating blade assemblies. The main manufacturers of turbo engines have
invested in recent years in improving the vibration measurement system based on BTT technology [3].
The main advantage of the BTT method is the simultaneous monitoring of all blades as well as
non-intrusive aspects, easy set-up and data transmission. Its major shortcoming is the under-sampling
of the signal related to the rotational speed of the rotating disk under study. The research works on
BTT in the last years are about the main areas of the sensor development [4,5], signal processing,
vibration parameters identification and the application of this method for condition monitoring [6–8].
The present paper is focused on the post-processing of the BTT data to estimate the main vibration
parameters even in the case of very close or overlapped resonance peaks. One of the earliest works in
this area is the well-known single parameter method introduced by Zablotskiy and Korostelev [9] in
1970. This method was proposed based on a single degree of freedom (SDOF or 1DOF) vibrating system,
the maximum vibration amplitude is obtained by deriving the peak to peak values of the deflection
signal. Next, Heath and Imregun [10] proposed an amendment for the single parameter method
by considering the effects of blade vibration on the computation of the arrival time. Then, in 2000,
Heath [11] presented a new analysis technique called two-parameter plot method for identifying
synchronous resonance vibration by using two tip-timing sensors. Schlagwein and Schaber [12]
developed a multi-degrees-of-freedom method for obtaining the vibration parameters of mistuned
rotating blades. The method was implemented on simulated and measured data and a good match
with strain gauge measurements was reported. Recently, Rigosi et al. [13] suggested a revision for
two-parameter plot method. They actually proposed an alternative procedure to determine the Engine
Order (EO) and the vibration amplitude and they compared their results with the results obtained by
the strain gauges measurements.

The methods introduced so far are recognized as indirect methods, they require measurements
data from one or two sensors. All samples of the deflection signal recorded by the sensors over the
entire resonance region are used for the vibration parameters identification. In addition, there exist
other types of analysis methods called direct methods in which at least four probes are employed
for analyzing tip timing data. Least-squares Sine fitting algorithm presented by Heath [14] is the
most common direct method used for parameters identification. The method is based on a fitting
procedure for each value of rotational speed. This procedure is the basis of almost all commercial
BTT packages developed for industry. Three new direct methods, known as determinant method,
global autoregressive and global autoregressive with instrumental variables, were developed by
Carrington [15]. They used a simple lumped parameter model of a multi-bladed system to simulate
BTT data for synchronous vibrations and they compared the results of the three methods with Monte
Carlo simulations. Russhard [16] in his PhD thesis in 2010, introduced a multi-frequency Sine fitting
method for identifying simultaneous resonances and also he investigated the capability of the BTT
technique to replace the strain gauges. Guo et al. [17] presented a resonance parameter identification
method which eliminates the need for a once-per revolution sensor. Recently, Heller et al. [18] proposed
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a novel concept based on sensor waveform analysis in order to estimate the vibration properties via
global optimization technique. Mohammad et al. [19] presented a novel simulator based on a finite
element reduced order model of a bladed disk assembly for the generation of BTT data and assessed
the performance of three principal BTT algorithms. Battiato et al. [20] employed a latest generation
BTT system to study the synchronous vibration of shrouded bladed disk, a new positioning for the
BTT optical sensors was tested and an original method was suggested to detect the deflection shape of
the bladed disk with small mistuning pattern. Bornassi et al. [21] recently applied a BTT measurement
set-up for design validation of a heavy duty gas turbine. The vibration parameters of the blades in the
compressor and turbine sections were determined by the Sine fitting analysis method and the damping
and amplitude of the blades were also reported.

The present paper is focused on the analysis of the BTT measurement data in the particular case
when, even if the vibrating mode is isolated from the other modes, the corresponding peak in the
frequency response is not single but two very close peaks are present. This type of dynamic response
with two very close peaks can occur quite often in the case of bladed disks. It is generally related to the
fact that the bladed disk is not perfectly cyclic symmetric and a so called “mistuning” phenomenon is
present. In particular it happens in the case of “small mistuning” where the cyclic symmetry is not
completely destroyed, but two slightly different frequencies are associated to the same mode shape,
and, as a result, the corresponding resonance peak is split in two peaks. If this is the case, for the post
processing of BTT data, the classical method based on 1 degree of freedom (1DOF) model, introduced
by Zablotskiy and Korostelev [9], does not work. On the other hand, the Sine fit method, which is the
other method present in all commercial BTT systems, still works in fitting the data where split peaks
are present, but it could have some shortcomings in the determination of the dynamic parameters of
the system.

Here, a method based on the fitting of the BTT sensors data by means of a 2 degrees of freedom
(2DOF) dynamic model, is presented. The aim is to obtain, with the best possible accuracy, not only the
response curve versus frequency, but also the parameters of the system such as resonance frequencies
and damping values. This is not so straightforward if there are two very close resonance peaks.
The results obtained by the 2DOF method are here compared with those coming from the classic Sine
fitting method.

In detail, the paper is organized as follows. In Section 2, the basic concepts of the BTT method are
presented and the 2DOF mathematical model is introduced together with the fitting procedure. The BTT
sensor data are simulated numerically for a test case consisting of a mistuned bladed disk. In Section 3,
the 2DOF fitting method is compared to the Sine fitting method in different numerical test cases,
proving the capability of the 2DOF method to estimate the main parameters of the vibrating system.

2. Methodology of the Analysis Method

2.1. Tip Timing Basic Principles

BTT is a non-intrusive measurement technique, very promising for vibration monitoring of
turbomachinery rotor blades. The method is based on the concept of the time of arrival of a vibrating
blade. When the blades are vibrating, they pass in front of each sensor at a different time (time of
arrival), compared to not vibrating blades. Actually, compared to a not vibrating blade, a vibrating
blade will arrive at each sensor slightly earlier or later. By calculating the difference of time of arrival
for vibrating and non-vibrating blades, the blade tip deflection can be evaluated. The blade deflection
signal is the basis of the rest of the analysis. By post-processing this signal, the vibration properties can
be determined.

A typical scheme of a BTT measurement system for blade vibration detection is depicted in
Figure 1. As shown, BTT sensors are mounted on the stationary casing and arranged circumferentially
around the rotor blades. The number of sensors and their arrangement are chosen based on the values
of the natural frequencies, the number of modes and the EO of excitation.
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Figure 1. Principle of the Blade Tip-Timing (BTT) method (solid line: non-vibrating blade, dashed line:
vibrating blade).

2.2. Two Degrees of Freedom Fitting Method

One of the first methods proposed to fit tip-timing data is the single parameter method [9].
This method was developed based on the SDOF resonator model but it is only valid for a system
with a single mode resonance. By fitting the SDOF model to the blade tip deflection at resonance,
the vibration parameters can be determined. However, this method is not suitable in cases where two
close resonance peaks are present. Two close peaks are quite common in the dynamic response of
bladed disk. This happens when the frequency of one mode is split in two closely-spaced frequencies
due to mistuning, or when two or more modes with close frequency are excited simultaneously
by different EOs. In fact, in these conditions the blade response is dominated by only two modes’
contribution around the resonance region. Therefore, the vibration response of the blade near the
resonance can be modeled by only considering these two modes. Thus, by using the modal analysis
technique [22,23], the equations of motion of the blades can be represented by just two uncoupled
equations in terms of generalized coordinates (modal coordinates). Each uncoupled equation in the
modal coordinates is of the SDOF type. The solution in the original (physical) coordinate is obtained
by the sum of the modal solutions of each SDOF system. Indeed, the concept is an extension of the
SDOF method to 2DOF system. The procedure is explained in detail below.

Based on the modal analysis technique, the motion related to each mode φi of a vibrating system
can be represented by generalized coordinates, ηi. Accordingly, the equations of motion of the system
for the forced response oscillation can be written as

η̈i + 2ζiωni η̇i + ω2
ni

ηi = Qi(t), i = 1, 2, . . . , m (1)

where ζi, ωni and Qi (t) respectively are the damping ratio, natural frequency and the generalized
force (modal force) corresponding to the ith mode.
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Equation (1) represents a set of m uncoupled equations and each equation can be treated
as an SDOF system. The steady state response of an SDOF system under harmonic excitation
Qi (t) = Q̄i cos(ωt + ψ̄i) is given by

ηi (t) = η̄i cos (ωt + ψ̄i − ϕi) (2)

in which
η̄i =

δi√
(1−r2

i )+(2ζiri)
2
; ϕi =

2ζiri
1−r2

i
; ri =

ω
ωni

; δi =
Q̄i
ω2

ni
(3)

ω is the excitation frequency and ψ̄i is the initial phase angle in the forcing function.
Finally, the response of the system can be obtained by the linear combination of the normal modes

of the system, φi. When the contribution of two modes is present which corresponds to the particular
case of m = 2, the response of the system in the physical coordinate, y(t), at an arbitrary point can be
expressed as

y (t) = φ1 η1 (t) + φ2 η2 (t) (4)

When the blade passes in front of a sensor located at an arbitrary angular position, θ, the phase
angle ωt at the kth rotation can be written as

(ωt)k = EO (ε + θ + 2πk) (5)

where ε is the angular position of the blade at t = 0.
By substituting Equation (5) into Equation (4), the blade tip response measured by the sensor is

stated as
yk =

δ̄1√
(1−r2

1k)+(2ζ1r1k)
2

cos (EOθ + ψ1 − ϕ1 (r1k))

+ δ̄2√
(1−r2

2k)+(2ζ2r2k)
2

cos (EOθ + ψ2 − ϕ2 (r2k))
(6)

in which δ̄1 = φ1δ1 and δ̄2 = φ2δ2. In addition, ψ1 and ψ2 incorporate the parameters ε and ψ̄i, given as

ψi = ε + ψ̄i, i = 1, 2 (7)

2.3. Fitting Procedure

The 2DOF model represented by Equation (6) can now be fitted into the BTT sensors data and
the vibration parameters of the blades can be identified by this procedure. Figure 2 shows in gray a
typical response of the blade in the case of one isolated resonance. The blue and red curves are the
displacement curves detected by the two sensors. The data of the two sensors curves can be fitted with
the Equation (6). Starting from an estimated value of EO, the unknown parameters are determined by
fitting analysis. The fitting unknowns include the natural frequencies (ωn1 , ωn2), the damping ratios
(ζ1, ζ2), the phase shifts (ψ1, ψ2) and the two parameters (δ̄1, δ̄2). The fitting analysis is carried out
based on the nonlinear least square curve fitting technique. The value of residual from the least squares
method indicates the goodness of fitting. By sweeping EOs and repeating the fitting process, the best
curve fit and parameter estimation can be achieved. Defining constraints for unknown parameters
reduce the computational cost and results in a faster and more accurate estimation of the parameters.

2.4. Reference Test Case

A lumped parameter model of a rotating bladed disk assembly is assumed as a test case for the
verification of the method. This type of model was extensively used for investigating the effects of
mistuning on the forced response of bladed disks [24–27]. Similar models [15,28] and models based
on finite element method [10] were also employed by the researchers as numerical simulators for
generating the tip timing data in order to test their analysis methods. Figure 3 shows a schematic
representation of a lumped parameter model. In the model two degrees of freedom are considered
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for each bladed disk sector (one for the blade and one for the disk sector). Each sector is attached to
its neighboring sectors by the coupling springs, kc. To avoid rigid body motion, an extra spring, kd,
connects each sector to the ground. The masses of the blade and the disk in each sector are respectively
denoted by mb and md, and kb represents the blade stiffness.
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Figure 2. A typical blade response and BTT data during a resonance passage.
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Figure 3. Lumped parameter model of a bladed disk assembly used for simulation.

The equations of motion for the bladed disk system can be written as:

Mq̈(t) + Cq̈(t) + Kq(t) = F(t) (8)

where M, C and K represent the mass, damping and stiffness matrices, while q and F denote the
displacement and external force vectors, respectively. Very similar models with the same matrices of
Equation (8) can be found in [24,29]. Damping matrix is constructed according to the proportional
damping model (C = αM + βK) in which α and β are known constants.

The excitation force is assumed as a traveling wave excitation force acting on each blade. The force
can be written as:

fi (t) = f0 cos
(

ωt − 2πEO
N (i − 1)

)
; i = 1, 2, 3, . . . , N (9)

where N is the total number of blades and f0 is the amplitude of excitation. The excitation frequency is
given by ω = EO.Ω, where Ω denotes the rotating speed.
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A typical case of dual mode resonance, is the splitting frequency phenomenon [25,30] which takes
place in a mistuned bladed disk assembly. Mistuning is caused by small unavoidable imperfections
in manufacturing process or by deviation of the components from their ideal design shape due to
machine operation which eventually breaks the cyclic symmetric features of the system. One major
consequence of the mistuning is the splitting of the frequencies of two orthogonal modes. In the tuned
system the two orthogonal modes have the same natural frequency. When the symmetry of the system
is lost due to mistuning, two frequencies are separated from each other and the corresponding modes
appear as two distinct modes with the same nodal diameter. In Figure 4, it is displayed how this
phenomenon appears in a Campbell diagram where there are two close lines instead of one for a given
mode shape (same nodal diameter). This will cause the excitation of two close resonances by the same
EO at two different rotational speeds.

1

Mistuned system

Rotating speed

Fr
eq

ue
nc

y

EO

Tuned system

Figure 4. Splitting frequency in a mistuned system.

Here a bladed disk assembly is assumed as a test case consisting of 48 blades equally spaced
around the disk. The parameters for the bladed disk model are given in Table 1. The BTT sample signals
are acquired by two virtual sensors located at the angles of 0 and π/4. A pattern of imperfections
with respect to the tuned system is applied in order to induce the mistuning. Indeed, the mistuning is
applied to the assembly based on a random distribution of the blade mass with the standard deviation
(SD) of 0.05 in one case and 0.10 in the other case. The mistuning patterns for the two cases are shown
in Figure 5. The natural frequencies of the bladed disk for the mistuned configuration with SD = 0.10
is plotted in the diagram frequency vs. nodal diameters in Figure 6. The effect of mistuning can
be observed here as a frequency splitting of a few tenths of Hertz in the frequency for all the nodal
diameters, except 0 and 24. The close up in Figure 6 shows the frequency splitting for nodal diameter 5.
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Figure 5. Cont.
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Figure 5. Mistuned distributions of the blade mass, (a) SD = 0.05, (b) SD = 0.10.
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Figure 6. Natural frequencies vs. nodal diameters for the simulated mistuned bladed disk (SD = 0.10).

Table 1. Parameters of the bladed disk model.

Parameter Symbol Value Unit

Single blade mass mb 1 kg
Disk sector mass md 4 kg

Blade stiffness kb 5 × 106 N/m
Disk stiffness kd 1 × 106 N/m

Coupling stiffness kc 1 × 107 N/m

2.5. Generation of Sampled Data

Now, by considering the traveling wave excitation of Equation (9), the steady state response of
the bladed disk system can be obtained by Equation (8). The gray curve in Figure 2 typically shows
such steady state response. From the point of view of the sensors, in the stationary frame, the BTT
samples are acquired once per revolution. The time of arrivals for each sensor in each revolution can
be calculated by Equation (5). Then, the response of the system corresponding to the calculated time of
arrivals is simply selected from the blade response reflected in the gray curve. In this way, the signals
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detected by the sensors can be simulated, in Figure 2 the blue and red curves represents such sensors
simulated data.

3. Discussion of Results

In order to validate the curve fitting algorithm based on the 2DOF model, BTT sampled data in
different resonance conditions are generated by the numerical simulator introduced in the previous
section. For all the test cases investigated hereafter, the proportional damping constant α is always set to
zero, while only the parameter β is changed. For providing a better understanding, the corresponding
damping ratios ζ have been reported instead of β [31].

The results obtained with the proposed 2DOF algorithm are here compared with those obtained
by the classical “Sine fitting method” used in many commercial softwares. The two methods are
here used to reconstruct the frequency response for a certain mode starting from the sensors
data. The reconstructed response will then be compared with the response curve obtained by the
mathematical model.

3.1. Low Damping Case

The first case considered is that with low damping (ζ1,2 = 0.0001) and well-separated modes.
The vibrating mode is the one corresponding to the first family at ND = 5. Due to mistuning the EO = 5
excitation produces two frequency response peaks at two different rotational speeds. Figure 7 shows
the response computed mathematically (continuous line) overlapped on the reconstructed response
curves (dotted lines) using both fitting methods (2DOF fit and Sine fitting). The two figures correspond
to the two different random mass distribution patterns. It can be seen that there is an excellent match
between the curve obtained by the 2DOF fitting and the original response. In comparison to the Sine fit
method, the 2DOF method better capture the amplitude of the two resonance peaks. The parameters
directly obtained by the fitting procedure with the 2DOF model are the resonance frequencies and the
damping ratios. The obtained values can be compared to the real ones set in the mathematical model.
The frequency and damping values identified by the 2DOF fitting method are listed in Table 2 and
compared to the exact values of the mathematical model. The comparison of the values confirms the
good estimation obtained by the 2DOF model, the value of residual close to zero confirms the good
quality of fitting.

In a second step of computation, modes corresponding to higher nodal diameters are considered
in particular modes corresponding to ND = 6, 7, 10 excited by the corresponding EO. As in the
previous case, for each nodal diameter there is a splitting of the two resonance frequencies excited
at two different rotational speeds. The response curves (the mathematical one and the two curves
obtained by fitting) are shown in Figures 8–10. For all the cases it is confirmed that the 2DOF method
predicts the amplitude of the response at resonance better than the Sine fitting method. This difference
can be attributed to the fact that the Sine fitting method is influenced by the sampling frequency
of the signal. Since the BTT signals are sampled once per revolution, for the Sine fit method more
samples are needed to successfully cover the whole range of the resonance. Particularly for sharp
peaks (small damping) close to the resonance a higher sampling rate would be required. This can be
achieved by reducing the acceleration/deceleration rate which is considered here with a realistic value
of 0.25 Hz/s. On the contrary the 2DOF method is not so sensitive to the BTT sampling frequency
since it uses the data of the entire resonance region to be fitted by using the mathematical formula
of Equation (6). In the particular cases, as the proposed examples, of sharp amplitude peaks with
low damping values, applying only the Sine fitting method might be inadequate with the risk of
underestimating the amplitude of the peaks. In these cases the 2DOF method proved to be a good
numerical tool to verify and to correct the results of the Sine fitting method.
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Table 2. Comparison of vibration parameters identified by the 2 degrees of freedom (2DOF) fit model
with the exact values for Engine Order (EO) = 5.

Parameters
SD = 0.05 SD = 0.10

Exact Value Calculated Difference (%) Exact Value Calculated Difference (%)

Frequency 1 157.1322 157.1322 0.00 157.4456 157.4456 0.00
Frequency 2 157.6046 157.6046 0.00 158.1039 158.1039 0.00
Damping 1 0.00009985 0.00009987 0.02 0.00009979 0.00009981 0.02
Damping 2 0.00010015 0.00010000 0.15 0.00010021 0.00010017 0.04

Residual 5.3537 × 10−6 1.6128 × 10−6
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Figure 7. Comparison of non-dimensional amplitudes obtained by different fitting methods for EO = 5
and ζ1,2 = 0.0001, (a) SD = 0.05, (b) SD = 0.10.
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Figure 8. Comparison of non-dimensional amplitudes obtained by different fitting methods for EO = 6
and ζ1,2 = 0.0001, (a) SD = 0.05, (b) SD = 0.10.
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Figure 9. Comparison of non-dimensional amplitudes obtained by different fitting methods for EO = 7
and ζ1,2 = 0.0001, (a) SD = 0.05, (b) SD = 0.10.
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Figure 10. Comparison of non-dimensional amplitudes obtained by different fitting methods for
EO = 10 and ζ1,2 = 0.0001, (a) SD = 0.05, (b) SD = 0.10.

For evaluating in more detail the performance of the 2DOF fitting model, further cases have been
investigated with different damping properties. Increasing damping reduces the vibration amplitudes
and, as a consequence, one large peak could be present instead of two peaks, even if for a single mode
the peaks should be split due to mistuning. In this condition, the curve fitting and the parameters
identification become complicated. Figure 11 shows the fitted curves for damping ratios of 0.002 and
0.003 for two different EOs. Since in this case only one peak seems to be present, the fitting was also
done with the SDOF method. It can be observed that both 2DOF and Sine fit models exhibit perfect
approximations. On the contrary, the 1DOF model is not able to completely capture the response
since the model 1DOF is not correct, being here two peaks partially overlapped. The values of the
identified parameters (resonance frequency and damping) using both 2DOF and 1DOF model are also
listed in Table 3. It can be observed that the 2DOF evaluation method is able to accurately identify
the vibration parameters for each mode, whereas the 1DOF model provides a good prediction for
frequency but overestimate damping. It should be noticed that in the case of the Sine fitting method
the same parameters are not obtained directly by the fitting procedure, in fact in this case the resonance
frequency and the associated damping are estimated not during the fitting but after, by post processing
the obtained reconstructed response curve. The damping can be obtained by means of techniques
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like half-power method, but in a case like this, where two close peaks are partially overlapped,
using half-power method can lead to not accurate results. More accurate results can be reached by
doing a further FRF curve fit analysis [32–34] which takes extra effort. However, in particular for the
identification of the damping value associated to a certain resonance, the 2DOF method gives more
accurate results than Sine fitting (based on half-power method), because the damping parameters are
variables of the model obtained directly by the fitting procedure. This holds if the experimenter uses
the appropriate model, that is 2DOF instead of 1DOF model when the shape of the peak suggests that
there might be two partially overlapping peaks due to the presence of mistuning.
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Figure 11. Comparison of non-dimensional amplitudes obtained by different fitting methods for
SD = 0.10, (a) EO = 5, ζ1,2 = 0.002, (b) EO = 8, ζ1,2 = 0.003.

Table 3. Comparison of vibration parameters identified by 2DOF and 1DOF models with the exact
values for EO = 5, 8 and SD = 0.10.

2DOF 1DOF

EO = 5

Parameters Exact Value Calculated Difference (%) Calculated Difference (%)

Frequency 1 157.4456 157.4470 0.00 157.6627 0.14
Frequency 2 158.1039 158.1063 0.00 — —
Damping 1 0.001995 0.001987 0.40 0.002243 12.39
Damping 2 0.002004 0.002006 0.13 — —

EO = 8

Frequency 1 222.3561 222.3663 0.00 222.2287 0.35
Frequency 2 223.0106 222.9823 0.01 — —
Damping 1 0.002995 0.002988 0.24 0.004071 35.91
Damping 2 0.003004 0.003018 0.46 — —

3.2. High Damping Case

In real operating conditions it could happen that the damping is even higher than the previous
cases. In this condition the two close peaks due to mistuning appear as completely merged in one
single peak. Figure 12 shows the results of the fitting process for such condition. It can be seen that the
original response is successfully reconstructed both by the 2DOF and by the Sine fit method. However,
it should be highlighted that in a case like this where the two peaks are completely merged together,
the 2DOF method is comparable to the Sine fitting for the estimation of the response curve but it is
not better in the estimation of the vibration parameters, in particular the damping. In this case in fact,
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the 2DOF least square curve fitting optimizer might not always return the vibrations parameters with
the high accuracy as in Table 3.
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Figure 12. Comparison of non-dimensional amplitudes obtained by different fitting methods for
SD = 0.10, (a) EO = 10, ζ1,2 = 0.003, (b) EO = 10, ζ1,2 = 0.006.

3.3. Noisy Signals

As a last step, noise was added to the simulated sensors data in order to evaluate the noise effects
on the fitting accuracy of the 2DOF method. Figure 13 shows the sensors data contaminated by noise.
This noise was assumed as an additive white Gaussian noise from the analysis of the typical noise
patterns of the BTT sensors signals in literature [16,35–37]. The typical noise pattern adds dynamic
disturbances to the signal, without changing the overall behavior of the signal. The influence of
noise on the residual is plotted in Figure 14a. As expected, by increasing the noise level, that is by
decreasing the Signal-to-Noise Ratio (SNR), the residual from the curve fitting increases, that is the
quality of fitting becomes worst. The errors in the estimated damping values are depicted versus the
SNR in Figure 14b. It can be seen that beyond an SNR level of 20 dB (see Figure 13a), the error on
the damping value estimation is below 5%, which is an acceptable value from an engineering point
of view. The errors in the estimated natural frequencies are depicted in Figure 14c against the SNR.
In this case the error is always much lower than 1% which is almost negligible.
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Figure 13. Typical sensor data contaminated by noise for EO = 5 and SD = 0.10, (a) Signal-to-Noise
Ratio (SNR) = 20 dB, (b) SNR = 25 dB.
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Figure 14. Effect of noise on the fitting residual, damping ratio and natural frequency for EO = 5,
ζ1,2 = 0.002 and SD = 0.10, (a) fitting residual, (b) error in damping ratio, (c) error in natural frequency.

4. Conclusions

The paper is focused on the post processing procedure of the BTT sensors data in the case where
two very close resonance frequencies are present in the dynamic response of the rotating system.
Having two close resonance peaks is the typical case of the dynamic response of a bladed disk in
presence of mistuning, due for example to an asymmetry of the distribution of the mass in the disk.
In this case, having an instrument that can fit the experimental data to obtain the main vibration
parameters (resonance frequencies and damping) for both the modes associated to the close resonances
is very useful to the experimenter or to the designer. A method based on the nonlinear least square
fitting of the sensors data by a 2DOF dynamic model was here presented. A lumped parameter
model representing a rotating mistuned bladed disk assembly was used as a test case. The sensors
measurement data were simulated numerically. The results obtained by the 2DOF fitting method are
compared with those obtained by the most classical Sine fitting method employed in the majority of
the BTT commercial systems. The following main conclusions can be drawn.

- The 2DOF fitting method is more accurate than the Sine fit method in the determination of the
maximum response amplitude when the two peaks are very sharp and well separated since the
damping is very low (ζ = 0.0001). In this case, the 2DOF model can directly estimate the fitting
parameters, damping value and resonance frequency, associated to each peak with an accuracy
lower than 1%. The Sine fit method is less accurate since it is sensitive to the number of samples of
the BTT data which is considerably affected by the rate of acceleration or deceleration, while the
2DOF method is not so sensitive to the sampling rate since it is based on a mathematical model of
the response curve.

- As the damping increases (ζ = 0.002–0.003), the two peaks have more overlap and appear as a
wider peak. In this case the 2DOF method has the same accuracy as the Sine fitting method in
estimating the amplitude of the response. In addition, the 2DOF method is able to estimate the
damping value directly from the fitting with errors still less than 1%. In the presence of noise
(with SNR higher than 20 dB) the error remains below 5%. On the contrary the Sine fit method
does not get the damping value directly from the fitting but requires to estimate the damping
from the width of the peak itself and this estimate can be altered by the fact that there are two
overlapped peaks.

- For even higher damping values (ζ = 0.006) when only one single peak is visible because the two
peaks are merged, the two methods (2DOF and Sine fit) are equivalent. The 2DOF method can no
longer obtain the damping values associated with the two modes with the same accuracy as in
the previous cases.

The 2DOF method therefore seems to be a valid method to be used in the case of close resonance
peaks if the experimenter wants to determine not only the shape and the amplitude of the response
peak but also the system parameters (resonance frequencies and damping). Employing this method as
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a separate module or as a complementary plugin along with the traditional BTT methods such as Sine
fit method can be an added value to the measurement system.
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