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     Abstract— Arterial Blood Pressure (ABP) is an important 

physiological parameter that should be properly monitored for 

the purposes of prevention and detection of cardiovascular 

diseases, which represent one of the leading causes of death in 

the world. Currently, the most common adopted noninvasive 

blood pressure measurement system is sphygmomanometer, 

which works by inflating and deflating a cuff around the arm. 

This work presents ABPNet, a new prediction technique, based 

on a multilayer perceptron (MLP), which uses ECG and PPG to 

estimate both systolic and diastolic blood pressure. To train the 

neural network, signals are gathered from the Physionet 

MIMIC database. The proposed architecture performances are 

evaluated w.r.t. both the invasive blood pressure signal and the 

noninvasive sphygmomanometer measurements. The 

experimental results are quite promising; they are compliant 

with the ANSI/AAMI/ ISO 81060- 2:2013 for 

sphygmomanometer certification because the network 

predicted values are within +/- 5 mmHg w.r.t. real invasive 

measurements, as imposed by the legislation. Finally, it is shown 

how ABPNet can be used to improve the VITAL-ECG, a 

wearable device designed to acquire vital parameters, such as 

electrocardiographic (ECG) and photoplethysmographic 

(PLETH/PPG) signals; indeed, by embedding the ABPNet 

neural network, VITAL-ECG can be upgraded to estimate, also, 

ABP. As a consequence, the device could be used to fight 

cardiovascular diseases and prevent their dangerous effects.  

Keywords—arterial blood pressure, ECG, electrocardiogram, 

machine learning, neural networks, photoplethysmogram, PPG, 

VITAL-ECG. 

I. INTRODUCTION  

Cardiovascular diseases (CVD) represent one of the 

leading causes of death in the world. Deaths due to 

cardiovascular diseases reach 17.65 million people per year 

and 10.46 million people per year die from high blood 

pressure (BP), which is a section of medical problems that 

affects the circulatory system [1]. Several studies have 

demonstrated that arterial blood pressure (ABP), has a close 

relation with cardiovascular disease. The strong relationship 

is consistent among different ethnic, gender and age groups 

[2]. According to the American Stroke Association, the risk 

of developing cardiovascular disease can be estimated by 

evaluating the systolic and diastolic pressures [3]. The most 

dangerous pressure stage is referred to ABP values greater 

than 180/120 mmHg (hypertensive crisis).  

There are two ways to measure blood pressure: direct and 

indirect. The former is the gold standard and consists of using 

an intra-arterial catheter to obtain a precise measurement 

(continuous blood pressure signal); unfortunately, this 

invasive practice can lead to pain and infections [4]. The 

indirect method, based on korotkoff sounds, provides an easy, 

noninvasive, but less accurate way to measure blood pressure, 

wrapping a cuff around the upper part of the arm. First, the 

cuff is inflated with a pressure well above systolic pressure 

and then gradually reduced. Then, when the pressure in the 

cuff is equal to the arterial blood pressure, the korotkoff 

sounds become audible through the stethoscope: the first 

noise heard corresponds to the systolic blood pressure; by 

further reducing the pressure, the noises will initially become 

more intense, and then gradually weaker: the complete 

disappearance of the noises corresponds to the diastolic blood 

pressure [5]. This is the operating principle of an ordinary 

sphygmomanometer, the most common indirect BP 

measuring method. 

Because of the disturbances involved in the invasive 

method and the discomfort of the noninvasive one, different 

studies have investigated cuff-less techniques able to measure 

arterial blood pressure. Among these, Pulse Wave Velocity 

(PWV) propagation estimates blood pressure values by using 

the mathematical description by Moens and Korteweg [6]. In 

[7] it is shown the inverse proportionality between the blood 

pressure value and the PWV. However, in this case, the 

proposed mechanical-mathematical model uses patient 

physiological parameters that are difficult to detect, such as 

the artery diameter or the distance from heart to fingertip. 

Pulse Transit Time (PTT), defined as the time the pulse wave 



takes to travel between two arterial sites within the same 

cardiac cycle, is another attribute for blood pressure 

estimation process [8]. The model proposed by [9] overcomes 

the problem of the availability of the patient's physiological 

parameters; however, the mathematical relation between PTT 

and BP is subject to approximations, which make the model 

not very general and robust.  

Our proposed model, solves the generalization problem 

with the use of an artificial neural network (ANN), called 

ABPNet. By training it to tackle a regression problem, 

ABPNet is able to learn the physiological relation that exists 

between the inputs, i.e. electrocardiographic (ECG) and 

photoplethysmographic (PLETH/PPG) signals, and the 

output (ABP). As demonstrated in the following, this 

approach overcomes the limits of both the noninvasive 

mathematical-based and the invasive models; indeed, albeit it 

is still a noninvasive technique, its performances are 

comparable with the invasive methods and does not require a 

cuff to be inflated, which, as proven above, is quite 

uncomfortable for the users.  

After the description of the methodology used in this study 

in Sec. II, in terms of chosen dataset, architecture and metrics, 

Sec. III shows and discusses the results, comparing ABPNet 

performances both to invasive (IBP) and noninvasive (NIBP) 

techniques. Sec. IV presents an application of the proposed 

method to a real wearable device, the VITAL-ECG. Finally, 

Sec. V yields the conclusions.  

 

II. METHODOLOGY 

As explained at the end of Sec. I, the aim of this research 

is to derive the underlying relation between ECG and PPG 

signals with the arterial blood pressure, measured in a 

noninvasive manner.  At this purpose, it has been chosen to 

exploit the generalization and pattern recognition properties 

of neural networks. In order to increase the accuracy of the 

model, ABPNet was trained using invasive blood pressure 

(IBP) as target and both ECG and PPG as inputs. Then, in the 

recall phase, the network outputs were compared with those 

of a certified sphygmomanometer to assess its performances 

in the noninvasive paradigm.  

The trained model will be embedded in the VITAL-ECG 

[10] wearable device to provide it with an anytime, 

everywhere, unobtrusive blood pressure measurement 

feature. Indeed, due to the use of IBP during training, 

VITAL-ECG will be able to relate properly the acquired ECG 

and PPG signals with its corresponding ABP values (systolic 

and diastolic) even if it is used in a noninvasive way.  

 

A. Dataset Description 

The proposed approach requires a dataset where ECG, 

PPG and ABP (acquired both as IBP and NIBP) signals were 

acquired simultaneously and, most of all, synchronously. 

Therefore, it has been chosen to use MIMIC, a multi-

parameter database where clinical data are obtained from the 

patient's medical record [11], [12]. As shown in Fig. 1, signals 

are acquired in synchronized mode. Arterial Blood Pressure 

is used to train the network with an invasive measure, so that 

the signal value can be tracked at any time. The ABP signal 

will be used as a target in the estimation of systolic and 

diastolic blood pressure values. In this study, the signals of 

thirty-seven people have been used for training. Each record 

contains the three signals in a 600 s (i.e. 10 minutes) time 

window.   

 

Fig. 1. Synchronized signals representation: ECG (top), PLETH/PPG 

(center), ABP (bottom). 

A noninvasive arterial pressure value is associated with 

each patient. In this way, the comparative analysis between 

the sphygmomanometer measurement (gold standard 

noninvasive tool) and our method can be carried out. 

 

B. Neural Network Architecture 

Neural networks (NNs) are a set of algorithms, modeled 

on the human brain functions, designed to recognize patterns 

that represents the relationship between the input and the 

output (target) signals [13].  Fig. 2 shows the standard 

multilayer perceptron configuration. The input layer 

corresponds to the number of inputs to the neural network. 

This layer consists of passive nodes, which do not take part 

in the actual signal modification, but only transmits the 

information to the following layer. The hidden layer has 

arbitrary number of neurons. The nodes take part in the signal 

modification by means of the activation function. The output 

layer improve the end results of the iterative process [14].   

 
Fig. 2 Multilayer percpetron configuration. 

A feed-forward fully connected neural network with two 

hidden layers, that is, a multi-layer perceptron (MLP), has 



been designed using MATLAB® R2018b [15] and trained for 

50 iterations on a single CPU of LENOVO Y50-70 

workstation with 16 GB RAM. Different hidden layer sizes 

have been tested to evaluate the corresponding network 

regression performance. Fig. 3 shows the optimal 

architecture, which has 15 and 8 neurons in the first and 

second hidden layer, respectively.  The inputs are the entire 

ECG and PPG recordings of each of the 37 patients; the 

outputs is the blood pressure signal (ABP), synchronized to 

the two input signals. The hyperbolic tangent was used as 

transfer function for the hidden layers, while for the output 

regression layer, the linear function was chosen. The 

Levenberg–Marquardt algorithm (LMA) is implemented, 

which is normally adopted to solve generic curve-fitting 

problems. This fitting algorithm is quite performing in this 

kind of task because it finds local minimum; indeed, it can be 

seen as trade-off technique between the Gauss–Newton 

algorithm (GNA) and the method of gradient descent [16]. 

For training the networks, both the input and target vectors 

have been randomly divided into three sets as follows: 70% 

for training, 15% to validate that the network is generalizing 

and to stop training before overfitting, and the remaining 15% 

is used as a completely independent test set for network 

generalization.  Finally, the backpropagation [17] was 

applied as learning algorithm and the k-fold cross validation 

method [18] was used to evaluate the validity of the model. 

 

C. Metrics 

In a regression problem, such as the ABP estimation case, 

it is important to measure the resemblance of the output w.r.t 

the desired target. The goal is to have a neural network able 

to approximate the target (ABP) accurately. To assess the 

validity of the model, both Pearson correlation coefficient (r) 

and Root Mean Square Error (RMSE) between the desired 

data and the predicted data were chosen as metrics because of 

their pointwise nature.  

The Pearson’s correlation coefficient measures the 

statistical relationship between two continuous variables, 

using the covariance method [19]. It is defined as follow: 
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(1) 

where y is the desired output (target), �̃�  is the predicted 

values and 𝑛 is the total number of data. It is ranged between 

 [−1, 1]:   𝑟 = 1  indicates perfect positive correlation 

between y and �̃�;  𝑟 =  −1 perfect negative correlation; 𝑟 =
0 no correlation.  

Another method used to evaluate the efficiency of the 

prediction model is the Root Mean Square Error: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̃�)

2
𝑛

𝑖
 (2) 

RMSE is the standard deviation of the residuals 

(prediction errors). Residuals are a measure of how far from 

the regression line data points are. If the correlation 

coefficient is 1, the RMSE will be 0, because all of the points 

(that represents predicted variables) are set on the regression 

line [20].  

 

Fig. 3. ABPNet architecture 

III. RESULTS 

Given the continuous blood pressure signal (i.e. IBP), it is 

necessary to gather values that can be transformed, 

respectively, to the diastolic (DBP) and systolic (SBP) blood 

pressures. At this purpose, the signal need to be analyzed, 

filtered with a low pass filter (cut-off frequency equal to 200 

Hz) to remove noise, and, finally, the characterizing points 

can be extracted. Fig. 4 shows an example of a signal window 

(roughly from 276 s to 279 s), where are highlighted the 

significative points of an ABP signal needed to compute both 

diastolic and systolic pressures: 

 the systolic phase, characterised by a rapid increase 

in pressure up to a peak, represents the systolic blood 

pressure. This phase begins with the opening of the 

aortic valve and corresponds to the left ventricular 

ejection; 

 the notch to the dicrotic peak, which represents the 

closure of the aortic valve; 

 the diastolic phase, which represents the Diastolic 

blood pressure and describes the run-off of blood 

into the peripheral circulation. 

 
Fig. 4. Continuous arterial blood pressure filtered signal: foot point (violet), 

systole point (green), notch point (blue), dicrotic peak (red). 



For each patient, both the target signal used for training 

and the network output are, actually, represented by a 

continuous ABP signal. To obtain a discrete, single value of 

SBP and DBP, the signal points of interest (systoles and feet) 

were identified and averaged to obtain two single pressure 

values, i.e. systolic and diastolic pressures, referred to the 

whole arc of the recording.  This procedure was applied both 

for the target and the output signal yielded from the network. 

A.  ABPNet regression performances analysis 

A regression plot between targets and outputs measures 

the predictive capability of a regression model, such as 

ABPNet. Pearson r coefficient indicates how close the data 

are, on average, to the fitted regression line. 

Fig. 5 shows the regression plot for diastolic and systolic 

ABP data for each of the 37 patients of the training dataset. 

The solid line, blue (left) or green (right), represents the 

overall fitting curve, while the circles indicate the computed 

output ABP, either diastolic or systolic, w.r.t. the target 

invasive one. The predictive ability of ABPNet is very 

accurate because the regression line is quite indistinguishable 

from the dotted line 𝑌 = 𝑇 , which represents the perfect 

regression. Indeed, the Pearson r coefficient is close to 1 for 

both diastolic and systolic (0.93 and 0.97, respectively). 

 
Fig. 5. Regression  plot of diastolic (left) and systolic (right) ABP data 

B. ABPNet and invasive method comparison 

To further analyze the performances of the network w.r.t 

the invasive blood pressure, the values (DBP and SBP) 

extracted from the reference signal (IBP) and the network 

output were compared for all the subjects. In Fig. 6 these two 

signals (IBP targets in blue and ABPNet outputs in red) are 

plotted together. Their overlapping demonstrates that the 

ABPNet predicted ABP values, i.e. its outputs, closely match 

the invasive values, i.e. the targets. Moreover, this 

consideration holds for almost each patient with the exception 

of patient 32 in the diastolic case and patient 5 in the systolic 

one. 

C. ABPNet and noninvasive method comparison 

The above analysis have proven the validity of the 

proposed approach w.r.t the invasive blood pressure 

measurements, both in terms of neural regression and 

accuracy of prediction. This subsection presents the 

comparison between sphygmomanometer BP values, i.e. the 

noninvasive gold standard, and the ABPNet output w.r.t. 

those computed from the IBP method, which yields, by 

definition, the most accurate measurements. Therefore, the 

aim is to use the invasive measurement as a benchmark and 

to compare the two noninvasive techniques, ABPNet and 

sphygmomanometer, against it. The two approaches were 

evaluated using the chosen metrics: RMSE and r; Table I 

summarizes the results: left part compares the 

sphygmomanometer with the IBP reference, while on the 

right, the similarities between ABPNet and IBP are analyzed. 

 
Fig. 6. Diastolic blood pressure (top) and systolic blood pressure (bottom) 
estimation performance diagram between IBP targets (blue) and ABPNet 

outputs (red) 

ABPNet outperforms the sphygmomanometer 

noninvasive gold standard demonstrating a higher reliability 

than ordinary noninvasive pressure detection methods. 

Indeed, for both DBP and SBP, the ABPNet RMSE is lower 

(3.2 and 3.6) and the Pearson coefficient is much closer to 1 

(0.93 and 0.97). Therefore, the proposed method, and 

consequently the VITAL-ECG device, would comply with 

the ANSI/AAMI/ ISO 81060- 2:2013 (the legislation for 

sphygmomanometer certification) because the ABPNet 

values are within +/- 5 mmHg w.r.t. the real invasive 

measurements. 

TABLE I.  RMSE AND PEARSON’S COEFFICIENT FOR SPHYGMANOMETER AND 

ABPNET EVALUATED ON THE TEST DATASET 

Metric 
Sphygmomanometer ABPNet 

DBP SBP DBP SBP 

r 0.90 0.89 0.93 0.97 

RMSE (mmHg) 4.1 4.7 3.2 3.6 

 

IV. VITAL-ECG  

As final stage of the research, the proposed neural 

algorithm will be embedded in the VITAL-ECG [10], a 

wearable device, developed in the Neuronica Lab of 

Politecnico di Torino, able to record simultaneously, among 

the others, ECG and PPG signals (see Fig. 7). It has been 

designed accordingly to the IoT paradigm for smart, wearable 

healthcare devices for telemedicine and, more generally, 

mobile health. As shown in Fig. 8, VITAL-ECG has the size 

of a watch and can be comfortably worn from any user at his 

wrist. It does not require any medical expertise to be placed 

or used. It just needs to gently touch with two fingers the 

silver electrode and PPG sensor for 10 s. Then, the system 

records, stores and sends via Bluetooth the PPG and ECG 



signals to the mobile App, which analyzes the acquisitions to 

compute the heartrate and to look for anomalies, i.e. diseases.  

If embedded in a device like VITAL-ECG, the proposed 

noninvasive blood pressure method can be used to fight 

cardiovascular diseases and prevent their dangerous effects. 

Indeed, a wearable, unobtrusive systems, such as the VITAL-

ECG, allows people to have a simple, easy to use, device to 

acquire and monitor their blood pressure everywhere, 

anytime, without the need of specialized personnel, e.g. 

physicians or professional caregivers. 

 
Fig. 7. VITAL-ECG device architecture (block diagram) 

 

 

Fig. 8. VITAL-ECG device 
 

V. CONCLUSIONS 

ABP is an important physiological parameter that must be 

monitored to prevent and detect cardiovascular diseases. In 

this paper, a two hidden layer neural network, called ABPNet, 

was implemented to predict the systolic and the diastolic ABP 

values. The proposed model is tested on MIMIC database and 

validated with gold standards both in invasive and 

noninvasive approaches. ABPNet predictive performances 

are quite promising: the RMSE and Pearson coefficient of the 

model outperform those of traditional standard 

sphygmomanometer. The yielded outputs are compliant with 

the ANSI/AAMI/ ISO 81060- 2:2013 because they are within 

+/- 5 mmHg w.r.t. real invasive measurements. Furthermore, 

the proposed noninvasive blood pressure method can be 

embedded in wearable, unobtrusive devices, such as the 

VITAL-ECG, and used to fight cardiovascular diseases and 

prevent their dangerous effects. 

Future works will deal with improving the blood pressure 

estimation algorithm by increasing the number of data, i.e. 

the training set, and by testing different type of deep learning 

approaches, specialized in time series prediction: Long-

Short-Term Memory (LSTM) neural network with a 

regression layer and ResNet.  Finally, separate works will 

embed the algorithm into the VITAL-ECG, so that the 

wearable device would be able to yield also the blood 

pressure values, DBP and SBP, and to monitor patient 

condition more effectively. 
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