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Abstract—This paper is concerned with stability properties
of a Lur’e system obtained by interconnection of a general
linear time-invariant block (possibly, infinite-dimensional) and
a periodic nonlinearity. Such systems usually have multiple
equilibria. In the paper, two new frequency-algebraic stability
criteria are established by using. Popov’s method of “a priori
integral indices”, Leonov’s method of nonlocal reduction and the
Bakaev-Guzh technique.

Index Terms—Lagrange stability, gradient-like behavior,
frequency-domain methods

I. INTRODUCTION

In this paper, we examine the asymptotic behavior of infi-
nite dimensional control systems with periodic nonlinearities
and multiple equilibria. Among systems with periodic non-
linearities are mathematical pendulum, mechanical systems,
electrical machines [1], vibration units [2], synchronization
circuits [3]–[5]. Such systems are called synchronization or
pendulum-like systems.

The aforementioned systems often cannot be adequately
described my ordinary differential equations. Such are systems
with delays, for instance. In this paper we consider a class of
systems described by integro-differential Volterra equations.

The stability problems for synchronization systems differ
essentially from those for the systems of the single equilib-
rium. The two most significant problems for pendulum-like
systems are Lagrange stability (every solution is bounded)
and gradient-like behavior ( every solution converges to a
certain equilibrium). It turned out that standard methods are of
no good for stability investigation of pendulum-like systems.
New methods have been elaborated in the framework of the
traditional ones (see [6] and bibliography therein).

In this paper we examine stability of infinite-dimension
pendulum-like system by the technique stemming from the
Popov’s method of “a priori integral indices” [7], [8]. We
combine the Popov’s method with Leonov’s nonlocal reduction
principle [9], [10] and “Bakaev-Guzh technique” [6], [10],
so that the Popov’s functionals involve trajectories of low-
order stable comparison system and a modified nonlinearity
with zero value other the period. As a result we derive
new frequency-algebraic stability criteria for pendulum-like
systems.

II. THE STATEMENT OF THE PROBLEM

Consider an integro-differential equation

σ̇(t) = b(t) + ρϕ(σ(t− h))−
t∫

0

γ(t− τ)ϕ(σ(τ)) dτ, (1)

Here h ≥ 0 ; ϕ : R → R; γ, b : [0,+∞) → R, The solution
of (1) is uniquely determined by the initial condition

σ(t)|t∈[−h,0] = σ0(t) ∈ C[−h, 0]. (2)

We assume that the function b(t) is continuous, the function
γ(·) is piece–wise continuous and

γ(t)ert, b(t)ert ∈ L2[0,+∞) (r > 0). (3)

The function ϕ(σ) is C1-smooth and ∆–periodic:
ϕ(σ) = ϕ(σ + ∆). It also has two simple zeros
0 ≤ σ1 < σ2 < ∆ with ϕ′(σ1) > 0, ϕ′(σ2) < 0. Without loss
of generality we assume that

∆∫
0

ϕ(ζ) dζ ≤ 0. (4)



Equation (1) is a special case of Lur’e system. We shall need
the transfer function of the linear part of (1) from ξ = ϕ(σ)
to (−σ̇):

K(p) = −ρe−ph +

∞∫
0

γ(t)e−pt dt (p ∈ C). (5)

System (1) is said to be Lagrange stable if any its solution
is bounded. System (1) is said to be gradient–like if every its
solution converges to an equilibrium:

σ̇(t) −−−→
t→∞

0, σ(t) −−−→
t→∞

σeq, ϕ(σeq) = 0. (6)

The Lagrange stability is the basic asymptotic property for
pendulum–like systems since it is often possible to prove the
dichotomy property of the system: every solution is either un-
bounded or convergences. In this paper we shall first establish
the conditions ensuring that (1) is Lagrange stable. Then for
an important particular case the conditions for gradient–like
behavior will be obtained. We use here two special techniques,
destined for Lur’e systems with periodic nonlinearities. The
first is the Bakaev-Guzh procedure. According the procedure
we substitute the original periodic nonlinearity by a periodic
nonlinearity with zero value over the period.

The other technique is the Leonov’s nonlocal reduction
method [11]. It exploits the properties of a special comparison
system. As a comparison system, we use the second oder
system

ż = −az − ϕ(σ) (a > 0),

σ̇ = z,
(7)

which has been exhaustively investigated (see [9], [10] and
references therein). Equation (7) has Lyapunov stable equi-
libria (0, σ1 + ∆k) and saddle-point equilibria (0, σ2 + ∆k)
(k = 0,±1, . . .). It has a bifurcation value acr such that if
a > acr every solution of (7) converges to some equilibrium.

In this case the first order equation

F (σ)
dF

dσ
+ aF (σ) + ϕ(σ) = 0 (F = σ̇ = z), (8)

associated with (7), has solutions Fk(σ) (k ∈ Z) such that

Fk(σ2 + ∆k) = 0, Fk(σ) 6= 0 ∀σ 6= σ2 + ∆k,

Fk(σ) −−−−−→
σ−→∓∞

±∞. (9)

The solution Fk(σ) is produced by two separatrices which
“go in” at the point (0, σ2 + ∆k)

III. LAGRANGE STABILITY

Introduce the constants

µ1
∆
= inf
σ∈[0,∆)

ϕ′(σ); µ2
∆
= sup
σ∈[0,∆)

ϕ′(σ) (µ1µ2 < 0) (10)

and the function

Φ(σ)
∆
=

√
(1− α−1

1 ϕ′(σ))(1− α−1
2 ϕ′(σ)), (11)

with α1 ≤ µ1, α2 ≥ µ2. Denote

ν0 =

∫ ∆

0
ϕ(σ)dσ∫ ∆

0
|ϕ(σ)|Φ(σ) dσ

. (12)

Theorem 1: Suppose there exist ε, τ, δ > 0, λ ∈ (0, r2 )
α1 ≤ µ1, α2 ≥ µ2 such that the following conditions are true:

π(ω, λ)
∆
= Re{K(ıω − λ)− τ(K(ıω − λ)+

+α−1
1 (ıω − λ))∗(K(ıω − λ) + α−1

2 (ıω − λ))}−
−ε|K(ıω − λ)|2 − δ ≥ 0, ∀ω ≥ 0,

(13)

where the symbol (∗) means the complex conjugation;

4λε > a2
cr(1−

2
√
τδ

|ν0|
); (14)

max
σ∈[0,∆)

Φ(σ) ≤ 1

|ν0|
. (15)

Then (1) is Lagrange stable.
Proof: We use the standard scheme of Popov’s

method [6]. Let σ(t) be an arbitrary solution of (1), η(t) =
ϕ(σ(t)). Determine the functions (T > 1):

v(t)
∆
=


0, if t < 0,

t, if t ∈ [0, 1],

1, if t < 1;

(16)

ηT (t)
∆
=

{
v(t)η(t), if t ≤ T,
0, if t > T ;

(17)

ζT (t)
∆
= ρηT (t− h)−

t∫
0

γ(t− τ)ηT (τ) dτ ; (18)

Let [f ]µ(t)
∆
= f(t)eµt (µ ∈ R). Then

[ζT ]λ(t) = ρeλh[ηT ]λ(t−h)−
t∫

0

[γ]λ(t−τ)[ηT ]λ(τ) dτ. (19)

Denote the set of all σ2 + ∆k (k ∈ Z) by S. Let

Σ
∆
= {T : T > 1, σ(T ) ∈ S}. (20)

If Σ is bounded then the function σ(t) is bounded as well.
Suppose Σ is not bounded. Consider the functionals

RT
∆
=
∞∫
0

{[ηT ]λ[ζT ]λ + ε([ζT ]λ)2 + δ([ηT ]λ)2+

+τ([ζT ]λ − α−1
1 ηT,λ)([ζT ]λ − α−1

2 ηT,λ)} dt (T ∈ Σ).
(21)

where

ηT,λ(t)
∆
=

d

dt
([ηT ]λ)− λ[ηT ]λ (T ∈ Σ, t 6= 0, T ). (22)

Notice that

F([ζT ]λ)(ıω) = −K(ıω − λ)F([ηT ]λ)(ıω), (23)

F(
d

dt
[ηT ]λ) = ıωF[ηT ]λ(ıω), (24)



where F(f)(ıω) stands for Fourier–transform of function f .
Then in virtue of Plancherel theorem one has

RT = − 1

2π

+∞∫
−∞

π(ω, λ). (25)

It follows from (13) that

RT ≤ 0 ∀T ∈ Σ. (26)

On the other hand

RT ≥ IT + I1T (T ∈ Σ). (27)

where

IT =
T∫
0

{δ(ϕ(σ(t)))2 + εσ̇2(t) + σ̇(t)ϕ(σ(t))+

+τ σ̇2(t)Φ2(σ(t)}e2λt dt

(28)

and the integrals I1T are uniformly bounded. Then

IT ≤ C (T ∈ Σ), (29)

where C does not depend on T .
Let us choose κ ∈ (0, 1) such that

4λε

a2
cr

> κ > 1− 2
√
τδ

|ν0|
. (30)

Let
IT = J1T + J2T , (31)

where

J1T
∆
=

T∫
0

{(1− κ)ϕ(σ(t))σ̇(t) + τ σ̇2(t)Φ2(σ(t))+

+δϕ2(σ(t))}e2λt dt,

J2T
∆
=

T∫
0

{κϕ(σ(t))σ̇(t) + εσ̇2(t)}e2λt dt.

(32)

In order to apply Bakaev–Guzh procedure introduce the func-
tion

Ψ(σ) = ϕ(σ)− ν|ϕ(σ)|Φ(σ). (33)

Then

J1T =
T∫
0

{(1− κ)ν|ϕ(σ(t))|σ̇(t)Φ(σ(t)) + τ σ̇2(t)Φ2(σ(t))+

+δϕ2(σ(t))}e2λt dt+ (1− κ)
T∫
0

Ψ(σ(t))σ̇(t)e2λt dt

(34)
The first addend in the right–hand part of (34) is positive
definite in virtue right-hand part of (30). Consider the second
summand:

T∫
0

Ψ(σ(t))σ̇(t)e2λt dt = e2λT
σ(T )∫
σ(T0)

Ψ(ζ) dζ, (35)

where T0 ∈ [0, T ]. Since

∆∫
0

Ψ(ζ) dζ = 0,Ψ(σ1) = Ψ(σ2) = 0, Ψ(ζ)ϕ(ζ) ≥ 0 (36)

we conclude that

σ(T )∫
σ(T0)

Ψ(ζ) dζ ≥ 0 (T ∈ Σ). (37)

Then it follows then from (29) and (31) that

J2T ≤ C1, (T ∈ Σ), (38)

where C1 does not depend on T .
We shall apply the nonlocal reduction technique now and

consider the equation

F (σ)
dF (σ)

dσ
+ 2

√
λε

κ
F (σ) + ϕ(σ) = 0. (39)

It follows from left-hand part of (30) that (39) has solutions
Fk(σ) with the properties (9). Note that F̂k =

√κ
2 Fk is a

solution of the equation

F̂ (σ)F̂ ′(σ) +
√

2λεF̂ +
κ
2
ϕ(σ) = 0. (40)

Inject F̂k into J2T :

J2T =
T∫
0

{G(σ̇(t), ϕ(σ(t)), F̂k(σ(t))F̂ ′k(σ(t)))−

− 1
4ε1

(κϕ(σ(t)) + 2F̂k(σ(t))F̂ ′k(σ(t)))2+

+2λF̂ 2
k (σ(t))}e2λt dt− F̂ 2

k (σ(T )))e2λT + F 2
k (σ(0)),

(41)
where

G(x, y, z) = (
√
εx+

κ
2
√
ε
y +

1√
ε
z)2. (42)

Then

J2T ≥ −F̂ 2
k (σ(T ))e2λT + F̂ 2

k (σ(0)). (43)

Since F̂k is a solution of (40) the first summand in right–hand
part of (43) is equal to zero. Then it follows from (43) and (38)
that

F̂ 2
k (σ(t))e2λt ≥ F̂ 2

k (σ(0))−C1 for σ(t) = σ2+∆l (l, k ∈ Z).
(44)

Let us choose the number k0 ∈ N so large that

σ2 −∆k0 < σ(0) < σ2 + ∆k0, (45)

and

F̂ 2
±k0(σ(0)) > C1. (46)

The inequality (46) implies that

σ2 −∆k0 < σ(t) < σ2 + ∆k0. (47)

Theorem 1 is proved.



IV. GRADIENT–LIKE BEHAVIOR

In this section we assume that b(t) and γ(t) have piece–wise
continuous derivatives and

ḃ(t)ert, γ̇(t)ert, b(t)ert ∈ L2[0,+∞) (r > 0). (48)

Theorem 2: Let h = 0. Suppose all the conditions of (1)
are fulfilled and besides

α−1
1 α−1

2 = 0, (49)

ρ(α−1
2 − α

−1
1 ) ≤ 0. (50)

Then system (1) is gradient–like.
Proof: Consider the functionals

J3T =
T∫
0

{κ̄η(t)σ̇(t) + εσ̇2(t) + δη2(t)}e2λt dt+

+τ
T∫
0

(σ̇2(t) + (α−1
2 + α−1

1 )σ̈(t)η(t))e2λt dt,

(51)

where κ̄ = 1 + 2λτ(α−1
2 + α−1

1 ) Let us demonstrate that for
all T > 1 the following estimate is true:

J3T ≤ C1, (52)

where C1 does not depend on T .
We shall use here functions ηT (t), ζT (t) defined by formu-

las (17), (18), for all T > 1. Let α−1
1 = 0, whence ρτα−1

2 ≤ 0.
Determine the functions ζ̄T (t) = ζT (t)− ρηT (t) and consider
the functionals

R1T
∆
=

T∫
0

{(1 + λτα−1
2 [ηT ]λ(t)[ζT ]λ(t)+

+(τ + ε)([ζT ]λ(t))2 + δ([ηT ]λ(t))2+

+τα−1
2 (

d

dt
[ζT ]λ(t))[ηT ]λ(t)} dt

(53)

Note that

F(
d

dt
[ζT ]λ(t))(ıω) = −ıω(K(ıω − λ)+

+ρ)F([ηT ]λ(ıω).
(54)

Then in view of Plancherel theorem we have

R1T =
1

2π

+∞∫
∞

Re{(1 + λτα−1
2 )K(ıω − λ)− (τ + ε)|K(ıω−

−λ)|2 + δ + ıωτα−1
2 (K(ıω − λ)|F([ηT ]λ)(ıω)|2 dω

(55)
whence in virtue of frequency-domain condition it follows that

RT ≤ 0 (56)

On the other hand

R1T ≥ J3T − τα−1
2 ρ

T∫
0

([ηT ]λ(t))

dt
[ηT ]λ(t) dt+ J4T (57)

where J4T is uniformly bounded. The inequalities (56)
and (57) imply (52).

The case α−1
2 = 0 can be treated in the same way as the

previous one.
Introduce the functional

J5T
∆
=

T∫
0

{κ̄η(t)σ̇(t) + εσ̇2(t) + δη2(t)+

+τ(σ̇2(t) + (α1 + α2)σ̈(t)η(t))} dt,
(58)

J5T = J3T̂ (59)

where T̂ ∈ [0, T ]. Then

J5T < C1 ∀T > 1. (60)

From (58) we have

J5T = κ
σ(T )∫
σ(0)

ϕ(σ) dσ + ε
T∫
0

σ̇2(t) dt+ δ
T∫
0

η̇2(t) dt+

+τ
T∫
0

(σ̇2(t)− (α−1
1 + α−1

2 )σ̇(t)η̇(t)) dt+

+τ(α−1
1 + α−1

2 ))σ̇(T )η̇(T )− σ̇(0)η̇(0)).
(61)

Since all the conditions of Theorem 1 are fulfilled every
solution σ(t) is bounded on [0,+∞), which implies together
with (61) and (60) that

σ̇(t), ϕ(σ(t)) ∈ L2[0,+∞). (62)

It is now easy to show [6] that (62) entails the relations (6).

V. CONCLUSION

For a class of infinite dimensional synchronization systems
with multiple equilibria new frequency–algebraic stability cri-
teria are proposed. The criteria are obtained by combining
Leonov’s idea of nonlocal reduction and Bakaev–Guzh tech-
nique with method of a priori integral indices.
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