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Personalized Sleep Spindle Detection in Whole Night Polysomnography

Stefano Scafa1,*, Luigi Fiorillo2,3, Marta Lucchini2, Corinne Roth5, Valentina Agostini1,
Alberto Vancheri2 and Francesca D. Faraci2

Abstract— The present study proposes a new personalized
sleep spindle detection algorithm, suggesting the importance
of an individualized approach. We identify an optimal set
of features that characterize the spindle and exploit a sup-
port vector machine to distinguish between spindle and non-
spindle patterns. The algorithm is assessed on the open
source DREAMS database, that contains only selected part of
the polysomnography, and on whole night polysomnography
recordings from the SPASH database. We show that on the
former database the personalization can boost sensitivity, from
84.2% to 89.8%, with a slight increase in specificity, from
97.6% to 98.1%. On a whole night polysomnography instead,
the algorithm reaches a sensitivity of 98.6% and a specificity
of 98.1%, thanks to the personalization approach. Future work
will address the integration of the spindle detection algorithm
within a sleep scoring automated procedure.

I. INTRODUCTION

Sleep spindles are electroencephalography (EEG) oscil-
lations in non-rapid-eye-movement (NREM) sleep stages
[1], and are implicated in sleep-related cerebral plasticity
[2]. According to the official definition by the American
academy of sleep medicine (AASM) [3], a sleep spindle is
a train of distinct waves with frequency in the range of 11
to 16 Hz and with duration ≥ of 0.5 s, usually maximal
in amplitude using central EEG derivations. Spindles are
a distinctive pattern of sleep stage NREM2, and can also
be present in NREM3; their identification assists the sleep
scoring procedure. Many spindle detection algorithms have
been developed in the last decades [4], and present very good
performance. However, when applied to a different database
the performance often deteriorates, as highlighted in [5],
where six different automated detectors are compared.
Presently, an automated sleep spindle detector flexible
enough to be routinely used in the everyday practice and
adaptable to different database is not yet available.

In general, the automated spindle detection procedure
consists of several phases: pre-processing, feature extraction,
feature selection and spindle recognition with a classifier.
We refer the reader to [6] for an extensive analysis of the
various methodologies. Very recently, also deep learning [7]
has been successfully tested in sleep spindle identification.
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Spindle density and characteristics such as mean oscillation
frequency, amplitude and duration appear stable over time
in the same night for the same subject but may vary con-
siderably between subjects [8]. Therefore, an individualized
approach has been already proposed by some authors. In [9]
the specific mean peak spindle amplitude is calculated so
as to improve the detection. In [10] the EEG is bandpass-
filtered according to individually adjusted frequency criteria,
then spindles are detected if the rectified signals exceed
the amplitude criteria for more than 0.5 s. As highlighted
in [11], it is quite difficult to compare different results,
because of different metrics, different databases and different
criteria used for sleep spindles identification across studies.
In general, recent efforts claim to reach a sensitivity and a
specificity both up to 98% [9].

In the present work we investigated how a spindle de-
tection algorithm can be improved with a more flexible
technique and individualized information. In our approach all
the features are tailored to the specific set of data, and we let
a classifier deciding how to better differentiate spindles from
non-spindles. The advantage is that the adaptability of the de-
tection algorithm is enhanced, without a priori constraints or
threshold. We also examined how the algorithm performance
changes in a whole night polysomnography (PSG). In the
vast majority of the publications the detection algorithms are
applied on a recording belonging only to NREM2 stage, and
not to the entire PSG. A better characterization of the false
positives and false negatives could improve many existing de-
tection algorithms. Moreover, a good spindle detector could
be integrated and could support a sleep scoring automated
algorithm, enhancing its performance.

II. DATA

In order to be comparable with existing work, we tested
our detection algorithm on the commonly used DREAMS
database [11]. The database contains recordings of eight
patients, with spindles scored by two experts. It consists of
30 minutes of EEG (channel C3-A1 or Cz-A1) extracted
from whole-night PSG recordings. The data were acquired
in a sleep laboratory of a Belgian hospital using a digital 32-
channel polygraph. They consist of eight polysomnographic
recordings belonging to patients with different pathologies.
The second expert only scored the first six recordings, whilst
the first expert only scored the first part of the 30-minute
recordings. Therefore only the first six subjects were used,
and the union of the two scoring was considered, as done in
[11]. We re-sampled all the recordings so as to consider a
sampling rate of 200 Hz.



TABLE I
DREAM DATABASE AND SPASH DATABASE.

Recording Sampling Scored Scored Spindles
Frequency by expert 1 by expert 2 Union

D
R

E
A

M
S

subject(1) 100 Hz 52 115 134
subject(2) 100 Hz 50 62 76
subject(3) 50 Hz 5 44 44
subject(4) 200 Hz 44 25 63
subject(5) 200 Hz 56 86 103
subject(6) 200 Hz 72 97 117
subject(7) 200 Hz 18 − −
subject(8) 200 Hz 48 − −

SP
A

SH subject(1) 200 Hz 487 − −

We also investigated the goodness of our spindle detector
on a whole night PSG recording (channel C4-M1), extracted
from the SPASH database. SPASH database belongs to
the Sleep-Wake-Epilepsy-Centre (SWEZ) of the InselSpital
of Bern (Switzerland) and contains 60 whole night PSG
recordings of healthy subjects, sampled at 200 Hz. Presently
only one PSG has been fully scored by the sleep experts,
including spindles, K-complexes and vertex waves.

Further details on the two databases are reported in Table I.

III. METHODS

Our first challenge was to identify the optimal set of
features to characterize the spindle. From the literature it ap-
pears clear that many signal characteristics have to be taken
into account to gather complementary information. Then, the
features were employed to train a support vector machine
(SVM) classifier to distinguish a spindle from any other
events in the EEG recording. We propose a personalized
sleep spindle detection (PSSD) procedure where the features
are tightly adapted to the subject sleep spindle characteristics.

A. Feature Extraction and Feature Selection

We identified 14 promising features, with complementary
information about the spindle physiology. The 14 features
were the following: sample entropy (SpEn), maximum, mini-
mum, variance, standard deviation, phase amplitude coupling
(PAC), instantaneous frequency, energy ratio (Energy11-16Hz),
kurtosis, skewness, power peak (PWRpeak), power ratio
(PWRratio), interquartile range (IQR) and zero crossing.

The EEG signal is filtered with a FIR filter between 0.3
Hz and 35 Hz. All the features were computed starting from
the filtered signal, and most of them within a time window of
0.5 seconds (i.e, the minimum duration of a spindle [3]). The
window was centered on the pattern detected by the sleep
physician. Sample entropy, maximum, minimum, variance,
standard deviation, phase amplitude coupling, instantaneous
frequency and energy ratio were directly computed on the
filtered signal. In particular, instantaneous frequency and
energy ratio were obtained using Hilbert-Huang transform.
Kurtosis, skewness, power peak and power ratio values were
computed on the power spectral density (PSD) of the signal.

Interquartile range and zero crossing were calculated on the
first mode of the empirical mode decomposition (EMD) of
the filtered signal.

The feature selection procedure has been done using the
minimum redundancy maximum relevance (MRMR) algo-
rithm [12]. The following features have been finally selected.

SpEn. The sample entropy was computed as in [13]. The
parameter was calculated on a time series of 50 samples, with
a tolerance of 5% of the standard deviation of the signal. The
sample entropy detects the complexity of a signal. In fact,
unlike the other features, is not limited to extract information
from the 0.5 second window used for spindle detection
but it is used to calculate a value relative to the adjacent
signal. This allows to characterize the environment in which
a spindle occurs. Since the spindle usually occurs during
the NREM2 phase, it is expected to find low frequency
fluctuations in its surrounding, where delta (0.3-3 Hz) and
theta (4-8 Hz) activities are prevalent. A very different
background from the ones that can be found in a awake
or REM sleep stages.

PAC. Phase amplitude coupling evaluates the degree of
spindle amplitude modulation by low frequency activity. Low
frequency waves and sleep spindles are two predominant
features of NREM sleep. Sleep spindles are short trains
of waves that often have a waxing-and-waning shape, a
frequency activity of 11-16 Hz modulated by a low frequency
(0.1-1.5 Hz)[14]. The feature was computed by expanding
the observation time window from 0.5 seconds to 4 seconds
to gather the dynamics of the low-frequency components.
Hence, the PAC allows to detect a synchronization between
the phase of low frequency components and spindle ampli-
tude.

Energy11-16Hz. The feature is the ratio between the energy
of the signal in band 11-16 Hz and the energy of the signal
in the whole band. In presence of a spindle, a high value of
this parameter is expected.

PWRpeak. The power peak value was computed on the
PSD of the signal; it was the maximum power value iden-
tified in the sleep spindle frequency band (11-14 Hz). This
feature can better differentiate sleep spindles from other EEG
oscillations in the same frequency band.

PWRratio: The parameter was computed on the PSD of
the signal; it is defined as the ratio between the total power
of the spindle spectral band and the total power of the low
frequency band (0.3-8 Hz).

IQR. The interquartile amplitude range was calculated on
the first mode of the EMD. Through the decomposition of
the signal into monocomponents, it is possible to isolate the
higher frequency components in the first mode and to have an
estimate of the amplitude. The hypothesis is that the activity
of the spindle, characterizing an NREM2 stage, occurs at a
higher frequency than the signal in the background.

B. Classification Procedure

The SVM classifier was trained on a dataset composed
by 30 samples from the same PSG: 15 spindles, randomly



selected among the one identified by the scorer, and 15 non-
spindles. The selected features were extracted from these
samples, in particular they were extracted from time windows
of 0.5 seconds. Then the trained classifier was tested on the
whole recording. The test set consists of sliding windows of
0.5 seconds, shifted on the whole signal with steps of 0.1
second. The classifier predicts the presence or non-presence
of a spindle in each window.
After the classification procedure, a post-processing phase is
needed. With the windowing procedure a single spindle is
detected by consecutive overlapping windows. Therefore it
is necessary to aggregate them in just one window enclosing
the whole spindle pattern. On the other hand, when a spindle
is detected only by one window, it is almost certainly a non-
spindle (false positive).

The SVM classifier was tested also with a non-
personalized procedure. The 30 samples of the training set,
spindles and non-spindles, are randomly selected among all
the different subjects. SPASH data were used to train the
SVM used for DREAMS patients and vice versa.

C. Performance Metrics

In order to compare the performance with existing detec-
tion algorithm, the sensitivity, the specificity and the false
positive rate (FPR) were computed.

Sensitivity =
TruePositive

(TruePositive+ FalseNegative)
(1)

Specificity =
TrueNegative

(TrueNegative+ FalsePositive)
(2)

FPR =
FalsePositive

(FalsePositive+ TrueNegative)
(3)

IV. RESULTS AND DISCUSSION

We firstly tested our algorithm on the open source
DREAMS database in a personalized and non-personalized
approach. The results are in Table II. Our approach reaches
a sensitivity of 89.8%, definitely higher than the one re-
ported in the state of the art [11], despite a 1.9% FPR.
In order to evaluate the enhancement that the personaliza-
tion can have, we tested our algorithm on the DREAMS
database also in a non-personalized approach. We found
as expected a significantly low sensitivity, down to an
average of 84.2% (p<0.05), with higher variability. Then
we tested our algorithm on a whole night PSG recording
from the SPASH database, of around seven hour length.
We repeated the test several times, extracting every time
randomly a different training set of 15 spindles. We obtained
very good averaged results, with low variability, over the
whole duration of the EEG signal: 93.0% sensitivity, 98.1%
specificity and 1.9% false positive rate. Also for SPASH
database the non-personalized approach was tested, using

Fig. 1. An EEG epoch of 30 seconds with highlighted in green the K-
Complexes and in red the spindles.

data from the DREAMS database. Sensitivity and specificity
values decreased to 92.5% and 97.7% respectively (p<0.05).
The results present a certain variability, implicit in the
way that the algorithm is built. The classifier performance
depends strongly on the training set: the authenticity of
the spindles and the precision with which they are selected
within the window are both very important. If the training
set is selected with the due accuracy the on a whole night
polysomnography the algorithm can reach a sensitivity of
98.6% and a specificity of 98.1%. Spindle characteristics
may vary slightly during the night within the same subject.
Often the spindles may be overlapped with other events and
this can introduce biases in the feature extraction process.
Fig. 1 shows example of two spindles in a 30-second epoch,
the first spindle is overlapped with a K-complex. Although
there is a certain intrinsic variability in the performance of
the PSSD algorithm, the results are very satisfactory.

From the distribution of false positives in Table III
emerged that about 30% of these were in sleep stages
where sleep spindles should not be present. Therefore, we
constructed a mask to remove W, NREM1 and REM epochs,
without removing epochs close to a transition. In fact, the
scorer has annotated spindles in epochs close to transitions
that are not labeled neither as NREM2 or as NREM3. After
applying this mask, the increase in specificity was minimal.
Approximately 95% of false positives generated in the awake
and REM stages are placed in the transitional periods and
therefore wre not removed with this mask. Another obser-
vation can be made on the 70% of false positives belonging
to the two stages NREM2 and NREM3: it is possible that
some activities, maybe very short but recorded at least in two
adjacent windows (0.6 seconds of activity), were actually
sleep spindles activities not marked by the scoring sleep
expert. The results are reported as PSSD* in Table II.

V. CONCLUSIONS
In the present work we introduced the PSSD algorithm,

that with six well defined features can extract complementary
information about the spindles of a single subject. Our
algorithm presents a better performance than the state-of-
the-art, and highlights the improvement that is possible to



TABLE II
PERFORMANCE OF THE PSSD CLASSIFIER WITH A PERSONALIZED AND NON-PERSONALIZED APPROACH ON THE DREAMS AND SPASH DATABASE.

PERFORMANCE OBTAINED FROM THE RANDOM SELECTION OF 500 TRAINING SETS (AVERAGE VALUE) ± (STANDARD DEVIATION).

DATABASE ALGORITHM PERSONALIZED SENS. SPEC. FPR

DREAMS
[11] NO 0.702 0.986 0.014

PSSD NO 0.842± 0.104 0.976± 0.013 0.024± 0.013
YES 0.898 ± 0.067 0.981± 0.008 0.019± 0.008

SPASH PSSD NO 0.925± 0.055 0.977± 0.012 0.023± 0.012
YES 0.930 ± 0.056 0.981± 0.008 0.019± 0.008

PSSD* YES 0.930± 0.056 0.986 ± 0.005 0.014 ± 0.005

TABLE III
DISTRIBUTION OF FALSE POSITIVES DETECTED ON SPASH DATABASE.

Database W NREM1 NREM2 NREM3 REM
SPASH 12% 11% 46% 23% 8%

reach through personalization. We have noticed a very strong
dependency on the quality of the data. Our approach can be
successfully utilized only if the few spindles used for the
training set are accurately identified.

In future the PSSD algorithm could be integrated in a
scoring automated procedure: the human scorer would have
to well determine a set of spindles manually for each subject,
let the algorithm find all the others and use this information
to improve the scoring.
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