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Abstract: Adaptive variability during walking is typical of child motor development. It has been
reported that neurological disorders could affect this physiological phenomenon. The present work is
designed to assess the adaptive variability of muscular recruitment during hemiplegic walking and
to detect possible changes compared to control populations. In the attempt of limiting the complexity
of computational procedure, the easy-to-measure coefficient of variation (CV) index is adopted to
assess surface electromyography (sEMG) variability. The target population includes 34 Winters’ type
I and II hemiplegic children (H-group). Two further healthy populations, 34 age-matched children
(C-group) and 34 young adults (A-group), are involved as controls. Results show a significant
decrease (p < 0.05) of mean CV for gastrocnemius lateralis (GL) in H-group compared to both
C-group (15% reduction) and A-group (35% reduction). Reductions of mean CV are detected also
for tibialis anterior (TA) in H-group compared to C-group (7% reduction, p > 0.05) and A-group
(15% reduction, p < 0.05). Lower CVs indicate a decreased intra-subject variability of ankle-muscle
activity compared to controls. Novel contribution of the study is twofold: (1) To propose a CV-based
approach for an easy-to-compute assessment of sEMG variability in hemiplegic children, useful in
different experimental environments and different clinical purposes; (2) to provide a quantitative
assessment of the reduction of intra-subject variability of ankle-muscle activity in mild-hemiplegic
children compared to controls (children and adults), suggesting that hemiplegic children present
a limited capability of adapting their muscle recruitment to the different stimuli met during walking
task. This finding could be very useful in deepening the knowledge of this neurological disorder.

Keywords: surface electromyography; cerebral palsy; hemiplegia; motor disorders; gait variability;
coefficient of variation

1. Introduction

Hemiplegia, often observed in children affected by cerebral palsy, is a neurological disease
characterized by the fact that only half of the body is affected by the disorder. Modified selective motor
control, weakness and spasticity are associated with hemiplegia, conditioning everyday activities
including walking [1]. In the late 1980s, Winters et al. introduced a suitable classification of gait
in hemiplegia. Based on a kinematics analysis, the authors identified four different gait patterns in
the sagittal plane where four categories were discriminated, based on a progressive distal-proximal
involvement of the hemiplegic leg [2]. Winters’ type I patients present a hypo-activation of dorsi-flexor
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muscles of the hemiplegic-leg ankle, causing drop foot during swing. Winters’ type II subjects are
typified by the persistence of equinism throughout the gait cycle, often related to a hyperextension of
the knee during stance phase [2,3]. Winters’ type I and II are the forms of hemiplegia most frequently
detected in cerebral palsy; thus, many studies have focused on them [3–6].

Surface electromyography (sEMG) is an acknowledged diagnostic technique, typically used
to characterize muscular activity by means of a non-invasive approach. Non-invasiveness and
easiness of use, associated with the increasing availability of solutions based on sEMG, make this
technique particularly valuable for the analysis of those pathologies in which walking is directly
affected, as in cerebral palsy. Many studies, including our own, used an sEMG-based approach
to identify the gait patterns adopted by hemiplegic children and to compare them with control
children [4,6–11]. In particular, two recent studies, performed on numerous strides (hundreds) per
patient, reported clear alterations of muscular-recruitment patterns in hemiplegic side: Reduced and
less frequent activity during swing and a dearth of activity at loading response of tibialis anterior in
type I and II; and a hyper-activation of gastrocnemius around initial contact was identified in type II
only [5,6]. Overall, both studies reported significant variability in activation modality of muscles of
both hemiplegic leg [5] and contralateral (non-hemiplegic) one [6].

Adaptive variability is typical of human motor development. According to some researchers, the
variability in early infant movements is a key aspect of motor development [12]. Moreover, other sEMG-
based studies suggest that an initial attempt of adaptation in postural behavior during sitting could
be identified in four-month-old infants [13]. Then, all basic motor functions will achieve the first
stages of the so-called secondary variability around the age of 18 months. Active trial-and-error
experiences, specific to each subject, are typical of this stage. The basic, variable motor skill reached
during the phase of primary variability keeps on developing and modifying all through the subject’s
life, allowing increasingly accurate and organized movements. Consequently, adult subjects master
a wide movement repertoire, enabling an efficient motor solution for each specific circumstance [13].
Overall variability of human motion is associated with variability of muscle activity, quantified by EMG
signals. In a preliminary study of the present group of researchers [14], sEMG-signal variability was
quantified in relation to motor development, comparing adult and children populations by means of
a quantitative index, the coefficient of variation (CV), previously tested on different EMG signals [14–16].
That study suggested that CV is an easy-to-measure index able to quantify sEMG variability in different
experimental conditions and with different clinical purposes: In adult and pediatric populations
and for both intra- and inter-subject studies. sEMG variability has been infrequently assessed in
hemiplegic children and only by means of computationally expensive techniques, such as statistical
gait analysis [4,6]. To the authors’ best knowledge, the CV index has never been applied to quantify
the variability of muscular recruitment during hemiplegic walking. Moreover, no attempts were
reported in literature to provide a direct and quantitative comparison of sEMG-variability values
between hemiplegic children and controls.

Thus, the present work is designed to assess the adaptive variability of muscular recruitment
during hemiplegic walking and to detect possible changes in sEMG variability of hemiplegic walking
compared to controls. The easy-to-measure CV index is chosen to achieve this goal, in order to
propose a novel approach able to limit the complexity of computational procedures. The CV value is
computed in 34 school-age hemiplegic children identified as type I and II by Winters’ classification
and in a large number of cycles per subject (hundreds), resulting in around 30,000 strides in total,
to guarantee an adequate number of samples for variability characterization. The same index is used to
describe sEMG behavior in two further populations, school-age children (34 subjects) and young adults
(34 subjects), to compare and interpret results achieved in the hemiplegic population. The manuscript
is organized as follows: Section 2 provides a short summary of the main indices available in the
literature and used to quantify and analyze the sEMG signal variability in different scenarios, among
which the CV is applied in the present study. Section 3 presents material and methods based on
which the research was developed, providing details about sEMG processing, test populations and
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parameters computation. Section 4 presents the experimental results that are discussed in Section 5,
along with retrospection on the related state of the art. Finally, Section 6 concludes the manuscript and
provides insights for future research developments.

2. Indices for sEMG Variability Analysis

The non-invasive recording of muscle electrical activity during dynamic tasks is greatly supported
by sEMG, thanks to a huge collection of algorithms and techniques specifically designed to obtain
and interpret the muscle activation patterns. The last ones may appear in patients with altered
locomotion, and the use of sEMG in clinical gait analysis helps identifying such a condition.
Despite the aforementioned advantages, and the market availability of wireless, lightweight and
minimally invasive sEMG measurement equipment, such as the Myon [17] or the Freeemg [18]
devices, sEMG has not witnessed a pervasive and widespread adoption in clinical assessment or
rehabilitation yet. This is motivated by education barrier, i.e., understanding the features and
information associated with electrical signals measured on the body may be not easy or straightforward
by clinical operators [19,20]. Additional complexity is determined by the possibility to apply a huge
variety of parameters, indices and figures, differently defined and computed from the measured
sEMG signal samples, according to the specific muscle feature or activation pattern one is interested
to observe [21]. For example, root mean square (RMS), median frequency (MF) and mean power
frequencies (MPF) based on Fourier Transform [22] have been effectively used in applications dealing
with the evaluation of muscular fatigue.

It is well recognized that the human motor system exhibits redundancy, so a single motor task
may be performed in several different ways, leading to a similar final result [23]. Redundancy of
motor repertoire in human subjects reflects the capability of the nervous system to generate different
patterns of muscle activation, for the same given movement. Such a capability motivates either
intra- and inter-subject variability of muscle activation, which can be captured by suitably designed
indices computed on the measured sEMG signal samples. For example, indices proposed for sEMG
analysis focused on aspects pertaining to running are mean, standard deviation (SD) and mean CV,
as well as CV calculated over the running cycle [24]. The mean sEMG value at the denominator
of the CV definition influences the value of such an index: For sensors located in those body areas
where muscle activity is very weak or not present at all, the variability may be overestimated [25].
In order to overcome this limit, other metrics have been introduced, such as the variance ratio (VR)
applied in gait analysis [26]. In studying intra-individual variability of sEMG in front crawl swimming,
Martens et al. [27] introduced several one- and two-dimension metrics: They included both one-
and two-dimension CV, VR and the coefficient of quartile variation (CQV). Corresponding general
definitions are reported in Table 1. In particular, the CV of a quantity is defined as the ratio of its standard
deviation to its mean, as given in Table 1. Such an index is largely used in many clinical fields, but it is
not commonly applied to sEMG signals. In the present work, CV is adopted to quantify the variability
of muscle rhythmic activation during walking in three different populations, namely hemiplegic
children, healthy school children and young adult. Motivation for choosing the CV is threefold: (i)
We aim for applying and testing this index in the evaluation of sEMG variability during walking in
hemiplegic children for the first time at our best knowledge; (ii) we aim for checking the suitability of
such an easy-to-compute index in reflecting different characteristics between pathological and control
children and then between children and young adults, in order to promote the adoption of sEMG in
clinical practice: Despite its simplicity, the index is able to satisfactorily discriminate the muscular
recruitment during walking exhibited by different populations [14,28]; (iii) CV is a unit-free measure,
suitable to compare normally distributed data by directly quantifying the degree of variability relative
to the mean of the distributions [28]. The CV index, indeed, is not directly computed on sEMG samples,
but it is derived from the standard deviation of the signal, which is by definition a direct measurement
of the signal variability. These characteristics seem to make this index more suitable to the aim of
the present study, respect to CQV and VR indices. CQV index, indeed, depends on mean and quartiles,
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which in turn can be influenced by how they are estimated [28]. VR index, requiring a more articulated
computation algorithm, is more indicated for intra-individual variability, being insensitive to mean
sEMG amplitude and data smoothing applied to different waveforms [29]. Neither CQV nor VR
indices include the standard deviation in their own definition (Table 1).

Table 1. Different indices to quantify intra-individual sEMG signal variability (elaborated from [27]).

Index Definition Parameters

One-dimension CV:
it permits comparison of the variability of

a data set with a larger and a smaller
mean and SD

CV =

√
1
k
∑k

i=1 σ
2
i

1
k
∑k

i=1

∣∣∣Xi

∣∣∣
k = no. of intervals (*) over a cycle; Xi = mean

of the sEMG values at the i-th interval
calculated over all the cycles; σi = standard

deviation of the sEMG values calculated over
all the cycles.

Two-dimension CV CVi =
σi

Xi

CV at the i-th interval (*). Note that CV is
defined as the mean value of CVi’s over the

number of intervals in a cycle (k).

Variance Ratio (VR)
VR =

∑k
i=1

∑n
j=1

(Xij−Xi)
2

k(n−1)∑k
i=1

∑n
j=1

(Xij−X)
2

kn−1

where X = 1
k
∑k

i=1 Xi

k = no. of intervals(*) over the cycle; n = no. of
cycles; Xi j = sEMG value at the i-th interval
for the j-th cycle, Xi = mean of sEMG values
at the i-th interval over j cycles; X = mean of

sEMG values.

Coefficient of Quartile Variation (CQV) CQV =
(Q3−Q1)
(Q3+Q1)

Q1 = 25th percentile, Q3 = 75th percentile of
the n sEMG values at a given interval (*).

(*) Definition of interval depends on the specific study target (e.g., gait analysis, swimming, walking).

As discussed in [30], sEMG-signal amplitude is typically used as a measure of relative force
production and it increases with the number, size and firing rate of active motor units. When collecting
sEMG, several aspects may affect the measure of sEMG amplitude and frequency, namely the depth of
the active motor units, the thickness of the subcutaneous tissues, proximity to the innervation zone
and tendons. As such, electrode placement plays a crucial role in sEMG signal quality. Moreover, it is
acknowledged that the thickness of the subcutaneous tissue between the surface electrode and active
muscles affect the measurement of electromyographic activity. The amount of excess body fat is
considered as an internal noise for EMG because it increases the separation between the active muscle
fibers and the detection sites [31]. In this work, sEMG signals have been collected from tibialis anterior
(TA) and gastrocnemius lateralis (GL) muscles, based on acknowledged guidelines [32,33] for electrodes
positioning to maximize the signal-to-noise-ratio. Moreover, obese subjects have been excluded from
the study [34]. So, the potentially limiting factor of a small average sEMG value, associated with CV
definition, is avoided.

3. Material and Methods

3.1. Participants

A retrospective study was performed, considering sEMG and foot–floor-contact data from
102 volunteer subjects. Volunteers were split into three different groups. H-group was composed of
34 Winters’ type I and II hemiplegic children (18 males and 16 females, 6–13 years, age = 7.9 ± 3.0 years,
height = 127 ± 18 cm, mass = 27.4 ± 11.0 kg), originally introduced in [4].

C-group was composed of 34 control children (18 males and 16 females, 6–11 years, age = 9.1 ± 1.1,
height = 134 ± 9 cm, mass = 32.1 ± 6.9 kg), originally introduced in [35]. A-group was composed of
34 healthy adults (18 males and 16 females, 20–30 years, age = 23.9 ± 1.5 years; height = 174 ± 10 cm;
mass = 63.1 ± 12.0 kg), picked up from the populations analyzed in the Movement Analysis Laboratory
of Università Politecnica delle Marche, Ancona, Italy and previously introduced in [14] and [36].
Obese subjects were not included in the study. The research was undertaken in compliance with ethical
principles of Helsinki Declaration and approved by institutional expert committee. Adult participants
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signed informed consent prior the beginning of the test. For children, parental consent and child assent
were obtained.

3.2. Measurement Chain

Basographic and sEMG signals were acquired and synchronized by means of Step 32 multichannel
recording system, (Medical Technology, Turin, Italy, resolution: 12 bit; sampling rate: 2 kHz).
Basographich switches (minimum activation force = 3 N), were pasted beneath the heel, the first and
the fifth metatarsal heads of each foot, for measuring foot–floor-contact signal. Single differential sEMG
probes (Ag/Ag-Cl disk; electrode diameter: 0.4 cm; inter-electrode distance: 0.8 cm; differential amplifier
gain: 30 dB; high-pass filter cut-off frequency: 10 Hz; input impedance: 1.5 GΩ; CMRR > 126 dB;
input referred noise: 1 Vrms) were placed bilaterally over TA and GL muscles, following acknowledged
guidelines [32,33]. Then, subjects walked barefoot back and forth over the floor at preferred speed and
pace for at least 2.5 min. Further details about acquisition procedure could be found in [4,35,36].

3.3. Signal Processing

Single gait cycles and the phases within each cycle were assessed from basographic signals
following the procedure reported in [37]. Band-pass filtering (20–450 Hz) was applied to raw sEMG
signals to remove the baseline drift associated with movement, perspiration, etc., and any DC offset.
Further, sEMG signals x(t) were full-wave rectified and then smoothed computing the following
RMS formula:

RMS =

√
1
T

∫ T

0

∣∣∣x(t)∣∣∣2dt (1)

over a sliding window of 50 ms (100 samples). The sliding-window approach allows improving the
transitory response and guarantees a better temporal resolution. An example of full-wave rectified
(panel A) and RMS (panel B) signals in the same stride is reported in Figures 1 and 2, for GL and
TA respectively.
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Figure 2. Rectified sEMG panel (A) and RMS of sEMG signal panel (B) for TA in the same representative
stride during walking.

3.4. Variability Index

The CV index is used to measure the variability of muscles rhythmic activation during walking.
According to the definition provided in Table 1, the value of this index within a cycle is computed as
the ratio of the sEMG signal standard deviation (σi) to the mean value (Xi) in a single i-th interval [15,16]:

CVi =
σi

Xi
, i = 1 . . . k (2)

As anticipated in Table 1, definition of interval depends on the specific study target (e.g., gait analysis,
swimming, walking). The interval considered in the present study is the gait cycle, assessed from
the basographic signal. After the evaluation of CVi index in each single stride, the average over all the k
strides of a single walking task gives the global CV. High CV values indicate a large range of variability for
a muscle, characterized by periods of contraction and periods of relaxation; lower values identify a more
uniform and constant muscle activity.

3.5. Statistics

The Shapiro–Wilk test was used to evaluate the hypothesis that each data vector had a normal
distribution. Since all the samples resulted normally distributed, the analysis of variance (ANOVA),
followed by multiple comparison test, was used to compare the three groups.
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4. Results

In the present study, CV values were assessed over 102 subjects, equally split into the three
populations, involving 29,042 strides in total. Figure 3 shows, for every subject of H-group, mean CV
values (+SD) over all the available strides for both GL (panel A) and TA (panel B). In the same way,
Figures 4 and 5 depict mean CV values (+SD) over all the available strides for both GL (panel A) and
TA (panel B), for every subject of C-group and A-group, respectively. Considering 6519 strides in total
(a mean value of 192 ± 71 per h-subject), mean CV values (+SD) of 0.71 ± 0.16 for GL and 0.72 ± 0.14
for TA were achieved over H-group. In a total of 9923 strides (a mean value of 292 ± 38 per c-subject),
mean CV values of 0.83 ± 0.19 for GL and 0.77 ± 0.12 for TA were computed over C-group. Eventually,
in a total of 12,600 strides (a mean value of 371 ± 151 per a-subject), mean CV values of 1.10 ± 0.21 for
GL and 0.85 ± 0.11 for TA were obtained over A-group.

A direct comparison among average CV values over the three populations is reported in
Figures 6 and 7 for GL and TA, respectively. A statistically significant reduction (p < 0.05) of
mean CV is detected for GL in H-group compared to both C-group (15% reduction) and A-group
(35% reduction). Moreover, the difference observed between C-group and A-group is statistically
significant (25% reduction, p < 0.05, Figure 6). A significant reduction (p < 0.05) of mean CV is detected
for TA in H-group compared to A-group (15% reduction). The difference observed between C-group
and A-group is statistically significant as well (10% reduction, p < 0.05, Figure 7). The 7% reduction
of mean CV value detected in H-group compared to C-group is not statistically significant (p > 0.05).
A direct comparison between mean CV values computed in GL and in TA within the same group was
also performed. In A-group, a significant higher mean CV value for GL than for TA was observed
(1.10 ± 0.21 vs. and 0.85 ± 0.11, p < 0.05). No further significant differences were detected.
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5. Discussion

Besides the features typically extracted from sEMG signal (RMS, envelope peak, muscle activation
timing, median frequency, etc.), some attempts have been recently proposed to consider sEMG-
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signal variability as a suitable parameter to deepen the interpretation of muscular recruitment by
neuromotor system in pathophysiology [38]. Different approaches have been used to quantify this
phenomenon [15,39,40]. Nevertheless, a gold standard has not been identified yet. The CV adopted in
this work has been proved to be a suitable and easy-to-measure index to assess in different clinical and
experimental environments [14–16]. Thus, the goal of the present study is to assess the variability of the
sEMG signal acquired over ankle muscles during hemiplegic-children walking by means of CV-index
computation. Tibialis anterior and gastrocnemius lateralis are chosen because a large within-cycle
variability of sEMG activity in those muscles is reported during hemiplegic-children walking [4,6].
The size of sEMG variability in hemiplegic children is quantified by a direct comparison with CV-based
results achieved in a population of age-matched control children and in a further population of
able-bodied young adults.

Differently from able-bodied subjects, hemiplegic children are used to hitting the ground in
different ways during the same walking, such as by heel, forefoot and flat foot. It has been reported
that each one of these contacts would correspond to a different EMG pattern [4]. This is particularly
true for those muscles mainly involved in ankle-joint movements, such as GL and TA. Thus, a certain
variability of muscle activity is expected, also in mild forms of hemiplegia, such as Winters’ type I
and II. Results in the present group of hemiplegic children (H-group), indeed, report high (>0.70)
mean CV values (±SD) for GL (0.71 ± 0.16) and for TA (0.72 ± 0.14), confirming the above-mentioned
reports and previsions. This variability may likely be ascribed to the pathophysiological alternation
between sub-phases of gait in which muscles are recruited and sub-phases of gait in which muscles are
silent. It could be also observed that sEMG variability is comparable in GL vs. TA, since no significant
difference (p > 0.05) was detected between mean CV values of the two muscles.

To reliably quantify sEMG variability in hemiplegic children, it is necessary to compare
these findings with an age-matched control population, which is represented by C-group in
the present study. Alteration of walking in mild hemiplegic children has been widely reported
in the literature [2–4,6,8–10]. The classification of hemiplegia proposed by Winters is based only on
these differences. Winters’ type I children show smaller and less frequent dorsi-flexor recruitment of
the ankle in hemiplegic leg, provoking drop foot during swing. This phenomenon is further stressed
in Winters’ type II, causing a persistence of equinism throughout the gait cycle, often related to a knee
hyperextension during stance. This obviously reflects on myoelectric activity of GL and TA. The present
study was designed to check if these acknowledged alterations are also associated with a modification
of sEMG variability in hemiplegic walking. Results show a decrease of mean CV value in H-group
for GL (15%, p < 0.05) and TA (7%, p > 0.05), compared to C-group (Figures 6 and 7). The CV’s
own definition indicates that higher values of this index correspond to a more elevated variability
of the phenomenon observed. Thus, lower CVs indicate a reduction of intra-subject variability of
ankle-muscle activity compared to controls, suggesting that hemiplegic children present a limited
capability of adapting their muscle recruitment to the different stimuli met during the walking task,
also in the mildest forms of the disease (Winters’ type I and II). This consideration is supported by the
statistical significance only for GL. Decrease of sEMG variability for TA, indeed, is not statistically
significant. This leads to reflect on the meaning of the CV index. As mentioned above, the CV index is
not computed directly on sEMG samples, but it is derived from the standard deviation of the signal
(Table 1), which is by definition a direct measurement of signal variability. Consequently, it is more
informative in the assessment of the differences among different populations than the typical approach
based on the statistical comparison among mean values. Thus, in our opinion, the information
suggested by the present study could be considered reliable, certainly for dorsi-flexor muscles such
as GL, but probably also for plantar-flexor ones such as TA. Moreover, these findings pave the way
to further studies which will try and figure out if different results achieved on GL and TA are due
to the choice of the index or to the statistical analysis or if this is going to stress a real difference
in dorsi-flexor vs. plantar-flexion behavior. A further interesting finding is that H-group presents
a larger normalized (to the mean value) range of CV values for both GL (0.33–1.43) and TA (0.63–1.36),
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compared to C-group (0.61–1.53 for GL and 0.68–1.25 for TA), indicating an increased inter-subject
variability of sEMG signals during walking. This result is in line with reported studies indicating that
the disorder could affect different patients in different ways [2,4], considering also that the present
H-group is composed of both Winters’ type I and II children.

A previous research pointed out mean CV values higher than 0.86 for GL in an adult population [16],
suggesting that older age could increase sEMG signal variability. Thus, a control group of adult subjects
(A-group) was also included in the present analysis, to consider the possible influence of age on CV
value. In accordance with the observation reported in [16], CV values in the A-group are significantly
higher for GL compared to both C-group and H-group (1.10 ± 0.21 vs. 0.83 ± 0.19 and 0.71 ± 0.16,
respectively, p < 0.05, Figure 6). This is true also for TA (0.85 ± 0.11 vs. 0.77 ± 0.12 and 0.72 ± 0.14,
respectively, p < 0.05, Figure 7). Thus, an overall reduction of intra-subject variability is detected
in children (hemiplegic and control), suggesting that children are used to adopting a more constant
muscular recruitment during walking, with respect to adults. Physiological interpretation of this result
may be ascribed to the incomplete maturation of the neuro-motor aspects of walking, acknowledged
in school-age children [20]. The CV values reported here in A-group are considerably higher than
those shown in [16] for adult people. This is probably due to the difference of gait protocol between
the two studies. In the present study, consecutive strides during continuous long-distance gait have
been considered. It is reasonable to argue that sEMG patterns may differ and variability could increase,
when comparing with signals acquired in single stride during short-distance walking. Moreover, it is
acknowledged that a large number of samples are needed to suitably describe the phenomenon of
variability of physiological signals [39]. Therefore, the reliability of the present results is strengthened
by the numerous strides analyzed here, on average nearly 300 per subject, and 30,000 in total.

The present group of researchers has recently focused its attention on the variability of muscular
recruitment in children by means of sEMG analysis, a field where, to our knowledge, only few
attempts were carried out. To this aim, different studies were produced, focusing on the assessment
of sEMG variability in able-bodied subjects [14,35,36], proposing a new parameter for quantifying
sEMG variability [39], looking for novel insights in the maturation of gait [14,36], trying to quantify
the asymmetric behavior of muscle recruitment in hemiplegic-children walking [6] and attempting
to find a predominant muscle activation pattern able to characterize the different classes of children
hemiplegia [8]. However, most of these studies used an advanced signal a processing technique,
called statistical gait analysis (SGA), which describes human walking by averaging spatial-temporal
and sEMG-based characteristics over numerous strides of the same walking trial. Despite being reliable
and robust, SGA is a computationally expensive technique which produces a wide range of results.
Thus, the first contribution of the present study is to propose an alternative approach for a suitable
assessment of sEMG variability, based on an easy-to-compute and compact index. Table 2 shows
the detailed contributions of the present work with respect to each of the abovementioned studies
in tabular form. Studies are reported in chronological order. While other studies [5,8,10,11,20,41]
investigated muscular recruitment of lower limbs of hemiplegic children during walking, no direct
assessment of sEMG variability was reported. Thus, a further contribution of the present study
consists in showing the reliability of the CV index in hemiplegic-children walking, in order to also
provide information on sEMG variability, besides sEMG amplitude and timing, and all the other typical
parameters. A final contribution of the study is the detection of an overall reduction of intra-subject
variability of ankle-muscle activity in mild-hemiplegic children compared to controls (children and
young adults), suggesting that hemiplegic children present a limited capability of adapting their muscle
recruitment to the different stimuli met during walking task. To our knowledge, this information is
quantified here for the first time.
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Table 2. Detailed contributions of the present work with respect to the state of the art from the same co-authors.

Study Subject/Patient EMG Processing Aim Results Contributions of the Present Study

Agostini 2010 [35] 100 able-bodied
school-age children

Statistical Gait
Analysis (SGA)

To assess variability of
muscular timing in numerous

strides during walking

Variability was quantified
by identifying 5 main

activation patterns and their
occurrence frequency

Quantification of intra- subject sEMG
variability in numerous strides not
only in control children, but also in

hemiplegic children.

Agostini 2014 [42]

30 hemiplegic
children—Winters’
type I and II and

100 control children

Statistical Gait
Analysis (SGA)

Automatic determination of
sEMG patterns of hemiplegic

children during gait.

Curtailed activity of tibialis
anterior during terminal

swing and a lack of activity
at loading response in both

Winters’ class. Class II
showed abnormal

gastrocnemius activity both
at initial contact and in

terminal swing

Providing an index for asssessing
sEMG variability in order to supply
concomitant assessment of sEMG

activity and variability

Agostini 2015 [4]

38 hemiplegic
children—Winters’
type I and II and

100 control children

Statistical Gait
Analysis (SGA)

Assessment of variability of
muscular timing in numerous
strides within each Winters’

class during walking

Variability was quantified
by identifying 4–5 distinct
muscle activation patterns.

It cannot be defined
a predominant muscle
activation pattern for

characterizing each specific
Winters’ class.

(1) Quantification of the decreased
intra-subject EMG variability in

hemiplegic children compared to
both control children and

healthy adults
(2) Assessment of EMG variability in

numerous strides by means of
an easy-to-compute index

Di Nardo 2017 [36] 100 able-bodied
children and 33 adults

Statistical Gait
Analysis (SGA)

Age- and gender-related
assessment of EMG

variability during walking in
control subject to analyze

maturation of gait

Increased EMG variability
in adult but not in children

female, compared to
the correspondent male

population.

Quantification of the reduced sEMG
variability in hemiplegic children
compared to both control children
and able-bodied adults, providing
new insights in maturation of gait

and in the effect of hemiplegia on it

Di Nardo2017 [39] 20 able-bodied
children and 20 adults

Statistical Gait
Analysis (SGA)

To propose the occurrence
frequency as a new parameter

for assessing sEMG signal
variability during walking.

Occurrence frequency is
able to provide further
information on sEMG

variability, besides those
supplied by classical

temporal sEMG parameters.

Providing an index for asssessing
sEMG variability in time domain in
order to integrate the information

coming from
the occurrence frequency
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Table 2. Cont.

Study Subject/Patient EMG Processing Aim Results Contributions of the Present Study

Spinsante 2019 [14] 30 able-bodied
children and 30 adults CV computation

To measure variability of
EMG signal in motor

development and test the
reliability of CV index to

this aim

CV index is shown to be
able to effectively

discriminate pediatric
motor capabilities

Extending the reliability of CV index
in assessing EMG variability also to

hemiplegic-children population

Di Nardo 2019 [6]

16 hemiplegic
children—Winters’

type I and 100
control children

Statistical Gait
Analysis (SGA)

Assessment of variability of
muscular timing and

asymmetric behavior of
muscle

recruitment in
hemiplegic-children walking

Increased EMG variability
in the hemiplegic side due

to a reduced activity in
terminal swing and a lack of

activity at heel-strike of
ankle dorsi-flexors.

Testing the reliability in EMG
variability assessment of CV index,

in a large population including
Winters’ type I and type II hemiplegic

children. This index could be used
for an easy-to-compute assessment of

hemiplegic asymmetry
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6. Conclusions and Future Work

Overall, the present findings provide evidence to support the hypothesis of a decreased
intra-subject variability of surface electromyography signal of ankle muscle in hemiplegic children
during walking, encouraging future studies to deepen the pathophysiological reasons and modalities
associate to this phenomenon. This reduction has been detected compared to both control children
and able-bodied adults. Thus, it could probably be ascribed to both young age and the specific
disease. Concomitantly, an increased inter-subject variability of sEMG signals was detected during
hemiplegic walking, confirming that the disorder could affect different patients in different ways.
Furthermore, present findings indicate that CV is a reliable index to evaluate the variability of
muscle recruitment in different experimental circumstances and with different clinical goals, such as
in adult and pediatric populations, in neurological disorders and for both intra- and inter-subject
studies. Including the results obtained from the different indices listed in Table 1, on the set of sEMG
measurements collected from the three populations, will be an interesting aspect to investigate in
a future development of this study.

It has been shown that the first foot–floor contact of each hemiplegic stride could occur in different
ways (with heel, forefoot and flat foot) and that each one of these contacts would correspond to a different
EMG pattern. Further research developments could be focused on computing and comparing sEMG
variability associated with each one of the different foot–floor contacts, trying to identify which one is
more involved in the process of variability decrease. Moreover, it is acknowledged that a single gait
cycle can be split in two main gait phases, stance and swing: Stance identifies the full time when the foot
is on the ground; swing quantifies the period when the same foot is in the air for limb progression.
Assessing sEMG variability separately for stance and swing could be one of the future developments
of the present study. Since the CV approach seems to succeed in the quantification of sEMG variability
in hemiplegia, further studies could involve other populations affected by neuromuscular disorders,
such as cerebrovascular accident, Parkinson’s disease and multiple sclerosis.
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