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Summary  

Nonlinearity is a frequent companion of engineering structures: it occurs 

anytime the outputs of a system cannot be expressed in terms of linear 

superposition of the inputs, a rare circumstance in the real world. Despite the 

long tradition of studies in nonlinear systems theory, the transposition of such 

knowledge to the structural engineering world is quite recent and has gained 

more importance in the very last decades, to address the ever-increasing 

demand of improved performances driven by industrial needs.  

In this framework, nonlinear features often represent obstacles or 

unwanted effects that might compromise the behavior of the engineering 

structures, or even bring dangerous consequences. For this reason, it is 

important to be able to recognize and characterize them, both from modeling 

and experimental point of views. The latter case can be implemented via 

nonlinear system identification techniques, that allow the extraction of 

information about the dynamical behavior of a structure from the measured 

data. Fairly, this is just a part of the story, as a structure can be also designed 

to behave nonlinearly, to take advantage of some nonlinear effects that would 

not exist in the linear regime. This is for instance the case of negative stiffness 

absorbers, composites, nonlinear (meta)materials or slender elements.  

This doctoral dissertation attempts to develop robust techniques for 

nonlinear vibrating structures, in order to give a contribution to the current 

unsolved challenges in the field, by identifying nonlinear features from real 

structures. Complex nonlinear dynamical phenomena are observed and 

modeled, considering both scaled-laboratory and real-life applications. In 

particular, the techniques presented in this thesis are based on the nonlinear 

subspace identification (NSI) method. NSI is meant to extract information 

about the nonlinear behavior of structures directly from the measured data, 

including the classical modal parameters (natural frequencies, damping ratios, 

mode shapes), plus details about the nonlinearity itself. The method was 

originally designed to work with input-output data of systems with localized 
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nonlinearities, but the extension to output-only free-decay measurements is 

presented, as well as to the case of distributed nonlinearities. The latter in 

particular has a wide range of applications, from wind turbines to aerospace 

vehicles. 

The developed techniques are compared with the ones available in the 

literature, and numerical examples are very often proposed to assess the 

presented strategies. Eventually, the final application is related to the railway 

field and concerns the interaction between pantograph and catenary for high 

speed trains. The focus here is on improving the performances of the system 

by designing ad-hoc nonlinear damping elements. Therefore, the design 

process is presented, from the nonlinear modeling of the structure via a 

custom FE implementation, to the experimental testing and the nonlinear 

system identification with NSI.  

Results show a high degree of confidence in the adopted methodologies 

and pave the way to the application of nonlinear tools such as NSI to the 

industrial world.   
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Chapter 1 

1.Introduction 

All the world is a nonlinear system 

He linearised to the right 

He linearised to the left 

Till nothing was right 

And nothing was left 

 

S.A. Billings, University of Sheffield 

 

 

Nonlinear phenomena can be found in nearly every scientific area, from 

physics to biology, therefore the study of their mathematical representation 

has intrigued scientists for a long time. The nonlinear dynamics theory can be 

fairly traced back to the late 1800s with the intuitions of H. Poincaré, who was 

the first to glimpse the possibility of chaos [1]. 

Regardless of such a long tradition, the practical transposition of nonlinear 

features to structural dynamics is pretty recent and has gained more 

importance during the very last decades, as a consequence of the continual 

industrial interest in improving design and performances of structures. This 

very often brings the need of characterizing nonlinear features, as the 

structure may involve, to cite a few: flexible regimes, where large-amplitude 

motions are likely to occur; high speeds, where nonlinear fluid-structure 

interaction is significant; tight tolerances, with contact and friction dynamics 

[2]. 
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Although nonlinearity does not necessarily imply complexity, most real 

systems do exhibit some nonlinear feature causing complex dynamics, difficult 

to handle and conceivably associated to undesired or unsafe effects. For 

instance, the occurrence of limit cycles in an aircraft, i.e. large amplitude self-

sustained motions, seriously compromises its fatigue life [3]; looseness of 

joints may result in clearances, friction, and possibly lead to failure; large-

amplitude oscillations in cable-based structures (cable-stayed bridges, 

overhead power lines,…) couple different planes of motions, resulting in 

galloping phenomena [2]. Nonlinearity is also of use to the diagnosis of faults 

in structures, as it is very likely that the occurrence of a fault in an initially-

linear structure will result in a nonlinear behavior [3,4]. These few examples 

confirm the importance of developing reliable tools to recognize and 

characterize nonlinearity, aiming to avoid such unwanted effects. A way to do 

this is by performing the nonlinear system identification of the structure under 

test, that is the extraction of a nonlinear model from the measured data. The 

identified model should in principle be related to components and behaviors 

of the system under study, to reproduce its (nonlinear) dynamical 

characteristics and, wherever possible, to reveal the rules that represent the 

system [5]. Nonlinearity can also be a precise design choice, to benefit of the 

wide range of opportunities nonlinear features might bring – opportunities 

that allow to expand the performances of the designed structure and that 

simply do not exist in the linear world. Of course, this carries the need of 

nonlinear modelling techniques, which might be dispendious in terms of 

complexity, time and resources.  

It should be highlighted though that there exists no unique approach in 

nonlinear design and identification, as the methods developed so far are 

generally valid for a subset of nonlinear phenomena or systems. On the 

contrary, linear systems theory is well consolidated, with the advantages of 

commercial tools and shared techniques. It is therefore necessary to carefully 

evaluate the need of a nonlinear study: as a matter of fact, cases exist where a 

linear or linearized model may be enough [6]. Linearization techniques are 

well known nowadays [7], although it should be kept in mind that nonlinearity 

might be still around the corner, as a linearized model is generally valid only 

for small deviations from a given working position. The decision of using (or 

not) nonlinear models should be therefore made on a single-case basis, 

depending on the purposes of the model itself and on the structure under 

study. For this decision to be consciously taken, one should be aware of two 

factors: 

• The possible sources of nonlinearity in the considered system; 

• The possible effects of a nonlinear behavior, so as to be able to 

recognize it. 
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As for the first point, nonlinearity can originate from several sources, and 

the following ones happen to be very common in mechanical structures [8,9]: 

• Geometrical nonlinearity: it arises when a structure undergoes large-

amplitude vibrations. For instance, a test rig involving a beam with 

geometrical nonlinearity is analyzed in [10–12]. Large deformations of 

flexible elastic continua also belong to this category, as they result in a 

distributed nonlinear strain-displacement relation. A practical example of 

this kind of nonlinear behavior will be studied in Chapter 5. 

• Inertia nonlinearity: it may be caused by the presence of concentrated or 

distributed masses, or by Coriolis acceleration in motions of bodies 

moving relative to rotating frames. In [13] the effects of longitudinal and 

rotary nonlinear inertia forces are investigated on a hinged beam, 

retrieving a predominant softening behavior. More recently, nonlinear 

formulations involving inertia nonlinearities have been proposed for 

cantilever carbon nanotubes [14] and energy harvesters [15]. 

• Material nonlinearity: it occurs when the stresses are nonlinear functions 

of the strains, such as in foams [16] and rubbers [17].  

• Nonlinear boundary conditions: these are very common in real-life 

structures, such as impacts in loose joints [18] and clearances [19].  

• Damping dissipation: the classical viscous damping assumption is not 

necessarily the most appropriate representation of the physical 

dissipation phenomena, although it is surely convenient from a 

mathematical point of view. Indeed, nonlinear dissipation models are 

quite difficult to estimate, and the two most important examples are 

hysteretic damping and dry friction [3]. 

The effects of these nonlinear sources are wide, including: non-invariance 

of the frequency response functions (FRFs), possibility of multiple solutions, 

bifurcations, new resonances, loss of periodicity, chaos, … [1,20]. Many of these 

phenomena will be observed and discussed throughout the thesis, and 

frequently they will be used to characterize the dynamics of the structure 

under test and detect a possible nonlinear behavior.  

1.1. Thesis objectives and outline 

The objective of this doctoral dissertation is to develop robust and reliable 

techniques for nonlinear vibrating structures. Complex nonlinear dynamical 

phenomena are studied and experimentally characterized, involving localized 

and distributed nonlinearities, as well as bifurcations and chaos. The 

developed methods have the purpose of giving a contribution to the current 

unsolved challenges in the field, such as the identification of distributed 

nonlinearities and the identification of nonlinear structures from output-only 
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measurements. The final application is the design and the experimental 

identification of a nonlinear improved dropper for high-speed railway 

overhead contact lines.  

The present manuscript is organized as follows: 

In Chapter 2 an overview of nonlinear structural dynamics is presented. 

Numerical examples are adopted to introduce and discuss classical nonlinear 

phenomena: harmonic distortions, nonlinear frequency response curves, 

stability issues, bifurcations and chaos. Eventually, the effects of different kind 

of excitations to nonlinear systems are investigated, with emphasis on random 

and multisine signals.  

In Chapter 3 the nonlinear system identification of mechanical structures 

is introduced, starting from a literature review about the major contributions 

in the field. The nonlinear subspace identification (NSI) method is presented 

in detail, as it will be adopted and improved throughout the thesis. A 

demonstrative experimental application with a clearance nonlinearity is also 

proposed. 

In Chapter 4 a novel technique to perform nonlinear system identification 

with output-only free-decay measurements is presented, called Free-decay-

NSI. The methodology is based on NSI in combination with a mass change 

technique, and it is first tested on a numerical example with Coulomb friction. 

An experimental test rig is eventually proposed, involving a scaled five-levels 

building with a polynomial nonlinearity on the top floor. 

In Chapter 5 the problem of identifying a distributed nonlinear behavior is 

faced and a strategy proposed. The technique is tested on a slender clamped-

clamped beam subjected to large-amplitude vibrations, which is first modelled 

using a nonlinear modal model. The study and the experimental tests were 

carried out while visiting Prof. Gaetan Kerschen and his research group at the 

Space Structures and Systems Laboratory of the University of Liège, Belgium. 

The proposed identification technique, called Modal-NSI, is compared with a 

non-parametric method named Polynomial Nonlinear State-Space (PNLSS). 

In Chapter 6 the design and experimental identification of a nonlinear 

damping system for railway overhead contact lines is presented. The study 

was carried out in collaboration with Fratelli Bertolotti S.p.A. and Rete 

Ferroviaria Italiana. The techniques seen in the previous chapters are here 

adopted to validate the design choices, comparing experimental tests with 

numerical outcomes. Nonlinear system identification is performed to extract 

the model parameters from the measured data, where typical nonlinear 

phenomena are observed: jumps, harmonic distortions and chaotic behavior. 

Eventually, the designed model is updated on the base of the experimental 

identification to build the final prototype of the dropper.  

In Chapter 7 conclusions are finally drawn, together with the main 

contributions of this doctoral thesis and the directions for future research. 
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Chapter 2 

2.Nonlinear dynamics in 

structures: an overview 

2.1. Introduction 

As stated in the first chapter, the study of the dynamical behavior of 

nonlinear systems has a long story. It is not the purpose of this thesis to give 

an exhaustive review of nonlinear systems theory, as it would be a far too vast 

subject, but the reader can refer to the books of S. Strogatz [1] and D.W. Jordan 

[21] for a comprehensive mathematical outlook on nonlinear dynamical 

phenomena. Instead, an illustration of the classical symptoms of nonlinearity 

will be covered here, to discuss some phenomena that will often recur 

throughout the thesis in the numerical and experimental applications 

proposed.  

To begin with, the first symptom of nonlinearity may be derived from the 

definition of linear itself: linear systems can be broken down into parts [1], being 

based on the principle of superposition. The principle of superposition can be 

applied statically or dynamically and states that the total response of a linear 

system to a set of simultaneous inputs can be decomposed into the sum of 

individual inputs and outputs. This is simply not true for nonlinear systems, 

and it is basically the reason why they are so much harder to analyze than 

linear ones. The consequences of the breaking down of the superposition 

principle truly characterize the nonlinear dynamical behavior, and they will be 

briefly covered in the subsequent sections by means of numerical examples.  



2.  Nonlinear dynamics in structures: an overview  6 

 

 
 

For the sake of simplicity, let us consider a nonlinear single-degree-of-

freedom-system, defined by the equation: 

𝑦̈(𝑡) + 𝛼𝑦̇(𝑡) + 𝛽𝑦(𝑡) + 𝛾𝑦(𝑡)3 = 𝑓(𝑡) (2.1) 

where 𝑦(𝑡) is the displacement, 𝑡 is the time variable, 𝛼 the damping 

parameter, 𝛽 the linear stiffness parameter, 𝛾 the cubic stiffness parameter 

and 𝑓(𝑡) an external forcing input. Eq. (2.1) is known as Duffing equation, 

named after the German engineer G. Duffing [22]. It will be adopted in the 

following to demonstrate the effects of several nonlinear phenomena.  

With 𝛾 = 0, Eq. (2.1) reduces to the forced linear oscillator, whose natural 

frequency is called 𝜔0. On the other hand, with 𝛾 ≠ 0, Eq. (2.1) describes a 

forced nonlinear oscillator, which is characterized by a nonlinear force–

displacement relationship. Due to the time-dependent forcing input, the 

Duffing equation (2.1) can be considered as a second-order nonautonomous 

system [22].  

Considering first the homogeneous equation (𝑓 = 0), the state-space 

representation can be adopted by setting 𝑦1 = 𝑦, 𝑦2 = 𝑦̇. This yields: 

{
𝑦̇1 = 𝑦2                                   

𝑦̇2 = −𝛼𝑦2 − 𝑦1(𝛽 + 𝛾𝑦1
2)

 (2.2) 

If 𝑦̇1 = 𝑦2 = 0 the fixed (or equilibrium) points (𝑦1
∗, 𝑦2

∗) can be computed as: 

{
𝑦2

∗ = 0                     

𝑦1
∗(𝛽 + 𝛾𝑦1

∗2) = 0
 (2.3) 

If 𝛽𝛾 > 0 there is only one trivial fixed point (𝑦1,0
∗ , 𝑦2,0

∗ ) = (0,0), while if 

𝛽𝛾 < 0 there are two more nontrivial fixed points: (𝑦1+
∗ , 𝑦2+

∗ ) = (√−𝛽 𝛾⁄ , 0) 

and (𝑦1−
∗ , 𝑦2−

∗ ) = (−√−𝛽 𝛾⁄ , 0). The stability of these points can be checked, 

and a full analysis is reported in [22].  

Substituting 𝑦1 = 𝑦1
∗ + Δ𝑦1 (|Δ𝑦1| ≪ 1) and 𝑦2 = 𝑦2

∗ + Δ𝑦2 (|Δ𝑦2| ≪ 1) 

into Eq. (2.2), the following second-order system of the variable Δ𝑦1 can be 

derived: 

Δ𝑦̈1 + 𝛼Δ𝑦̇1 + (𝛽 + 3𝛾𝑦1
∗2)Δ𝑦1 = 0 (2.4) 

whose characteristic equation is: 

λ2 + 𝛼𝜆 + 𝛽 + 3𝛾𝑦1
∗2 = 0 (2.5) 

The solution of the last equation gives the eigenvalues 𝜆1 and 𝜆2 that 

determine the stability of the fixed points.  
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The dynamics of the system depend on the choice of the coefficients 

describing the characteristic equation, and several scenarios can be 

considered. Assuming the damping coefficient 𝛼 to be positive, the most 

interesting cases for the purposes of this thesis are the following two:  

a) 𝛽 = 𝜔0
2, 𝛾 > 0, 0 < 𝛼 < 2𝜔0: the eigenvalues of the system are complex 

conjugate with a negative real part; there is one trivial fixed point, 

which is a stable focus. In this case, all the possible trajectories of the 

system eventually lead to the stable focus, with a phase portrait like the 

one in Figure 2.1a. 

b) 𝛽 = −𝜔0
2, 𝛾 > 0, 0 < 𝛼 < 2√2𝜔0: the eigenvalues of the system are 

complex conjugate with a negative real part. The trivial fixed point is 

called saddle in this case and is inherently unstable, in the sense that a 

small displacement from the equilibrium state will generally take the 

system on to a phase path which leads it away from the equilibrium 

state [21]. The two nontrivial fixed points are stable equilibrium 

positions. The corresponding phase portrait is shown in Figure 2.1b. 

Other cases depend on the choice of the damping coefficient 𝛼: negative 

values lead to unstable solutions, positive values can lead to oscillatory stable 

and unstable behaviors (like cases a) and b)), or to non-oscillatory 

overdamped solutions. It is out of the objectives of this thesis to analyze all the 

possible scenarios, but the reader can refer to [22] for a comprehensive study. 

The two cases discussed here clearly underline how nonlinearity in dynamical 

system can lead to complex and rich responses, with multiple stable and 

unstable solutions. Experimental evidences of such behaviors have been 

widely observed in nature, and a practical example in the case of mechanical 

systems is presented in Chapter 6.  

 

Figure 2.1: Phase portraits of a Duffing oscillator, from [22]. Positive linear stiffness 

in (a) and negative linear stiffness in (b). 

2.2. Harmonic distortions 

Let us consider now the case of harmonic excitation in Eq. (2.1): 𝑓(𝑡) =

𝑓0sin(𝜔𝑡). A synchronous solution of the type 𝑦(𝑡) = 𝑦0sin(𝜔𝑡 + 𝜙) can be 
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sought, exactly like linear systems. However, in this case it is possible to 

demonstrate that a sinusoidal term of argument 3𝜔𝑡 shows up in the output 

relation [3]: this term contains the third harmonic of the excitation frequency 

𝜔, and more importantly it is not balanced. Thus, a simple synchronous 

solution is not suitable in this case. Interestingly, if the third harmonic is 

included in the solution, with an expression like 𝑦(𝑡) = 𝑦01sin(𝜔𝑡 + 𝜙1) +

𝑦03sin(3𝜔𝑡 + 𝜙3), higher unbalanced odd harmonics show up in the output 

relation, in particular terms containing 5𝜔, 7𝜔, 9𝜔. This process can be 

repeated infinitely, therefore the only possible solution must include all the 

odd harmonics, yielding: 

𝑦(𝑡) = ∑𝑦0,2𝑗+1 sin([2𝑗 + 1]𝜔𝑡 + 𝜙2𝑗+1)

∞

𝑗=1

 (2.6) 

Note that the odd harmonics appear due to the cubic stiffness term 𝛾𝑦3; if 

even nonlinear terms are present as well, both odd and even harmonics show 

up in the output relation.  

The presence of harmonics in the response may have a huge influence in 

the overall dynamical behavior of a structure and it is generally referred to as 

harmonic distortion. For instance, in the multi-degree-of-freedom case a mode 

that is not directly excited by the external forcing input can be triggered by one 

harmonic of another mode. Similarly, two or more closely spaced modes can 

exchange energy when nonlinearly excited. These two phenomena are usually 

called modal interactions or internal resonances [23], and they occur frequently 

in real structures with complex nonlinear behaviors and multiple modes of 

vibration. Examples in the scientific literature can be found for panels [24], 

aerospace structures [25,26] or components with friction [27]. 

2.3. Nonlinear frequency response curves and path 

stability 

The solution expressed in Eq. (2.6) contains an infinite number of 

harmonics. While this being correct from a formal point of view, it is not 

feasible in a computational perspective. Luckily, a few harmonics are generally 

enough to describe the behavior of nonlinear structures with a decent 

accuracy, and methods exist to numerically find periodic solutions of nonlinear 

differential equations with a truncated number of harmonics. The harmonic 

balance method (HBM) is certainly one of the most common and versatile. It is 

also known as the Fourier-Galerkin method, since it consists in the application 

of the Galerkin method with Fourier basis and test functions [26]. The periodic 

signals are expanded as Fourier series up to 𝑁ℎ  harmonics, and the Fourier 

coefficients of the series become the new unknowns of the problem. The 

harmonic balance method can be used to compute the nonlinear frequency 
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response curves (NFRCs) of nonlinear systems when combined with an 

iterative continuation technique [28].  

Referring to the Duffing oscillator described by Eq. (2.1),  the nonlinear 

frequency response curve (NFRC) is computed using the HB technique and 

considering 7 harmonics (both odd and even). The parameters of the system 

are listed in Table 2.1, and two levels of amplitude 𝑓0 of the excitation are 

considered. 

Table 2.1: Parameters of the Duffing equation for the computation of the NFRC. 

𝛼 (
N s

m kg
) 𝛽 (

N

m kg
) 𝛾 (

N

m3 kg
) 

0.1 1 1 

 

The NFRCs are depicted in Figure 2.2 in terms of amplitude of the response 

(maximum of 𝑦(𝑡) in the time domain) over 𝑓0. The linear response is also 

reported as a comparison. 

 

Figure 2.2: NFRCs of the Duffing oscillator of Table 2.1, computed with HBM. Black 

line: linear FRF; thick dots: NFRC, stable paths; small dots: NFRC, unstable paths. 

Blue: f0=0.1 N/kg. Orange: f0=0.2 N/kg.  

It is worth recalling that FRFs are invariant for linear systems because of 

their homogeneity property: a proportional increase in the input level 

corresponds to the same increase in the output. This is not true for nonlinear 

ones, as clearly represented in Figure 2.2. In particular, a classical hardening 

effect can be noticed, meaning that the frequency associated to the amplitude 

peak increases with increasing excitation level 𝑓0. This originates from the fact 

that the cubic stiffness term 𝛾 is chosen as positive. On the contrary, if 𝛾 < 0 

the system is softening, and the frequency associated to the amplitude peak 



2.  Nonlinear dynamics in structures: an overview  10 

 

 
 

decreases with increasing excitation level [3]. An unstable path is also 

highlighted in Figure 2.2 for each NFRC, which is another typical nonlinear 

phenomenon. In this context, a system is defined as stable if small 

perturbations do not lead to a significantly different system response [26]. 

Unstable paths cause sudden changes in the magnitude of the FRF, called jumps 

[3,21]. The jump phenomenon occurs in the frequency region where multiple 

solutions exist, as the system suddenly tries to reach a stable path. A numerical 

example is provided later on in this chapter. 

For representation purposes it is convenient to normalize the single 

harmonic contributions 𝑦0,𝑘 with respect to the total harmonic contributions, 

as in [26]: 

𝜎𝑘 = 100
𝑦0,𝑘

∑ 𝑦0,𝑗
𝑁ℎ

𝑗=1

 (2.7) 

The evolution of the normalized harmonic coefficients 𝜎𝑘  is depicted in 

Figure 2.3 for the 0.2 N/kg case.  

 

Figure 2.3: Normalized harmonic coefficients of the Duffing oscillator of Table 2.1 in 

logarithmic scales. Black dots: even harmonics. Blue line: 1st (fundamental) 

harmonic. Orange line: 3rd harmonic. Yellow line: 5th harmonic. Purple line: 7th 

harmonic. 

The response is dominated by the first (fundamental) harmonic, although 

the third harmonic also plays an important role. This is particularly true 

around the jumping region, where the nonlinearity dominates the response, 

but also at around 0.053 Hz. In this region, the excitation frequency is roughly 

1/3 of the natural frequency of the system, the latter being 0.16 Hz. Since the 

system responds also with the third harmonic of the excitation frequency, a 
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resonance is created, known as superharmonic resonance [22]. As expected, no 

even harmonics are present in the response.  

As for the jump phenomenon, an example is depicted in Figure 2.4, where 

the time response to a linear sine-sweep is computed using the Newmark 

method [29], with 𝑓0 = 0.1 N/kg.  

When a sweep-up excitation is applied, the system response jumps down 

towards lower levels after reaching the maximum amplitude. Instead, when a 

sweep-down excitation is applied, a jump-up phenomenon is observed.  

Two bifurcation points are located right before and after the unstable path. 

Bifurcations occur when fixed points are created or destroyed, resulting in 

qualitative changes in the system dynamical behavior [1].  

 

Figure 2.4: Jump phenomena on the Duffing oscillator of Table 2.1, f0=0.1 N/kg. Blue 

line: response to a sweep-up excitation; orange line: response to a sweep-down 

excitation; black dots: NFRC, stable path. 

Several types of bifurcations exist, and the most common ones are [30]: 

• Fold (or saddle-node) bifurcations: trace the locus of the frequency 

response peaks and are responsible of the jump phenomenon.  

• Neimark-Sacker bifurcations: create or eliminate quasi-periodic 

oscillations;  

• Branch-point bifurcations: detect the beginning of two stable branches 

out of one; 

• Flip (or period-doubling) bifurcations: create a new branch of periodic 

solutions, with a period doubled compared to the solution of the 

original branch. When they appear in cascade, flip bifurcations can lead 

to chaos.  
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A number of methods exist to discover and track bifurcations in NFRCs, 

and the reader can refer to [31] for a comparison paper. The Hill’s method is 

adopted in this thesis, which is the frequency-domain variant of the Floquet 

theory [28]. 

 Eventually, the spectrogram of the time response can be computed to see 

the time-frequency contents of the signal. The result is shown in Figure 2.5 for 

the sweep-up simulation, and it clearly highlights the presence of odd 

harmonics in the response, as well as the jump-down phenomenon. 

 

Figure 2.5: Spectrogram of the Duffing oscillator of Table 2.1, sweep-up excitation. 

2.4. Bifurcation map and chaos 

Harmonic distortions in nonlinear systems may not involve just higher 

harmonics, but also subharmonics. These latter occur when the system 

responds at periods that are integer multipliers of the excitation period, which 

in terms of frequencies means 1 2⁄ 𝜔, 1 3⁄ 𝜔, 1 4⁄ 𝜔,….  Although it is rather 

difficult that subharmonics arise in weakly nonlinear systems, they are 

important as transition phenomena to more complex dynamical behaviors, 

including chaos. An example is provided by considering the Duffing oscillator 

of Table 2.2. 

Table 2.2: Parameters of the Duffing equation for the computation of the bifurcation diagram. 

𝛼 (
N s

m kg
) 𝛽 (

N

m kg
) 𝛾 (

N

m3 kg
) 

0.3 -1 1 

 



2.4. Bifurcation map and chaos 13 

 

 
 

Since a negative linear stiffness is considered, the system is characterized 

by a phase portrait like the one in Figure 2.1b, with two stable equilibrium 

positions (𝑦+
∗ , 0), (𝑦−

∗ , 0) and one central saddle point (𝑦0
∗, 0), as in Eq. (2.3). 

Applying a harmonic excitation, the so-called bifurcation map of the system 

can be built for a specific excitation frequency 𝜔. The bifurcation map is a 

snapshot of the kind of steady-state solutions that can be obtained for a given 

excitation frequency when ranging over the excitation amplitude 𝑓0. The initial 

conditions in this case are (𝑦0, 𝑦̇0) = (𝑦+
∗ , 0), the excitation frequency is 𝜔 =

0.2 Hz and time responses are computed again using the Newmark scheme. 

The bifurcation map is depicted in Figure 2.6, together with the phase 

diagrams for three different values of 𝑓0.  

Each point in the map represents the amplitude(s) of the steady-state 

solution for a specific value of the excitation amplitude 𝑓0. At first, 𝑓0 is low and 

one periodic solution is obtained (called period-1 solution), represented in 

Figure 2.6a. At some point a series of bifurcations start to show up, creating 

the so-called period doubling cascade: a rapidly accelerating sequence of 

bifurcations, which eventually doubles to infinity leaving an “oscillation” 

without any obvious periodic behavior [21]. As an illustration, a period-2 

solution is obtained for the excitation level of Figure 2.6b, meaning that the 

response is periodic with twice the period of the excitation signal. Thus, the 

subharmonic 1 2⁄ 𝜔 shows up and two nested orbits are present in the phase 

diagram. 

 

Figure 2.6: Bifurcation map of the Duffing oscillator and phase diagrams in three 

cases: a) Periodic solution, f0=0.2 N/kg; b) Period doubling solution, f0=0.28 N/kg; c) 

Chaos, f0=0.45 N/kg. 

Instead, no evidence of periodic behavior can be deduced for the excitation 

amplitude of Figure 2.6c. The solution in this case is bounded but not periodic, 



2.  Nonlinear dynamics in structures: an overview  14 

 

 
 

and it continuously crosses the two stable equilibrium points (cross-well 

motion). This kind of response is a symptom of chaotic behavior. It is worth 

reminding that no definition of chaos is universally accepted; the definition 

given by S. Strogatz in [1] is adopted in this thesis, and reads: 

Chaos is aperiodic long-term behavior in a deterministic 

system that exhibits sensitive dependence on initial conditions. 

This definition is essentially based on three foundations: 

1. “Aperiodic long-term behavior” means that there are trajectories which 

do not settle down to fixed points, periodic orbits, or quasiperiodic 

orbits as 𝑡 → ∞. 

2. “Deterministic” means that the system has no random or noisy inputs 

or parameters. 

3. “Sensitive dependence on initial conditions” means that nearby 

trajectories separate exponentially fast.  

The last point can be quantified by means of the largest Lyapunov 

exponent (LLE) of the system [1]. A positive sign of the LLE means chaotic 

motion, while a negative sign is representative of a periodic orbit. The 

computation of the LLE from an experimental time series is presented in 

Chapter 6. 

2.5. Poincaré map 

The Poincaré map was originally derived for autonomous nonlinear 

differential equations. It can be imagined as the intersection of a periodic orbit 

in the state-space of a dynamical system with a certain lower-dimensional 

subspace Σ, called Poincaré section, transversal to the flow of the system. For 

the purposes of this thesis, it is actually more useful to adopt the extension of 

Poincaré maps to nonautonomous systems [21]. Considering the 

nonautonomous Duffing equation (2.1), the corresponding three-dimensional 

autonomous system can be derived by considering 𝑡 as a third state-variable 

in addition to 𝑦1 and 𝑦2 [22]. Thus, the extended state-space system becomes: 

{

𝑦̇1 = 𝑦2                                                            

𝑦̇2 = −𝛼𝑦2 − 𝑦1(𝛽 + 𝛾𝑦1
2) + 𝑓0 sin(𝜔𝑡)

𝑡̇ = 1                                                                

 (2.8) 

Since the forcing input is periodic with period 𝑇 = 𝜔 2𝜋⁄ , the solutions are 

invariant to a translation in time by 𝑇. This observation can be used to build 

the Poincaré sections of the system. Starting at an initial time 𝑡 = 𝑡0, the points 
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on a suitable surface (Σ, the Poincaré section) can be collected by 

stroboscopically monitoring the state variables at intervals of the period 𝑇 

[22]. The Poincaré sections can be computed starting from any initial time 𝑡0, 

with a certain phase 𝜑 with respect to the forcing term (called phase 

synchronization angle).  

Considering again the parameters listed in Table 2.2, the Poincaré map is 

computed considering a forcing level of 𝑓0 = 0.45 N/kg and an excitation 

frequency of 𝜔 = 0.2 Hz. Results are depicted in Figure 2.7, where the Poincaré 

sections are stacked together in a polar plot, building the typical shape of a 

strange attractor [32].  

 

Figure 2.7: Poincaré sections of the Duffing oscillator, f0=0.45 N/kg. a) Polar 

representation of the attractor surface; b) Poincaré section, φ=15°; c) Poincaré 

section, φ=135°; c) Poincaré section, φ=205°. 

2.6. Random excitation in nonlinear systems 

The classical theory of nonlinear dynamics involves harmonically excited 

systems, resulting in the phenomena discussed so far. Nevertheless, random 

excitations (usually band-limited) are usually more convenient from a 

practical point of view, as a broadband frequency range is simultaneously 

excited with a (theoretical) flat spectrum.  

Nonlinear systems respond differently to different kind of excitations, and 

random signals have a completely different impact when compared to 

harmonic ones. An example comes from jumps and harmonics: despite them 

being clear signs of a nonlinear behavior, they are strictly associated to 

harmonic excitations. The FRF of a nonlinear structure obtained from random 

excitation on the other hand may appear just “noisy”, with no link to any 

nonlinear phenomena at a first sight. The only way in which random excitation 



2.  Nonlinear dynamics in structures: an overview  16 

 

 
 

can assist in detecting nonlinearity is for several tests to be carried out at 

different RMS levels of the input excitation and the resulting FRFs overlaid to 

test for homogeneity [3]. An example is depicted in Figure 2.8 considering the 

Duffing oscillator of Table 2.1. Three levels of excitation are taken into account, 

and results are plotted in terms of estimated FRFs 𝐺(𝜔) and coherence 

functions. The FRFs 𝐺(𝜔) are estimated using classical linear tools, given the 

simulated input and output time histories.  

Clearly, an increase in the RMS level of the excitation corresponds to a 

“noisier” and shifted FRF. Since FRFs are invariant for linear systems, these 

changes can be used to detect a nonlinear behavior. This method will be 

applied several times in the experimental cases proposed throughout this 

thesis. The coherence function can be adopted as an indicator of a potential 

nonlinear behavior as well. However, it should be highlighted that the 

coherence is not a direct measure of nonlinearity, but an indicator of the 

causality between input and output. Therefore, noise in the acquisition data 

affects the coherence as well. 

 

Figure 2.8: FRFs of the Duffing oscillator of Table 2.1 under several random 

excitations. Blue: f0=0.1 N/kg RMS. Orange: f0=1 N/kg RMS. Yellow: f0=2 N/kg RMS. 

2.6.1. Multisine excitation with random phase 

A particular class of random excitations consists of random-phase 

multisines. A random-phase multisine is a periodic signal, defined as a sum of 

harmonically related sine waves [33,34]: 

𝑓(𝑡) =
1

√𝑁
∑ 𝐹𝑘𝑒

𝑖(2𝜋𝑘𝑓̃𝑡+𝜙𝑘)

𝑁 

𝑘=−𝑁

 (2.9) 
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with 𝜙−𝑘 = −𝜙𝑘 , 𝐹𝑘 = 𝐹−𝑘 = 𝐹(𝑘𝑓) and 𝑓 = 𝑓𝑠 𝑁⁄ = 1/𝑇. The sampling 

frequency to generate the signal is 𝑓𝑠, the period of the multisine is 𝑇, and 𝑘 is 

the frequency line index. The amplitudes 𝐹𝑘 are chosen in a custom way, 

according to the user-defined power spectrum that should be realized. A 

typical choice consists of a flat spectrum inside a given frequency range. The 

randomness of the generated signal comes from the phases 𝜙𝑘, which are 

realizations of an independent distributed random process such that 

𝐸[𝑒𝑖𝜙𝑘] = 0. Usually the phases are uniformly distributed over [0,2𝜋) [6,34].  

The major advantage of the random-phase multisine is that it still has 

(asymptotically for sufficiently large N) all the nice properties of Gaussian 

random noise, while it also has the advantages of a deterministic signal:  

1. The amplitude spectrum does not show dips at the excited frequencies, 

in contrast to purely random signals with no control over the 

amplitudes.  

2. Since the multisine input is periodic with period 𝑇, the periodicity of 

the outputs can be exploited as well. Linear systems respond to 

periodic inputs with same-period outputs. Nonlinear systems may 

show periodicity-breaks for strong nonlinear levels. An example of this 

case will be discussed in Chapter 5. 

3. In practical situations when noise is present in the measurement chain, 

multisines may allow to separate nonlinear distortions to uncorrelated 

noise. By analyzing the variations of the periodic input and output 

signals over the measurements of the repeated periods, the sample 

mean and the sample covariance of the input and the output disturbing 

noise can be calculated, as a function of the frequency. Although the 

disturbing noise varies from one period to the other, the nonlinear 

distortions do not [6]. This allows to separate noise from nonlinear 

distortions in the FRFs.  

4. The amount of even and odd nonlinearities can be detected by carefully 

choosing the excited frequency lines. Assuming that the input spectrum 

contains only odd frequency lines and some of them are randomly 

missing, these lines will not be present in the output as well if the 

system behaves linearly. Instead, different scenarios are possible if 

nonlinearities are present  [6]: 

• If the output spectrum contains even frequency lines, then these 

are necessarily due to a source of even nonlinearity. That is 

because even frequency lines are not excited, and even 

nonlinearities show up at these lines because an even number of 

odd frequencies is added together;  

• Odd nonlinearities are present only at the odd frequency lines 

because an odd number of odd frequencies is added together. At 

the odd frequencies that are not excited at the input, the odd 
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nonlinear distortions become visible at the output because the 

linear part of the model does not contribute to the output at 

these frequencies.  

This class of multisine inputs, is called odd-random multisines. An 

example is illustrated in Figure 2.9, while a practical application of 

this methodology will be implemented in the experimental 

measurements of Chapter 5. 

 

Figure 2.9: A design of a multisine excitation for a nonlinear analysis, elaborated from 

[6].  
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Chapter 3 

3.Nonlinear system identification 

of mechanical structures 

3.1. Introduction 

Nonlinear phenomena can be complex to model and understand, and 

frequently numerical tools alone are not enough to gain the desired confidence 

in the dynamical representation of the structure under test. Even more often, 

some lack of information may be present in the numerical model that has to be 

filled by experimental data, for instance via system identification.  

This process generally refers to the extraction of information directly from 

the measured data [35], and it may or may-not involve a model, depending on 

the information that is sought and on the algorithms that are adopted. As a 

general distinction, methods for system identification are classified according 

to a palette of grey shades, from white-box to black-box models [36], depending 

on the amount of physical insights needed by the model itself (Figure 3.1). 

White-box models are physically-based, i.e. they rely on a full physical 

interpretation of the structural behavior. In other words, the underlying 

processes characterizing the system are fully known. On the contrary, black-

box models do not take into account any underlying physics, and generally 

they are based on some fitting of flexible functions. The huge class of grey-box 

(hybrid) methods lays in between these two extremes, where some physical 

insights are mixed to non-parametric or stochastic functions to account for the 

missing information.  
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Figure 3.1: Palette of grey shades in experimental testing 

This distinction is particularly useful when the system behaves 

nonlinearly, i.e. in the case of nonlinear system identification, as the description 

of the nonlinearity itself can be physically-based or not.  

Despite the shade of the adopted algorithm, the nonlinear identification 

process can be regarded as a progression through three steps: detection, 

characterization and parameter estimation [9], as outlined in Figure 3.2. 

 

Figure 3.2: Nonlinear system identification process. 

Several methods have been developed to accomplish the first step, that is 

detecting whether a system is behaving nonlinearly, and an extensive 

literature review can be found in [3]. Generally, these methods aim to reject 

some hypothesis that hold only for linear systems, to prove that the structure 

under test is indeed nonlinear. In principle, all the symptoms of nonlinearity 

seen in Chapter 2 are valid candidates for the detection purpose: harmonic 

distortions, jumps, non-homogeneity of the FRFs, bifurcations, … 

The second step of the identification process is the characterization, which 

essentially is about determining which kind of nonlinear behavior is occurring 

 . Detection  Yes or no 

Aim  to detecte wheter a nonlinearity is present or not

 .  haracteri ation   hat   here   ow 

Aim   
a) to determine the location of the nonlinearity
b) to determine the type of the nonlinearity
c) to determine the functional form of the nonlinearity

 . Parameter estimation   ow much 

Aim  to determine the coef icients of the nonlinear model
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and where. The latter in particular should be intended in a broad sense, as the 

nonlinearity may be either localized around a particular spot or distributed 

along the geometrical extension of the structure. 

The last step of the flowchart in Figure 3.2 involves the parameters 

estimation, i.e. the identification of the coefficients defining the nonlinear 

behavior. This step highly depends on the algorithm used for performing the 

nonlinear system identification, as also is the interpretation of the estimated 

coefficients. A variety of methods exist in the technical literature to perform 

such a task, and an exhaustive literature review can be found in [9,37]. Some 

techniques among the others are quite established nowadays, in particular:  

 

Restoring force surface method (RFS): initially developed by Masri and 

Caughey for SDOF systems in the late 70s [38,39], it relies on the 

representation of the restoring force (scattered) surface starting from the 

measured data, followed by a surface interpolation. It has been extended to 

MDOF systems in the 80s [39] and it has been improved and adopted a lot up 

to recent years ([40–44]). Its most appealing application is still with SDOF 

systems, where the functional form of the nonlinearity can be easily visualized 

just by data manipulation. A practical example comprising a double-well 

Duffing oscillator will be given in Chapter 6. 

Nonlinear ARMA with exogenous input (NARMAX): it is a time-series 

analysis method, derived from the linear counterpart ARMA (auto-regressive 

moving average). Proposed by Leontaritis and Billings in the 80s ([45]), it 

provides a very versatile nonlinear model structure and in most cases it can 

exploit well-established linear-algebraic means of least-squares estimation. 

For these reasons, there have been many developments during the years, for 

instance the inclusion in neural networks [46]. 

Reverse path and conditioned reverse path methods (RP, CRP): the 

reverse path analysis has been used to develop spectral methods for nonlinear 

system identification starting from the late 80s (Rice and Fitzpatrick, [47,48]). 

The “conditioned” version ([49–51]) estimates both the nonlinear coefficients 

and the underlying-linear structure.  

Nonlinear identification through feedback of the outputs (NIFO): it is 

a frequency-domain method proposed by Adams and Allemang [52] in 2000. 

The cornerstone of the method is the idea of treating the nonlinear forces as 

internal feedbacks to the so-called underlying-linear system.  

Nonlinear subspace identification methods (NSI): developed in the 

time domain by Marchesiello and Garibaldi [53] in 2008 (called TNSI), and in 

the frequency domain by Noël and Kerschen [54] (called FNSI), they are 

extension of linear subspace methods (Appendix A) to nonlinear systems. The 

method relies on the same feedback interpretation proposed by Adams and 

Allemang ([52]), but in the case of NSI the measured data is processed using 
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the subspace formulation, providing a fully nonlinear state-space model of the 

system. This method will be intensively adopted and improved in the next 

chapters; therefore an in-deep description is provided in the following section. 

Polynomial nonlinear state-space models (PNLSS): proposed by 

Paduart et al. in 2010 [34], it is a non-parametric method based on a 

multivariate polynomial nonlinear state-space representation of the system, 

obtained by optimizing the state-space matrices over the residuals between 

measured and simulated outputs. The detailed formulation of PNLSS is 

described in Appendix B, and its implementation in the case of a distributed 

nonlinear behavior will be discussed in Chapter 5.  

Nonlinear phase resonance (NPR): linear phase resonance tests have 

been widely used with linear structures and consist of single modes 

excitations using a multipoint monoharmonic forcing input at the 

corresponding natural frequency. This idea was brought to nonlinear systems 

by Peeters, Kerschen and Golinval in 2011 [55], introducing the nonlinear 

phase lag quadrature criterion in conjunction with the theory of nonlinear 

normal modes (NNMs) [56]. 

Bayesian model updating methods: the use of non-deterministic 

approaches for linear and nonlinear system identification has gained a lot of 

attention in the last decades, as an opportunity to enlarge the versatility of the 

predicted model to catch the uncertainties associated to the estimated 

parameters. In particular, the stochastic framework based on Bayes' theorem 

has proved to be the most prevalent approach for model updating of nonlinear 

systems (Green and Worden, 2015 [57,58]), combined with effective Markov 

Chain Monte Carlo simulation techniques.  

 

The high number of methods developed for nonlinear system 

identification proves the interest of the research community around this topic. 

However, a common framework has not been developed yet, and the state-of-

the-art methods are generally intended for ad-hoc applications or model 

structures. Of course, this originates from the intrinsic difficulty of dealing 

with nonlinear phenomena, from both theoretical and experimental point of 

views. Among the proposed techniques, nonlinear subspace methods (TNSI 

and FNSI) have proven to be very robust in several situations, including real-

life nonlinear structures [59]. For this reason, this class of methods will be 

widely used in this thesis, with several improvements and novel applications. 

The time domain version will be generally used, and it will be referred to as 

NSI, unless specified otherwise. A description of the method is provided in the 

subsequent section, followed by a demonstrative experimental application. 
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3.2. Nonlinear subspace identification (NSI) 

As briefly introduced, NSI is a nonlinear system identification algorithm 

based on the feedback interpretation proposed by Adams and Allemang ([52]), 

in conjunction with the subspace formulation. A nonlinear state-space model 

of the system is gained as outcome, containing the FRF matrix of the so-called 

underlying-linear system and a full description of the nonlinear part of the 

system. The inputs required by the method are the input-output measured 

data and the knowledge of the nonlinear basis functions, i.e. the functional 

form of the nonlinearities. This requirement classifies the method as grey-box, 

so that a certain amount of physical insights can be gathered from the 

outcomes of the method.  

3.2.1. Problem statement 

Let us consider a generic discrete nonlinear vibrating system with N 

degrees of freedom (DOFs). Its equations of motion can be written in the form: 

𝑴𝒚̈(𝑡) + 𝑪𝑣𝒚̇(𝑡) + 𝑲𝒚(𝑡) + 𝒇𝑛𝑙(𝑡) = 𝒇(𝑡) (3.1) 

where 𝑴, 𝑪𝑣 and 𝑲 ∈ ℝ𝑁×𝑁 are the mass, linear viscous damping and linear 

stiffness matrices, respectively, while 𝒚(𝑡) and 𝒇(𝑡) ∈ ℝ𝑁 are the displacement 

and external force vectors. The nonlinear part of the equation is described by 

the term 𝒇𝑛𝑙(𝑡) ∈ ℝ𝑁, representing the nonlinear restoring force. Generally, it 

is a function of displacements 𝒚(𝑡) and/or velocities 𝒚̇(𝑡). It is assumed that 

𝒇𝑛𝑙  can be decomposed into 𝐽 distinct nonlinear contributions using a linear-

in-the-parameters model, thus yielding: 

𝒇𝑛𝑙(𝑡) = ∑𝜇𝑗𝑳𝑗𝜉𝑗(𝑡)

𝐽

𝑗=1

 (3.2) 

𝜇𝑗  being the coefficient of the jth nonlinearity and 𝜉𝑗  a scalar function defining 

the shape of the jth nonlinearity, called nonlinear basis function. The vector 

𝑳𝑗 ∈ 𝔹𝑁 is the Boolean location vector of the jth nonlinearity, whose entries can 

be 1, -1 or 0. The term 𝒇𝑛𝑙  is shifted to the right-hand side of Eq. (3.1), becoming 

and additional forcing term: 

𝑴𝒚̈(𝑡) + 𝑪𝑣𝒚̇(𝑡) + 𝑲𝒚(𝑡) = 𝒇(𝑡) − 𝒇𝑛𝑙(𝑡) (3.3) 

In this way it can be seen as a feedback to the system described by the left-

hand side of the equation, called underlying-linear system, as in  Figure 3.3. 
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Figure 3.3: Nonlinear feedback interpretation. 

An extended input vector 𝒇𝑒(𝑡) is defined as: 

𝒇𝑒(𝑡) = [𝒇(𝑡)T, −𝜉1(𝑡), … , −𝜉𝐽(𝑡)]
T

 (3.4) 

Introducing now the state vector 𝒙 = [𝒚T, 𝒚̇T]T, a state-space formulation 

can be retrieved: 

{
𝒙(𝜏 + 1) = 𝑨𝒙(𝜏) + 𝑩𝑒𝒇𝑒(𝜏)

𝒚(𝜏) = 𝑪𝒙(𝜏) + 𝑫𝑒𝒇𝑒(𝜏)       
 (3.5) 

𝜏 being the sampled time. The matrices 𝑨,𝑩𝑒 , 𝑪, 𝑫𝑒 are the state, extended 

input, output and extended direct feedthrough matrices, respectively. 

Subspace identification can be performed to identify the state-space matrices, 

rearranging the measured displacements into Hankel-type block matrices. The 

idea is borrowed from the linear subspace identification theory (SI) [60,61], 

and detailed steps can be found in Appendix A.  

It is worth noticing that the matrix 𝑨 is the classical state-matrix of a linear 

state-space model, but related just to the underlying-linear system in this case. 

This means that the underlying-linear dynamics of the structure can be easily 

exploited by classical eigenvalue decomposition of 𝑨 [62], obtaining the 

natural frequencies 𝜔𝑟 , the damping ratios 𝜁𝑟  and the linear normal modes 

(LNMs) 𝝍r, for each identified mode 𝑟. It is assumed hereafter that the LNMs 

are normalized according to the unit-scale normalization, unless specified 

otherwise.  

3.2.2. Underlying-linear FRFs and nonlinear coefficients  

The so-called extended FRF matrix 𝑮𝑒(𝜔) can be obtained from: 

𝑮𝑒(𝜔) = 𝑫𝑒 + 𝑪(𝑧𝑰 − 𝑨)−1𝑩𝑒 ,  𝑧 = 𝑒𝑖𝜔𝛥𝑡 (3.6) 

where I is the identity matrix and 𝑖 is the imaginary unit. 𝑮𝑒(𝜔) has the same 

structure as the extended force vector 𝒇𝑒: 
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𝑮𝑒(𝜔) = [𝑮(𝜔), 𝑮(𝜔)𝜇1𝑳1, … , 𝑮(𝜔)𝜇𝐽𝑳𝐽] (3.7) 

so that its first block 𝑮(𝜔) is the FRF matrix of the underlying-linear system. 

The coefficients 𝜇𝑗  can eventually be deduced from the remaining blocks of 

𝑮𝑒(𝜔) [53]. For instance, if a single forcing input is applied at DOF 𝑢, then the 

jth coefficient 𝜇𝑗  can be computed from: 

𝜇𝑗𝑮(𝜔)𝑳𝑗 = 𝜇𝑗

[
 
 
 
 

? ? ? ⋯ ?
⋮ ⋱ ⋮

𝐺𝑢,1 𝐺𝑢,2 ⋱ ⋯ 𝐺𝑢,𝑁

⋮ ⋱ ⋮
? ? ? ⋯ ? ]

 
 
 
 

𝑳𝑗 =

[
 
 
 
 

?
⋮

𝐺𝑢,𝑗+𝑁
𝑒

⋮
? ]

 
 
 
 

 (3.8) 

where the symbol ? represents an unknown quantity. A 2 DOFs numerical 

example taken from [53] is proposed in the following to better understand Eq. 

(3.8). The system is depicted in Figure 3.4 and it comprises three nonlinear 

stiffness terms: a quadratic and a cubic nonlinear stiffness between the first 

mass and the ground, and a cubic nonlinear stiffness between masses 1 and 2. 

 

Figure 3.4: 2 DOF numerical example. 

Therefore 𝐽 = 3 and the three nonlinear contributions are: 

𝜇1𝑳1𝜉1(𝑡) = 𝑘3 [
1
0
] 𝑧1

3,  

𝜇2𝑳2𝜉2(𝑡) = 𝑘4 [
1
0
] 𝑧1

2,  

𝜇3𝑳3𝜉3(𝑡) = 𝑘5 [
−1 
  1

] (𝑧2 − 𝑧1)
3 

(3.9) 

The FRF matrix of the ULS 𝑮(𝜔) is a 2 × 2 matrix of the type: 

𝑮 = [
𝐺11 𝐺12

𝐺21 𝐺22
] (3.10) 
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and since the force is applied at DOF 2, only the second column of 𝑮 can be 

estimated. It should be noted that the reciprocity property of the FRF matrix 

holds in this case, as 𝑮 is a linear FRF. Thus, it is possible to write 𝐺12 = 𝐺21. 

These considerations made, Eq. (3.8) can be explicitly written for the 

considered case as: 

𝜇1𝑮 𝑳1 = 𝜇1 [
? 𝐺12

𝐺21 𝐺22
] [

1
0
] = [

?
𝜇1𝐺12

] = [
?

𝐺23
𝑒 ], 

𝜇2𝑮 𝑳2 = 𝜇2 [
? 𝐺12

𝐺21 𝐺22
] [

1
0
] = [

?
𝜇2𝐺12

] = [
?

𝐺24
𝑒 ], 

𝜇3𝑮 𝑳3 = 𝜇3 [
? 𝐺12

𝐺21 𝐺22
] [

−1
1

] = [
?

𝜇3(𝐺12 − 𝐺22)
] = [

?
𝐺25

𝑒 ] 

(3.11) 

Note that this operation results in a frequency-dependent and complex-

valued quantity, called 𝜇𝑗
𝑖𝑑(𝜔) ∈ ℂ. Since the true coefficient 𝜇𝑗  is supposed to 

be a real number, no dependence on the frequency should be expected from 

the identified counterpart 𝜇𝑗
𝑖𝑑, as well as null imaginary part. However, this 

happens only in complete absence of noise and nonlinear modeling errors. 

Instead, when real measurements are performed, a non-zero imaginary part 

ℑ[𝜇𝑗
𝑖𝑑] is generally retrieved, although it is expected to be much smaller than 

the real part ℜ[𝜇𝑗
𝑖𝑑]. That being said, the ratio between real and imaginary 

parts can be adopted as a tool to assess the quality of the identification 

outcome. Examples of this idea will be given in the next chapters. 

3.2.3. Stabilization diagram and modal contributions 

A crucial step of the identification process is the selection of the order of 

the state-space model in Eq. (3.5). This task may be non-trivial also for the 

linear identification case, as noise in the data is likely to have an impact on the 

estimated poles of the system. Also, in modal analysis one is usually not 

interested in a good model as such, but rather in the modal parameters 

extracted from that model. An over-specification of the model order might be 

necessary in order to ensure a good accuracy of the estimated modal 

parameters, but this results in a number of spurious numerical modes [62]. 

The stabilization diagram [63] is a common tool to discard spurious poles from 

the identification. The poles corresponding to a certain model order are 

compared to the ones related to the previous order: if the differences in the 

modal parameters are within certain user-defined limits, the pole is defined as 

stable. Since spurious modes are assumed to have stochastic or computational 

nature, they should not be stable across different model orders. Stabilization 

diagrams can be used in NSI by checking the stabilization of the modal 

parameters of the ULS across several model orders. Generally, stabilization is 

checked for eigenfrequencies, damping ratios and mode shapes. These latter, 
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in particular, can be compared adopting the modal assurance criterion (MAC) 

[64]. Practical implementations of the stabilization diagram will be given 

throughout the thesis every time system identification is performed.  

Furthermore, using the state-space formulation, the contributions of 

single modes to the system FRFs can be easily decoupled, and this hold for both 

SI and NSI [65]. One of the advantages of this operation is that the capabilities 

of the stabilization diagram can be expanded by checking also the stabilization 

of the estimated modal mass mr of each mode r.  

In NSI, it is possible to split the single modes contributions to the jth 

nonlinearity by expanding the modal contributions to the extended FRF 

𝑮𝑒(𝜔). In particular, if displacements are measured the corresponding 

receptance can be written as: 

𝑮𝑒(𝜔) = ∑
𝑪̃𝑟𝑩̃𝑟

(𝑧 − 𝜆𝑟)

𝑁

𝑟=1

= ∑ 𝑮𝑒(𝜔)𝑟
 

𝑁

𝑟=1

,  𝑧 = 𝑒𝑖𝜔𝛥𝜏 (3.12) 

where 𝑪̃𝑟 is the rth column of 𝑪̃ = 𝑪𝜳, 𝑩̃𝑟 is the rth row of 𝑩̃ = 𝜳−1𝑩𝑒 and 𝜆𝑟 is 

the rth discrete eigenvalue of 𝑨. The matrix 𝜳 is the modal matrix, which stacks 

the eigenvectors 𝝍r by column, and the contribution of the rth mode to 𝑮𝑒 is 

called 𝑮𝑒
𝑟
 . If accelerations are measured: 

𝑮𝑒(𝜔) = ∑
(𝑧 − 1)𝑪̃𝑟𝑩̃𝑟

(𝜆𝑟 − 1)(𝑧 − 𝜆𝑟)

𝑁

𝑟=1

= ∑ 𝑮𝑒(𝜔)𝑟
 

𝑁

𝑟=1

,  𝑧 = 𝑒𝑖𝜔𝛥𝜏 (3.13) 

It is therefore possible to estimate the coefficient 𝜇𝑗  from each modal 

contribution: 

𝑮𝑒(𝜔)𝑟
 = [ 𝑮(𝜔)𝑟

 , 𝑮(𝜔)𝑟
 𝜇1𝑳1, … , 𝑮(𝜔)𝑟

 𝜇𝐽𝑳𝐽] (3.14) 

where 𝑮(𝜔)𝑟
  is the contribution of the rth mode to 𝑮(𝜔). Since this operation 

can be repeated for each identified mode 𝑟 = 1,… ,𝑁, there are in principles N 

estimations of each 𝜇𝑗
𝑖𝑑. Nevertheless, different modes respond differently to 

the nonlinear excitation, and some of them may not be affected by the 

nonlinearity at all. Therefore, no general rule can be defined about how to treat 

the different single-modes estimations, but considerations can be made on 

single-case basis.  

Once spurious modes have been detected using the stabilization diagram, 

these can be removed from the computation of the coefficients, selecting only 

the physical modes in Eq. (3.14). Practical examples of such an implementation 

will be given in the next chapters. Please note that this approach does not alter 

the state-space matrices, as the spurious poles are detected a posteriori. Ways 

exist to remove them directly from the identified nonlinear state-space model, 

for instance via modal reduction [66].  
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3.3. Experimental application: identification of a non-

smooth nonlinearity 

A three-degrees-of-freedom system is considered, composed by three 

masses linked by thin plate-like springs. A schematic representation of the 

system is depicted in Figure 3.5, and a photo of the setup in Figure 3.6a. A non-

smooth piecewise spring is located between the third mass and the ground, 

achieved by means of two additional springs added to the sides of the third 

mass. Each additional spring presents a small gap with respect to the 

grounding spring, 𝑔− on the left and 𝑔+ on the right, as shown in Figure 3.6b. 

The measure of the gaps is really challenging since they are very small and the 

system is quite flexible. An indicative maximum value of gaps measured with 

a feeler gauge is |𝑔−| = 𝑔+ = 0.35 mm. Additional details on the test-rig can 

be found in [67–69]. 

The system is excited with a Gaussian random force in the frequency range 

0 − 21 Hz applied to mass 1, and the responses are measured for 300 s with a 

sampling frequency of 𝑓𝑠 = 102.4 Hz. The displacements and accelerations of 

the three DOFs are measured by means of three laser displacement sensors 

and three accelerometers, which will be referred to as S1, S2, S3 respectively 

for DOF 1, DOF 2 and DOF 3. The acquisitions are performed with six different 

values of RMS driving voltage supplied to the amplifier, listed in Table 3.1. 

 

Figure 3.5: Schematic representation of the non-smooth system. 

A first characterization of the nonlinearity is carried out by just processing 

the input-output data. The objective of this first step is to have a clearer idea 

of the dynamical behavior of the system, especially when the nonlinearity is 

activated. The information collected will be used afterwards to estimate the 

nonlinear basis functions required by NSI to perform the identification.  
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Figure 3.6: Photo of the non-smooth experimental test-rig in (a) and detail of the 

piecewise nonlinear spring in (b). 

Table 3.1: RMS force values, non-smooth nonlinear system. 

Name Driving voltage RMS (V) Excitation force RMS (N) 

F1 0.1 1.52 
F2 0.2 3.05 
F3 0.3 4.67 
F4 0.4 6.12 
F5 0.5 7.71 
F6 0.6 9.23 

3.3.1. Nonlinear characterization  

The piecewise nonlinearity is supposed to add a positive contribution to 

the stiffness of the system when the gap is closed, so as to obtain a hardening 

effect. To check whether this happens, the system is driven through several 

levels of excitation. The lowest level assures that the gap is always open, so not 

to trigger the nonlinearity and have a linear reference. On the contrary, the 

higher levels of excitation are chosen so as to progressively excite more the 

nonlinearity. The experimental FRFs obtained processing the input-output 

data are shown in Figure 3.7 for the excitation levels F1, F4 and F6.  

A distinct increase of the frequency associated to the third mode can be 

noted when increasing the input level, together with a reduction of the 

amplitude. This is particularly evident in Figure 3.7c, showing the FRF 𝐺31(𝜔). 

Concerning the other two modes, different behaviors can be noted. The first 

mode seems not to be much affected by the nonlinearity, as neither its 

frequency nor its amplitude shows significant changes. Instead, the second 

mode seems to exhibit a slight softening behavior, so that its frequency 

reduces for increasing excitation levels. This is combined to a decrease of its 

amplitude, as for the third mode.  
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Figure 3.7: Receptance of the system for different excitation levels in dB scales (ref. 

1 m/N). Black line: F1; blue line: F4; orange line: F6. a) G11; b) G21; c) G31. 

Some more insights about the nature of the frequency shift for the third 

mode can be gathered when looking at Figure 3.8, showing the spectrogram of 

DOF 3 for several levels of excitation stacked into one single stepped-random 

series. Three main frequency lines corresponding to the three modes are 

clearly visible, and not a big change can be observed for the first two modes, 

as previously seen. Instead, the third one shows an increase in its frequency 

due to the non-smooth nonlinearity. In particular, the highest frequency shift 

is observed switching from level F2 to F3. As for the higher levels of excitation, 

it has been observed during the experimental tests that the gap was almost 

always closed, practically obtaining a new linear (but stiffer) system. 

Theoretically, the only piecewise nonlinearity does not justify the 

softening behavior of the second mode. This may suggest that some other 

nonlinear sources may be present in the considered system. Nevertheless, the 

most evident nonlinear phenomenon is still related to the hardening effect 

associated to the non-smooth nonlinearity. Therefore, the other nonlinear 

phenomena are neglected in the following, and just the theoretical nonlinear 

basis functions related to the non-smooth stiffness are considered. This choice 

implies that there will still be a minor part of the nonlinear behavior of the 

system that is not represented by the identified model.  
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Figure 3.8: Spectrogram of DOF 3 for different excitation levels. 

3.3.2. Nonlinear identification 

A suitable excitation level should be chosen to estimate positive and 

negative gaps. Indeed, the excitation should be able to properly trigger the 

nonlinearity, so that a good number of samples outside the negative and 

positive gaps are present. On the other hand, a decent number of samples 

inside the inner dead-space should be present to help the identification of the 

underlying-linear dynamics. Also, it has been already observed that the most 

noticeable frequency increase is obtained when going from level F2 to F3. 

Lower excitation levels do not guarantee a proper nonlinear behavior, while 

higher levels tend to “saturate” the nonlinearity. A middle-level excitation 

seems then the best choice, corresponding to the 0.3 V test (F3).  

The identification of the gaps is performed by considering a set of guess 

values for both the positive gap 𝑔+ and the negative gap 𝑔−. This prevents any 

symmetry constraint during the estimation, as positive and negative gaps may 

differ due to assembly inaccuracy. The two sets of guess values are called, 

respectively, 𝒈+ = [𝑔1
+, … , 𝑔𝑝

+] and 𝒈− = [𝑔1
−, … , 𝑔𝑛

−]. Note that in principle 

they might have a different number of components, i.e. 𝑝 ≠ 𝑛. The total guess 

set 𝒈 = [𝒈−, 𝒈+] ∈ ℝ𝑝+𝑛 is eventually assembled, so that the nonlinear basis 

functions 𝜉𝑗  can be defined using a piecewise formulation: 

𝜉𝑗(𝑡) = {

𝑦3(𝑡) − 𝑔𝑗   for 𝑦3(𝑡) > 𝑔𝑗  and 𝑔𝑗 > 0

𝑦3(𝑡) − 𝑔𝑗   for 𝑦3(𝑡) < 𝑔𝑗  and 𝑔𝑗 < 0

0                                elsewhere

,  

𝑳𝑗 = [0 0 1]T 

(3.15) 
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The final nonlinearity is then built by summing the different contributions 

𝜉𝑗 , each one multiplied by the corresponding identified coefficient 𝜇𝑗 . In this 

way, the choice of the different guess values 𝑔𝑗  can be very rough and just 

intended to define a realistic range. The guess set is chosen equal to 𝒈 = [-0.4, 

-0.3, -0.2, -0.1, 0.1, 0.2, 0.3, 0.4] mm, and it contains a total of 8 values. Thus, 

𝐽 = 8 nonlinear contributions are taken into account, and the jth nonlinear 

basis function 𝜉𝑗  can be computed from Eq. (3.15) considering the jth element 

of 𝒈. The resulting nonlinear basis functions are depicted in Figure 3.9. 

 

Figure 3.9: Nonlinear basis functions ξj for the gaps estimation with guess set g. Black 

dots: positive set; blue dots: negative set. 

The stabilization diagram of the underlying-linear system is reported in 

Figure 3.10 and stability is checked for frequencies, damping ratios, MACs and 

modal masses. 

The three translational modes of the system are clearly visible in the 

stabilization diagram starting from a model order equal to 10.  For this reason, 

10 is selected as the order of the state-space model. It is worth highlighting 

that the selected model order does not directly correspond to the “physical” 

order, which would be 6 (3 DOFs) in this case. This is a common phenomenon 

in both linear and nonlinear system identification, when real measurements 

are considered, and noise plays an important role. In the nonlinear case there 

might be also nonlinear residuals due to nonlinear modeling errors. The result 

is that the model order extracted from the stabilization diagram might not be 

linked to the physical degrees-of-freedom of the considered structure. 

The nonlinear coefficients associated to the chosen model order are 

extracted and listed in Table 3.2 in terms of real spectral mean 𝜇̅𝑗
𝑖𝑑 plus its 

standard deviation 𝜎𝑗 , computed in the frequency range 0 − 15 𝐻𝑧. Also, the 

ratio between the real and the imaginary parts 𝐸[ℜ ℑ⁄ ]𝑗  is reported for each 

coefficient.  
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Figure 3.10: Stabilization diagram of the ULS. Stabilization thresholds for natural 

frequency, damping ratio, MAC and modal mass are 0.5%, 20%, 99%, 20%, 

respectively. Black dot: new (not stable) pole; blue plus: pole stable in frequency; red 

square: pole stable in frequency and MAC; orange circle: pole stable in frequency, 

MAC and damping; green cross: pole stable in frequency, MAC, damping and modal 

mass.   

Table 3.2: Identified coefficients for the gaps estimation. 

Direction Coefficient 𝜇̅𝑖𝑑 (N m⁄ )  𝜎 (N m⁄ )  𝐸[ℜ ℑ⁄ ] 

Positive 

𝜇1
𝑖𝑑 -646 10 14 

𝜇2
𝑖𝑑 1306 10 26 

𝜇3
𝑖𝑑 606 7 10 

𝜇4
𝑖𝑑 -161 1 12 

Negative 

𝜇5
𝑖𝑑 664 10 7 

𝜇6
𝑖𝑑 479 6 17 

𝜇7
𝑖𝑑 -360 1 76 

𝜇8
𝑖𝑑 225 2 12 

 

The nonlinear function 𝑓𝑛𝑙(𝑦3) is then computed and the result is shown 

in Figure 3.11, where the single contributions are also depicted. 
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Figure 3.11: Nonlinear function fnl for the gaps estimation. Black dots: positive set; 

blue dots: negative set; red circles: nonlinear function; green line: piecewise-linear 

fitting. 

The nonlinear function is eventually fitted to a piecewise-linear 

formulation, whose roots give the estimated values for the positive and 

negative gaps, yielding: 

𝑔− = −0.12 mm 

𝑔+ = +0.28 mm 
(3.16) 

A new identification can eventually be carried out fixing the positive and 

negative gaps to the identified ones. The remaining coefficients to identify are 

then the slopes associated to the negative and positive piecewise 

nonlinearities. Thus, only two nonlinear basis functions are considered, which 

can be still written as in Eq. (3.15), with the only difference that the new set is 

𝒈 = [−0.12,+0.28]  mm. The stabilization diagram of the new underlying-

linear system is reported in Figure 3.12 and stability is checked for 

frequencies, damping ratios, MACs and modal masses.  

The three translational modes of the system are clearly visible in the 

stabilization diagram obtained with NSI, and a model order equal to 10 is 

chosen also in this case. The identified linear modal parameters are reported 

in Table 3.3. 

Also, linear system identification is performed considering the low-level 

test (level F1) assumed as linear, in order to validate the estimation of the 

underlying-linear system. Linear subspace identification (SI, Appendix A) is 

used to extract the state-space model of the linear reference and the obtained 

linear modal parameters are compared with the ones estimated by NSI from 

the nonlinear test. 

A good correspondence is retrieved on the identified natural frequencies 

and modal masses. In particular, the discrepancies between SI and NSI are in 

the order of 1% for the natural frequencies, and NSI estimations are always 

lower than the SI counterparts. This is very likely related to the already 
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discussed softening phenomenon; thus, further investigations about the 

softening nonlinearity may improve this result.  

 

Figure 3.12: Stabilization diagram of the ULS. Stabilization thresholds for natural 

frequency, damping ratio, MAC and modal mass are 0.5%, 20%, 99%, 20%, 

respectively. Black dot: new (not stable) pole; blue plus: pole stable in frequency; red 

square: pole stable in frequency and MAC; orange circle: pole stable in frequency, 

MAC and damping; green cross: pole stable in frequency, MAC, damping and modal 

mass.   

Table 3.3: Identified modal parameters of the underlying-linear system and comparison with 

the linear identification. 

Mode 

number 

Frequency (Hz) Damping ratio (%) Modal mass (kg) 

SI NSI Δ (%) SI NSI Δ (%) SI NSI Δ (%) 

1 6.90 6.85 0.81 0.39 0.46 16.70 2.95 2.86 2.99 

2 9.59 9.49 1.15 0.60 0.82 37.13 1.42 1.41 0.93 

3 11.63 11.59 0.38 1.30 1.53 17.34 1.13 1.12 0.66 

 

As for the damping ratios, greater discrepancies are retrieved between NSI 

and SI estimations. In particular, NSI always identifies higher damping ratios, 

perhaps symptom of some source of nonlinear damping which has not been 

included in the nonlinear basis functions. A possible explanation is that the 

energy dissipated during the contact with the damper may play a role in the 

damping distribution of the system. It should be recalled that the nonlinear 

basis functions adopted here cannot account for these two phenomena; 

instead, the only hardening effect related to the piecewise nonlinearity is 

considered. The FRFs of the underlying-linear system are reported in Figure 

3.13. 
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Figure 3.13: Receptances of the underlying-linear system in dB scales (ref. 1 m/N). 

Grey dots: measured receptance of the nonlinear test; orange dashed-dotted line: SI 

estimation of the linear FRF from the low-level test; blue line: NSI estimation of the 

underlying-linear FRF. a) G11; b) G21; c) G31. 

It can be noted in Figure 3.13 that the hardening effect on the third mode 

is correctly caught, as a consequence of the piecewise nonlinear basis 

functions adopted. Also, the discrepancies in the natural frequencies between 

NSI and SI estimations are clearly visible, as the peaks of the blue curves (NSI) 

are all shifted to the left with respect to the orange dashed-dotted curves (SI).  

Eventually, the coefficients of the nonlinearities are computed from the 

nonlinear state-space model and depicted in Figure 3.14 in their real and 

imaginary parts. It should be recalled that two nonlinear basis functions are 

considered, associated to the negative and positive gaps, respectively. Thus, 

two coefficients 𝜇1
𝑖𝑑, 𝜇2

𝑖𝑑 are identified. A list is reported in Table 3.4 in terms 

of real spectral mean 𝜇̅𝑗
𝑖𝑑 plus its standard deviation 𝜎𝑗 , and ratio between the 

real and the imaginary parts 𝐸[ℜ ℑ⁄ ]𝑗.  

Table 3.4: Identified coefficients for piecewise nonlinearity estimation. 

Coefficient 𝜇̅𝑖𝑑 (𝑁 𝑚⁄ )  𝜎 (𝑁 𝑚⁄ )  𝐸[ℜ ℑ⁄ ] 

𝜇1
𝑖𝑑 1340 2 153 

𝜇2
𝑖𝑑 2170 2 261 

 

The spectrum of the real part of the identified coefficients is practically flat, 

with a standard deviation around 0.1% of the mean value. Also, the real part is 

much higher that the imaginary part for both the coefficients, thus the 

estimation should be considered reliable. 
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Figure 3.14: Identified coefficients of the piecewise nonlinearity in logarithmic 

scales. Continuous line: real part; dashed-dotted line: imaginary part. a) μ1id; b) μ2id. 

The spectral means of the two coefficients 𝜇̅1
𝑖𝑑 and 𝜇̅2

𝑖𝑑 are then taken as the 

final values for the slopes associated to the negative and positive gaps. The 

parameters defining the nonlinearity are eventually summarized in Table 3.5, 

and their graphical representation is shown in Figure 3.15. 

Table 3.5: Final parameters of the piecewise nonlinearity. 

Direction Gap (mm) Slope (N/m) 

Positive +0.28 2170 

Negative -0.12 1340 

 

 

Figure 3.15: Identified nonlinear function fnl(y3). 

Finally, the identified nonlinear model is validated over the residuals with 

the measured outputs 𝒚𝑣𝑎𝑙(𝑡) of the validation set. Three validation sets with 
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increasing excitation levels are considered, namely F3, F4 and F6. The 

simulated outputs 𝒚𝑖𝑑(𝑡) are first generated using the identified state-space 

model given as input the measured force 𝒇𝑣𝑎𝑙(𝑡) of each validation set. The 

residual with the measured output ‖𝒚𝑖𝑑(𝑡) − 𝒚𝑣𝑎𝑙(𝑡)‖ is then computed both 

in time and frequency domains. The comparison is depicted in Figure 3.16 in 

the frequency domain.  

 

Figure 3.16: Validation of the nonlinear identification in the frequency domain. Black 

line: spectrum of the measured output in dB scales (ref. 1 m2/Hz), S3; orange line: 

residual with the spectrum of the simulated output. a) Validation set from level F3; 

b) Validation set from level F4; c) Validation set from level F6. 

The relative RMS deviation between measured and simulated outputs in 

the considered frequency range is approximately 2% for the level F3, 3% for 

the level F4 and 5% for the level F6. As expected, the error is minimum for 

level F3, being the same level used for the identification, and increases for 

increasing excitation amplitude. In any case, there is a good match between 

simulations and measurements also for the highest level, whose detailed 

response in the time domain is shown in Figure 3.17. 

To sum up, the identification has been carried out with a two-step 

procedure using NSI, first estimating the gaps and then the piecewise slopes. 

Also, both the underlying-linear system and the fully nonlinear state-space 

model are retrieved. The validation of the obtained model shows a good 

accuracy, especially when comparing measured and simulated outputs. 

However, some discrepancies are present in the underlying-linear system 

when compared with the result of a low-level linear identification. This is 

presumably related to a softening effect that is visible in the measurement, but 

not included in the nonlinear identification, as not related to the piecewise 
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behavior. Allegedly, this phenomenon is associated to the own weights of the 

moving plates and masses, influencing the dynamics of the system. 

 

Figure 3.17: Validation of the nonlinear identification in the time domain, S3, 

validation set from level F6. Black line: measured output; blue line: simulated output. 
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Chapter 4 

4.Free-decay-NSI via mass-change 

scheme 

4.1. Introduction 

As described in Chapter 3, NSI in its classical form needs input-output data 

to properly work, so that a persistent measured excitation must be provided 

to the structure under test. This is a general requirement of the methods 

developed so far for nonlinear system identification, and it originates from the 

very basic principle defining the nonlinear systems: the breaking of the 

superposition principle, and thus of the invariance of the FRFs (see Chapter 2). 

Since the response of a nonlinear system is nonlinearly linked to the energy 

provided to the system itself, it is straightforward that the latter should be 

known (or measured). Conversely, linear system identification with output-

only data is a consolidated practice nowadays, and it is referred to as stochastic 

identification if the unmeasured input is assumed to be a realization of a 

stochastic process [62].  

This need may be an issue in situations where providing and measuring a 

continuous input is difficult, or it simply alters the structure under testing. A 

practical example of the latter case will be given in Chapter 5, where an 

experimental nonlinear beam is excited with a shaker: given the slenderness 

of the beam, the attachment with the shaker deeply alters its dynamical 

response and its symmetry properties.  
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Attempts have already been made to identify nonlinear systems with 

output-only measurements, although no true nonlinear-stochastic 

identification method has been developed yet [37].  In [70] a time and 

frequency domain approach based on the RFS method and the NIFO method 

has been developed, to work with nonlinear systems with unmeasured input. 

In [71] RFS is adopted again, but in conjunction with the direct parameter 

identification method [72]. In [73] structural health monitoring is performed 

by identifying a black-box nonlinear environmental model for the slow 

variations of the damage-sensitive features due to changing environmental 

and operational conditions.  

In this work, a novel version of NSI is proposed, to work in situations 

where no continuous input can be provided to the system under test. In 

particular, the case of free-decay measurements is considered, and NSI is 

combined with a mass-change technique to fill the missing information needed 

to complete the nonlinear model [74]. The method is referred to as “Free-

decay-NSI” and it is validated on numerical and experimental data. 

4.2. Description of the method 

Referring to Eq. (3.1), the equation of motion can be written as a response 

to some given initial conditions if no forcing input is provided to the structure: 

{
𝑴𝒚̈(𝑡) + 𝑪𝑣𝒚̇(𝑡) + 𝑲𝒚(𝑡) + 𝒇𝑛𝑙(𝑡) = 𝟎    

𝒚(𝑡 = 0) = 𝒚𝟎,  𝒚̇(𝑡 = 0) = 𝒚̇𝟎                 
 (4.1) 

The nonlinear restoring force is still 𝒇𝑛𝑙(𝑡), as in Eq. (3.2). Instead, the 

extended input vector 𝒇𝑒(𝑡) of Eq. (3.4) reduces now to a vector containing 

only the nonlinear basis function, called 𝝃𝑛𝑙(𝑡): 

𝝃𝑛𝑙(𝑡) = [−𝜉1(𝑡), … , −𝜉𝐽(𝑡)]
T

 (4.2) 

so that the state-space formulation becomes: 

{
𝒙(𝜏 + 1) = 𝑨𝒙(𝜏) + 𝑩𝑛𝑙𝝃𝑛𝑙(𝜏)

𝒚(𝜏) = 𝑪𝒙(𝜏) + 𝑫𝑛𝑙𝝃𝑛𝑙(𝜏)      
 (4.3) 

The matrices 𝑨,𝑩𝑛𝑙 , 𝑪, 𝑫𝑛𝑙  can be identified again using the subspace 

formulation. In particular, the underlying-linear dynamics are expressed by 

the state matrix 𝑨, as in Eq. (3.5). However, in contrast to the original 

formulation of NSI, the state-space model of Eq. (4.3) does not allow the 

identification of the FRFs of the underlying-linear system. Therefore, the 

coefficients 𝜇𝑗  cannot be estimated yet. Instead, the FRF matrix of the 

nonlinear feedbacks 𝑮𝑛𝑙(𝜔) can be defined as: 
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𝑮𝑛𝑙(𝜔) = 𝑫𝑛𝑙 + 𝑪(𝑧𝑰 − 𝑨)−1𝑩𝑛𝑙,  𝑧 = 𝑒𝑖𝜔𝛥𝜏 (4.4) 

𝑮𝑛𝑙(𝜔) has the same structure as the vector of nonlinear basis functions 

𝝃𝑛𝑙: 

𝑮𝑛𝑙(𝜔) = [𝑮(𝜔)𝜇1𝑳1, … , 𝑮(𝜔)𝜇𝐽𝑳𝐽] (4.5) 

The FRF matrix of the underlying-linear system 𝑮(𝜔) is unknown in this 

case, but the modal parameters of the underlying-linear system (𝜔𝑟 , 𝜁𝑟 , 𝝍r) can 

still be estimated by performing the eigenvalue decomposition of 𝑨. 

Of course, knowing these modal parameters is not sufficient, as the 

nonlinear part of the equation of motion must be identified as well. Looking at 

Eq. (4.5), it seems that this requires the knowledge of 𝑮(𝜔), which should be 

somehow estimated. It is worth recalling that the FRF of the underlying-linear 

system can be assembled as a sum of single modes contributions in the case of 

underdamped modes. In terms of receptance it yields: 

𝐺𝑝𝑞(𝜔) = ∑
𝐴𝑝𝑞𝑟
 

𝜔𝑟
2 − 𝜔2 + 2𝑖𝜔𝜔𝑟𝜁𝑟

𝑁

𝑟=1

 (4.6) 

where 𝐴𝑝𝑞𝑟
 = 𝛼𝑟

2𝜓𝑝𝑟𝜓𝑞𝑟  is the residue of the rth mode, depending on the so-

called scaling factor 𝛼𝑟 . The problem reduces then to the estimation of this 

quantity for each identified mode, since all the other quantities are known so 

far. It should be noted that the scaling factors are related to the modal masses 

by the relation: 

𝛼𝑟 =
1

√𝑚𝑟

 (4.7) 

A common technique to estimate the scaling factors in linear operational 

modal analysis consists of adding known lumped masses to the structure in 

order to exploit the changes in natural frequencies and LNMs. This technique 

is generally referred to as mass-change [75–77]. The idea proposed here is 

based on the same approach, but brought to the nonlinear case. 

It is assumed that the mass matrix 𝑴 is modified by a quantity 𝛥𝑴, leading 

to a modified structure, labeled with subscript 𝐼 . A new equation of motion 

can therefore be written: 

{
(𝑴 + 𝛥𝑴)𝒚̈𝐼(𝑡) + 𝑪𝑣𝒚̇𝐼(𝑡) + 𝑲𝒚𝐼(𝑡) + 𝒇𝑛𝑙(𝑡) = 𝟎   

𝒚𝐼(𝑡 = 0) = 𝒚𝐼0,  𝒚̇𝐼(𝑡 = 0) = 𝒚̇𝐼0                               
 (4.8) 

A new state-space formulation is inferred for the modified structure, 

represented by the matrices 𝑨𝐼 , 𝑩𝐼
𝑛𝑙 , 𝑪𝐼 , 𝑫𝐼

𝑛𝑙, which can be identified again 
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using the subspace formulation. The set of modal parameters of the modified 

underlying-linear system can be obtained by performing the eigenvalue 

decomposition of 𝑨𝐼 , obtaining the natural frequencies 𝜔𝐼𝑟, the damping ratios 

𝜁𝐼𝑟 and the unit-scaled mode shapes 𝝍𝐼𝑟 for 𝑟 = 1,… ,𝑁.  

The next step of the technique involves the estimation of the scaling factors 

𝛼𝑟 , for which several methods have been developed for linear systems. 

4.2.1. Estimation of the scaling factors 

The mass-change technique consists of attaching masses to points of the 

structure where the mode shapes of both unmodified and modified structures 

are known [77]. This approach has been widely used in linear OMA, such as in 

bridges [75] and buildings [78], or in conjunction with FEM models [79].  

The original idea arises from Parloo et al. [75], who estimated the scaling 

factors using a first-order approximation for the sensitivity of the natural 

frequencies with respect to the mass for light-damped structures. The method 

requires small changes in the natural frequencies, and thus low mass 

modifications. Other methods have been developed to improve the original 

one, and an comprehensive literature review can be found in [77]. In this 

chapter, the method proposed by Bernal [76] is adopted, which does not 

impose limitations on the spatial distribution or magnitude of the added 

masses. 

The method requires the definition of an auxiliary matrix, called 𝜦 and 

equal to: 

𝜦 = 𝜳† 𝜳𝐼 (4.9) 

where the matrix 𝜳𝐼 is the modal matrix of the modified structure, containing 

the eigenvectors 𝝍𝐼𝑟, while the matrix 𝜳† is the pseudo-inverse modal matrix 

of the unmodified structure.  

The modal scaling factors of the unmodified structure can therefore be 

computed by: 

𝛼𝑟
2 =

(𝜔𝑟
2 − 𝜔𝐼𝑟

2 )

𝜔𝑟
2

𝛬𝑟𝑟

𝝍𝑟
T𝜟𝑴𝝍𝐼𝑟

,  𝑟 = 1,… ,𝑁 (4.10) 

where 𝛬𝑟𝑟 is the rth diagonal entry of 𝜦. It should be noted that Eq. (4.10) is an 

exact formulation when a full set of modes is used to compute 𝜦. Instead, the 

estimation of the scaling factors is approximated when a truncated set of 

modes is adopted. Luckily, the truncation error is expected to be small in the 

diagonal terms of 𝜦, which are the only ones showing up in Eq. (4.10), 

therefore providing a reasonable accuracy in the estimation of the scaling 

factors [77]. 
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4.2.2. Underlying-linear FRFs and nonlinear coefficients 

Since all the quantities in Eq. (4.10) have been estimated by NSI, the scaling 

factors can be computed, and thus the FRF matrix 𝑮 from Eq. (4.6). The 

coefficients of the nonlinearities 𝜇𝑗  can be estimated as well from Eq. (4.5). A 

flowchart of the identification process is shown in Figure 4.1. 

 

Figure 4.1: Flow-diagram of the free-decay-NSI identification. 

It worth highlighting that the full FRF matrix is retrieved in this case, thus 

yielding: 

𝜇𝑗𝑮𝑳𝑗 = 𝜇𝑗 [

𝐺11 𝐺12 ⋯ 𝐺1𝑁

𝐺21 𝐺22

⋮ ⋱ ⋮
𝐺𝑁1 ⋯ 𝐺𝑁𝑁

] 𝑳𝑗 =

[
 
 
 
 
𝐺1𝑗

𝑛𝑙

𝐺2𝑗
𝑛𝑙

⋮
𝐺𝑁𝑗

𝑛𝑙
]
 
 
 
 

 (4.11) 

The coefficient 𝜇𝑗  can be computed from Eq. (4.11) starting from any row 

of 𝑮. This leads to an intrinsic redundancy of the methodology, as there are in 

principle N estimations of each coefficient. Conversely, when classical input-

output NSI is used, the number of known rows of 𝑮 is equal to the number of 

physical forcing inputs, that is generally one (Eq. (3.8)). Practically, it is 

possible to solve Eq. (4.11) in a least-square (LS) sense with respect to 𝜇𝑗 , also 

considering an appropriate weighting function. The choice of the weighting 

function can be deduced recalling that NSI does not estimate directly the 



4.  Free-decay-NSI via mass-change scheme  46 

 

 
 

coefficient 𝜇𝑗 , but a frequency-dependent and complex-valued quantity 

𝜇𝑗
𝑖𝑑(𝜔) ∈ ℂ. Based on this fact, two considerations can be made: 

• A flat dependency on the frequency is expected, therefore a possible 

choice for the weighting function can be the inverse covariance matrix 

of the N estimations. 

• The imaginary part should be negligible with respect to the real part, 

therefore the ratio between real and imaginary parts of  𝜇𝑗
𝑖𝑑(𝜔) can be 

used as a possible weighting function.  

These two considerations hold also in the case of standard NSI, as already 

discussed in Chapter 3. Eventually, a combination of the two considerations 

seems to give the best results, and it will be used in the following applications. 

Calling 𝑾𝑗(𝜔) the weighting vector of the jth nonlinearity, it is therefore 

possible to write the following minimization problem: 

arg min
𝜇𝑗

𝑖𝑑(𝜔)

{𝜺𝑗
H diag(𝑾𝑗) 𝜺𝑗} ,  𝜺𝑗(𝜔) = [

𝐺1𝑗
𝑛𝑙

⋮
𝐺𝑁𝑗

𝑛𝑙
] − 𝜇𝑗

𝑖𝑑𝑮𝑳𝑗  (4.12) 

with 𝜺𝑗(𝜔) being the residue at the frequency 𝜔, and H  indicating the 

Hermitian transpose. The LS solution of Eq. (4.12) gives the complex-valued 

quantity 𝜇𝑗
𝑖𝑑(𝜔). Moreover, it is possible to split the single modes contributions 

to the jth nonlinearity, as in the classical NSI approach (Eqs. (3.12)-(3.14)). 

4.3. Numerical application: 4DOFs nonlinear system 

with friction 

A four degrees-of-freedom train of masses is considered, in the presence 

of Coulomb friction between DOFs 3 and 4. A representation of the system is 

depicted in Figure 4.2, where the nonlinear link is also shown, while the 

system parameters are summarized in Table 4.1. The free-decay response of 

the system is simulated by applying an impulsive force on mass 1 at the time 

𝑡 = 0 𝑠. The sampling frequency is 𝑓𝑠 = 500 Hz and the total time of the 

simulation is 30 seconds. Time histories are obtained with the Newmark time 

integration scheme, and 1% of zero-mean Gaussian noise is added to each 

simulated output. 

Table 4.1: Parameters of the 4 DOFs train of masses 

Mass (kg) Stiffness (kN/m) 
Damping 
coefficients 

Friction coefficient (N) 

m1 = 1;m2 = 5; 

m3 = 3;m4 = 1. 

k1 = 6; k2 = 5; 

k3 = 10; k4 = 9. 

α = 0.1; 

β = 10−4. 

cnl = 5 
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Figure 4.2: 4 DOFs nonlinear system with friction between DOF 3 and 4. 

The displacements of the four DOFs are reported in Figure 4.3, while the 

spectrogram of DOF 4 is shown in Figure 4.4. 

 

Figure 4.3: Displacements of the 4 DOFs system with zoom around the first 2 seconds. 

Yellow line: DOF 1; blue line: DOF 2; red line: DOF 3; black line: DOF 4. 

The frequency values reported in the y-axis of the spectrogram are the 

natural frequencies of the underlying-linear system. It can be noted that the 

frequency content of the response is a lot richer than the only natural 

frequencies lines, allegedly due to the nonlinear nature of the simulated 

outputs. 
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Figure 4.4: Acceleration spectrogram of DOF 4. The frequency values reported in the 

y-axis are the natural frequencies of the underlying-linear system. 

The identification is performed with free-decay-NSI considering the 

nonlinear basis function 𝜉(𝑡) = sign(𝑦̇4 − 𝑦̇3) with location vector 𝑳 =

[0   0  − 1   1]T.  

The stabilization diagram of the underlying-linear system is depicted in 

Figure 4.5, obtained by increasing the model order from 2 to 20. Stabilization 

is checked for frequencies, damping ratios and MACs, and a model order equal 

to 8 is eventually chosen.  

The set of identified modal parameters of the underlying linear system 

{𝜔, 𝜁, 𝝍}𝑟=1,…,4 is extracted and reported in Table 4.2 in terms of natural 

frequencies and damping ratios.  

The whole process is then repeated with the modified structure, where a 

change in the mass distribution is accomplished by increasing each lumped 

mass by 10%. The new set of identified modal parameters of the underlying-

linear system for the modified structure {𝜔𝐼 , 𝜁𝐼 , 𝝍𝐼}𝑟=1,…,4 is referred to as “Set 

I” and it is reported in Table 4.2 in terms of natural frequencies. The associated 

damping ratios are not listed, as they are not needed in the methodology. 
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Figure 4.5: Stabilization diagram of the ULS. Stabilization thresholds: 0.5%, 10% and 

99.5% for frequencies, damping ratios and MACs respectively. Black dot: new pole; 

blue plus: pole stable in frequency; red square: pole stable in frequency and MAC; 

green cross: pole stable in frequency, MAC and damping.  

Table 4.2: Identified modal parameters of the 4 DOFs system. 

Mode 
Frequency (𝐻𝑧) Damping (%) 

Unmodified Set I Unmodified 

1 4.30 4.10 0.32 
2 9.40 8.97 0.38 
3 17.17 16.38 0.59 
4 18.46 17.59 0.69 

 

The modal scaling factors and the modal masses are eventually computed 

from Eq. (4.10) and Eq. (4.7), respectively. The identified modal masses are 

then compared with the theoretical ones in Table 4.3, where a decent 

agreement can be noted.  

Table 4.3: Identified modal masses of the 4 DOFs system. 

Mode 
Identified modal mass 
(kg) 

Theoretical modal mass 
(kg) 

Difference 
(%) 

1 8.25 8.09 1.98 
2 6.09 5.92 2.90 
3 1.11 1.10 0.49 
4 1.68 1.71 1.72 

 

The FRF matrix of the underlying linear system is then built according to 

Eq. (4.6), and the FRF 𝐺11(𝜔) is depicted in Figure 4.6 and compared with the 

theoretical one. A great correspondence is retrieved also in this case between 
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identified and theoretical results. As for the nonlinear identification, the 

coefficient of the nonlinearity 𝜇1 = cnl is identified solving Eq. (4.12) in a LS 

sense. Since the full FRF matrix is available, 𝑁 = 4 estimations of 𝜇1 are 

retrieved considering the 4 DOFs as inputs for each mode 𝑟 = 1,… ,4. Thus, a 

total of 16 possible estimations can be obtained. As pointed out in the previous 

section, not all the modes equally contribute to the nonlinear part of the 

response. Indeed, the LS solution should take into account this information, 

and this can be done automatically by choosing the weighting function 

according to the guidelines provided in the previous section. Eventually, the 

final value for the nonlinear coefficient can be obtained by considering the 

spectral mean 𝜇̅1
𝑖𝑑 of the real part of the weighted LS solution ℜ[𝜇1

𝑖𝑑(𝜔)]. The 

result is 𝜇̅1
𝑖𝑑 = 4.96 𝑁 with a standard deviation of 0.20 𝑁, providing a 

percentage error of 0.79% from the true value. 

 

Figure 4.6: Driving-point linear FRF G11 for the 4 DOFs system in dB scales (ref. 1 

m/N). Continuous black line: identified FRF; dashed-dotted orange line: theoretical 

FRF. 

Real and imaginary parts of the LS solution 𝜇1
𝑖𝑑 are depicted in Figure 4.7. 

It should be noted that the imaginary part is always several orders of 

magnitude lower than the real part, assessing the goodness of the 

identification.  

 



4.4. Experimental application: nonlinear scaled building 51 

 

 
 

 

Figure 4.7: Coefficient of the nonlinearity for the 4 DOFs system in logarithmic scale. 

Continuous black line: real part of the LS solution; dashed-dotted black line: 

imaginary part of the LS solution. 

4.4. Experimental application: nonlinear scaled 

building 

The experimental application is composed of five aluminum plates 

connected by thin steel beams (Figure 4.8) [65]. It can be assumed that the 

vertical beams provide just a flexural stiffness contribution, thus the rig may 

be reasonably considered as a 5 DOFs system. Three photos of the 

experimental setup are reported in Figure 4.9 and the characteristics of the 

structure are reported in Table 4.4. The nonlinearity is introduced by a thin 

pretensioned metallic wire connected to the fifth floor (Figure 4.9c). This acts 

like a nonlinear stiffness when the wire undergoes large amplitude 

oscillations. The restoring force produced by the wire can be written as a series 

expansion comprising a linear stiffness term klin plus a cubic one [80], thus 

having a nonlinear restoring force 𝑓𝑛𝑙 = 𝜇1𝑦5
3. 
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Figure 4.8: Multi-story building with nonlinearity produced by a thin wire. 

Table 4.4: Characteristics of the experimental setup. 

# 

Plate Vertical beam 

Mass  

(kg) 

Width 

(mm) 

Length 

(mm) 

Thickness 

(mm) 

Length  

(mm) 

Section  

(mm2) 

1 4.30 270 250 24 50 600.3 

2 2.15 270 250 12 30 600.3 

3 1.97 270 250 10 60 600.3 

4 1.79 270 250 10 60 600.3 

5 1.99 270 250 10 60 600.3 

 

The free-decay response is recorded with 5 accelerometers positioned at 

each floor plus one on the ground, with sampling frequency 𝑓𝑠 = 409.6 𝐻𝑧 and 

duration of 40 𝑠. The displacement of the fifth floor 𝑦5(𝑡) is obtained by double 

integrating its measured acceleration 𝑦̈5(𝑡). 

A first characterization is carried out just processing the measured 

(output-only) data, to check whether the system truly behaves nonlinearly.  
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Figure 4.9: Photos of the experimental setup. a) Overall view with nonlinear link 

highlighted in red; b) Overall view with motion directions in green; c) Particular of 

the nonlinear link (thin wire). 

4.4.1. Nonlinear characterization 

The thin metallic wire is supposed to add a nonlinear stiffness contribution 

to the structure when it undergoes large amplitude oscillations. Since an 

impulsive response is considered, this allegedly happens at the beginning of 

the decay and vanishes as the time goes-by. In other words, the energy 

provided to the structure is not constant, as it would be in the case of external 

random excitation. This is not the ideal situation from a nonlinear 

identification point of view, as the nonlinear response itself depends on the 

energy given to the system. The nonlinear behavior is therefore expected to be 

dominant during the first instants of the response. Afterwards, a linear regime 

should be reached. For these reasons, the only frequency analysis of the output 

spectra is not helpful anymore. A time-frequency analysis, on the other hand, 

seems to be the best choice, as changes in the natural frequencies over time 

can be exploited, if the structure behaves nonlinearly. In particular, they will 

generally tend to the linear natural frequencies starting from a shifted 

(presumably higher) value in this case. 

The spectrogram of the output 𝑦̈2(𝑡) is shown in Figure 4.10a, and the 

instantaneous frequency of the five modes is directly extracted. The other 

sensors show a similar behavior. The percentage frequency shifts of the five 

extrapolated modes are depicted in Figure 4.10b, taking as starting values the 

instantaneous frequencies at 𝑡 = 0 𝑠. A relatively high frequency shift is 

detected for the first mode of the structure, and it progressively dies out as the 

mode number increases. The frequency associated to the fifth mode seems not 

a)

b)

c)
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to be affected by the nonlinearity at all. The instantaneous frequencies seem 

to stabilize after almost 15 seconds, meaning that a linear regime is reached. 

 

Figure 4.10: Time-frequency analysis of the multi-story building. a) Spectrogram of 

the acceleration of y2; b) Frequency variations of the five modes. Blue line: mode 1; 

orange line: mode 2; green line: mode 3; purple line: mode 4; yellow line: mode 5. 

A nonlinear response is then retrieved during the first instants of the 

acquisition, and therefore nonlinear system identification can be applied. 

4.4.2. Nonlinear identification 

The identification is performed with free-decay-NSI considering the 

following nonlinear basis functions and location vectors: 

𝜉1(𝑡) = 𝑦5(𝑡)
3 

𝑳1 = [0 0 0 0 1]𝑇 

𝜉2(𝑡) = 𝑦5(𝑡)
2 

𝑳2 = [0 0 0 0 1]𝑇 
(4.13) 

A quadratic nonlinear basis function 𝜉2 is also added to DOF 5 to account 

for possible asymmetries in the nonlinear restoring force, generally present in 

real structures. 

The stabilization diagram of the underlying-linear system is obtained by 

increasing the model order from 2 to 20 and it is depicted in Figure 4.11. 

Stabilization is checked for frequencies, damping ratios and MACs, and the set 

of identified modal parameters of the underlying-linear system {𝜔, 𝜁, 𝝍}𝑟=1,…,𝑁 

is eventually extracted and reported in Table 4.5 in terms of natural 

frequencies and damping ratios. The model order for each mode is selected 

according to the median-damping criterion [81]. 
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Figure 4.11: Stabilization diagram of the ULS. Stabilization thresholds: 0.5%, 10% 

and 99.5% for frequencies, damping ratios and MACs respectively. Black dot: new 

pole; blue plus: pole stable in frequency; red square: pole stable in frequency and 

MAC; green cross: pole stable in frequency, MAC and damping. 

The whole process is then repeated with the modified structure, where a 

change in the mass distribution is considered. In this case, this is accomplished 

by adding a mass equal to 1.99 kg first on the fifth floor and then on the third 

floor. The reason of this choice can be found when looking at the identified 

mode shapes of the unmodified structure, reported in Figure 4.12. It can be 

seen that the fifth identified mode has a node on the fifth floor. Thus, adding a 

mass there does not affect the corresponding mode, making the estimation of 

the fifth modal mass unreliable. For this reason, the latter is estimated by 

adding the mass on the third floor.  

Output-only-NSI is applied with both the modifications, leading to two sets 

of underlying-linear modal parameters: 

• Set I, {𝜔𝐼 , 𝜁𝐼 , 𝝍𝐼}𝑟=1,…,𝑁 with the mass on the fifth floor; 

• Set II, {𝜔𝐼𝐼 , 𝜁𝐼𝐼 , 𝝍𝐼𝐼}𝑟=1,…,𝑁 with the mass on the third floor. 

The identified natural frequencies related to the two sets are listed in 

Table 4.5. 
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Figure 4.12: Linear mode shapes of the multi-story building. 

Table 4.5: Identified modal parameters of the multi-story building. 

Mode 

Frequency (Hz) Damping (%) 

Unmodified 
Set I:  
Mass on the 
5th floor 

Set II: 
Mass on the 
3rd floor 

Unmodified 

1 3.49 3.02 3.06 0.49 
2 6.11 5.46 6.08 0.48 
3 10.20 8.93 8.61 0.25 
4 14.38 13.34 14.31 0.18 
5 27.00 26.61 26.85 0.53 

 

As for the variations in the mode shapes, the MACs between the 

unmodified and the modified mode shapes are shown in Figure 4.13. It can be 

seen that the MAC between 𝝍5 and 𝝍𝐼5 is equal to 1, as expected. Eq. (4.10) is 

then applied to the two configurations, and the final modal scaling factors are 

computed by averaging the two set of estimations, except for the cases of 

unitary MAC for either one of the two sets. The identified values for the modal 

masses are listed in Table 4.7. Also, a comparison with the results obtained 

performing the (linear) stochastic subspace identification on the last part of 

the response (linear behavior) is presented in the following sub-section. 
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Figure 4.13: MAC between the mode shapes of the building in the unmodified and 

modified configurations. a) Set I, mass added on the fifth floor; b) Set II, mass added 

on the third floor. 

Comparison with the linear identification 

Since the mass-change method has been originally developed for linear 

systems, it is useful to check what happens with linear measurements, also to 

validate the results obtained with the free-decay-NSI method. Thus, the same 

free-decay dataset used so far is considered here, but the first part is cut off to 

let just the linear response to be present. Referring to Figure 4.10, the 

instantaneous frequencies stabilize after almost 15 seconds, so this value is 

chosen as cutting time. Stochastic subspace identification (SSI) is then 

performed considering the unmodified structure and the two sets of 

modifications, to retrieve the linear modal parameters and to estimate the 

modal masses of the unmodified configuration.  

The stabilization diagram of the unmodified structure is depicted in Figure 

4.14, and the model order for each mode is selected according to the median-

damping criterion. The identified modal parameters for the three situations 

are listed in Table 4.6. 

A decent correspondence is retrieved between the results listed in Table 

4.5 (underlying-linear systems with free-decay-NSI) and the results of Table 

4.6 (linear identification with SSI). In particular, the deviation on the identified 

natural frequencies is generally below 1%, while a higher dispersion is 

retrieved for the damping ratios. This is very common, as uncertainties in the 

damping estimation are always quite high. Furthermore, the activation of the 

stiffness nonlinearity in the complete decay response is likely to trigger some 

nonlinear dissipation phenomenon as well, possibly related to the contact 

between the aluminum decks and the vertical slender beams, or also to the 

thin metallic wire undergoing large amplitude oscillations. 
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Table 4.6: Identified modal parameters of the multi-story building, linear system 

identification. 

Mode 
Frequency (Hz) Damping (%) 

Unmodified Set I Set II Unmodified 

1 3.51 3.05 3.08 0.40 
2 6.12 5.42 6.10 0.21 
3 10.25 8.94 8.62 0.16 
4 14.35 13.34 14.29 0.25 
5 27.05 26.47 26.80 0.42 

 

As for the computation of the modal masses, Eqs. (4.10) and (4.7) are 

applied again, with the considerations previously made about the position of 

the added mass still holding. The identified modal masses using the free-

decay-NSI method (on the full-nonlinear-decay) and the SSI method (on the 

truncated-linear-decay) are listed in Table 4.7. 

 

Figure 4.14: Stabilization diagram, linear system identification. Stabilization 

thresholds: 0.5%, 10% and 99.5% for frequencies, damping ratios and MACs 

respectively. Black dot: new pole; blue plus: pole stable in frequency; red square: 

pole stable in frequency and MAC; green cross: pole stable in frequency, MAC and 

damping. 

Table 4.7: Identified modal masses of the multi-story building. 

Mode 
Modal mass (kg), 
Free-decay-NSI 

Modal mass (kg), 
SSI 

Difference (%) 

1 5.47 5.69 4.05 
2 6.82 6.26 8.20 
3 3.94 3.83 2.67 
4 1.34 1.37 2.44 
5 0.79 0.47 39.48 
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Generally, there is a good agreement between the estimation of the modal 

masses. The only exception is the fifth mode, showing a high percentage 

deviation. This can be explained by considering that the identification with SSI 

is performed by cutting away the nonlinear part of the response from the 

decay. Since the fifth mode decays faster, it is possible that this mode is badly 

identified from the truncated linear decay. This is also confirmed by the 

spectrogram of the output no. 2 in Figure 4.10: the power associated to the 

fifth mode is highly reduced after 15 seconds, in contrast to the other modes. 

Eventually, the FRFs of the underlying-linear system are estimated for both 

free-decay-NSI and SSI from Eq. (4.6). A comparison is depicted in Figure 4.15 

for the driving point FRFs 𝐺11 and 𝐺33. As expected, the agreement is very good 

except around the fifth mode, for the aforementioned reasons.  

 

Figure 4.15: Underlying-linear FRFs of the multi-story building in dB scales (ref. 1 

m/N). Continuous black line: free-decay-NSI estimation; dashed-dotted orange line: 

SSI estimation. a) G11; b) G33. 

Identification of the nonlinear restoring force 

After validating the identification of the underlying-linear system, the 

nonlinear part of the model of Eq. (4.1) can be estimated as well. According to 

Eq. (4.13), two nonlinear feedbacks are considered in this case, respectively 

cubic and quadratic. Thus, two coefficients should be identified in a LS sense. 

As for the single modes contributions, the first and second identified modes 

are considered in this case, as they show a higher frequency shift in Figure 

4.10. With this choice, the final values for the two coefficients can be obtained 

as the spectral mean of the real parts of the LS solutions, leading to 𝜇̅1
𝑖𝑑 = 5.2 ⋅

107 N/m3 (with a standard deviation of 2.4 ⋅ 106 N/m3) and 𝜇̅2
𝑖𝑑 = 6.7 ⋅

104 N/m2 (with a standard deviation of 5.2 ⋅ 103 N/m2). The single 

estimations are reported in Figure 4.16 in terms of spectral mean of their real 
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parts. The darkness of the dots is proportional to their weight in the LS 

solution. Also, the final identified values 𝜇̅1,2
𝑖𝑑  are depicted.  

The contributions associated to the second mode are generally weighted 

more, except for the third DOF, i.e. the dots labeled as 𝐺31
𝑛𝑙

2
   and 𝐺32

𝑛𝑙
2
 . 

Interestingly, the third DOF of the mode shape 𝝍2 is almost a node (Figure 

4.12), thus making the estimation of the coefficients unreliable for the 

combination 𝑢 = 3 (DOF), 𝑟 = 2 (mode). This is correctly caught by the 

weighting function, which puts almost to zero the corresponding weight. 

 

Figure 4.16: Coefficients of the cubic nonlinearity in (a) and the quadratic 

nonlinearity in (b) of the multi-story building. Red line: real part of the LS solution; 

dots: single estimations. The intensity of the color of the dots is proportional to their 

weight in the LS solution.  

Eventually, the real and imaginary parts of the LS solutions are depicted in 

Figure 4.17. It should be noted that the imaginary parts are always several 

times lower than the real parts. 
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Figure 4.17: Coefficients of the nonlinearities of the multi-story building in 

logarithmic scales. Continuous black line: real part of the LS solution; dashed-dotted 

black line: imaginary part of the LS solution. a) Cubic coefficient; b) Quadratic 

coefficient. 

The identified nonlinear restoring force 𝑓𝑛𝑙 = 𝜇̅1
𝑖𝑑𝑦5

3 + 𝜇̅2
𝑖𝑑𝑦5

2 is depicted 

in Figure 4.18 as a function of 𝑦5(𝑡). A zoom around the origin is also reported 

in Figure 4.18b, where the asymmetry introduced by the quadratic term is 

visible.  

 

Figure 4.18: Nonlinear restoring force of the multi-story building in (a) and zoom 

around the origin in (b). Dashed black line: cubic term; dashed-dotted black line: 

quadratic term; blue line: total force fnl. 

The RMS value of cubic component of 𝑓𝑛𝑙  is approximately 5 times higher 

then the quadratic one, thus the response in mostly symmetric. 
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4.5. On the initial energy supply 

The method presented in this chapter is based on free-decay 

measurements of nonlinear structures. This implies that the energy associated 

to the nonlinear effects varies with the signal decay, as seen in the previous 

sections. It is therefore useful to investigate the initial energy supplied to the 

structure, in order to make sure that nonlinearity is properly triggered. A low 

initial energy would result in a poor nonlinear excitation, and the identification 

method would struggle to get satisfying results in the estimation of the 

nonlinearity. On the other hand, other side effects might occur if the initial 

energy is too high, possibly associated to nonlinear phenomena such as large 

amplitude vibrations.  

The spectrogram of the acceleration of 𝑦2 is depicted in Figure 4.19 for 

three different excitation levels in the case of no added mass: the first level 

(Figure 4.19a) is the selected one for the identification in the previous section, 

the second level (Figure 4.19b) corresponds to a lower initial energy, while the 

third level (Figure 4.19c) corresponds to a higher initial energy.  

 

Figure 4.19: Time-frequency analysis of the multi-story building for different initial 

energy levels. a) Spectrogram of the acceleration of y2, selected level; b) Spectrogram of 

the acceleration of y2, low energy; c) Spectrogram of the acceleration of y2, high energy; 

d) Frequency variations of the first mode for the three levels. 

Figure 4.19d shows the percentage frequency shifts of the first 

extrapolated mode for the three excitation levels, taking as starting values the 

instantaneous frequencies at 𝑡 = 0 s. The selected level has a maximum 

frequency shift of roughly 12%, while it becomes 2% for the lower level and 

20% for the higher one. It is worth recalling that the first mode used to be the 
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most nonlinear in the previous characterization, which is the reason why it has 

been chosen here as a comparison feature. 

When performing the nonlinear system identification with the proposed 

method, different scenarios are obtained for the different initial energy levels. 

The stabilization diagrams of the ULS for the three cases are depicted in Figure 

4.20. Only the totally-stable poles are shown, i.e. the poles stable in frequency, 

MAC and damping. The stabilization diagram of the low-energy level (in blue 

plus) shows a good stability for the first four modes, while the last one is poorly 

excited and barely visible. Instead, the stabilization diagram of the high-energy 

level does not show a decent stability: the second mode is not stable at all, and 

the third mode is unstable for every model order but one. This excitation level 

is therefore not appropriate for the proposed method to be applied. The 

physical reason might be that a very high initial energy possibly triggers some 

other dynamical phenomena, like geometrically nonlinear effects on the 

vertical beams.  

 

Figure 4.20: Stabilization diagrams of the ULS for the three excitation levels. 

Stabilization thresholds: 0.5%, 10% and 99.5% for frequencies, damping ratios and 

MACs respectively. Green cross: totally-stable pole, selected level; blue plus: totally-

stable pole, low energy; orange square: totally-stable pole, high energy. 

As for the lower excitation level, one can try to use free-decay-NSI to 

estimate the coefficients of the nonlinearities, although it is very likely that a 

poor estimation will be obtained. For the sake of completeness, the whole 

identification process previously seen is repeated, but considering the low-

energy measurement of Figure 4.19b when there is no added mass, and two 

low-energy measurements when the mass is on the fifth floor and on the third 

floor. The maximum frequency shift for both cases is of the same magnitude of 

the unmodified setup in Figure 4.19b. The same nonlinear feedbacks of Eq. 
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(4.13) are considered, respectively cubic and quadratic. Thus, two coefficients 

can be identified in a LS sense, and real and imaginary parts of the LS solutions 

are depicted in Figure 4.21. 

 

Figure 4.21: Coefficients of the nonlinearities of the multi-story building in logarithmic 

scales, low energy case. Continuous black line: real part of the LS solution; dashed-

dotted black line: imaginary part of the LS solution. a) Cubic coefficient; b) Quadratic 

coefficient. 

As expected, the identification is not successful in this case, as the 

imaginary parts of the identified coefficients are very high compared to the 

real parts. Therefore, the confidence in the estimated coefficients is very poor.  

This example highlights the importance of choosing an adequate excitation 

level when performing nonlinear system identification. Indeed, this is a 

general requirement for nonlinear systems, and it is not restricted to the 

proposed methodology. The main difference in this case is that no forcing 

input is present, which makes harder to quantify the entity of the nonlinear 

distortions. Nevertheless, the time-frequency analysis and the stabilization 

diagrams can help the user selecting a good initial energy level.   

4.6. Concluding remarks 

A method has been proposed in this chapter to perform nonlinear system 

identification of vibrating structures starting from output-only free-decay 

measurements. To accomplish this task, a modified version of NSI has been 

developed in combination with a mass-change scheme. Although generally 

free-decay measurements are not convenient for nonlinear system 

identification, as the nonlinearity is likely to be poorly excited, the decoupling 

capability of the presented method allows to maximize the confidence in the 

identification. This is carried out by weighting the single modes according to 
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their participation to the nonlinear behavior. The technique has been tested 

first on a numerical system involving a friction nonlinearity and subsequently 

on an experimental test bench of a nonlinear scaled building. Results have 

confirmed the capability of the methodology of identifying the underlying-

linear and nonlinear parameters of the considered systems with a satisfying 

confidence. Therefore, the presented method can be considered suitable if no 

forcing input can be provided to a nonlinear structure, relying on an easy free-

decay test.  
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Chapter 5 

5.Nonlinear identification of 

distributed geometrical 

nonlinearities 

5.1. Introduction 

The methods and the applications described so far have been developed to 

identify a nonlinear model structure for localized-only nonlinearities. This 

certainly covers an extensive range of real-life situations, but it does not 

comprise the big class of distributed nonlinearities. This chapter accounts for 

this case, considering structures undergoing large-amplitude oscillations, i.e. a 

geometrically nonlinear behavior. This case is increasingly getting more 

attention in the research community, driven by the industrial need of 

designing lighter and more flexible structures to reduce polluting emissions. 

As an illustration, the High Level Group on Aviation and Aeronautics Research 

in Europe has signed the report Flightpath 2050: Europe’s Vision for Aviation 

[82] in 2011, assessing the goals of the European air transports by 2050: 

reductions of 75% in CO2 emission and 90% in NOx emission per passenger 

kilometer. Because of these ambitious goals, studies on large-amplitude 

(nonlinear) oscillations are becoming crucial in the design process of vehicles 

and structures, as well as research on new sustainable and performing 

materials (e.g. composites). 
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Interestingly enough, the theory of large-amplitude vibrations of 

mechanical structures has a long tradition, going back to the 70s. The reader 

can refer to the work of A.H. Nayfeh and P.F. Pai [8] for an extensive literature 

review about nonlinear beams, plates and shells. Recently, geometrical 

nonlinearities have been considered in the design and analysis of several 

structural applications, such as helicopter blades, deployable solar panels, 

wind turbines, antennas and cylindrical shells [83,84].  

Geometrical nonlinearity associated to large-amplitude oscillations results 

in a distributed nonlinear strain-displacement relation [85], causing the 

coupling between different planes of deformation (e.g. bending and in-plane 

stretching for thin walled structures). In this framework, a nonlinear model is 

very often obtained by projecting the physical domain onto a reduced-order 

basis, forming a reduced-order model [86]. The selection of the reduced-order 

basis becomes then a key step, and a well-known option consists in 

considering the linear normal modes (LNMs) as a projection space. This choice 

is straightforward in the case of linear systems, as the LNMs decouple the 

equations of motion providing a huge benefit in terms of reduction of model 

complexity and computational burden. In the case of nonlinear systems, this 

approach can still be chased with some limitations. In fact, a full decoupling is 

not possible, and the LNMs are able to reproduce the motion for moderately-

large amplitudes of vibrations only [87]. Other possibilities are the use of 

nonlinear normal modes and modal derivatives [87], which enrich the 

projection space allowing a more complete nonlinear model. The computation 

of these quantities might be a non-trivial task tough, and an increase in the 

model complexity is rather sure. In any case, a reduced (still nonlinear) model 

should be retrieved at the end, defined by a set of parameters. These 

parameters have to be estimated, and this process is done via nonlinear system 

identification in this thesis, starting from experimental data.  

While the existing literature on numerical studies about large-amplitude 

vibrations is quite rich, the same cannot be stated when experimental 

measurements are considered. A few recent works deal with this problem, but 

their application is generally restricted to harmonic excitations under the 

assumption of no modal couplings. In [88] the first bending mode of an 

experimental beam undergoing large-amplitude vibrations is characterized 

fitting the nonlinear frequency response function (FRF) via harmonic balance 

method. In [89] an experimental diesis-like structure showing a geometrical 

nonlinear behavior is considered, and its model parameters estimated under 

the assumption of no internal resonances fitting again the nonlinear FRF. In 

[90], the nonlinear normal modes of a shell-like structure are sought by 

applying the restoring force surface (RFS) method, leading to noticeable 

modelling errors. All the methods presented in [88–90] work in the modal 
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domain and rely on not so powerful nonlinear system identification 

algorithms, which may struggle in the case of multiple modes interactions.  

In this chapter, the problem of identifying large-amplitude oscillations is 

faced by considering a two-steps strategy, proposed in the following section. 

This novel methodology is intended to work with experimental data under a 

broadband Gaussian excitation. Therefore, multiple modes are excited 

simultaneously, and no restrictions about the possible internal interactions 

are made. This is accomplished by extracting the nonlinear model directly 

from the measurements via nonlinear system identification in the modal 

domain, using an appropriate algorithm [91]. Thus, the LNMs are first 

extracted from the measurements and then they are used to obtain the 

nonlinear reduced-order model. An ad-hoc version of the NSI algorithm is 

proposed, called Modal-NSI, although it should be noted that the presented 

methodology can be applied with other nonlinear identification tools as well.  

The whole methodology is validated on experimental data of a very thin 

beam exhibiting a distributed nonlinear behavior, tested at the Space 

Structures and Systems Laboratory of University of Liège, Belgium. The 

nonlinear basis functions are deduced from a nonlinear modal model of the 

beam, which is numerically compared with a commercial FE software (ANSYS, 

[92]) [93]. Since the expression of the nonlinearity is analytic and in a closed-

form in the modal model, it is also possible to compute the nonlinear response 

using the harmonic balance method [26], for the computation of stable and 

unstable paths. 

Eventually, the nonlinear system identification is performed by applying 

Modal-NSI on the experimental data. For the sake of completeness, a second 

nonlinear identification is also performed in the physical domain using the 

PNLSS black-box algorithm (Appendix B). 

5.2. Nonlinear identification of distributed 

geometrical nonlinearities 

The strategy proposed here makes use of the LNMs as reduction basis to 

create the reduced-order domain. In principle, the methodology can be applied 

with any nonlinear identification algorithm, in time or frequency domain. Of 

course, the amount of a-priori information needed depends on the shade of the 

adopted algorithm (see section 3.1). Whatever algorithm is used, the LNMs are 

needed in order to build the reduced-order domain. It is important to highlight 

that the LNMs have to be computed just in the points where the sensors are 

located. In other words, a full analytical description of the mode shapes is not 

needed. This implies that a low-excitation level test should be performed first 

to extract the modal parameters using a linear identification algorithm.  
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5.2.1. Problem statement  

Let us consider a generic continuous nonlinear system, whose equation of 

motion can be written as: 

𝑀[𝑤̈(𝒙, 𝑡)] + 𝐶𝑣[𝑤̇(𝒙, 𝑡)] + 𝐾[𝑤(𝒙, 𝑡)] = 𝑓(𝒙, 𝑡) − 𝑓𝑛𝑙(𝑤, 𝑤̇) (5.1) 

where 𝑤(𝒙, 𝑡) is the displacement of the spatial coordinate 𝒙 ∈ 𝒟 in the domain 

𝒟; 𝑀 and 𝐾 are the mass and stiffness linear differential operators [94], 𝐶𝑣 is 

the proportional viscous damping operator, and 𝑓(𝒙, 𝑡) is the forcing input. 

The term 𝑓𝑛𝑙(𝑤, 𝑤̇) represents again the nonlinear restoring force, i.e. the 

nonlinear part of the equation. For the case studied here, a distributed 

nonlinear behavior is considered and the LNMs 𝜓 are used to operate in the 

modal domain. Using the expansion theorem, the solution of Eq. (5.1) can be 

expressed as: 

𝑤(𝒙, 𝑡) ≅ ∑𝜓𝑗(𝒙)𝜂𝑗(𝑡)

𝑁

𝑗=1

 (5.2) 

where 𝜂𝑗(𝑡) is the jth modal coordinate and a total of 𝑁 LNMs are taken into 

account. This choice is very common when dealing with distributed 

nonlinearities due to its simplicity. However, the LNMs do not decouple the 

equations of motion in a nonlinear setting, as stated in the introduction. A good 

accuracy is preserved for moderately-large amplitude vibrations and when 

large rotations are not present [95]. The following set of equations can be 

obtained substituting Eq. (5.2) into Eq. (5.1), and under the assumption of self-

adjoint operators: 

𝑚𝑟𝜂̈𝑟 + 𝑐𝑟𝜂̇𝑟 + 𝑘𝑟𝜂𝑟 = 𝑞𝑟 − 𝑞𝑟
𝑛𝑙 ,  𝑟 = 1, 2, … ,𝑁 (5.3) 

where 𝑚𝑟 , 𝑐𝑟 and 𝑘𝑟 are the modal mass, damping and stiffness respectively, 

and 𝑞𝑟(𝑡) = ∫ 𝜓𝑟(𝒙)𝑓(𝒙, 𝑡)𝑑𝒟
𝒟

 is the modal force. The nonlinearity is now 

expressed by the term 𝑞𝑟
𝑛𝑙(𝑡) = ∫ 𝜓𝑟(𝒙)𝑓𝑛𝑙(𝜓, 𝜂, 𝜂̇)𝑑𝒟

𝒟
.  

A set of N nonlinear equations is obtained, and each one can be identified 

separately to retrieve a set of nonlinear modal models. The final model in the 

physical domain can be eventually assembled by performing the direct modal 

transformation. The nonlinear identification strategy is summarized in Figure 

5.1. 
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Figure 5.1: Flowchart of the nonlinear system identification strategy. 

5.2.2. Modal-NSI 

The feedback formulation of standard NSI can be recognized when looking 

at Eq. (5.3), with the difference that the nonlinear term 𝑞𝑟
𝑛𝑙 is now in the modal 

domain. It is assumed hereafter that this term can be written as a linear-in-the-

parameters basis function expansion up to a certain number 𝐽:  

𝑞𝑟
𝑛𝑙 = ∑ 𝜇𝑗 𝑟

 𝜉𝑗𝑟
 (𝑡)

𝐽

𝑗=1

 (5.4) 

so that each contribution is defined by an unknown coefficient 𝜇𝑗𝑟
  and a 

nonlinear basis function 𝜉𝑗𝑟
 . The same passages of standard NSI (see section 

3.2)  can then be repeated when working in the modal domain. In particular, 

the extended input vector becomes an extended modal input vector, called 

𝒒𝑟
𝑒(𝑡): 

𝒒𝑟
𝑒(𝑡) = [𝑞(𝑡)  𝜉1(𝑡)  …  𝜉𝐽(𝑡)]𝑟

T
 (5.5) 

The subscript 𝑟 is omitted hereafter to ease the notation, stating that all 

the steps refer to a single mode. A state vector 𝝀 = [𝜂   𝜂̇]T can be introduced 

to derive the following nonlinear discrete time (modal) state-space 

formulation: 

{
𝝀(𝜏 + 1) = 𝑨𝝀(𝜏) + 𝑩𝑒𝒒𝑒(𝜏)

𝜂(𝜏) = 𝑪𝝀(𝜏) + 𝑫𝑒𝒒𝑒(𝜏)        
 (5.6) 

where 𝜏 is the sampled time. The analogy between the state-space model of Eq. 

(5.6) and the  standard one of Eq. (3.5) is evident, although the matrices 

𝑨,𝑩𝑒 , 𝑪,𝑫𝑒 are in this case the state, extended input, output and extended 

direct feedthrough modal matrices, respectively. Also, it follows from Eq. (5.6) 
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that recasting the nonlinear feedbacks into the extended modal input vector 

results in a multi-input system, with 𝐽 + 1 forcing functions.  

It is worth noticing that Eq. (5.6) represents in principle a single-degree-

of-freedom system in the case of linear systems, as it is the result of the modal 

transformation. The model order in the modal state-space formulation is then 

theoretically equal to two. Therefore, the abovementioned matrices can be 

written as follows, assuming that displacements are measured: 

𝑨 = [
0 1

−𝑚−1𝑘 −𝑚−1𝑐
] ∈ ℝ2×2,  

𝑩𝑒 = [
0 0 … 0

𝑚−1 𝑚−1𝜇1 … 𝑚−1𝜇𝐽
] ∈ ℝ2×(𝐽+1), 

𝑪 = [1 0] ∈ ℝ1×2,  

𝑫𝑒 = [0 0 … 0] ∈ ℝ1×(𝐽+1) 

(5.7) 

For nonlinear systems, the LNMs can be used as a reduction basis in a 

Galerkin sense, but they do not guarantee a full decoupling. In the following, 

no assumption is made about the order of the modal model and stabilization 

diagrams will be used in the practical application to select the best model 

order on a case-by-case basis [59].  

Once the rth state-space model 𝑨,𝑩𝑒 , 𝑪, 𝑫𝑒 is identified, the final step is the 

estimation of the nonlinear coefficients 𝜇𝑗=1,…,𝐽 and of the FRF of the 

underlying-linear (and modal) system 𝛤(𝜔). In particular, the extended FRF 

matrix 𝜞𝑒(𝜔) can be obtained from: 

𝜞𝑒(𝜔) = 𝑫𝑒 + 𝑪(𝑧𝑰 − 𝑨)−1𝑩𝑒 ,  𝑧 = 𝑒𝑖𝜔𝛥𝑡 (5.8) 

where I is the identity matrix and 𝑖 is the imaginary unit. 𝜞𝑒(𝜔) has the same 

structure as the extended force vector 𝒒𝑒: 

𝜞𝑒(𝜔) = [𝛤(𝜔), 𝜇1 𝛤(𝜔), … , 𝜇𝐽 𝛤(𝜔)] (5.9) 

so that its first block 𝛤(𝜔) is the FRF of the underlying linear (and modal) 

system. The nonlinear coefficients 𝜇𝑗
𝑖𝑑 can eventually be deduced from the 

remaining blocks [53]. Note that the identified coefficients are still complex-

valued frequency-dependent quantities 𝜇𝑗
𝑖𝑑(𝜔) ∈ ℂ, as in standard NSI. 

If the steps described in Eqs. (5.4)-(5.9) are repeated for each participating 

mode 𝑟, a set of 𝑁 nonlinear modal state-space models {𝑨, 𝑩𝑒 , 𝑪, 𝑫𝑒}𝑟 is 

obtained together with the full matrix of coefficients 𝝁𝑖𝑑. The physical 

nonlinear model can eventually be assembled by computing the direct modal 

transformation, as in Figure 5.1. Thus, the simulated physical outputs 𝑤𝑖𝑑 can 
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be computed from Eq. (5.2) when the modal (simulated) outputs 𝜂𝑖𝑑  are 

considered. The FRF of the physical underlying-linear system, called 𝐺(𝜔), can 

be computed similarly by summing the contributions of the considered modes 

expressed by the modal FRFs 𝛤𝑟(𝜔) of Eq. (5.9), with 𝑟 = 1,… , 𝑁, and knowing 

the corresponding LNMs. 

5.3. Geometrically nonlinear beam: a modal model 

A slender beam undergoing large flexural vibrations is considered. The 

governing equation is derived in [8] neglecting inertial and curvature 

nonlinear terms thanks to the slenderness assumption, and it is reported in Eq. 

(5.10):  

𝑚𝑤̈ + 𝑐𝑣𝑤̇ + 𝐸𝐼𝑤𝐼𝑉 − 𝐸𝐴 [𝑢𝐼 +
1

2
(𝑤𝐼𝐼)2 ] 𝑤𝐼𝐼 = 𝑓(𝑡) 𝛿(𝑥 − 𝑥𝑓) (5.10) 

where 𝑤(𝑥, 𝑡) is the flexural displacement, 𝑢(𝑥, 𝑡) is the axial displacement, 𝑚 

is the linear density (kg/m), 𝑐𝑣 is the viscous damping parameter (Ns/m2), 𝐸 

is the Young’s modulus (Pa), 𝐼 is the moment of inertia (m4), 𝐴 is the 

transversal section of the beam (m2), 𝑓(𝑡) is the external punctual force 

applied at position 𝑥𝑓 and 𝛿 is the Dirac’s delta. Also, a proportional viscous 

damping is considered to account for dissipation. When the flexural deflection 

is large, the axial force plays a significant role in carrying transverse loads, and 

geometrical nonlinearities couple the equations governing the extension and 

bending vibrations [96]. This phenomenon is expressed in Eq. (5.10) by the 

nonlinear term, which depends on a varying tensile force 𝑇(𝑥, 𝑡) acting on the 

beam: 

𝑇(𝑥, 𝑡) = 𝐸𝐴 [𝑢𝐼 +
1

2
(𝑤𝐼𝐼)2] (5.11) 

If the beam has fixed edges, the nonlinear term produces a stretching effect 

and Eq. (5.10) can be written as [8]: 

𝑚𝑤̈ + 𝑐𝑣𝑤̇ + 𝐸𝐼𝑤𝐼𝑉 −
𝐸𝐴

2𝑙
[∫ (𝑤𝐼)2𝑑𝑥

𝑙

0

 ]𝑤𝐼𝐼 = 𝑓(𝑡) 𝛿(𝑥 − 𝑥𝑓) (5.12) 

where 𝑙 is the length of the beam (m). Note that a similar expression can also 

be obtained in the case of non-ideal boundary conditions, which is the case of 

realistic non-perfect clamps [88]. Solutions to Eq. (5.12) can be found 

projecting the physical domain onto a convenient reduced-order basis. If LNMs 

𝜓(𝑥) are chosen as projection space, this operation is simply the modal 

transformation. Eq. (5.12) can then be multiplied by a generic eigenfunction 

𝜓𝑟(𝑥) and integrated over the spatial domain, yielding: 
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𝑚 ∫(𝜓𝑟 ∑ 𝜓𝑗𝜂̈𝑗
𝑗

) 𝑑𝑥 

𝑙

+ 𝑐𝑣 ∫(𝜓𝑟 ∑ 𝜓𝑗𝜂̇𝑗
𝑗

) 𝑑𝑥 

𝑙

+ 𝐸𝐼∫(𝜓𝑟 ∑ 𝜓𝑗
𝐼𝑉𝜂

𝑗
𝑗

) 𝑑𝑥 

𝑙

−
𝐸𝐴

2𝑙
∫𝜓𝑟 [∫(∑ 𝜓𝑗

𝐼𝜂
𝑗

𝑗
)

2

𝑑𝑥

𝑙

⋅ ∑ 𝜓𝑗
𝐼𝐼𝜂

𝑗
𝑗

] 𝑑𝑥 

𝑙

= 𝑞
𝑟
(𝑡)  

(5.13) 

where 𝑞𝑟(𝑡) = ∫ 𝜓𝑟𝑓(𝑥, 𝑡)𝑑𝑥
𝑙

 is the modal force. In general, the integral 

∫(∑ 𝜓𝑗
𝐼𝜂𝑗𝑗 )

2
𝑑𝑥

𝑙

 contains all the terms of the summation: 

∫(∑𝜓
𝑗
𝐼
𝜂𝑗

𝐽

𝑗=1

)

2

𝑑𝑥

𝑙

= ∫(∑ 𝜓
𝑝
𝐼
𝜂𝑝

𝐽

𝑝=1

)(∑ 𝜓
𝑞
𝐼
𝜂𝑞

𝐽

𝑞=1

)𝑑𝑥

𝑙

 (5.14) 

although there are situations where the off-diagonal terms (i.e. the integrals 

∫ 𝜓𝑝
𝐼 𝜓𝑞

𝐼

𝑙
𝑑𝑥, with 𝑝 ≠ 𝑞) can be neglected, like the simply supported case. The 

number of nonlinear couplings is defined by the index 𝐽, which is a user-

defined quantity and it cannot exceed 𝑁, when 𝑁 modes are taken into the 

solution. A set of coefficients 𝛼𝑝𝑞 can be defined as: 

𝛼𝑝𝑞 = ∫𝜓𝑝
𝐼𝜓𝑞

𝐼𝑑𝑥
𝑙

,  𝑝, 𝑞 = 1,… , 𝐽 (5.15) 

so as to re-write Eq. (5.13) in the form: 

𝑚𝑟𝜂̈𝑟 + 𝑐𝑟𝜂̇𝑟 + 𝑘𝑟𝜂𝑟 −
𝐸𝐴

2𝑙
∑ ∑(𝛼𝑝𝑞𝜂𝑝𝜂𝑞)

𝐽

𝑞=1

𝛽𝑟𝜂𝑟 = 𝑞𝑟 

𝐽

𝑝=1

 (5.16) 

where 𝑚𝑟 , 𝑐𝑟 and 𝑘𝑟 are the modal mass, damping and stiffness respectively, 

and 𝛽𝑟 = ∫ 𝜓𝑟𝜓𝑟
𝐼𝐼𝑑𝑥

𝑙
. Similar formulations to Eq. (5.16) can be found in 

[86,88,97]. The coefficients 𝛼𝑝𝑞 and 𝛽𝑟  depend only on the geometrical 

properties of the beam and the boundary conditions, and they can be recast 

into a matrix 𝝁𝑟
  defined as: 

𝝁𝑟
 = 𝛽𝑟

𝐸𝐴

2𝑙
[

𝛼11 ⋯ 𝛼𝐽1

⋮ ⋱ ⋮
𝛼1𝐽 ⋯ 𝛼𝐽𝐽

] = [

𝜇11𝑟
  ⋯ 𝜇𝐽1𝑟

 

⋮ ⋱ ⋮
𝜇1𝐽𝑟
 ⋯ 𝜇𝐽𝐽𝑟

 
]  (5.17) 
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Thus, Eq. (5.16) can be written as: 

𝑚𝑟𝜂̈𝑟 + 𝑐𝑟𝜂̇𝑟 + 𝑘𝑟𝜂𝑟 + 𝑞𝑟
𝑛𝑙 = 𝑞𝑟 , 

𝑞𝑟
𝑛𝑙 = − ∑ ∑ 𝜇𝑝𝑞𝑟

 

𝐽

𝑞=1

𝐽

𝑝=1

𝜂𝑝𝜂𝑞𝜂𝑟  
(5.18) 

The model described by Eq. (5.18) is validated numerically in the following 

section. The nonlinear part of Eq. (5.18) is then used as an a priori information 

for the experimental identification of a nonlinear beam conducted with NSI. 

5.3.1. Comparison with ANSYS  

As discussed in the introduction, the modal model (referred to as MM) is 

compared with ANSYS FE formulation [92].Two cases are considered, both 

involving a slender beam undergoing large-amplitude vibrations. The first one 

is a sine-sweep across the first bending mode of the straight beam, while the 

second one presents an added lumped mass to create an internal nonlinear 

resonance between first and second bending modes [98]. The properties of the 

beam are listed in Table 5.1, and a proportional damping distribution is 

considered with a mass-proportional coefficient equal to 3 s-1 and a stiffness-

proportional coefficient equal to  ∙ 0-6 s. 

For the modeling of the beam, a formulation with shear-deformable beam 

finite elements is used in ANSYS, while the MM method is based on a Euler-

Bernoulli formulation (Eq. (5.10)). As it is a thin and slender beam, results 

from all approaches are comparable to each other. The time integration is 

performed with the Newmark integration method [29] for all the approaches 

with a sampling frequency of 5 kHz and a spatial discretization of 40 nodes. In 

particular, the spatial discretization is an important parameter for the FE code, 

while it does not play any role in the MM method, since it is based on a modes 

superposition approach. Instead, the number of retained modes (called 𝑁 in 

the previous section) and the number of nonlinear couplings (called 𝐽 in the 

previous section) make a difference in the modal model behavior.  

Table 5.1: Properties of the numerical beam. 

Length 
(mm) 

Width 
(mm) 

Thickness  
(mm) 

Young’s Modulus  
(MPa) 

Density 
(kg m3⁄ ) 

500 20 1 200 7800 

Straight beam case 

In this case, the first resonance frequencies are located at 𝜔1  =  20.75 Hz, 

𝜔2  = 57.21 Hz and 𝜔3  = 112.15 Hz. The matrix of coefficients 𝝁1
  associated 

to the first mode is reported in Figure 5.2 considering 𝑁 = 𝐽 = 5. Each matrix 
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𝝁𝑟
  is symmetric in the case of fixed edges, and the magnitudes of its diagonal 

entries increase together with the considered mode. 

 

Figure 5.2: Analytical coefficients 1μ×109 of the numerical beam. The background color 

of each entry is proportional to its magnitude. 

The beam is excited with a frequency sweep over the first mode (from 

16 Hz to 28 Hz) considering two different amplitudes and with a sweep rate of 

0.1 Hz/s. The lowest excitation level can be considered as linear, with an 

amplitude of 0.01 N. Instead, the higher excitation level is noticeably 

nonlinear, with an amplitude of 0.1 N. The excitation is applied at 5 cm from 

one end, and the response is computed at the mid-span node. Results are 

reported for the two methods (MM and ANSYS) in the time domain in Figure 

5.3.  

The two responses are quite close for the lowest excitation level. There is 

still a minor difference in Figure 5.3a around the resonance peak, which is 

allegedly due to the different beam models used by the approaches. While MM 

is based on the Euler-Bernoulli formulation, ANSYS is based on the 

Timoshenko formulation. The two formulations are indeed very similar for 

slender beams like the one considered here, but there is still a slight difference 

in the computation of the first natural frequency, leading to a small phase shift 

(~ 0.3%). As for the nonlinear level in Figure 5.3b, a characteristic hardening 

effect coming from the stretching of the neutral axis is visible and the three 

methods well agree, though some difference is present around the jumping 

frequency. This originates from the same reasons as before, plus possible 

differences in the modeling of the nonlinear behavior.  
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Figure 5.3: Displacement at the mid-span computed with MM and ANSYS. Black line: 

MM; orange dashed-dotted line: ANSYS. a) Input amplitude of 0.01 N, with zoom 

around the resonance peak; b) Input amplitude of 0.1 N, with zoom around the 

jumping frequency.  

Some more insights on the nonlinear characteristics of the modal model 

can be obtained when computing the response with the harmonic balance 

method (HBM, [26]) using the modal model. Results are plotted in Figure 5.4 

considering a point at 1/3 of the length of the beam and for the 0.1 N level of 

excitation, where a classical hardening nonlinear response can be observed in 

the nonlinear frequency response curve (NFRC), with the unstable path in 

dotted line. The NFRC is compared with the response obtained using MM with 

a sine-sweep excitation of the same amplitude and rate of 0.1 Hz/s, to 

qualitatively assess the HBM result. Indeed, the envelope of the sine-sweep 

simulation is almost overlapped to the HBM solution in the regions out of the 

jumping frequency. Furthermore, a snapshot of the Fourier coefficients of the 

nonlinear restoring force 𝐹(𝑞𝑟
𝑛𝑙) is depicted in Figure 5.4b for the first three 

modes when 5 harmonics are taken into account. As expected, only the first 

mode plays a noticeable role in the nonlinear response, as it is the only one 
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excited. Also, only the odd harmonics are present, as the nonlinearity is 

essentially of cubic type.  

 

Figure 5.4: HBM results at 1/3 of the length of the beam with input amplitude of 0.1 

N. a) Black line: nonlinear frequency response curve, with the unstable path in small 

dots; grey line: MM simulation; b) Snapshot of the Fourier coefficients of the first 

three modes with 5 harmonics per mode, computed at the point corresponding to 

the green circle in (a).   

A 3:1 internal resonance case 

Internal resonances are interesting nonlinear phenomena, happening 

when two different modes of vibration exchange energy. The theory of 

nonlinear normal modes has shed some light on this phenomenon, proving 

how frequent this can happen in real life structures [99,100]. The easiest case 

is when two close modes (in terms of natural frequencies) are nonlinearly 

excited, but other scenarios are possible as well. In particular, it may happen 

that two different modes have associated natural frequencies in an integer 

ratio. If then the lower mode is nonlinearly excited and it responds also at its 

integer harmonics, it excites the higher mode as well.  

In this section, the beam of Table 5.1 is considered, but a 3:1 internal 

resonance between second and first bending modes is created by adding a 

lumped mass to the structure. The entity and the position of the mass have 

been selected by solving an optimization problem, with cost function to be 
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minimized equal to the norm of the distance between the natural frequency of 

the second mode 𝜔2 and the third harmonic of the first mode 3𝜔1. Genetic 

algorithms [101] have been adopted to find the optimum set of values, 

corresponding to a lumped mass of 44 grams at 32 cm from one end, as 

depicted in the scheme of Figure 5.5. The natural frequency associated to the 

second mode is 𝜔2 = 47.7 Hz, which is roughly 3 times the one associated to 

the first mode 𝜔1 = 14.4 Hz. 

When the beam undergoes large-amplitude oscillations, a response of the 

kind 𝜂1
3 (among the others) is retrieved from Eq. (5.18) and thus the second 

mode is excited as well.  

 

Figure 5.5: Scheme of the numerical beam with a 3:1 internal resonance. 

Internal resonances are an interesting test, because the response becomes 

very sensitive to small perturbations, even numerical ones. The comparison 

between ANSYS and MM is therefore motivating. The beam is still excited with 

a frequency sweep over the first mode (from 10 Hz to 20 Hz) with a sweep rate 

of 0.1 Hz/s and an amplitude of 0.21 N. The excitation is applied at 5 cm from 

one end, and the response is computed at 1/3 of the length of the beam. 

The time response is depicted in Figure 5.6a, with a zoom around the 

jumping frequency for the two methods. They show a similar behavior, but 

different distortions can be seen before the jumping frequency for both 

approaches due to the 3:1 interaction. Interestingly, the spectra of the 

responses in the frequency domain in Figure 5.6b are quite similar for both 

MM and ANSYS, at least in the excited frequency range. Also, they both show 

an important frequency content at around 50 Hz, which is in the range of the 

second bending mode. Major differences between the two responses can be 

noticed at the higher harmonics.  

It is rather difficult to find an explanation for the differences between the 

two approaches, mostly because ANSYS does not provide a closed (analytical) 

nonlinear form. Therefore, the only possible inference is that MM is certainly 

capable of replicating a hardening effect due to the geometrical nonlinearity, 

having roughly the same strength of the one predicted by ANSYS. Surely, the 

contribution of the third harmonic of the excited mode is predominant in both 

approaches, but other nonlinear couplings are present as well and possibly 

handled in different ways by the two methods.  

 

f t 

lumped mass
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Figure 5.6: Displacement computed with MM and ANSYS in the case of internal 

resonance with input amplitude of 0.21 N. Black line: MM; orange dashed-dotted line: 

ANSYS. a) Time response with zoom around the jumping frequency; b) Frequency 

spectrum of the response. 

Eventually, HBM is used also in this case with the MM formulation to build 

the nonlinear response. The outcome is depicted in Figure 5.7 for several input 

levels, to clearly see the increasing influence of the 3:1 interaction for 

increasing excitation amplitude.  

The case corresponding to an excitation amplitude of 0.3 N is also depicted 

in Figure 5.8, with a snapshot of the Fourier coefficients of the nonlinear 

restoring force 𝐹(𝑞𝑟
𝑛𝑙) for the first three modes and 5 harmonics. It can be seen 

how the second mode (𝑟 = 2) is also responding to the excitation with its odd 

harmonics in this case. 
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Figure 5.7: HBM results in the case of internal resonance for input amplitudes of 0.01 

N (black), 0.05 N (blue), 0.1 N (orange), 0.15 N (green), 0.3 N (purple). Nonlinear 

responses computed at 1/3 of the length of the beam. Thick dots: stable paths; small 

dots: unstable paths.  

 

Figure 5.8: HBM results in the case of internal resonance at 1/3 of the length and with 

input amplitude of 0.3 N. a) Black line: nonlinear frequency response curve, with the 

unstable path in small dots; grey line: MM simulation; b) Snapshot of the Fourier 

coefficients of the first three modes with 5 harmonics per mode, computed at the 

point corresponding to the green circle in (a).   
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5.4. Experimental tests 

Experiments are performed on a clamped-clamped slender beam 
instrumented with accelerometers and excited with a hanged shaker. A sketch 
of the test bench is reported in Figure 5.9. 

 

Figure 5.9: Drawing of the experimental test rig. 

The properties of the beam are reported in Table 5.2, while some photos 

of the experimental setup can be seen in Figure 5.10. 

Table 5.2: Properties of the experimental beam 

Length (mm) Width (mm) Thickness  (mm) Material 

479 20 0.75 Carbon steel 

 

Figure 5.10: Photos of the experimental setup. Global view in (a) and close views of 

the shaker attachment in (b) and (c). 

A total of 8 accelerometers are used to record the output, while a load cell 

on the head of the shaker is adopted to record the input. The position of the 

sensors is summarized in Table 5.3. 
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Table 5.3: Position of the sensors along the length of the beam and type. 

Sensor 
# 

Distance from the 
right end (mm) 

Type Name 
Weight 
(g) 

S1 15 Impedance head Dytran 5860B 60 
S2  35 

Accelerometer  
Dytran 
3035B2 

2.5 

S3 105 
S4 175 
S5 245 
S6 315 
S7 385 
S8 455 

 

The aim of these experimental tests is to perform the nonlinear system 

identification of the considered structure when a distributed geometrically 

nonlinear behavior is retrieved. Some preliminary tests are conducted first to 

characterize the dynamical behavior of the beam and to check if geometrical 

nonlinearities can be actually triggered.  

5.4.1. Sine-sweep tests 

In principle, both Modal-NSI and PNLSS need a broadband input to 

properly work, and this is obtained in this study by feeding random-phase 

multisines to the shaker. However, sine-sweep excitations are also considered 

in this section to better visualize the nonlinear behavior. 

A series of up and down linear sine-sweeps is performed with three 

different input amplitudes and two frequency ranges. The sweep rate is 

0.2 Hz/s, with a sampling frequency of 3200 Hz. The considered input 

amplitudes 𝑓0 are respectively equal to 0.2 N, 0.6 N and 1 N.  

The first set of tests are performed into the frequency range 5 − 30 Hz, and 

the responses of sensors S3 and S5 to the sweep-up excitation are depicted 

Figure 5.11. Note that the x-axis reads “sweep frequency”, that is the 

instantaneous frequency of the sine-sweep input computed as the derivative 

of the phase of the analytic signal of the input using the Hilbert transform 

[102]. 

Both sensors show a great increase in the acceleration amplitudes around 

20 − 27 Hz, depending on the excitation level. A clear hardening effect is 

visible in this frequency region with a jump-down phenomenon, especially for 

the highest input level. Other small resonances are present below 10 Hz, but 

these are allegedly due to the shaker-structure interaction or to the suspended 

shaker itself. The spectrogram of the response S5 is also reported in Figure 

5.12 for the highest excitation level. 
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Figure 5.11: Responses S3 and S5 to the sweep-up excitation in the frequency range 

5-30 Hz. Yellow line: f0=0.2 N; orange line: f0=0.6 N; blue line: f0=1 N. 

The jump-down phenomenon can be observed again around 27 Hz, but 

more interestingly the harmonics of the response can be noted as well. It is 

worth highlighting that both even and odd harmonics can be observed in the 

spectrogram, symptom of a nonlinear behavior even more complex than the 

one predicted by the modal model of section 4.3. More in-depth discussion 

about this result are presented in section 4.4.2. 

 

Figure 5.12: Spectrogram of S5, f0=1 N. 

The second set of tests is performed into the frequency range 40 − 60 Hz, 

and the responses of sensors S3 and S5 to the sweep-up excitation are depicted 

in Figure 5.13.  
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Figure 5.13: Responses S3 and S5 to the sweep-up excitation in the frequency range 

40-60 Hz. Yellow line: f0=0.2 N; orange line: f0=0.6 N; blue line: f0=1 N. 

The second bending mode is presumably excited, and a hardening effect 

can be noted also in this case, with a jumping frequency at around 49 Hz for 

the highest excitation level.  

Results obtained with the sweep-down tests are equivalent to the ones 

seen so far, and a comparison between the sweep-up and the sweep-down 

responses of sensor S6 is depicted in Figure 5.14 as an illustration.   

 

Figure 5.14: Response of S6 to the sine-sweep excitation, f0=1 N. Blue line: sweep-up; 

orange line: sweep-down. 

The two responses are perfectly overlapped everywhere except in the 

“unstable” region, where the jump-down and jump-up phenomena occur.  
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5.4.2. Random-phase multisine tests 

Random-phase multisine tests (see section 2.6.1) are performed in the 

frequency range 14-100 Hz, where the first three bending mode of the 

structure are located. The sampling frequency is 𝑓𝑠 = 6400 Hz, and a total of 

𝑀 = 5 realizations with P = 6 periods and 𝑁𝑠 = 65536 spectral lines per 

period are considered. The different periods and realizations are used in this 

section to characterize the nonlinearity. Several forcing levels are considered, 

ranging from a linear behavior (f0 = 0.2 N RMS) to a highly nonlinear one (f0 =

3 N RMS). 

Figure 5.15a represents the acceleration of S5 over the first realization for 

different forcing levels in the time domain. The corresponding experimental 

FRF is depicted in Figure 5.15b together with the coherence function. A 

hardening effect is clearly visible in Figure 5.15b, confirming the results of the 

previous section. A decrease of the coherence around the resonance regions is 

also retrieved. 

 

Figure 5.15: First realization output of S5 and corresponding FRFs for different 

forcing levels f0. Purple: f0=0.2 N; yellow: f0=1 N; orange: f0=1.7 N; blue: f0=3 N. a) 

Time domain; b) Experimental FRF (inertance) in dB scales (ref. 1 g2/N) and 

coherence plot. 

The measured acceleration in the frequency domain 𝐴5 is reported in 

Figure 5.16 for several odd-random multisine levels. Recalling that noise and 

nonlinear distortions can be separated with random-phase multisine 

excitations due to their periodicity, the spectra of the disturbing noise and of 

the odd and even nonlinearities are also shown. It can be seen that the levels 
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of noise and nonlinearities are similar for the lowest forcing level (Figure 

5.16a), while their difference becomes more important as the forcing level 

increases. Also, both even and odd nonlinearities are clearly present in the 

output response, as already seen in Figure 5.12.  

 

Figure 5.16: Odd-random multisine output for different forcing levels in dB scales 

(ref. 1 g2/Hz). Black: output spectrum; grey: disturbance noise level; blue: odd 

nonlinearities; orange: even nonlinearities. a) f0=0.2 N; b) f0=1 N; c) f0=1.7 N; d) f0=3 

N. 

It is worth recalling that the model presented in section 5.3 is not capable 

of featuring an even nonlinear behavior. That is because, generally, even 

nonlinearities are associated with some asymmetry in the response, which in 

principle should not appear in the case of a straight clamped-clamped beam. 

Nevertheless, there might be several sources of even behavior when the real 

structure is considered: imperfection of the clamps, possible non-planarity of 

the section of the beam along its length, the added mass of the shaker and the 

accelerometers on one side of the beam, nonlinear damping… It is not 

straightforward to investigate the effects related to each source, but even 

nonlinearities should be taken into account when proceeding with the system 

identification.  

Eventually, the total distortion level (sum of even and odd nonlinear 

distortions) of S5 is reported in Figure 5.17 for the two highest level, 

confirming that the amount of the total distortions is very high, comparable to 
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the level of the output in the resonance regions. The other sensors show a 

similar behavior.  

 

Figure 5.17: Odd-random multisine output for different forcing levels in dB scales 

(ref. 1 g2/Hz). Black: output spectrum; grey: disturbance noise level; green: total 

distortions level. a) f0=1.7 N; b) f0=3 N. 

 

5.4.3. Identification of the LNMs 

Recalling the identification process of Figure 5.1, the first step is the 

extraction of the LNMs, and this is done here by performing linear subspace 

identification (SI, Appendix A) on a low-amplitude test. The beam is excited 

with a full random phase multisine ranging over the first three bending modes. 

The full multisine is chosen here instead of the odd-random of the previous 

section to maximize the number of spectral lines for a fixed acquisition length. 

The test is conducted using the same parameters of section 5.4.2, with an input 

amplitude of 𝑓0 = 0.2 N RMS. The experimental FRF (receptance) related to S2 

is reported in Figure 5.18 together with the noise level and the total distortion 

level, the other sensors showing a similar behavior. 

Some difference can be noted between the total distortion level and the 

noise level, especially around the resonance peaks. This mismatch is supposed 

to be caused by some source of nonlinearity, and the most likely scenario is 

that this is due friction between the beam and the clamps and is not related to 

geometrical effects. In any case, the total distortions are always at least one 

order of magnitude lower than the FRF. Therefore, the structure can be 

considered as linear at this level of excitation, and SI can be applied to extract 

the parameters of interest. 

The stabilization diagram obtained applying SI for different model orders 

is reported in Figure 5.19. Since the object of the linear identification are just 
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the LNMs, the model order for each mode is chosen adopting a LNMs similarity 

criterion: all the MACs between the LNMs related to each identified mode are 

compared and the model order that achieves the best MAC is selected. 

 

Figure 5.18: Experimental FRF (receptance) of S2 in dB scales (ref. 1 m/N), f0=0.2 N 

(RMS). Black: FRF; grey: disturbance noise level; green: total distortions level. 

 

Figure 5.19: Stabilization diagram related to the linear subspace identification at low 

level. Stabilization thresholds for natural frequency, damping ratio and MAC are 

0.5%, 10% and 99.5%, respectively. Black dot: new (not stable) pole. Blue plus: pole 

stable in frequency. Red square: pole stable in frequency and MAC. Green cross: pole 

stable in frequency, MAC and damping. 

The modal parameters are then extracted and reported in Table 5.4. 

 



5.  Nonlinear identification of distributed geometrical nonlinearities  90 

 

 
 

Table 5.4: Linear modal parameters identified with SI. 

Mode number Frequency (Hz) Damping ratio (%) 

1 20.7 1.2 
2 45.1 1.7 
3 83.6 1.1 

 

The deformed shapes of the first three bending modes are eventually 

depicted in Figure 5.20. 

 

Figure 5.20: Experimental LNMs. Black line: ψ1; dashed blue line: ψ2; dashed-dotted 

red line: ψ3. 

Afterwards, Modal-NSI and PNLSS are used on the same nonlinear dataset. 

5.4.4. Nonlinear system identification 

The nonlinear system identification strategy proposed in section 5.2 is 

here applied to the experimental beam structure under test. The beam is 

excited again with a full random phase multisine ranging over the first three 

bending mode, with the same parameters of section 5.4.2. Here, 4 realizations 

out of 5 are used as a training set for the identification, while the last one is 

used as a validation set. The RMS value of the input force is 𝑓0 = 2 N and the 

experimental FRF (receptance) of S2 is reported in Figure 5.21 together with 

the noise level and the total distortion level. The other sensors show a similar 

behavior. 
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Figure 5.21: Experimental FRF (receptance) of S2 in dB scales (ref. 1 m/N), f0=2 N 

(RMS). Black line: FRF; grey line: disturbance noise level; green dots: total distortions 

level. 

The amount of the total distortions almost reaches the level of the signal 

itself around the resonance peaks, ensuring that the nonlinearity is properly 

triggered. In terms of shifting of the natural frequencies, all the three modes in 

Figure 5.21 show a frequency shift of approximately 5% when compared to 

the ones in Figure 5.18 (linear case).  

The inverse modal transformation is first applied to the measured signals 

to compute the modal coordinates as in Figure 5.1. Afterwards, the nonlinear 

identification is performed for each mode independently. 

Modal-NSI 

The vector of nonlinear basis functions 𝝃𝑟
  must be defined for each mode 

𝑟 = 1, … , 𝑁 according to Eq. (5.4). A straightforward choice is to adopt the 

definition of the nonlinearity described by the modal model of section 4.3, thus 

obtaining: 

𝝃𝑟
 = −vec{𝜂𝑝𝜂𝑞𝜂𝑟},   𝑝, 𝑞 = 1, … , 𝐽 = 𝑁 (5.19) 

Eq. (5.19) follows directly from Eq. (5.18), and each identified nonlinear 

coefficient 𝜇𝑝𝑞
𝑖𝑑

𝑟
  has the physical meaning of its counterpart in Eq. (5.17). With 

this choice, the number of unique nonlinear feedbacks per mode is 6 when 𝐽 =

𝑁 = 3. For instance, the corresponding vector of nonlinear basis functions 𝝃1
  

of the first mode is: 

𝝃1
 = −[𝜂1

3,  𝜂1
2𝜂2,  𝜂1

2𝜂3,  𝜂2
2𝜂1,  𝜂1𝜂2𝜂3,  𝜂3

2𝜂1]
T  (5.20) 
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Since three modes are excited, a total of 18 coefficients must be retrieved. 

However, this nonlinear model predicts only an odd nonlinear behavior, as 

previously discussed. The experimental characterization conducted in section 

4.4.2 showed how the system exhibits also a reasonable amount of even 

nonlinear distortions caused by some even nonlinearity. Since the nonlinear 

basis functions in Eq. (5.19) are not capable of representing this kind of 

behavior, there will still be a part of the system response that is not captured 

by the identified model. A possible improvement will be presented in the 

following section, where the nonlinear basis functions are expanded to cover 

also even nonlinear couplings.  

The stabilization diagrams of the (modal) underlying-linear systems 

(ULSs) are computed for each mode in order to select the best model order and 

they are reported in Figure 5.22. Stability is checked for frequencies, damping 

ratios, MACs and modal masses.  

 

Figure 5.22: Stabilization diagram of the modal ULSs. Stabilization thresholds for 

natural frequency, damping ratio, MAC and modal mass are 0.5%, 10%, 99.5%, 10%, 

respectively. Black dot: new (not stable) pole; blue plus: pole stable in frequency; red 

square: pole stable in frequency and MAC; orange circle: pole stable in frequency, 

MAC and damping; green cross: pole stable in frequency, MAC, damping and modal 

mass. a) Mode number 1; b) Mode number 2; c) Mode number 3. 

The incomplete decoupling of the equations of motion due to the 

nonlinearity implies that multiple poles can be identified for each mode, and 

this is evident in Figure 5.22. Nevertheless, it is a convenient choice to select a 

model order equal to 2 for each mode, thus including only its main 

contribution. In fact, including also other poles in the modal state-space model 

can lead to overfitting and an increased model sensitivity to noise, therefore 2 

is selected as model order for each mode. Furthermore, these poles are 

generally not stabilized.  
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A further optimization over the residuals of the modal outputs is carried 

out after the identification of the modal state-space models. Eventually, it is 

possible to go back to the physical domain by applying the direct modal 

transformation. In particular, the simulated (physical) outputs are compared 

with the measured ones of the validation set. The comparison is reported in 

the time domain in Figure 5.23 for S6, the other sensors showing a similar 

result. In particular, the measured signal is plotted against its residual with the 

simulated one both before and after the final optimization. The residual 

appears to be relatively small, and the relative RMS error between the two 

signals is approximately 12% before the optimization and 9% after the 

optimization. This result is replicable also with the other sensors.  

 

Figure 5.23: Validation of the nonlinear identification in the time domain. Black: 

measured output, S6, validation set; orange: residual with the simulated output 

before the optimization; blue: residual with the simulated output after the 

optimization. 

The same comparison is reported also in the frequency domain 

considering the spectra of the respective signals in the frequency range of 

interest, and the result is depicted in Figure 5.24. The frequency-domain 

representation is particularly useful because it clearly shows the regions 

where the identification struggles. Before the final optimization, the region 

around the first natural frequency is the most critical, with a residual 14 dB 

lower than the signal. The final optimization improves this result with a much 

smaller error. Thus, the optimized identified model is taken as the final one 

hereafter.  
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Figure 5.24: Validation of the nonlinear identification in the frequency domain in dB 

scales (ref. 1 m2/Hz). Black: spectrum of the measured output, S6, validation set; 

orange: residual with the spectrum of the simulated output before the optimization; 

blue: residual with the spectrum of the simulated output after the optimization. 

Eventually, the first three identified coefficients are reported in Figure 

5.25 as frequency-dependent quantities in their real and imaginary parts.  

 

Figure 5.25: First three identified coefficients as frequency dependent quantities. 

Black continuous line: real part; black dashed-dotted line: imaginary part; red 

dashed line: ±5% of the mean value. a) Coefficient 1μ11id; b) Coefficient 1μ12id; c) 

Coefficient 1μ13id. 
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It is worth highlighting that the imaginary part is always several orders of 

magnitude lower than the real part, which assesses the goodness of the 

identification. Also, the real part shows little variations in its spectrum. Thus, 

the spectral mean of the real part is taken as the final value for the identified 

coefficients, termed 𝜇̅𝑝𝑞
𝑖𝑑

𝑟
 . The matrix 𝝁̅𝑖𝑑

1
  of the identified coefficients related 

to the first mode is reported in Figure 5.26 together with their percentage 

deviation in the considered frequency range. Only the upper triangular matrix 

is shown, as repeated monomials are discarded in the identification (the 

nonlinear basis functions are the ones in Eq. (5.20)). The small percentage 

deviation from the mean value confirms the goodness of the choice of the 

nonlinear basis functions.  

 

Figure 5.26: Upper triangular matrix of the identified coefficients related to the first 

mode, with their percentage deviation. The background color of each entry is 

proportional to its magnitude. 

The nonlinear feedbacks of the first mode (Eq. (5.20)) corresponding to 

the coefficients of Figure 5.26 are depicted in Figure 5.27. 

Eventually, the underlying linear system is identified as well and 

compared with the one obtained applying SI to the low-level test. The 

comparison is reported in Figure 5.28 in terms of receptances. 
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Figure 5.27: Nonlinear feedbacks of the first mode computed with Modal-NSI.  

 

Figure 5.28: Estimated linear FRFs (receptance) in dB scales (ref. 1 m/N) for all the 

sensors. Black line: SI estimate from the low-level test; dashed-dotted orange line: 

residual with the NSI estimate from the high-level test. 
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There is generally a good correspondence between the NSI estimation of 

the linear FRFs and the SI estimation from the low-level. The highest residual 

corresponds to the first mode, whose identified natural frequency is slightly 

different for the two FRFs. The identified modal parameters are reported in 

the final comparison table (Table 5.5). 

Modal-NSI with extended basis functions 

An option to improve the results of Modal-NSI could be to expand the basis 

functions so as to include all the possible couplings between modes (𝜂𝑝, 𝜂𝑞) 

for each mode r, with both odd and even degrees. This allows the inclusion of 

even nonlinearities, which allegedly improve the identified model. In this case, 

the nonlinear feedbacks can be written as bivariate polynomials of maximum 

degree equal to 3, yielding: 

𝝃 = −[𝜂1
2,  𝜂1

3,  𝜂1𝜂2,  𝜂1𝜂2
2,  𝜂1

2𝜂2,  𝜂1𝜂3,  𝜂1𝜂3
2,  

𝜂1
2𝜂3,  𝜂2

2,  𝜂2
3,  𝜂2𝜂3,  𝜂2𝜂3

2,  𝜂2
2𝜂3,  𝜂3

2,  

𝜂3
3,  𝜂1𝜂2𝜂3]T 

(5.21) 

Since this vector already includes all the modes, it is possible to compute 

it just once and then it can be used as a feedback for each mode 𝑟 = 1,… ,𝑁. 

The final number of nonlinear feedbacks per mode is 16 when 𝐽 = 𝑁 = 3. 

The stabilization diagrams of the underlying-linear (modal) systems are 

computed for each mode in order to select the best model order and they are 

reported in Figure 5.29. Stability is checked also in this case for frequencies, 

damping ratios, MACs and modal masses. As for the stabilization diagrams of 

Figure 5.22, the incomplete decoupling of the equations of motion due to the 

nonlinearity implies that multiple poles can be identified for each mode.  

A model order equal to 2 for each mode is considered hereafter, as in the 

previous case. The simulated (physical) outputs are compared with the 

measured ones of the validation set. The comparison is reported in the 

frequency domain in Figure 5.30 for S6, the other sensors showing a similar 

behavior. In particular, the spectrum of the measured signal is plotted against 

its residual with the simulated one, both before and after the final 

optimization. The residual now is smaller than the previous case, and the 

relative RMS error between the two signals in time is approximately 11% 

before the optimization and 7% after the optimization. The optimized 

identified model is taken as the final one hereafter.  

 



5.  Nonlinear identification of distributed geometrical nonlinearities  98 

 

 
 

 

Figure 5.29: Stabilization diagrams of the modal ULSs considering the extended basis 

functions. Stabilization thresholds for natural frequency, damping ratio, MAC and 

modal mass are 0.5%, 10%, 99.5%, 10%, respectively. Black dot: new (not stable) 

pole; blue plus: pole stable in frequency; red square: pole stable in frequency and 

MAC; orange circle: pole stable in frequency, MAC and damping; green cross: pole 

stable in frequency, MAC, damping and modal mass. a) Mode number 1; b) Mode 

number 2; c) Mode number 3. 

 

 

Figure 5.30: Validation of the nonlinear identification in the frequency domain in dB 

scales (ref. 1 m2/Hz). Black: spectrum of the measured output, S6, validation set; 

orange: residual with the spectrum of the simulated output before the optimization; 

blue: residual with the spectrum of the simulated output after the optimization. 
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As for the coefficients of the nonlinearities, 16 coefficients per mode are 

identified, as the result of the expansion of the basis functions. While this 

allows for more flexibility to catch the nonlinear part of the response, it makes 

the nonlinear coefficients to lose their original physical interpretation. 

Therefore, the representation of all the identified coefficients is not useful in 

this case, because no meaning can be directly associated to them. Instead, it 

may be informative to know which feedbacks are predominant for each 

identified mode. For this reason, the RMS magnitude of each nonlinear 

feedback is depicted in Figure 5.31 using a grey-scale colormap. It is clear that 

the highest RMS on each mode corresponds to the purely cubic basis function 

𝜂1
3, 𝜂2

3, 𝜂3
3, respectively. Thus, the cubic nonlinearity is dominant for each mode, 

in accordance with the theory. 

 

Figure 5.31: RMS magnitudes of the nonlinear feedbacks for the three identified 

modes with NSI. The background color of each entry is proportional to its magnitude.   

The ratios between real and imaginary parts of the identified coefficients are 

reported in Figure 5.32 for the first mode of the structure. The other modes 

show a similar behavior, with values that are usually between 101 and 102. 
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Figure 5.32: Ratios between real and imaginary parts of the identified coefficients 

related to the first mode, in the frequency range 0-50 Hz.  

The underlying linear system is also identified, and it is compared with the 

one estimated by SI. The comparison is reported in Figure 5.33 in terms of 

receptance. Figure 5.33 also shows the residual between the linear FRF 

estimated by SI and the underlying linear FRF estimated by Modal-NSI using 

the original basis functions. The residuals of the underlying linear FRF 

computed with Modal-NSI in the two cases (original basis functions and 

extended ones) seem to be comparable with each other. Therefore, it can be 

supposed that expanding the nonlinear basis functions in this case mostly 

affects the nonlinear part of the system, so that the residuals of the outputs 

drop from 9% to 7%. Indeed, this is generally not true, as linear parameters 

are affected as well by the choice of the nonlinear basis functions. In this 

particular case, this result confirms that the main nonlinear contributions 

come from the original nonlinear basis functions, and in particular from the 

cubic terms (Figure 5.31). The inclusion of the other coupling terms results 

just in a slight improvement of the predicted nonlinear response. Eventually, 

the identified modal parameters are reported in the subsequent comparison 

table. 
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Figure 5.33: Estimated linear FRF (receptance) related to S6 in dB scales (ref. 1 m/N). 

Black line: SI estimate from the low-level test; dashed-dotted orange line: residual 

with the NSI estimate from the high-level test and the original basis functions; dotted 

blue line: residual with the NSI estimate from the high-level test and the extended 

basis functions. 

Table 5.5: Summary of the identified modal parameters: SI, Modal-NSI with the original basis 

functions (Original Modal-NSI), Modal-NSI with the extended basis functions (Extended 

Modal-NSI). 

Mode 
number 

Frequency (Hz) Damping ratio (%) 

SI 
Original 
Modal-NSI 

Extended 
Modal-NSI 

SI 
Original 
Modal-NSI 

Extended 
Modal-NSI 

1 20.7 20.4 20.5 1.2 1.1 1.2 
2 45.1 45.1 45.1 1.7 2.3 2.2 
3 83.6 83.8 83.8 1.1 2.0 2.0 

 

There is a very good correspondence in the identification of the natural 

frequencies, while the results related to the damping ratios are less in 

agreement with their corresponding low-level estimates. In particular, Modal-

NSI generally identifies a higher damping than the low-level test. The reason 

for that may be a source of nonlinear damping that has not been considered in 

the model. Thus, a further improvement of the methodology should take into 

account also the possibility of characterizing the nonlinear damping.  

As for the computational burden, Modal-NSI runs in roughly 1-2 minutes 

including the final optimization, depending on the number of nonlinear basis 

functions adopted.  
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Black-box identification with PNLSS 

In the case of PNLSS, no basis function must be defined and the working 

domain is the physical one. This brings the great advantage that no pre-

processing of the signal has to be performed, and neither a low-amplitude 

linear identification. On the other hand, every physical interpretation of the 

results is lost, and the validation of the model can be performed only on its 

prediction capabilities.  

The degrees of the multivariate polynomials in the state and output 

equations must be chosen, and a reasonable choice is to consider degrees 2 

and 3 in the states, so as to include even and odd nonlinear functions.  

The first step of PNLSS is the computation of the BLA. A way to ensure that 

the BLA is correctly computed is to check first the periodicity of the outputs 

when a periodic input is applied. In the considered case, a multisine input is 

provided with 6 periods and 5 realizations. A periodicity analysis it therefore 

carried out by subtracting every period from the last one for each realization, 

and results are depicted in Figure 5.34. 

 

Figure 5.34: Periodicity analysis on the acceleration of S7, f0=2 N (RMS): moving 

standard deviation (movSD) of the difference between every period and the last one 

over the moving standard deviation (movSD) of the last period.  

It can be seen that generally the periodicity is not preserved, especially for 

the first two realizations. This is allegedly due to the strong nonlinear 

behavior, whose periodicity break is a characteristic phenomenon. For this 

reason, the first two realizations are excluded from the PNLSS analysis, and 

the first two periods are removed from the remaining realizations to get rid of 

transients. This should maximize the confidence in the BLA estimation, which 

is computed by averaging over different periods and realizations.  
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The BLA estimations of the FRFs related to S2 and S8 are depicted in Figure 

5.35. A state-space model of order equal to 6 is fitted to the BLA to initialize 

the nonlinear optimization of PNLSS, using the subspace identification 

algorithm in the frequency domain [61]. 

 

Figure 5.35: BLA analysis on S2 and S8 in dB scales (ref. 1 m/N). Grey dots: 

experimental BLA; black line: parametric BLA, model order equal to 6; orange dots: 

residual. 

The residuals between the experimental BLA and the parametric BLA are 

generally quite high, which is somehow expected since the system is 

inherently nonlinear. The percentage error between measured outputs and 

predicted ones using the state-space model of the parametric BLA can be 

computed, and a very high value is retrieved: the average error over the 

different sensors is 70%. This confirms that even the best possible linear 

model is inadequate in representing the dynamical behavior of the structure, 

and a nonlinear model must be considered. Nevertheless, such a high residual 

might be an inconvenient for the subsequent nonlinear optimization of the 

state-space model, as the starting point may be very far away from the optimal 

solution. Such optimization is carried out using the Levenberg–Marquardt 

algorithm, in order to populate the matrices 𝑬 and 𝑭 (Eq. (B1), Appendix B). A 

total of 462 parameters are optimized, corresponding to the coefficients of the 

multivariate polynomials in the state equation. To avoid the possibility of 

being stuck into a local minimum, two sequential optimizations of 60 

iterations each have been conducted, plus a third one to assess the result. The 

starting point of each optimization is the best solution of the previous one, as 

depicted in Figure 5.36. The high number of iterations is justified by the huge 

error obtained with the BLA model, which is the starting point of the first 

optimization. This cascade of optimizations makes the computational effort 
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quite high, so that PNLSS runs on approximately 45 minutes on the same 

computer used with Modal-NSI. Therefore, the PNLSS analysis is certainly 

more dispendious than Modal-NSI.  

 

Figure 5.36: Cost function value of the Levenberg–Marquardt optimization cascade 

with PNLSS.  

The final result is shown in Figure 5.37 in terms of output prediction. In 

particular, the measured displacement of the validation set of S6 is 

represented in the time and frequency domains and compared with the 

simulated one using the nonlinear state-space model. The outcome of Modal-

NSI with extended basis functions is also reported as a comparison.  

The average residual obtained with PNLSS is 19%, which is a huge 

improvement from the BLA error (70%). However, it is not a satisfactory result 

when compared to Modal-NSI, whose residual is 7%. This result is replicable 

for the other sensors as well. By looking at Figure 5.37a, the major issue with 

PNLSS seems to be the presence of transients. This can be noted by the spikes 

in the residuals obtained with PNLSS corresponding the be beginning of a new 

period. It should be recalled that a prior periodicity analysis has already been 

conducted (Figure 5.34) and the first two periods of each realization already 

removed. It is likely that the strength of the nonlinearity is high enough to 

compromise the periodicity of the remaining part of the response as well. A 

lower excitation level which preserves the periodicity should improve the 

PNLSS result. It must be said also that Modal-NSI is designed ad-hoc for 

distributed nonlinearities, while PNLSS provides a flexible model structure 

that can fit several situations. Also, the time-domain version of NSI has been 

used to develop Modal-NSI, which is not affected by the presence of transients 

or periodicity breakdowns. It is likely that the frequency domain counterpart 

(FNSI) in the modal domain would present the same issues of PNLSS for the 

considered excitation level.  

No more insights can be inferred from the nonlinear state-space model of 

PNLSS, given the black-box nature of the algorithm. From this point of view, 
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Modal-NSI is much more informative, as it gives information about both the 

ULS and the coefficients of the nonlinearities. The use of one method or 

another depends on the needs of the user and on the purposes of the identified 

model  control, design, prediction, … 

 

Figure 5.37: Validation of PNLSS. Black: measured output, S6, validation set; blue: 

residual with the simulated output, Modal-NSI; green: residual with the simulated 

output, PNLSS. a) Time domain; b) Frequency domain spectra in dB scales (ref. 1 

m2/Hz). 

5.5. Concluding remarks 

In this chapter, a methodology for performing nonlinear system 

identification on structures exhibiting distributed geometrical nonlinearities 

was presented. The system identification is performed in a reduced-order 

domain, obtained by first identifying the linear normal modes of the structure. 

An ad-hoc version of the NSI method working in the modal domain was 

adopted, called Modal-NSI, although the methodology itself is not restricted to 

a particular identification method.  The whole approach is applied to 

experimental data related to a very thin beam exhibiting a distributed 

nonlinear behavior. A series of tests have been performed to characterize the 

dynamical behavior of the structure, involving sine-sweeps and multisine 

excitations.  

The nonlinear identification has been performed with Modal-NSI selecting 

the nonlinear basis functions according to a modal model of a clamped-

clamped nonlinear beam. The model itself has been validated numerically by 

comparing its outcome with a nonlinear FEM (Ansys). In a second step, the 
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nonlinear basis functions have been extended to cover also even 

nonlinearities, not present in the model but retrieved in the experimental 

setup. Results generally show a very good level of accuracy, validating the 

effectiveness of the methodology. Eventually, PNLSS is also applied on the 

same dataset as a comparison. Further improvements of Modal-NSI should 

take into account also nonlinear damping and the possibility to test the method 

on more complex real-life structures exhibiting large deformations.  
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Chapter 6 

6.Nonlinear identification for 

design: application to OCLs 

6.1. Introduction 

System identification of nonlinear structures has been covered in the 

previous chapters considering several scenarios, with novel and proven 

techniques. However, little words have been spent on the final purposes of the 

extracted model structure, whilst the developing of methods for the 

identification was the primary focus. It has been discussed in Chapter 3 that 

several reasons can motivate the need of performing system identification, 

from control to design. In this chapter, the latter case will be covered by 

considering the design of a nonlinear improved dropper for railway overhead 

contact lines (OCLs). The chapter is organized as follows: 

• Motivations: limits of the current technologies and reasons for the 

research of new designs; 

• Nonlinear system identification: extraction of the functional 

parameters of the nonlinear dropper prototype; 

• Experimental tests on a reduced test set: check the differences 

between identified parameters and designed ones, eventually 

followed by a correction of the design choices; 

• Simulations on a high-speed OCL: numerical tests using a FE model 

(Cateway). 
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Some context is provided in the subsequent section to introduce railway 

overhead contact lines with emphasis on the high-speed case. 

6.1.1. Railway overhead contact lines (OCLs) 

Railway OCLs are complex arrangements of cables and wires that provides 

the electric energy supply to the train by means of the contact between the 

pantograph of the vehicle and the catenary. Typically, in the European network 

the catenary structure is composed of a series of repeating spans having 

lengths 50-60 meters. Each span is basically made of three main components 

(Figure 6.1): the contact wire, the messenger (or carrier) wire, and the 

droppers.  

 

Figure 6.1: 2D scheme of a typical pantograph-catenary system. 

From the electrical point of view, the contact wire is the most important 

component because it is the only responsible for supplying the current to the 

train. The messenger wire and the droppers are adopted to stiffen the 

catenary, and the length of the droppers is set so as to realize an almost flat 

profile of the contact wire in its static configuration. Both messenger and 

contact wires are tensioned with high axial forces (typically 16-22 kN) to limit 

the sag and guarantee an appropriate smoothness of contact with the 

pantograph. The poles delimit each span and bear the brackets to support the 

messenger wire and to set the classical zig-zag profile of the contact line (called 

stagger) via the steady arms, as in Figure 6.2.  

The OCL and the pantograph form a coupled system because of their 

continuous interaction, which produces very rich and complex dynamics, 

involving wave propagation phenomena and sources of nonlinearities. 
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Figure 6.2: Photo of an overhead contact line. Source: 

http://pxhere.com/en/photo/998878, CC0. 

The pantograph itself is the current collector element mounted on the roof 

of the train. The kinematics of the pantograph allows the elevation of the upper 

part, carrying the contact elements. These are generally two carbon strips, 

sliding on the lower surface of the contact wire (Figure 6.3).  

 

Figure 6.3: Scheme of a pantograph. Source: Rcsprinter123, Pantograph ICE 3, 

https://commons.wikimedia.org/wiki/File:Pantograph_ICE_3.png, CC BY-SA 3.0. 

When the train travels at high speeds, the catenary structure may undergo 

large displacements, such that the dropper length may occasionally become 

shorter than the unstretched configuration. In this condition the dropper gets 

under compression: it becomes unstable and its stiffness becomes almost 

negligible, as it can be seen in Figure 6.4b. This phenomenon is referred to as 

http://pxhere.com/en/photo/998878
https://creativecommons.org/publicdomain/zero/1.0/
https://commons.wikimedia.org/wiki/File:Pantograph_ICE_3.png
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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slackening, and it represents one of the principal sources of nonlinearity in the 

catenary system. Furthermore, the higher the speed of the train is, the more 

difficult becomes to maintain a smooth and constant contact between the 

contact wire and the pantograph. The force that the pantograph and the 

contact wire exchange is generally called contact force, and it should be 

theoretically maintained as constant and smooth as possible, to avoid 

deterioration of the functional conditions of the two systems in contact. Losses 

of contact between these two elements are quite frequent in high speed trains 

though, causing electrical arcs, temporary losses of electrical supply and wear 

of the components [103]. This phenomenon is photographed in Figure 6.4a.  

 

Figure 6.4: a) Electric arc caused by a temporary loss of contact. Source: T. Nugent, 

Sparking pantograph, https://www.geograph.org.uk/photo/2216440, CC BY-SA 2.0; 

b) Slackening phenomenon.  

The statistical parameters of the contact force are used as an indication of 

the goodness of the contact both in simulations and experimental 

measurements. The quality of the pantograph-catenary contact required for 

high-speed train operations is quantified in current regulations EN50317 

[104] and EN50367 [105]. Also, for the European network, the technical 

specifications for interoperability across the different national networks are 

defined by the TSI specifications [106]. The most important requirements to 

be satisfied are: 

• The standard deviation σc of the contact force 𝑓𝑐  must not exceed the 

value 0.3 𝑓𝑐̅, with 𝑓𝑐̅  mean contact force:  

𝜎𝑐 ≤ 0.3 𝑓𝑐̅  (6.1) 

The desired value of 𝑓𝑐̅  depends on the velocity of the train 𝑣, and it is 

generally estimated by a heuristic quadratic law of the kind [107]: 𝑓𝑐̅ =

https://www.geograph.org.uk/photo/2216440
https://creativecommons.org/licenses/by-sa/2.0/
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0.00097𝑣2 + 70 N, valid for speeds up to 320 km/h [108]. This value 

corresponds also to the static preload that the pantograph induces on 

the contact wire.  

• The limit of the maximum contact force is set to: max(𝑓𝑐) ≤ 350 N. 

• The maximum uplift of the contact wire in correspondence of the 

steady arms (at each support) is set to 120 mm. 

• The maximum vertical displacement of the pantograph is set to 80 mm. 

• The percentage of real arcing must not exceed 0.2%. 

Moreover, the maximum allowed operational speed of the train is related 

to the lowest wave propagation velocity on the contact wire, called critical 

speed 𝑐𝑐𝑟𝑖𝑡 and given by [109]: 

𝑐𝑐𝑟𝑖𝑡 = √
𝜋2𝐸𝐼

𝑚𝑙2
+

𝑇

𝑚
 (6.2) 

where 𝐸𝐼 is the bending stiffness of the contact wire, 𝑚 is the contact wire mass 

per unit length, 𝑇 is its axial tension and 𝑙 its length. When the train speed 

approaches the critical speed of the contact wire, the contact between the 

pantograph and the catenary is harder to maintain due to increase in the 

amplitude of catenary oscillations and bending effects. In order to avoid the 

deterioration of the contact quality, the current regulation imposes a limit to 

the train speed defined by [107]: 

𝑣 ≤ 0.7𝑐𝑐𝑟𝑖𝑡 (6.3) 

Taking the overhead contact line of [110] as an example, the critical speed 

results in roughly 460 km/h, meaning that the velocity of the train cannot 

exceed 320 km/h. This is a typical value for standard high-speed European 

OCLs, and it confirms that technological restrictions are still heavily present 

despite the huge achievements of the last decades.  

6.1.2. Motivations of the current work 

Nowadays, more than 46000 km of high-speed rails (HSR) are in operation 

worldwide [111], with the majority of share belonging to China. Among them, 

Europe detains more than 9000 km spread across Austria, Belgium, France, 

Germany, Italy, Poland, Spain, the Netherlands and the United Kingdom 

(Figure 6.5). As for the speed, the typical maximum speed of HSRs in Europe 

ranges from 250 km/h to 320 km/h, while it reaches 350 km/h on selected 

lines in China [112]. This values are valid only for steel-wheels kind of 

railways, which are the most common. Other technologies, such as magnetic 

levitation (Maglev train in China) and Hyperloop are promising even faster rail 

speeds, but require the construction of all new rail lines.  
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Figure 6.5: High speed railroad map of Europe in 2019. Source: 

https://commons.wikimedia.org/wiki/File:High_Speed_Railroad_Map_of_Europe.sv

g, CC BY-SA 3.0. 

Expanding the HSRs and improving their performances in a cost-effective 

way is a demanded goal among railway national services, although it can be a 

time-consuming and expensive job. “Improving” in this context theoretically 

means gaining a smoother and constant contact between the OCL and the 

pantograph(s), as well as the possibility to safely increase the train speed 

above the current limits. Looking at Eqs. (6.2) and (6.3), it is straightforward 

to realize that the latter goal can be easily achieved by modifying the material 

characteristics of the contact wire, or its axial tension. For instance, the current 

world speed record for a commercial train on steel wheels is held by the 

French TGV at 574.8 km/h [113], and obtained via huge modifications of the 

catenary infrastructure. In particular, the catenary voltage was increased to 

31 kV from the standard 25 kV, and the mechanical tension in the wire to 

40 kN from the standard 25 kN. The resulting critical speed reached therefore 

610 km/h, providing a sufficient margin of safety beyond the train's maximum 

speed [114]. Similarly, improvements in the material of the wires composing 

the OCL can lead to a higher allowed speeds. The main component of contact 

wires is copper (Cu), but it may host inclusions of elements like magnesium 

(Mn) or silver (Ag) to increase its tensile strength [115], and thus the allowed 

axial tension in operational conditions.  

https://commons.wikimedia.org/wiki/File:High_Speed_Railroad_Map_of_Europe.svg
https://commons.wikimedia.org/wiki/File:High_Speed_Railroad_Map_of_Europe.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
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Of course, such solutions involves the partial or full replacement of existing 

lines, with enormous costs and times: on average, it takes around 16 years for 

brand-new high-speed lines to proceed from the start of works to the 

beginning of operations [116], with an average cost of almost  0 million €/km 

[117]. Another possibility would be to act on the preload of the pantographs, 

to generate higher contact forces. These would lead to less incidents of loss of 

contact, but would also lead to higher friction forces and, consequently, to 

higher wear of the catenary contact wire and pantograph strip [118]. Further 

strategies have been proposed to improve the current quality collection, such 

as: extra lumped masses [119], auxiliary pantographs [120], or variations of 

the pantograph characteristics [121,122]. 

The idea pursued in this project is instead related to the damping 

distribution of the OCL, and involves the design of nonlinear droppers with 

increased damping capabilities. It should be highlighted that standard 

droppers used in railway OCLs do not add any significant damping 

contributions to the structure: they are needed to adjust the stiffness of the 

catenary system and regularize the height of the contact wire. The addition of 

damping-droppers would allow to keep existing lines in operation, with just 

localized upgrades. The idea comes from the consideration that OCLs are very 

lightly damped structures [81,123,124], and therefore easily subjected to 

undesired long-lasting oscillations. Moreover, as long tensioned wires are 

involved, low-frequency modes are dominant in the response. Reducing these 

vibrations would possibly help the dynamical pantograph-catenary 

interaction, gaining a smoother contact force.  

This idea has been investigated considering numerical simulations and 

experimental tests, and detailed information can be found in the master theses 

recently developed at the Dynamics and Identification Research Group of 

Politecnico di Torino by B. Villen [125], L. Dellavalle [126] and D. Lucio [127]. 

6.2. An improved nonlinear dropper 

The design of the improved dropper for OCLs is inspired from negative 

stiffness absorbers. Devices and materials exhibiting a negative stiffness 

region are often used as vibration isolators due to their amplified damping 

properties [128,129]. In particular, in the case of engineering structures, such 

devices are usually designed adopting discrete macroscopic elements, such as 

post-buckled beams, plates, shells and pre-compressed springs, arranged in 

appropriate geometrical configurations. Examples can be found in automotive 

suspensions [130,131] or seismic isolation [132,133]. The central concept of 

these approaches is to significantly reduce the stiffness of the isolator and 

consequently of the natural frequency of the system even at almost zero levels 

[134]. In this way, the transmissibility of the system for all operating 
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frequencies above the natural frequency is reduced, resulting to enhanced 

vibration isolation [129]. 

Details about the design stages of the improved dropper are reported in 

the master theses [125,127]. Due to difficulties in performing experimental 

tests in real OCLs, the first prototype is designed considering a reduced test 

set, involving a 30 meters long tensioned contact wire. Performances are 

evaluated in terms of absorbed vibrations. This is justified by considering that 

low-frequency modes at around 1 Hz dominate the oscillations of the contact 

wires in OCLs. Because of the little damping of such structures, these low-

frequency modes have a very long decay, lasting for minutes after a train 

passage. Moreover, the wave propagation phenomenon has a huge impact on 

the dynamical response of the OCL [81], especially in relation with the 

pantograph interaction. It is therefore plausible that damping out these modes 

results in a smoother contact with the pantograph, as reported in [135], 

reducing also propagation and reflection of waves.  

6.2.1. Design and experimental characterization 

The main element of the dropper is a U-shaped frame, anchored to the 

messenger wire and connected through rods to a central moving point. A 

schematic representation is depicted in Figure 6.6, where the sub-part of the 

dropper containing the frame is drafted as a rectangle. 

 

Figure 6.6: Schematic representation of the position of the dropper.  

The design process of the elements of the device is reported in the already 

mentioned master theses, while the experimental characterization and 

identification is pursued here, to validate the adopted model and eventually 

perform a nonlinear model updating. To do so, the upper (flat) surface of the 

frame is attached to a shaking table, so that a displacement 𝑏(𝑡) can be 

imposed to the structure. In this configuration, the system can be treated as a 



6.2. An improved nonlinear dropper 115 

 

 
 

double-well Duffing oscillator, like the one discussed in Chapter 2. Two photos 

of the experimental setup are reported in Figure 6.7, showing the system in its 

two equilibrium positions. 

 

Figure 6.7: Photos of the experimental setup. a) Negative equilibrium position; b) 

Positive equilibrium position. 

It is assumed that the inertia of the moving parts can be concentrated into 

one central point with mass 𝑚, comprising the mass of the central bushing and 

the equivalent inertia of the rods. The vertical movement of this point is 

described by the coordinate 𝑦(𝑡), while the rotation of the rods is called 𝜃. The 

elastic deformation of the frame exerts a compression force 𝑝(𝜃) on the rods, 

considered as infinitely rigid.  

A schematic representation of the functional model here described is 

reported in Figure 6.8, together with the free-body-diagram of the mass 𝑚. 

The equilibrium equation along the vertical coordinate is: 

𝑚𝑦̈(𝑡) + 2𝑝(𝜃(𝑡)) sin(𝜃(𝑡)) + 𝑚𝑔 = 0 (6.4) 

Calling 𝑧(𝑡) = 𝑦(𝑡) − 𝑏(𝑡),  it yields: 

𝑚𝑧̈(𝑡) + 2𝑝(𝜃(𝑡)) sin(𝜃(𝑡)) + 𝑚𝑔 = −𝑚𝑏̈(𝑡) (6.5) 

Since the system is a SDOF, the displacement 𝑧(𝑡) is taken as independent 

variable and both 𝜃 and 𝑝(𝜃) are written as a function of 𝑧. 
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Figure 6.8: Model of the negative stiffness oscillator and free-body-diagram of m. 

The elasticity of the frame is studied in [125] to analytically derive the 

force 𝑝(𝜃) that the frame transmits to the rods. This is obtained by considering 

a physically-based model of half the frame, with the elasticity of the different 

segments modelled using beam elements. The model itself is defined by the 

following set of parameters (see [125] and Figure 6.9): 

• Dimensions of the frame: 𝑎, ℎ, 𝑠1, 𝑠2, 𝑑 

• Length of the rods: 𝑟 

• Angle of the frame: 𝛼 

• Young’s modulus  𝐸 

• Mass of the moving point: 𝑚 

 

Figure 6.9: Physical parameters of the model. 

A qualitative representation of the vertical component 𝑝𝑣 = 2 𝑝(𝜃) sin(𝜃) 

of 𝑝 is depicted in Figure 6.10 as a function of 𝑧(𝜃). The quantitative 
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representation instead is provided later on, when the experimental 

measurements are considered. 

 

Figure 6.10: Qualitative graph of the force pv. 

It can be seen that 𝑝𝑣(𝑧) has three roots and crosses the origin with a 

negative slope, which gives a negative stiffness contribution. A much more 

informative representation of 𝑝𝑣(𝑧) can be found by writing the force as a 

polynomial expansion. This can be done considering that it is a continuous 

function, and it yields: 

𝑝𝑣(𝑧) = 𝑘3𝑧
3 + 𝑘2𝑧

2 − 𝑘1𝑧 (6.6) 

The choice of such representation is based on the following 

considerations: 

• The linear coefficient 𝑘1 accounts for the negative stiffness 

contribution; 

• The quadratic coefficient 𝑘2 accounts for the vertical asymmetry of the 

U-shaped frame; 

• The cubic coefficient 𝑘3 accounts for the overall shape of 𝑝𝑣(𝑧), which 

appears to be mainly a cubic function. 

The equation of motion can eventually be written as: 

𝑚𝑧̈ + 𝑘3𝑧
3 + 𝑘2𝑧

2 − 𝑘1𝑧 + 𝑘0 = −𝑚𝑏̈ (6.7) 

where 𝑘0 = 𝑚𝑔. Eq. (6.7) has the form of a negative-stiffness Duffing equation. 

The restoring force 𝐾 of the system and the elastic potential 𝑈 are defined as: 

𝐾(𝑧) = 𝑘3𝑧
3 + 𝑘2𝑧

2 − 𝑘1𝑧 + 𝑘0 (6.8a) 

𝑈(𝑧) =
1

4
𝑘3𝑧

4 +
1

3
𝑘2𝑧

3 −
1

2
𝑘1𝑧

2 + 𝑘0𝑧 (6.8b) 

A qualitative representation of the potential is shown in Figure 6.11. The 

quantitative representation instead is provided later on, when the 

experimental measurements are considered. Its asymmetric double-well 
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characteristic can be observed, together with the three equilibrium positions 

𝑧∗ obtained by setting 𝐾(𝑧∗) = 0. As in Chapter 2, two out of three positions 

represent a stable equilibrium, namely 𝑧−
∗  and 𝑧+

∗ , while the central position 𝑧0
∗ 

is an unstable point.  

The oscillations of the moving point are said to be in-well when the motion 

is bounded around one of the two stable equilibrium positions 𝑧±
∗ . The 

associated linear natural frequency 𝜔± can be computed by: 

𝜔± = √
𝑈′′(𝑧±

∗ )

𝑚
 (6.9) 

𝑈′′(𝑧±
∗ ) being the second derivative of 𝑈(𝑧) computed in 𝑧−

∗  or 𝑧+
∗ . 

As for the experimental setup, the moving mass is instrumented with an 

accelerometer to measure its absolute acceleration 𝑦̈(𝑡) and a laser 

vibrometer to measure its absolute displacement 𝑦(𝑡). The zero position of 

𝑦(𝑡) corresponds to the horizontal configuration of the rods (𝜃 = 0). The 

acceleration of the base 𝑏̈(𝑡) is also recorded through a second accelerometer, 

so as to obtain the displacement 𝑧(𝑡) as the difference between the laser 

measure 𝑦(𝑡) and the displacement of the base 𝑏(𝑡). The latter is obtained by 

integrating twice the measured acceleration. 

 

Figure 6.11: Potential of the double-well Duffing oscillator. Orange dots: equilibrium 

positions. 
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Random tests 

Random tests are performed to check the non-homogeneity of the FRFs 

with increasing excitation levels, as a proof of nonlinearity. The frequency 

range is 7 − 50 Hz, with a sampling frequency of 512 Hz and a duration of 300 

s. Several forcing levels are applied, expressed as RMS values of the 

acceleration of the base 𝑏̈, and the starting position is 𝑧−
∗ .  Results are depicted 

in Figure 6.12 in terms of time series and transmissibility 𝑇, defined as the 

ratio between the output acceleration 𝑧̈ and the input 𝑏̈. In-well oscillations in 

the neighborhood of the negative equilibrium position can be observed, which 

in this case is approximately at −3 cm from the horizontal configuration of the 

rods (𝜃 = 0). Also, an increasingly asymmetric behavior with respect to 𝑧−
∗  can 

be noted for increasing forcing levels, as the system tries to cross the negative 

stiffness region and reach the positive equilibrium position. This results in a 

clear change in the transmissibility, where a softening effect can be seen, in 

accordance with the theoretical studies that show a similar behavior in the 

case of in-well motion [22]. 

 

Figure 6.12: Random tests. Black line: b̈=7 m/s2 RMS; orange line: b̈=9 m/s2 RMS; 

blue line: b̈=26 m/s2 RMS. a) Time history of the displacement (first 60 seconds); b) 

Transmissibility T in dB scales.   

Cross-well random oscillations can be obtained when the energy given to 

the system is high enough. This situation is depicted in Figure 6.13, where the 

displacement 𝑧(𝑡) clearly shows repeated crossings between negative and 

positive values.  
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Figure 6.13: Random test at the highest amplitude, b̈=38 m/s2 RMS. a) Time history 

of the displacement (first 60 seconds); b) Statistical distribution of the displacement. 

Sine-sweep and harmonic tests 

As discussed in Chapter 2, nonlinear systems theory was developed upon 

harmonically excited systems. For the case considered here it is particularly 

interesting to see what happens when the device is driven through harmonic 

excitations, given its bi-stable nature.  

Up and down sine sweeps are considered first, in the frequency range 5 – 

21 Hz. The sampling frequency is 512 Hz and the length of the up-down sweep 

is 240 s. Two forcing levels are taken into account, expressed as the amplitude 

𝑏0 of the base displacement, and the starting position is the negative 

equilibrium 𝑧−
∗ . The up and down sweeps are shown in Figure 6.14. The 

softening effect can be seen when the system vibrates with in-well oscillations 

around one equilibrium position (Figure 6.14a): an increase in the forcing 

amplitude corresponds to an earlier occurrence of the jump-up. As in Chapter 

2, the jump phenomenon is symptomatic of the existence of multiple solutions 

and unstable paths in the response of the system, as it suddenly tries to reach 

a stable path with different amplitude. Also, two distinct jumps can be noticed, 

corresponding to the dominant frequency (10 − 11 Hz) and its second 

harmonic (20 − 21 Hz).  

Cross-well oscillations can be obtained also in this case for higher 

excitation levels (Figure 6.14b, orange line). It is interesting to look at the 

harmonic contributions in this case by computing the spectrogram of the 

relative displacement. The result is reported in Figure 6.15, where the first two 

minutes refer to the sweep-up, while the second two minutes refer to the 

sweep-down.  
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Figure 6.14: Sine-sweep tests. Black line: b0=4.5 mm; orange line: b0=5 mm. a) Sweep 

up; b) Sweep down. 

 

Figure 6.15: Spectrogram of the highest level sine-sweep test and corresponding 

time-domain response. 

Both even and odd harmonics of the instantaneous frequency are present 

along the whole acquisition, confirming the asymmetrical behavior of the 

nonlinear system. Subharmonics are also visible in some regions, in particular 

around 1 and 2 minutes. As stated in Chapter 2, they are generally 

symptomatic of the possibility of bifurcations and chaotic motion, thus a series 

of harmonic tests with constant frequency is performed to analyze these 

effects. The excitation frequency is 𝜈 = 9 Hz and three different amplitudes 𝑏0 

are considered. Results are presented in the phase diagrams in Figure 6.16.  
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When the amplitude of the sine excitation is 𝑏0 = 2 mm (Figure 6.16a) the 

phase plane shows one closed orbit centered around the equilibrium position, 

i.e. one periodic solution [1]. Instead, nested orbits can be noted in Figure 

6.16b, when 𝑏0 = 4.7 mm. Two paths in a closed loop are generally 

representative of the period doubling effect [1], so that a period-2 solution is 

also present (see Chapter 2). This is the case of Figure 6.16b, as demonstrated 

also by the power spectral density of the signal depicted in Figure 6.17. It can 

be seen that the system responds at both integer multiples of the dominant 

frequency 𝜈 (2𝜈, 3𝜈, … ) and of its subharmonic  
1

2
𝜈 (

3

2
𝜈,

5

2
𝜈,… ).   

 

Figure 6.16: Phase diagrams of the response under harmonic excitation. a) b0=2 mm; 

b) b0=4.7 mm; c) b0=5 mm. 

 

Figure 6.17: Power spectral density of the harmonic response in dB scales (ref. 1 

m2/Hz), b0=4.7 mm. 

Eventually, cross-well oscillations are obtained with an amplitude of 𝑏0 =

5 mm. The solution in this case is bounded but not periodic, and it continuously 
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crosses the stable equilibrium points (cross-well motion) for all the 

acquisition length, which is 10 minutes. As already seen in Chapter 2, this kind 

of response is a symptom of chaotic behavior. A portion of the time response 

is depicted in Figure 6.18. 

 

Figure 6.18: Time response under harmonic excitation, b0=5 mm. 

Of course, this case is different from the one seen in Chapter 2, for 

experimental measurements to be considered here. Indeed, the system is not 

strictly deterministic in this case due to the presence of noise in the acquisition 

data and possible small harmonic distortions in the input. For these reasons, 

the largest Lyapunov exponent (LLE) λ is computed from the measured time 

series following the method proposed in [136]. The result is shown in Figure 

6.19, recalling that a positive sign of λ means chaotic motion, while a negative 

sign is representative of a periodic orbit.  

 

Figure 6.19: Estimation of the Lyapunov exponent. Red line: convergence mean 

value. 

The positive sign of the estimation of the LLE confirms that the system is 

exhibiting a chaotic motion. The experimental Poincaré sections are computed 

for different phase synchronizations 𝜙 of the data with the forcing term [137].  
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The typical shape of a strange attractor is retrieved [32] and depicted in 

Figure 6.20a in a polar plot, while three of its sections are represented in 

Figure 6.20b,c,d. 

 

Figure 6.20: Experimental Poincaré sections, b0=5 mm. a) Polar representation of the 

attractor surface; b) Poincaré section, φ=0°; c) Poincaré section, φ=170°; d) Poincaré 

section, φ=320°. 

6.2.2. Nonlinear system identification 

 As expected, the device under test can exhibit rich nonlinear dynamics, 

allegedly governed by the polynomial restoring force of Eq. (6.8a). The 

identification of the coefficients of the polynomial expansion is therefore a key 

step in the design process of the dropper, as it allows the comparison with the 

physical model.  

The identification is performed using two different algorithms: the 

restoring force surface (RFS) and the nonlinear subspace identification 

method (NSI). As briefly introduced in Chapter 3, RFS is a basic nonlinear 

system identification method, based on the representation of the restoring 

surface from the measured signals. Despite being useful to easily visualize the 

nonlinearity, it does not actually provide a robust model structure, nor any 

modal parameters of interest. The identified restoring force with RFS will be 

therefore compared with the one obtained using NSI, the latter being able to 

provide also the nonlinear state-space model and the modal parameters of the 

underlying-linear system, as already discussed several times throughout this 

thesis.  
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Restoring force surface (RFS) 

The equation of motion describing the dynamical system considered here 

can be written in the form: 

𝑚𝑧̈ + 𝑅(𝑧, 𝑧̇) = 𝑓(𝑡) (6.10) 

where 𝑓(𝑡) is the forcing term and 𝑅(𝑧, 𝑧̇) is the restoring surface, function of 

displacements and velocities. If the inertial term is shifted to the right-hand 

side of the equation, the restoring surface can then easily be visualized, and its 

features extracted. In particular, it can be sliced along two different directions, 

obtaining: 

• An approximation of the restoring force 𝐾(𝑧) for small velocities 

(|𝑧̇| < 𝜀𝑠); 

• An approximation of the damping force, called 𝐷(𝑧̇), for small 

displacements around one equilibrium position (|𝑧 − 𝑧∗| < 𝜀𝑑 ). 

The experimental restoring surface 𝑅(𝑧, 𝑧̇) is built from the cross-well 

measurements previously seen. The velocity 𝑧̇ is obtained by integrating and 

subtracting 𝑦̈ and 𝑏̈.  The resulting restoring surface is reported in Figure 6.21, 

together with its sections 𝐾(𝑧) and 𝐷(𝑧̇) computed by setting 𝜀𝑠 = 𝜀𝑑 = 0.1%. 

 

Figure 6.21: Experimental restoring surface. Blue dots: restoring force; orange dots: 

damping force. 

The restoring force is fitted to a polynomial expansion of degree 3 as in Eq. 

(6.8a), yielding: 

𝐾𝑅𝐹𝑆(𝑧) = 𝑘3𝑧
3 + 𝑘2𝑧

2 − 𝑘1𝑧 + 𝑘0

= 7.35 ∙ 105 𝑧3 +  1.56 ∙ 103 𝑧2 − 550 𝑧 + 2.4  
(6.11) 
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The potential 𝑈𝑅𝐹𝑆 can be estimated as well once the coefficients of the 

polynomial expansion are known. Both  𝐾𝑅𝐹𝑆 and 𝑈𝑅𝐹𝑆 are depicted in Figure 

6.22.  

 

Figure 6.22: RFS estimation of the restoring force K(z) (a) and the corresponding 

potential U(z) (b). Gray dots: restoring surface for |ż|<εs. Red dots: stable and 

unstable equilibrium positions. Black lines: KRFS(z) and URFS(z). 

As for the damping plot in Figure 6.21, no damping model can be easily 

inferred due to the high dispersion of the measured restoring surface. Indeed, 

damping estimation is always a tricky task, and it becomes even more difficult 

in the presence of nonlinear damping phenomena. In the considered case, for 

instance, it is likely that friction is present between the bushing of the moving 

mass and the vertical steel guide.  

Nonlinear subspace identification (NSI) 

As previously seen, one of the cornerstones of NSI is the possibility of 

splitting the nonlinear equation of motion into an underlying-linear part and a 

nonlinear feedback. Looking at Eq. (6.7), this leads to: 

𝑚𝑧̈ − 𝑘1𝑧 = 𝑓(𝑡) − (𝑘3𝑧
3 + 𝑘2𝑧

2 + 𝑘0) = 𝑓(𝑡) − 𝑓𝑛𝑙(𝑡) (6.12) 

Unfortunately, the subspace technique cannot be directly applied to such 

equation of motion, because the ULS here described has a negative linear 

stiffness, i.e. it is unstable. In order to use the NSI method, a shift of the 

reference axis is therefore needed, considering the oscillations of the moving 

point around one reference position. This reference position is chosen as one 

of the two stable equilibrium points 𝑧±
∗ , and it is generally referred to as 𝑧∗. A 

new variable 𝑥(𝑡) can therefore be defined as: 
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𝑥(𝑡) = 𝑧(𝑡) − 𝑧∗ (6.13) 

and Eq. (6.7) can be written as: 

𝑚𝑥̈ + 𝐾(𝑥 + 𝑧∗) = −𝑚𝑏̈ (6.14) 

where 𝐾(𝑥 + 𝑧∗) is equal to: 

𝐾(𝑥 + 𝑧∗) = 

𝑘3𝑥
3 + (𝑘2 + 3𝑘3𝑧

∗)𝑥2 + (3𝑘3𝑧
∗2 + 2𝑘2𝑧

∗ − 𝑘1)𝑥

= 𝑘3𝑥
3 + 𝑘̃2𝑥

2 + 𝑘̃1𝑥 

(6.15) 

The equation of motion in the variable 𝑥 is therefore: 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘3𝑥
3 + 𝑘̃2𝑥

2 + 𝑘̃1𝑥 = −𝑚𝑏̈ (6.16) 

where a linear viscous damping is also added. This formulation is compatible 

with the NSI requirements, as a stable ULS is gained. To be more precise, the 

ULS depends here on the choice of the reference position 𝑧∗, therefore: 

• When 𝑧∗ = 𝑧−
∗  the modal parameters of the underlying-linear small 

oscillations around the negative equilibrium position can be 

estimated; 

• When 𝑧∗ = 𝑧+
∗  the modal parameters of the underlying-linear small 

oscillations around the positive equilibrium position can be 

estimated; 

Consequently, two mutually exclusive ULSs can be obtained if one cross-

well measurement is used with NSI. The nonlinear state-space model is also 

gained, with the possibility of extracting the coefficients of the nonlinearities. 

The coefficients of the two elastic nonlinear basis functions are 𝑘3 and  𝑘̃2, and 

nonlinear damping is also included in the form 𝑥̇|𝑥̇|. The latter is the most 

common polynomial damping form, with the absolute value term to ensure 

that the force is always opposed to the velocity [3]. The nonlinear restoring 

surface 𝑅𝑛𝑙(𝑥, 𝑥̇) is therefore: 

𝑅𝑛𝑙(𝑥, 𝑥̇) = 𝑘3𝑥
3 + 𝑘̃2𝑥

2 + 𝑐𝑛𝑙𝑥̇|𝑥̇| (6.17) 

 The cross-well random test with amplitude 38 m s2⁄ RMS is considered for 

the nonlinear system identification with NSI. In particular, the last 60 seconds 

are used as a validation set for the evaluation of the residuals over the 

measured output, while the rest of the acquisition is used for the identification.  

The stabilization diagrams of the two ULSs associated to the two 

equilibrium positions are depicted in Figure 6.23. Stability is checked for 

frequencies, damping rations, MACs, and modal masses and a model order 

equal to 2 is chosen for both ULSs. The identified modal parameters of the two 

underlying-linear systems are listed in Table 6.1 in terms of natural 

frequencies and damping ratios.  
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Table 6.1: Modal parameters of the two underlying-linear systems identified with NSI. 

Reference position Natural frequency (Hz) Damping ratio (%) 

𝑧−
∗  11.41 11.2 

𝑧+
∗  9.19 20.3 

 

 

Figure 6.23: Stabilization diagram of the two ULSs with reference positions z*- (a) and 

z*+ (b). Stabilization thresholds for natural frequency, damping ratio, MAC and modal 

mass are 1%, 20%, 99.5%, 20%, respectively. Black dot: new (not stable) pole; blue 

plus: pole stable in frequency; red square: pole stable in frequency and MAC; orange 

circle: pole stable in frequency, MAC and damping; green cross: pole stable in 

frequency, MAC, damping and modal mass. 

The FRFs of the two underlying-linear systems are depicted in Figure 6.24 

together with the measured (nonlinear) one. 

Running NSI for the two different reference values means that not only two 

independent underlying-linear systems are obtained, but also two nonlinear 

state-space models. This result in a double estimation of the coefficients of 

each nonlinearity. In particular, the estimation of the coefficients 𝑘3 and 𝑐𝑛𝑙 

should be the same when NSI is applied to the two reference positions, as they 

are both invariant in the equation of motion (Eqs. (6.16)-(6.17)). On the 

contrary, 𝑘̃2 depends on the choice of 𝑧∗. The identified coefficients are 

depicted in Figure 6.25 in their real parts for the two reference positions. 
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Figure 6.24: Inertances of the two ULSs in dB scales (ref. 1 m2s-1/N). Gray dots: 

measured inertance of the nonlinear test; blue line: NSI estimation of the linear 

inertance associated to the negative equilibrium z*-; orange line: NSI estimation of 

the linear inertance associated to the positive equilibrium z*+. 

 

Figure 6.25: Real parts of the identified coefficients of cubic stiffness (a), quadratic 

stiffness (b) and nonlinear damping (c) as frequency dependent quantities. Blue line: 

NSI with reference position z*-; orange line: NSI with reference position z*+. 

These coefficients can be compared with the ones estimated by the RFS 

method, and the comparison is reported in Figure 6.26 in terms of estimated 

restoring force. The damping force identified by NSI is also shown. 
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Figure 6.26: Estimation of the restoring force (a) and the damping force (b). Gray 

dots: sliced restoring surface; orange line: RFS estimation (only in a); blue dots: NSI 

estimation. 

The outcomes of RFS and NSI show a very good agreement on the restoring 

force, the two curves being almost overlapped in Figure 6.26a. As for the 

damping, it is difficult to evaluate the goodness of the its estimation due to the 

high dispersion of the points of the restoring surface. In any case, the damping 

force has a non-negligible contribution, its peak amplitude (in Newton) being 

roughly 25% of the maximum amplitude of the restoring force 𝐾. It should be 

highlighted though that the resulting damping force is not valid outside the 

given range of velocity, as it starts exhibiting a negative slope around ±1 m/s 

in Figure 6.26b. Higher velocities are not expected to occur in the considered 

system, but the user should be aware of possible instabilities of the assumed 

damping model. A workaround might be to regularize the damping force for 

velocities |𝑧̇| > 1 m/s, for instance keeping a constant value of ± 6 N. 

The final validation of the adopted nonlinear basis functions can be done 

by generating the response of the system using the identified state-space 

model on the validation set. Calling 𝑥𝑁𝑆𝐼 the simulated output, a comparison 

with the measured one can be carried out in both time and frequency domains. 

Results are depicted in Figure 6.27, showing an 8% average RMS deviation 

between predictions and measurements. Noticeably, the estimated state-space 

model is capable of predicting the crossings between positive and negative 

oscillations with a very good accuracy. 
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Figure 6.27: Validation of the nonlinear identification in the time domain (a) and 

frequency domain (b). Black line: measured output; blue line: simulated output; red 

line: residual with the measured output spectrum in dB scales (ref. 1 m2/Hz). 

6.2.3. Model updating 

Once the parameters of the restoring force have been estimated from the 

experimental measurements, a comparison with the originally designed ones 

is carried out to validate the model adopted during the design process. A model 

updating procedure is eventually implemented to adjust the physical 

parameters of the model and minimize the difference between simulated and 

identified behaviors.  A genetic algorithm (GA) [101] is adopted to find the 

global optimum set of parameters. The selected fitness function 𝜀 to be 

minimized is defined as the sum of two relative error functions 𝜀𝜔and 𝜀𝑧∗. The 

function 𝜀𝜔 is associated to the residuals on the positive and negative natural 

frequencies 𝜔±, while 𝜀𝑧∗ is related to the residuals on the positive and 

negative equilibrium positions: 

𝜀𝜔 = RMS{100 |
(𝜔−

𝑀𝑂𝐷 − 𝜔−
𝐸𝑆𝑇)

𝜔−
𝐸𝑆𝑇

| , 100 |
(𝜔+

𝑀𝑂𝐷 − 𝜔+
𝐸𝑆𝑇)

𝜔+
𝐸𝑆𝑇 | } 

𝜀𝑧∗ = RMS{100 |
(𝑧−

∗𝑀𝑂𝐷 − 𝑧−
∗𝐸𝑆𝑇)

𝑧−
∗𝐸𝑆𝑇

| , 100 |
(𝑧+

∗𝑀𝑂𝐷 − 𝑧+
∗𝐸𝑆𝑇)

𝑧+
∗𝐸𝑆𝑇 | } 

𝜀 = 𝜀𝜔 + 𝜀𝑧∗ 

(6.18) 

The parameters to be optimi ed are the Young’s modulus 𝐸, the frame 

angle 𝛼 and the moving mass 𝑚. The updating of the parameters is depicted in 

Figure 6.28, while the results of the optimization are reported in Figure 6.29 

and Figure 6.30.  
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The optimization reduces the residual between model and experimental 

characteristics, providing a good match between the final restoring force and 

potential curves. The updated model is used as a starting point for the final 

prototype design to work with a full high-speed OCL, in section 6.3. 

 

Figure 6.28: Parameters of the GA optimization. Red lines: upper and lower 

boundaries of the parameters; orange dots: starting values; green dots: final values. 

 

Figure 6.29: Results of the optimization in terms of restoring force in (a) and 

potential in (b). Black line: identified curves; orange line: starting values; green line: 

final values. 
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Figure 6.30: Values of the fitness function across the generations of GA. Black line: 

best fitness; blue dots: mean fitness values. 

6.2.4. Experimental test with a contact wire 

The damping capabilities of the improved dropper are checked in this 

section from an experimental point of view, by considering a test set involving 

a 30 m long tensioned railway contact wire. Measurements are taken with and 

without the dropper, the latter being positioned at 13 m from one end. The 

experimental set is depicted in Figure 6.31, where the sub-part of the dropper 

containing the frame is drafted as a rectangle. 

 

Figure 6.31: Sketch of the experimental setup (not to scale). 

A tensile force of 15 kN is applied to the wire with the tensioning device 

shown in Figure 6.32, based on a simple screw-nut mechanism. The applied 

tension is measured by means of a through-hole load cell. Furthermore, a 

thrust bearing on each end is used to assure that no torsion is transferred to 

the wire. 
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Figure 6.32: a) Scheme of the tensioning device and section of the contact wire. b) 

Photo of the test bench. 

Tests are performed by applying an impulse load to the contact wire along 

the z-axis (see Figure 6.31 and the reference system in Figure 6.32) and 

recording the accelerations of five points along the contact wire, whose 

positions are listed in Table 6.2. The sampling frequency is set to 81.92 Hz. 

Table 6.2: Position of the accelerometers along the contact wire. 

Sensor n° 1 2 3 4 5 

Position (m) 1.5 9 13 17 27 

 

The acceleration of the third sensor and its displacement are reported in 

Figure 6.33 when the improved dropper is attached and detached. 

Displacements are obtained by double numerical integration of the measured 

accelerations.  

The additional damping induced by the dropper is evident from Figure 

6.33, where a much faster decay is obtained in the presence of the device.  

Some more insights can be gained when performing the system 

identification of the structure in both cases to extract the modal parameters. 

Given the considerable length of the contact wire, vibrations occur also in the 

y-axis when the excitation is applied on the z-axis. Since only the vertical 

vibrations are of interest in the current analysis, the horizontal modes must be 

excluded from the identification, as shown in [81]. 

The identification is performed using the stochastic subspace 

identification technique (Appendix A), and the stabilization diagrams related 

to the cases without/with the dropper are depicted in Figure 6.34.  It is 

possible to notice the high modal density, which is a common characteristic of 

cable-based structures. The model order is selected for each identified mode 

according to the median-damping criterion [81]. 
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Figure 6.33: Response of the contact wire to an impulse load without the improved 

dropper (blue line) and with the improved dropper (orange line), sensor 3. a) 

Measured acceleration; b) Displacement.  

 

Figure 6.34: Stabilization diagrams without the dropper in (a) and with the dropper 

in (b). Stabilization thresholds: 0.5%, 10% and 99.5% for frequencies, damping 

ratios and MACs respectively. Black dot: new pole; blue plus: pole stable in 

frequency; red square: pole stable in frequency and MAC; green cross: pole stable in 

frequency, MAC and damping. 

Eventually, natural frequencies and damping ratios are extracted and 

fitted to a proportional damping distribution in both without/with cases. 

Results are shown in Figure 6.35, where the proportional fit is also depicted 

for the two abovementioned cases. The identified proportional damping 

coefficients 𝛼 and 𝛽 are listed in Table 6.3. 
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Figure 6.35: Damping estimation (dots) and fit to the proportional model 

(continuous lines). Blue: without the dropper; orange: with the dropper.  

Table 6.3: Identified proportional damping coefficients. 

 𝛼 (s-1) 𝛽 (s) 

Without the dropper 0.04  ∙ 0-5 

With the dropper 0.92  ∙ 0-5 

 

The experimental tests confirm the effectiveness of the dropper in 

damping out the low-frequency modes of the contact wire, and thus its macro-

oscillations.  

6.3. An improved dropper for OCLs 

The effects of the improved droppers on a high-speed overhead contact 

line are investigated in this section, combining the information acquired with 

the experimental tests with a FE model of the pantograph-catenary system. A 

new design of the dropper is sought starting from the updated model to 

maximize its effectiveness when coupled with the model of a high-speed OCL, 

and detailed information about the new design steps can be found in the 

master thesis [127].  

The objective of the simulation is to quantify the improvements in the 

contact force when simulating the response of the pantograph-catenary 

system with the designed droppers.  

The software adopted for the simulations of the dynamical interaction 

between pantograph and catenary is called Cateway and is currently 

developed at Politecnico di Torino by the Dynamics and Identification 
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Research Group. Information about its FE formulation can be found in the two 

master theses [135,138]. Its main characteristics are listed in the following: 

• 2D or 3D Euler-Bernoulli beam elements for contact wire and 

messenger wire; 

• Nonlinear spring model for the droppers: activated in normal 

conditions, deactivated in case of slackening; 

• 3 DOFs lumped mass-damper-spring system for the pantograph; 

• Penalty contact model; 

• Numerical integration performed with the Generalized-α method [139] 

or the Bathe method [140]. An iterative procedure is also implemented 

to account for nonlinear phenomena.  

As for the parameters of the numerical integrator(s), the guidelines 

published in [141] are followed, which relate spatial and time discretizations 

to the wave propagation speed along the wires via the Courant-Friedrichs-

Lewy (CFL) number. The software has been validated according to the 

standard EN50318:2002 [142], and a screenshot of its main interface is shown 

in Figure 6.36. 

 

Figure 6.36: Main interface of Cateway. Blurred parts contain sensible information. 

The outcomes of Cateway are the contact force, the displacements of the 

nodes of the OCL and the displacements of the DOFs of the pantograph(s).  

As for the state-of-the-art about models for the simulation of the 

pantograph-catenary interaction, the reader can refer to the reviews 

[108,110]. Among the others, 3D elements to describe the OCL, nonlinear 

iterative time solvers and multibody models for the pantographs seem to be 

the most important recent achievements in this field. The modeling of 

structural damping instead is still a crucial point, as OCLs are very lightly 

damped structures, and the estimation of their damping distribution remains 

a non-trivial task [81,123,124]. Despite their limitations, nonlinear FE models 
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are a powerful tool to design and simulate OCLs under various operational 

conditions, especially given the difficulties and the costs of performing direct 

tests on the lines [108,143].  

6.3.1. Simulations with Cateway 

Simulations are performed considering the characteristics of the 

benchmark OCL proposed in [110], with spans of 55 m. The benchmark 

catenary is of the same type of the French LN2 or the Italian C270 systems, 

with a tensile force of 22 kN on the 150 mm2 contact wire, and 16 kN on the 

120 mm2 messenger wire. A schematic representation of one span of the 

catenary is depicted in Figure 6.37, while all the details can be found in [110]. 

Compared to the catenary system of Figure 6.1, the one proposed here is 

slightly different, mainly because of the curvature of the contact wire. The 

curved profile is called pre-sag, and it can be adopted to reduce the stiffness 

discrepancies along the OCL [144]. 

As for the pantograph, the same 3 DOFs lumped-mass model of the 

abovementioned benchmark is adopted, with a mean value 𝑓𝑐̅  of the contact 

force obtained from the quadratic law seen in section 6.1.1. The considered 

speed of the pantograph is 320 km/h, and simulations are conducted on a total 

of 20 spans. Only the 10 central spans are used for the evaluation of the 

parameters defining the contact force though.  

 

Figure 6.37: Schematic representation of the benchmark catenary, from [110]. 

The effectiveness of the improved droppers is quantified in terms of 

improvements in the contact force. The latter is filtered in the range 0 − 20 Hz, 

as commonly done for this kind of structures. The contact force is depicted in 

Figure 6.38 for both the simulations without the improved droppers and with 

the improved droppers, and its main parameters in the spans of interest are 

listed in Table 6.4. 
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Figure 6.38: Simulated contact force at 320 km/h. Blue line: without the improved 

droppers; orange line: with the improved droppers. 

The positive effects of the added droppers are evident both from the 

graphical representation and the table values of the contact force 𝑓𝑐 . In 

particular, the minimum of 𝑓𝑐  is definitely increased with the new droppers, 

avoiding the risk of losses of contact. Also, the maximum is decreased, with 

allegedly lower wear of the surfaces in contact. This is translated in a lower 

ratio between the standard deviation 𝜎𝑐  and the mean value  𝑓𝑐̅ , which goes 

from 0.31 to 0.27. 

Table 6.4: Parameters of the contact force. 

 Without the droppers With the droppers 

Mean value 𝑓𝑐̅ (N) 166 165 

Standard deviation 𝜎𝑐 (N) 52 45 

𝜎𝑐/𝑓𝑐̅ 0.31 0.27 

max(𝑓𝑐) (N) 347 317 

min(𝑓𝑐) (N) 22 84 

 

The additional damping induced by the droppers is clear from Figure 6.39, 

where the displacement of one support of the catenary is shown for the two 

cases. All the supports show a similar behavior, with the peak of the 

displacement associated to the passage of the pantograph. 
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Figure 6.39: Simulated displacement of one support. Blue line: without the improved 

droppers; orange line: with the improved droppers.  

6.4. Concluding remarks 

The experimental characterization and subsequent model updating of a 

nonlinear improved dropper for high-speed overhead contact lines have been 

conducted. The device is based on negative-stiffness absorbers, with a 

nonlinear elastic restoring force expressed by a polynomial expansion. When 

the central spring is removed, a variety of different kind of motions can be 

obtained because of the intrinsic bi-stable nature of the device, from in-well to 

cross-well oscillations, including chaotic motion. These dynamical behaviors 

have been confirmed by the experimental observations, gathering linear, 

nonlinear and chaotic motions. Eventually, the parameters defining the 

nonlinear restoring force have been recognized via nonlinear system 

identification, adopting two different methods. A first guess has been obtained 

using the restoring force surface method, whose implementation allows to 

easily visualize the nonlinear behavior and the asymmetric double-well 

potential of the system. The final identification has been performed using the 

nonlinear subspace identification method with a cross-well random 

measurement. The identified parameters have been used to update the 

physical model of the dropper via genetic algorithms. Eventually, the 

effectiveness of the designed droppers is tested on a reduced test rig and on a 

simulated overhead contact line with the pantograph interaction. Future 

developments will involve experimental tests on a real overhead contact line 

with high-speed trains, to measure the contact force between the pantograph 

and the contact wire and experimentally evaluate the induced damping 

distribution on the structure.  
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Chapter 7 

7.Conclusions 

This doctoral thesis attempts to progress towards the development of 

techniques for nonlinear vibrating structures, with the aim of filling the gap 

between the vast achievements in nonlinear systems theory and the practical 

implementations of nonlinear features in structural engineering. Complex 

nonlinear dynamical phenomena have been investigated and experimentally 

characterized in a variety of scenarios, including demonstrative and real-life 

applications.  

Chapters from 1 to 3 are introductory to the topics of the conducted 

research and present an overview of nonlinear dynamical phenomena and 

nonlinear system identification techniques. In particular, numerical examples 

have been proposed in Chapter 2 to describe classical nonlinear phenomena 

and to ease the description of features such as harmonic distortions, nonlinear 

frequency response curves, stability issues, bifurcations and chaos. Instead, 

the identification of nonlinear structure from measured data has been 

discussed in Chapter 3, starting from a literature review about the major 

contributions in the field. The nonlinear subspace identification (NSI) method 

has been presented, together with a demonstrative experimental application 

with a clearance nonlinearity. 

Novel techniques are presented in chapters 4 and 5, to give a contribution 

to the current unsolved topics in the research community. In particular, the 

problem of output-only nonlinear system identification has been faced in 

Chapter 4. A novel technique working with free-decay measurements has been 

presented, called Free-decay-NSI. The methodology has been first tested on a 
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numerical example with Coulomb friction, and subsequently on an 

experimental test rig involving a scaled five-levels building with a polynomial 

nonlinearity on the top floor. Whilst the presented method is not able to deal 

with true output-only measurements (meaning unmeasured stochastic input), 

it is a step towards this direction, and it can be used whenever an external 

excitation source should be avoided.  

In Chapter 5 the problem of identifying a distributed nonlinear behavior 

has been faced and a strategy proposed. The suggested identification 

technique, called Modal-NSI, has been tested on a slender clamped-clamped 

beam subjected to large-amplitude vibrations with multiple modes excited 

simultaneously. The structure has been modeled using a modal approach, and 

the outcome of the identification has been compared to the one obtained with 

the Polynomial Nonlinear State-Space method (PNLSS), which is a black-box 

technique.  

Eventually, a real-life application has been proposed in Chapter 6, where 

the design process of a nonlinear damping system for railway overhead 

contact lines has been chased. The challenge here was in the dynamical 

behavior of the device, which ranged from linear to strongly nonlinear and 

chaotic. Nonlinear system identification has been performed to extract the 

restoring force of the system, in order to compare experimental results with 

designed ones. A model updating procedure has been eventually implemented 

to update the design choices based on the experimental outcomes, and to build 

the final prototype of the device.  

7.1. Future perspectives  

The potentialities of nonlinear design and analysis in structural dynamics 

are so wide that the current state of research can be fairly considered at the 

early stages of its path, and numerous are the challenges ahead. Some of these 

have been discussed in this doctoral dissertation, and new solutions have been 

sought. Looking forward in the years, two points seem to be the most critical 

ones: 

• The development of a general framework for nonlinear system analysis 

and identification in contrast to ad-hoc solutions for specific issues. Of 

course, this would require a way broader overall vision of nonlinear 

dynamical phenomena in engineering structures than the one we 

currently understand. An encouraging approach seems the expansion of 

the linear frameworks we are used to, obtaining, for instance, nonlinear 

normal modes [99,100,145] or modal derivatives [87,95,146]. Despite 

their current limitations, the above-cited tools are promising in terms of 

applicability and flexibility.  
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• The development of commercial and industrial tools for nonlinear 

dynamical analysis in order to bridge the gap between academics and 

industries. Steps towards this direction have been already taken, for 

instance with the startup Nolysis [147]. Nevertheless, we are very far 

away from this achievement, and surely new engineers should be trained 

towards this direction in the near future.  

While these two points are long-run objectives, other issues can be surely 

faced in the near future: 

• Distributed nonlinearities represent a wide range of nonlinear 

phenomena, as already discussed. The proposed methodology to deal with 

them has been tested on a laboratory structure to assess its validity, but 

further tests with real-life structure should be implemented as well. Also, 

other reduction basis might be adopted, including for instance the modal 

derivatives of the mode shapes.  

• The true output-only nonlinear system identification is still an open point 

in the research community. The methodology proposed in this thesis is 

valid for free-decay measurements, but it does not cover the wide case of 

stochastic identification. This would certainly boost the use of nonlinear 

system identification techniques in real-life scenarios, as stochastic 

identification is generally easier to be performed in-situ.  

• Nonlinear damping phenomena are still extremely difficult to characterize 

and identify. It is fair to say that this is generally true also for linear 

structures, because the classical proportional model, despite its 

popularity, is not necessarily realistic. Cases exist where a non-

proportional damping distribution better represents the structure under 

test, although it is certainly more difficult to identify and carries the need 

of a more complex model [81]. Things get much more difficult when 

nonlinear damping models are taken into account, such as friction 

between surfaces or fluid flows through an orifice [3]. Surely, the 

knowledge of nonlinear damping phenomena is far from being exhaustive 

yet, but it is known for instance that the increase of damping with the 

vibration amplitude of nonlinear structures represents a common and 

important phenomenon [148]. Further research in this sense seems 

therefore mandatory.  

• The identification of strong nonlinear behaviors remains a challenging 

topic, as many of the methods developed so far perform well with weak 

nonlinear phenomena. This is true for instance for the methods that 

necessitate an optimi ation starting from a “known” state, such as the best 

linear approximation in PNLSS. The identification of a bi-stable system 

with a strong nonlinear behavior associated to cross-well oscillations has 

been performed in Chapter 6, but despite its complex nonlinear dynamics 
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the system was quite easy to model, as essentially being based on a Duffing 

oscillator. More complex systems with strong nonlinearities are worth to 

be analyzed, to understand how far an identification method can be 

pushed and to promote even more the design of structures having 

nonlinear features.  

• Uncertainties associated to the estimation of the model parameters are of 

use to understand the confidence in the obtained results. Techniques exist 

to estimate the model uncertainties in linear system identification, like the 

one in [149], but things get tougher when nonlinearity comes in. This is 

because nonlinear methods are generally more complex, and 

uncertainties are present not only in the estimated parameters, but also in 

the model of the nonlinearity itself. It is worth mentioning that an 

approach that intrinsically lead to uncertainties estimation is the Bayesian 

one, which already showed promising results [58].  

The suggested list covers the open points that are believed to be among 

the most important in the field of nonlinear vibrating structures, but new 

applications and research opportunities are constantly emerging, confirming 

the spread of this topic in the current years. The direction for future research 

proposed here has the objective of enhancing the knowledge of nonlinear 

phenomena in engineering structures and providing at the same time 

consistent techniques to deal with them. Eventually, easy-to-use tools and 

software interfaces would likely lead to the spread of industrial applications. 
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Appendix A: 

Overview of subspace 

identification 

System identification via subspace method has become increasingly 

popular starting from the mid-90s, due to its robustness and effectiveness. The 

method has been introduced in the time domain by Van Overschee and De 

Moor [60], and in the frequency domain by McKelvey, Akçay and Ljung [61]. 

Subspace methods identify state-space models from (input and) output data 

by applying robust numerical techniques such as QR factorization, SVD and 

least squares. The principal steps of the time domain version are illustrated in 

the following. The reader can refer to [60,150] for more detailed information. 

Let us consider a deterministic-stochastic state-space model: 

{
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑫𝒖𝑘 + 𝒗𝑘       
 (A1) 

where: 

• The vectors 𝒖𝑘 ∈ ℝ𝑚 and 𝒚𝑘 ∈ ℝ𝑙  are the observations at time instant 

𝑘 of the 𝑚 inputs and the 𝑙 outputs, respectively; 

• The vector 𝒙𝑘 ∈ ℝ𝑛 is the state-vector and it contains 𝑛 states; 

• 𝒘𝑘 ∈ ℝ𝑚 and 𝒗𝑘 ∈ ℝ𝑙  are the unmeasurable process and measurement 

errors, respectively. They are assumed to be zero-mean, stationary, 

uncorrelated white vector sequences. 

• The matrices 𝑨 ∈ ℝ𝑛×𝑛, 𝑩 ∈ ℝ𝑛×𝑚, 𝑪 ∈ ℝ𝑙×𝑛, 𝑫 ∈ ℝ𝑙×𝑚 are the 

dynamical, input, output and direct feedthrough matrices, respectively. 

The matrix pair (𝑨, 𝑪) is assumed to be observable, which implies that 

all modes in the system can be observed in the output 𝒚𝑘 and thus can 

be identified.  

The objective of the algorithm is to determine the order 𝑛 of the system 

and to identify the abovementioned matrices up to a similarity transformation, 
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given 𝑠 (input and) output observations. In particular, the state sequence 𝑿𝑖 ∈

ℝ𝑛×𝑗 can be defined as: 

𝑿𝑖 ≐ (𝒙𝑖 𝒙𝑖+1  …  𝒙𝑖+𝑗−2 𝒙𝑖+𝑗−1) (A2) 

where 𝑖 is a user defined index, large enough with respect to the maximum 

order of the system (𝑖 > 𝑛). The system matrices in Eq. (A1) do not have to be 

known to determine the state sequence, as it is obtained directly from the 

measured data via geometric manipulation. Once these states are known, the 

identification problem becomes a linear least squares problem in the unknown 

system matrices, that can therefore be estimated.  

In the so-called data-driven approach, the core of the algorithm is the 

projection of the row space of “future” observations into the row space of 

“past” observations, both for inputs and outputs. This is accomplished by 

recasting the measured data into Hankel block matrices: 

𝒀0|2𝑖−1 ≐

[
 
 
 
 
 
 
 

𝑦0 𝑦1    … 𝑦𝑗−1  
𝑦1  𝑦2    … 𝑦𝑗   

⋮    ⋱ ⋮
𝑦𝑖−1 𝑦𝑖    … 𝑦𝑖+𝑗−2 

𝑦𝑖 𝑦𝑖+1 … 𝑦𝑖+𝑗−1

𝑦𝑖+1 𝑦𝑖+2 … 𝑦𝑖+𝑗

⋮  ⋱ ⋮
𝑦2𝑖−1 𝑦2𝑖 … 𝑦2𝑖+𝑗−2]

 
 
 
 
 
 
 

≐ [
𝒀𝑝

𝒀𝑓
] (A3) 

The subscript 𝑝 denotes the “past” and the subscript 𝑓 denotes the “future”. 

A similar operation can be done with the input block matrices 𝑼0|2𝑖−1, 𝑼𝑝, 𝑼𝑓.  

The state sequence can be obtained by considering the oblique projection 

𝓞𝑖 of the row space of future outputs 𝒀𝑓 along the row space of future inputs 

𝑼𝑓 into the joint row space of past inputs and past outputs (
𝑼𝑝

𝒀𝑝
): 

𝓞𝑖 = 𝒀𝑓/𝑼𝑓
(
𝑼𝑝

𝒀𝑝
) (A4) 

Eq. (A4) can be solved using the LQ decomposition, and detailed steps can 

be found in [60,150]. Moreover, if: 

• process and measurements noise are uncorrelated with the input; 

• the rank of 𝑼0|2𝑖−1 is full; 

• the sample size goes to infinity 

it can be shown that the oblique projection 𝓞𝑖 is equal to the product 

between the so-called extended observability matrix 𝜞𝑖 and a sequence of 

Kalman filter states 𝑿̃𝑖 . In particular, the matrix 𝜞𝑖 is defined as: 



Appendix A: 
Overview of subspace identification 

147 

 

 
 

𝜞𝑖 ≐

[
 
 
 
 

𝑪
𝑪𝑨
𝑪𝑨2

⋮
𝑪𝑨𝑖−1]

 
 
 
 

 (A5) 

Therefore: 

𝓞𝑖 = 𝜞𝑖𝑿̃𝑖  (A6) 

Calling 𝜫𝑼𝑓
⊥  the projection on the orthogonal complement of the row space 

of 𝑼𝑓, the quantity 𝓞𝑖𝜫𝑼𝑓
⊥  can be computed by SVD decomposition: 

𝓞𝑖𝜫𝑼𝑓
⊥ = 𝑼𝑺𝑽T = [𝑼1 𝑼2] [

𝑺1 𝟎
𝟎 𝑺2

] [
𝑽1

T

𝑽2
T] (A7) 

The model order 𝑛 can be chosen by inspecting the singular values with 

different orders and fixing a threshold. Another possibility is to use a 

stabilization diagram, for which although the system matrix 𝑨 is needed. It is 

possible to show that an estimation 𝜞̂𝑖 of the matrix 𝜞𝑖 can be computed by: 

𝜞̂𝑖 = 𝑼1𝑺1
1 2⁄

 (A8) 

The state sequence 𝑿̃𝑖  is then equal to: 

𝑿̃𝑖 = 𝜞𝑖
†𝓞𝑖 (A9) 

with ⋅† being the pseudo-inverse matrix. Corresponding columns of 𝑿̃𝑖  are 

state estimates of 𝑿𝑖 , therefore it is possible to re-write the initial state-space 

formulation as: 

(
𝑿̃𝑖+1

𝒀𝑖|𝑖
) = (𝑨̂ 𝑩̂

𝑪̂ 𝑫̂
) (

𝑿̃𝑖

𝑼𝑖|𝑖
) + (

𝝆𝑤

𝝆𝑣
) (A10) 

where 𝝆𝑤 and 𝝆𝑣 are residual matrices associated with noise. Since these 

residuals are uncorrelated with 𝑿̃𝑖 , solving Eq. (A10) in a least square sense 

results in an asymptotically unbiased estimate of the state matrices (as 𝑗 → ∞).  

It should be recalled that the modal parameters of the system can be 

extracted by eigenvalue decomposition of 𝑨̂.  

If there is no external input in Eq. (A1), i.e. 𝒖𝑘 = 𝟎, the identification is 

usually referred to as stochastic subspace identification (SSI), and a similar 

procedure to the one just showed can be implemented. Of course, only the 𝑨̂ 

and 𝑪̂ matrices will be estimated in this case, as no input is given.  
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Appendix B: 

Polynomial nonlinear state-

space models 

The polynomial nonlinear state-space (PNLSS) model is a quite recent 

black-box identification method proposed by Paduart et al. in 2010 [34]. It is a 

non-parametric method based on a multivariate polynomial nonlinear state-

space representation of the system, obtained by optimizing the state-space 

matrices over the residuals between measured and simulated outputs. Given 

flexible nature of the model structure, the method suits a wide range of 

scenarios, such as a magnetorheological damper [34], a wet-clutch device 

[151] and hysteretic systems [152]. The method relies on the assumptions that 

the input signal is stationary and belongs to the family of Gaussian excitations, 

and that the considered system belongs to the class of Wiener systems. The 

latter in particular implies that the system responds with the same period of 

the excitation, which is not generally the case for nonlinear systems (e.g. in the 

case of chaotic behavior and bifurcations).  

Considering a N DOFs nonlinear system, with output 𝒚(𝑡) and forcing input 

𝒇(𝑡), a polynomial nonlinear state space model can be defined as: 

{
𝒙(𝜏 + 1) = 𝑨𝒙(𝜏) + 𝑩𝒇(𝜏) + 𝑬𝝌(𝜏)

𝒚(𝜏) = 𝑪𝒙(𝜏) + 𝑫𝒇(𝜏) + 𝑭𝝋(𝜏)        
 (B1) 

where 𝒙 is the state vector, 𝜏 is the sampled time, and the matrices 𝑨, 𝑩, 𝑪, 𝑫 

are the classical state-space matrices. The vectors 𝝌(𝜏) and 𝝋(𝜏) contain 

nonlinear monomials in 𝒙 and 𝒇 of degree up to a chosen value 𝑝. The 

coefficients associated to these nonlinear terms are given by the matrices 𝑬 

and 𝑭. It is assumed that 𝒇(𝑡) is a random-phase multisine signal [6], which is 

a periodic signal defined as a sum of harmonically related sine waves, where 

the phase is a realization of a zero-mean random process. Usually, the phase is 

uniformly distributed in the range [0, 2𝜋).  
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Eq. (B1) derives from the assumption that the nonlinear system can be 

modeled as the sum of a linear system plus a noise source 𝑦𝑠, representing the 

part of the system response that cannot be captured by the linear model. This 

is called best linear approximation (BLA) [6,153], and can be imagined as the 

best possible linear model of the considered nonlinear system, essentially 

corresponding to the linearization of the nonlinear system around its 

operating point. A parametrized expression for 𝑮𝐵𝐿𝐴 can be eventually 

obtained by performing, for instance, the linear subspace identification on the 

nonlinear data set.  

Once the BLA is computed, the algorithm is essentially an optimization of 

the full state-space model of Eq. (B1). The optimization is initialized with the 

linear matrices defining the BLA and with the monomials coefficients set to 

zero, i.e. 𝑬 = 𝑭 = 𝟎.  A weighted least squares cost function 𝑽𝑖𝑑 is defined as: 

𝑽𝑖𝑑 = ∑ 𝜺𝑘
H(𝜽)𝑾𝑘𝜺𝑘(𝜽)

𝑁𝑓

𝑘=1

 (B2) 

where k is the frequency line index up to 𝑁𝑓 , 𝑾𝑘 is a weighting matrix and 𝜺𝑘 

is the error measure in the frequency domain: 

𝜺𝑘(𝜽) = 𝒀𝑘
𝑖𝑑(𝜽) − 𝒀𝑘 (B3) 

with 𝒀𝑘
𝑖𝑑(𝜽) and 𝒀𝑘  modelled and measured output DFT spectra, respectively. 

The vector 𝜽 contains all the parameters to be optimized, i.e. 𝜽 =

vec(𝑨,𝑩, 𝑪,𝑫, 𝑬, 𝑭). The final set of matrices 𝑨, 𝑩, 𝑪, 𝑫,𝑬, 𝑭 is eventually 

retrieved by minimizing the cost function 𝑽𝑖𝑑 with a Levenberg-Marquardt 

optimization routine. 

Recently, a Matlab [154] toolbox has been released to implement PNLSS, 

called PNLSS 1.0 [155]. This toolbox has been adopted throughout the thesis 

to compute the BLA and to perform the PNLSS algorithm in Chapter 5. 

Differences between BLA and ULS 

At a first glance, the nonlinear state-space models of NSI (Chapter 3) and 

PNLSS look quite similar  they both have a “linear” state-space model plus 

some other terms defining the nonlinear behavior. Nevertheless, the meaning 

of these two parts is completely different for the two methods.  

The linear part in NSI defines the underlying-linear system (ULS), which 

represents the same system with the nonlinearity set to zero. In the theoretical 

case of no nonlinear modeling errors, the ULS is invariant with respect to the 

excitation level, as it preserves all the properties of linear systems.  

Instead, PNLSS refers to the best linear approximation (BLA), which is the 

best possible linearization of the system around its operating point. Therefore, 
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the BLA depends on both excitation type and level. It is used as a starting point 

for the nonlinear optimization, but it does not give any information about the 

underlying linear behavior of the system. 

An illustrative example is here considered. A Duffing oscillator is excited 

with a random-phase multisine [6] having an RMS of 5 N. A total of 5 

realizations with 6 periods each and 65536 samples at 2048 Hz are simulated. 

The system parameters are reported in the numerical example of [53] and 

Newmark algorithm is used to numerically integrate the equation of motion. 

Also, 1% Gaussian noise is added to the response. The nonlinear FRF is 

depicted in Figure B1 in grey dots, while both BLA and ULS estimations are 

reported with continuous lines (orange and blue, respectively).  

 

Figure B1: Difference between ULS and BLA for a Duffing oscillator. Grey dots: 

nonlinear FRF in dB scales (ref. 1 m/N); blue line: ULS estimation; orange line: BLA 

estimation. 

It is clear that the ULS and the BLA represent two entirely different things, 

and so do the state-space models retrieved by NSI and PNLSS. Also, NSI is a 

grey-box method, due to the required knowledge of the nonlinear basis 

functions. PNLSS instead is a black-box method, providing a flexible model 

structure based on multivariate polynomials in the states and in the inputs. It 

is not fully “automatic” though, because the user must decide the degree of 

these polynomials. Based on the above considerations, a physical 

interpretation of the outcome of NSI is possible, as the description nonlinearity 

is indeed physically-based (friction, contacts, nonlinear springs, …). The same 

cannot be generally stated for PNLSS, although work has been done to reduce 

the number nonlinear terms via polynomial decoupling [156].  
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