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17 ABSTRACT. The lower-order cr-invariant variational problem for Legendrian
18 curves in the 3-sphere is studied and its Euler-Lagrange equations are deduced.
19 Closed critical curves are investigated. Closed critical curves with non-constant
20 cr-curvature are characterized. We prove that their cr-equivalence classes are
21 in one-to-one correspondence with the rational points of a connected planar
22 domain. A procedure to explicitly build all such curves is described. In addi-
23 tion, a geometrical interpretation of the rational parameters in terms of three
24 phenomenological invariants is given.
25
26
27
28 1. INTRODUCTION
29 The present paper is a first step toward a more ambitious research plan, aimed
30 at linking the topology of Legendrian knots in a contact 3-manifold to their differ-
31 ential invariants with respect to a compatible Cauchy-Riemann structure [11]. The
gé invariants can be build from the Chern’s structure bundle and its Cartan connection
32 [5, 12] via the moving frames method [10, 23, 30]. Equivalently, one can resort to
35 the Fefferman conformal structure [2, 18, 35] and to its normal conformal connec-
36 tion [7, 15, 32]. In cr-geometry, most of the attention has been focused on a family
37 of curves transversal to the contact distribution, know as chains [2, 5, 12, 18, 33].
38 Chains arise as projections of null geodesics of the Fefferman conformal structure.
39 Inspired by the strong interrelationships between cr and Lorentzian conformal ge-
40 ometry and by some earlier works on conformal geometry of curves [13, 36, 38, 43],
41 we analyze global properties of Legendrian curves in the 3-sphere equipped with
42 its standard cr-structure. In addition to the aforementioned interrelationships with
43 Lorentzian conformal geometry, the fact that the cr-transformation group of S3 is
44 a real form of PSL(3,C), explains the many formal similarities with classical pro-
45 jective differential geometry of plane curves [6, 26, 42, 40, 46]. For instance, one
46 can associate to a Legendrian curve v of S® a cubic form a = adt? and a projective
47 structure on the curve. They originate a higher-order differential invariant, the cr-
48 stress tensor. If v is generic, i.e. if its cubic form is everywhere different from zero,
49 then one can find parameterizations such that a = 1. Hence, a generic Legendrian
50 curve comes equipped with an intrinsic orientation and its shape is detected by a
2; single differential invariant, the cr-curvature k. Integrating the linear differential
53 L
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form s = Wdt one gets an analogue of the projective length of a plane curve.
Since s is dimensionless, it is called the infinitesimal strain and the integral &, is
said the total strain of . The Arnold-Liowville and the collective complete! inte-
grability [20, 25, 31] of the Hamiltonian contact system governing the geometry of
generic critical curves was studied in [39]. Accordingly, generic critical curves can
be found by quadratures and explicit parametrizations can be given in terms of
elliptic functions and integrals. In this paper we address the question of existence
and global properties of closed critical curves.

If 7,7 : R — S are two curves and |[7]|, |[¥]| denote their trajectories, then v and
7 are said equivalent if there is an element [A] of the cr-transformation group G of
S3, such that [A] - |[7]| = |[§]|. By a symmetry of ~ is meant an element [A] € G,
such that [A] - |[v]| = |[7]]- The set of all symmetries of 7 is a subgroup é7 of

G. The symmetry group of a generic closed curve with non-constant cr-curvature
is finite and its cardinality is called the wave number. From the viewpoint of the
cr-geometry, the most elementary Legendrian knots are the cycles, characterized by
having null cubic form and generic Legendrian knots with constant cr-curvature. A
cycle is equivalent to the trivial Legendrian knot ¢t € R — (cos(t), —isin(t)) € S* C
C2. The symmetry group of a cycle is isomorphic to SL(2,R), its Maslov index?® [21]
is zero and its Thurston-Bennequin invariant [21] is —1. Closed generic Legendrian
curves with constant cr-curvature are orbits of one-parameter subgroups and their
symmetry groups are isomorphic to S! . The equivalence classes of closed generic
Legendrian curves with constant curvature are in one-to-one correspondence with
pairs (m,n) of relatively prime postive integers such that m > n (see Theorem
5.1). A generic Legendrian curve with constant cr-curvature and characteristic
numbers m, n is a torus knot of type (—m,n) with Maslov index equal to m —n and
Bennequin-Thurston invariant equal to —mn . Then, in view of the classification
[17] of Legendrian torus knots, each isotopy class of a negative Legendrian torus
knot with maximal Maslov index and maximal Thurston-Bennequin invariant is
represented by a Legendrian curve with constant cr-curvture. The maximal tori of
G (ie, maximal compact abelian subgroups) are 2-dimensional and conjugates each
other. The action of a maximal torus T2 C G on S? has two special orbits, the azes
of symmetry. These orbits are chains and have a natural positive orientation. Now
we state the three main results.

Theorem A. A Legendrian curve v is critical for the total strain functional if
and only if its stress tensor vanishes. A critical curves is either a cycle or else is
generic.

Generic Legendrian curves with constant curvature are critical points of the strain
functional. For brevity, generic critical curves with non-constant periodic curvature
are called strings.

Theorem B. The equivalence classes of closed strings are in one to one correspon-
dence with the rational points of the domain

M={(z,y) eR®:? +ay+y*<1/4, z—y>0 z+y>1/2}.

Lnon-commutative integrability, in the terminology of [20, 31]
2or turning number
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The rational points of M are called the moduli of closed strings. If 7 is a cr-string
with modulus (g2, g3), the positive integers hy, k1, hy and ks, such that ged(hy,k;) =
ged(ha, ko) = 1 and that hy/k; = 2¢2 + g3, ha/ke = g3 — ¢2 are called the charac-
teristic numbers of «v. The third main result is the following.

Theorem C. Let v be a closed string with characteristic numbers (hy,kq,hs, k)
and wave number n, then

. (A}v s a non-trivial subgroup of a unique maximal torus T%;

o |[V]| doesn’t intersect the azes of symmetry;

e n = lem(ky, ko) and the integers 11 = nhy/ko, 1o = —nhy/ky are the linking
numbers of v with the symmetry azes.

A consequence of Theorem C is that the shape of a closed string is detected by
three phenomenological invariants: the wave number and the linking numbers with
the two axes of symmetry. It also provides a sort of quantization for closed critical
curves of the total strain functional. The reconstruction of a string from the phe-
nomenological invariants requires the inversion of the period map (see Definition
6.1). This can be achieved by numerical methods. All other steps involve explicit
formulas containing elliptic functions and elliptic integrals. Thus, the procedure
can be made operational with the help of a software supporting numerical routines
and elliptic functions.

The paper is organized as follows. Section 1 collects some basic facts about the
standard cr-structure of the 3-sphere. Section 2 is devoted to a preliminary anal-
ysis of the main cr-differential invariant of a Legendrian curve. In Section 3 we
prove Theorem A. In Section 4 we investigate closed Legendrian curves with con-
stant curvature and we characterize closed strings (Theorem 5.3). In Section 5 we
prove Theorem B. In the last section we find explicit parameterizations of closed
strings and we prove Theorem C. At the end of the section we discuss some explicit
examples.

Numerical and symbolic computations, as well as graphics, are made with the
software Mathematica. In the fourth, fifth and sixth sections, properties of the
elliptic functions and integrals are used in a substantial way. In this regard, we
follow the standard notation however, we advise the reader that the square of the
modulus is used as the fundamental parameter for the Jacobian functions and their
integrals. As basic references for the theory of elliptic functions and integrals we
use the monographs [3, 34]. For the few basic notions about Legendrian knots used
in the paper we refer to [20, 21].

2. PRELIMINARIES

2.1. The Cauchy-Riemann structure of the 3-sphere. Let C2') denote C?
with the pseudo-Hermitian inner product

3
(21) <Z7 W) = i(21w3 — 53101) + 22102 = Z hijgiwj, hij = Eji
=1

and with the complex volume form € = dz' A dz? A dz3. The map

1 1 2 1— 1
z=(2',2%) €33 cC? - [ RN 22’

> ' )] € CP~.
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is an embedding of the 3-dimensional sphere into the complex projective plane,
whose image is the strongly pseudo-convex real hyperquadric S ¢ CP? defined by
the equation (z,z) = 0. The differential 1-form

(2.2) (=—3
ARS

gives on S an oriented contact structure. The annihilator of ¢ is a complex sub-
bundle of T(CP?)|p(s) and defines a Cauchy-Riemann (cr) structure on S. Let
Po € S be the pont with homogeneous coordinates (0,0,1). The Heisenberg pro-
jection

1

<Z, dZ> ‘T(S)

pn 2] € S\ {Poc} = (Re(z?/2'),Im(2?/2"), Re(2?/2")) € R?
is a contact diffeomorphism between S\ { P} and R? equipped with the contact
form E: dz — ydz + zdy. The special unitary group G = SU(2,1) of (2.1) acts
transitively and almost effectively on § in the usual way: given a point [z] € S
represented by the isotropic non-zero vector z € C%!, and given A € G, then
A - [z] = [Az]. This action gives all the cr-transformations of S [5, 12]. Actually,
the cr-transformation group of S is the quotient Lie group G= G/Zg of G by its
center Zg = Zs. For each A € G, we denote by [A] its equivalence class in G and
by A1, Ag, A3 its column vectors. Then, (Ay, Ag, A3) is a light cone basis of C*1,
that is a basis such that (A;,A;) = hyj;, 4,7 = 1,2,3 and that Q(A1, Az, Ag) =
1. Conversely, if (A;, Ay, A3z) is a light-cone basis of C*!, then the matrix A
with column vectors A, As, A3 is an element of G. Choose the point Py with
homogeneous coordinates (1,0,0) as the origin of S. The isotropy subgroup at Py
is the closed subgroup
pes —ipe=i9z e(r — ipllz|]?)
(2.3) Go=<Y(p,¢,2,7) = 0 e~ 2% z ,
0 0 p~lei®
where z € C, ¢,7,p € Rand p > 0. Themap 7y : A € G = APy = [A4] € Sis then
a principal Gg-bundle. The Lie algebra of G consists of all traceless, skew-adjoint
matrices of (2.1), that is

g={Xe€sl(3,C): 'X-h+hX=0,h=(hy)}.

We denote by b the vector space of the traceless self-adjoint matrices of the pseudo-
Hermitian inner product (2.1).

2.2. Maximal compact Abelian subgroups. The maximal compact Abelian
subgroups of G are conjugate to the two-dimensional torus®

(2.4)

T? = {[R(0, ¢)] : R(0,¢) = - ("B + B2 + e "*TOIES) . 4!, ¢,0 € R/27Z},

where

1
2.5 U= —=(BE{ +V2E3 + E}) + —(E} + E3
(25) ﬁ( 1 2+ Ej) \/5( 5+ Ej)
The arc ¥ = {[t(1,7r,ir%/2)] : 7 € [0,v/2]} C S is a slice for the action of T? on S.
The orbits 7, C S, r € (0,1/2) are regular. They can be regarded as the Cauchy-
Riemann analogues of the Cyclides of Dupin in Mébius geometry [9, 37, 30]. By

1

SE!, a,b=1,2,3 are the elementary matrices (51, 82,53) - (6%,8%,8%), a,b=1,2,3.
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identifying 7, with its image in R3 by means of the Heisenberg projection, 7, is
the torus (see Figure 1) generated by the rotation around the Oz-axis of the ellipse
parameterized by 7, : 0 € R — (2,.(0),y.(0), z-(0)) € R3, where

2+T2+ 2—12) cos(6

o 2r(r2—2) sin(0)
(2.6) yr(0) = —W7
o (r*—4) sin(9)
zr(0) = e cos@)

Definition 2.1. We call 7, the standard Heisenberg Cyclide with parameter r. The
singular orbits of the action of T? are O; = Ty and Oy = T3- Note that O is the
intersection of S with the complex line P’ = {[z] € CP?: 2z = 0} € CP? while O,
is the intersection of S with the complex line P = {[z] € CP? : 23 = iz} C CP2.
Hence, O; and Oy are two chains of S [5, 12, 33]. Since they are transversal to the
contact distribution we choose the positive orientation with respect to the oriented
contact structure of S.

In the Heisenberg picture, O; is the Oz-axis with the orientation that goes from
the bottom to the top and Oy is the Clifford circle 22 + y? = 2,z = 0, with the
counterclockwise orientation with respect to the Oz-axis oriented as above (see
Figure 1). Let L € G be the cr-automorphism of order four defined by

1

V2
Then, L-R(¢,¢) - L™t = R(¢, — (¢ + 1)), where R(¢, ) is as in (2.4). This implies
that [L] stabilizes T? and exchanges the two symmetry axes O; and Os.

(7)) L= (B} + B} +i(B)—BY) - - (B~ B) +i(B} + BY)

FIGURE 1. Regular and singular orbits (left), the standard Heisenberg
Cyclide with » = 1 and its elliptical profile (right).

3. LEGENDRIAN CURVES

Definition 3.1. A Legendrian curve is a smooth immersion v : I C R — S tangent
to the contact distribution. Two Legendrian curves v : I - Sand 7 : I — S
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are said to be cr-congruent to each other if I = T and if there exist A € G such
that ¥ = A - 7. They are said to be cr-equivalent to each other if there exist a
reparameterization h : I — I such that 7 and 7 o h are cr-congruent. A [ift of
vis amap I' : I — C3\ {0} such that v = [[']. We say that I' is normalized if
det(T'(t), TV (t), T (¢)) = 3.

It is an easy matter to prove the following Lemma:

Lemma 3.2. Any Legendrian curve admits a normalized lift. In addition, nor-
malized lifts are uniquely determined up to multiplication by a cubic root of the
unity.

Let T" be a normalized lift, the functions

(3.1) a=Tm((T", 1), b= (11", =/
and the differential forms

(3.2) a=adt®, b=>0bdt?, s=sdt,

do not depend on the choice of T'.

Definition 3.3. In analogy with the terminology used in projective differential
geometry [29], the smooth differential forms b, a are called the quadratic and the
cubic Fubini’s forms. The functions b and a are the corresponding tensor densities.
The linear differential form s and the function s = W are said the infinitesimal
strain and the strain density respectively.

Remark 3.4. The Fubini’s differential forms are the lower order [44] cr-differential
invariants of a parameterized Legendrian curve. The infinitesimal strain and the
strain density are continuous but not necessarily smooth. From the definition it
follows that congruent Legendrian curves have the same Fubini’s forms and the
same infinitesimal strain.

Proposition 1. Let v : 1 — S be a Legendrian curve and h : J — 1 be a change
of the parameter. Then, the Fubini’s forms and the infinitesimal strain of v and
¥ = v o h satisfy the transformation law

(3.3) @="h*(a), b=h"(b)+S(h), 3= sign(h)h*(s)

where " 12
h 3h
s(h) = (h, ~ 5 > dt?

is the Schwartzian derivative of h.

Proof. First we prove that a normalized lift satisfies the following identities:
([,T) = (I, Ty = I, T") = ([, ") = 0,
(I'", 1"y = (I, T") = 1.

Differentiating det(T',I”,T") = ¢ we find det(T",T",T"’) = 0. Then, ' = pI" 4 ¢I"
where p, ¢ are smooth functions. We then have

(3.4)

(3.5) (T,T) = (I, T) = (I, T") = 0.
Differentiating (I',I”) = 0 we get
(3.6) (,T") + (I, T’} = 0.
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Taking the derivative of (3.6) we obtain (I',I""") 4+ 2(I", T"") + (I, I") = 0. Then,
using (3.5), we deduce that

(3.7 (', 7"y = 0.
This implies
(38) <F/7 Fl) = U27 <Fa FN) = _Uza
where v is a positive constant. We put
1 i 1
(3.9) B;=T, By= ;F', Bs = . (F” + 2@2<F”’FH>F> .

From (3.5), (3.6),(3.7) and (3.8) it follows that (B;,B;) = h;;. Hence,

1= |det(B1, Bg, B3)| = UﬁS‘det(F, F/, F”)| = 1)73.
Therefore, v = 1. Putting v = 1 in (3.8), we infer that (I'",I") = —(I',T") = 1. So,
(3.4) is proved. Now we are in a position to deduce the transformation laws (3.3).

If T is a normalized lift of -, then [ = W'~Toh is a normalized lift of ~. From this
we get

. h// h//2 h///
1 ! /
Using (3.10) and (3.4), we have
- h/// 3 h//2
2
Then, b = h*(b) + S(h). Differentiating (3.10) we obtain
_ " 3h/'2 2B 6h'"3 6h'h" h(4)
2
" =h?T" oh+ <h/2h/)1—‘/0h (h/4h/3+h/2)l—‘oh.
Combining this identity with (3.4) we get
q= Im(<f///’f//>) _ h/3Im(<P/// o h, o h)) _ h/3(a ° h).
Then, a = h*(a). Obviously, this implies 5 = sign(h’)h*(s). O
Definition 3.5. Borrowing the terminology of classical projective differential ge-
ometry [8, 6, 26, 46, 49], we say that v(t.) is a sextactic point if al;, = 0. A
Legendrian curve with no sextactic points is said generic. If a = 0, then ~ is said
a Legendrian cycle.

Remark 3.6. A cycle is a trivial Legendrian knot equivalent to t — [t(1,¢,it?/2)].
Its Maslov index is zero and its Bennequin-Thurston invariant is —1. Thus, ac-
cording to the Eliashberg’s classification of Legendrian unknots [14, 16], the cycles
are representatives of the unique Legendrian isotopy class of Legendrian unknots
with Bennequin-Thurston invariant —1. The Legendrian isotopy class of any other
Legendrian unknot can be represented by a stabilization [16] of a cycle. Let v be a
Legendrian curve. Then, for every ¢, € I, there exist a unique cycle passing through
~(t,) with analytic contact of order > 3 with v at v(¢.) (see Figure 2). The order
of contact is exactly 3 if y(¢.) is not a sextactic point. Otherwise, the order of
contact is > 3. The value s(¢,) of the strain density at ¢ = ¢, is a measure of how
much the fourth-order jet of v at v(¢.) differs from that of its osculating cycle at
the contact point. We refer to [7, 23, 28, 29, 40] for the notion of analytic contact
and the related concept of deformation.
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FIGURE 2. A cycle and its Lagrangian projection on the left; a generic
curve (red) and one of its osculating cycles (green) on the right.

Definition 3.7. A generic Legendrian curve whose strain density is identically
equal to 1 is said parametererized by its natural parameter. The quadratic Fubini’s
density of a natural parameterization v is called the cr-curvature of v. We adopt
the notation k to denote the cr-curvature.

Remark 3.8. Given a generic Legendrian curve v : I — S, there is a change of
parameter h : I — J such that yoh ™! is parameterized by the natural parameter.The
natural parameters differ by an additive constant, thus they define a unimodular
affine structure, i.e. an atlas of I whose transition functions are special affine
transformations. Note that, the natural parameters induce a canonical orientation
on a generic Legendrian curve.

Definition 3.9. A moving frame along v : I — S is a lift of v to G, that is a
smooth map B : I — G such that mp o B = v. If B is a moving frame, any other
is given by B - Y (p, ¢, z,r), where p,¢,r : I = R, z : I — C are smooth functions
and Y(p,¢,z,7) : I = Gg is as in (2.3). Given a moving frame B we denote by B
the g-valued smooth function such that B =B~ .B’. If B and B are two moving
frames along ~ and if B=B- Y (p, ¢, z,7), then B=Y'B-Y+Y Y.

Definition 3.10. Let I' be a normalized lift and B; : I — C*!\ {0}, j = 1,2,3,
be defined by By =T, By =I" and Bs = —i (I'" + bI') (cfr. (3.9)). From the proof
of Proposition 1 one sees that (By, By, B3)|; is a light-cone basis of C?!, for every
t € I. Then, B = (B1,B2,B3) : I — G is a moving frame, the Wilczynski frame
along . If B is another Wilczynski frame, then B = ¢B, where ¢ is a cubic root of
the unity. The map B of a Wilczynski frame can be written as

(3.11) B(a,b) = Ej +iEj + b(iEj — E) + aE}.
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Definition 3.11. Let v be a Legendrian curve. The function

44 . 4 3 2 4 :
£ = 8(1)0aa/5a// P <—2(?70ba’5 _ %a/a//z _ 29700,'2@(5)) +

+ a® (2561'26' + W yar + 20 14 ® + 25a’a(4)) +
(3.12) 3 3 9 9

+a* (—136b2a' —5b'a"” — 3a’b" — 13—0ba(3) - ;a(5)> +

. 6160
5 bb/ b(3)) _ /5.
+a (8 + 243 a
and the differential form t = tdt?° are called the stress density and the stress tensor
of 7 respectively.

Using Proposition 1 and with elementary but tedious computations, one can easily
prove that, if ¥ = v o h is a reparameterization of v, then t = h*(%).

4. THE STRAIN FUNCTIONAL

4.1. Admissible variations. An admissible variation of a Legendrian curve = :
I — S is a smooth map g : R — S defined on an open rectangle R, = I X (—¢, €),
such that

e g(t,0) = y(t), for every t € I;

e g, :tel—g(t1)eSisa Legendrian curve, V7 € (—¢,€);

e the variational vector field vg : t € I = g.[(+,0)(07) € T(S), is compactly sup-
ported;

e if s, is the strain density of g, and Kg is the support of vg, then

6g:7'€(*676)*>/ s-dt € R
Kg

is differentiable at 7 = 0.

If g is an admissible variation, then there exist a smooth map Bg : Re — G such
that B; : t € I = Bg(t,7) € G is a Wilczynski frame of g,, for every 7 € (—¢,€).
We call Bg a Wilczynski frame along g. We denote by a, and b, the Fubini’s
densities of g, and we put ag(t,7) = a-(t), bg(t,7) = b-(t), sg(t,7) = s,(t). Let
g, V :Re — g be defined by

(4.1) B, 'dBg = Bdt + Vdr,

T 4 i57 be the entries of V and t},s" : I — R be given by t(t) = t(¢,0) and

by sh(t) = 5%(¢,0). Differentiating (4.1) we get 9,8 — 9;V = [B,V]. In turn, this
implies
1 .y
) Orag o) =¢ (6a/t§ +18a(t2) — (16bb + 26))e3 —
— (1662 + 9b")(x3) — 156 (+3)" — 10b(:3)®) — (t§)<5>)

4.2. The strain functional and its critical curves. Let J C I be a closed
interval. The integral

&y(y) = /J sdt,
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is the total strain of the Legendrian arc v(J). It measures of how much a Lagrangian
arc is far from being a cycle. By construction, is invariant by cr-transformations
and reparameterizations.

Definition 4.1. A Legendrian curve «y is critical for the total strain functional if
6’g|0 = 0, for every admissible variation.

Theorem A.A Legendrian curve is critical for the total strain functional if and
only if its stress tensor is zero. Furthermore, a critical curve is either a cycle or
else is generic.

Proof. The proof consists of three steps.

Step I. We show that if -y is critical, then its stress tensor vanishes.

We begin by proving a preliminary result: suppose that v : I — S is not a cycle.
PutI, = {t € I: a(t) # 0} and let K = [to, 1] C I, be a closed interval. If w: I — R
is a smooth function such that supp(w) C (tg,¢1), then there exist an admissible
variation g such that

(4.3) 6/g|0=/Kt(t)-w(t)dt.

Firstly, we construct the variation. Without loss of generality, we assume P, ¢
[[¥]l. With a possible change of parameter, we can suppose that a|x > 0. Then,
there is a regular plane curve o : t € I — () + iy(t) € C = R? such that

. t
y(t) = ["(1,a(t), 2(t) + %la(t)\Z)], 2(t)= | (2'y —zy')du +c.
to
The constant ¢ can be put equal to 0. Consider the_moving frame H, : I — G
along 7 defined by H, = Idsyx3 + aEj + iaE3 + (z + 5|a?)Ej. Let p,¢,7: 1 = R,
p>0and p:I— C be smooth functions such that, B, = H, - Y(p,¢,p,7) is a
Wilczynski frame along «. We put
2187 d [y )
”_mwwa( @)
By construction, supp(n) C supp(w). Then we define
B(t,7) = aft) +irn(t)a’(t),
w(t)-a(t)17/3 JE——
(4.4) u(t,r) = 2(t) + 7 (2RO pt)Re(a(t)a’ (1)) +
+72 f:{) n?(s)Im(a” (s)’(s))ds
Choosing € > 0 sufficiently small, and putting R. =1 x (—¢, €), the map

g: (t:7) € Re > [(1,5(t,7), u(t,m) + 5166, 1)) €S

is an admissible variation of v. Without loss of generality we may suppose that ag
is strictly positive on J x (—¢,€), where J is an open interval such that supp(w) C
J C K. We show that g satisfies (4.3). Let Hg : I x (—¢,€) = G be the moving
frame along g defined by Hg = Idsxs + SE3 + iBEZ + (u+ %|3|*)ES. From (4.4) it
follows that

(4.5) Hg(t,7) = H,(t) + 7L1(¢) + 7°La(1),

where Ly = n(ic’E} + o/E2) + AE} and A = 2187p 2w - a'"/3 — naa’. Then,
there exist smooth functions p,¢,7: Re = R, p > 0 and p : Re — C such that
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Bg =Hg - Y(p, o, p,7) is a Wilczynski frame along g and that Bg| 0y = B,|¢, for
every t € I. By construction, Y (p, %, P:7)|(t,0) = Yolt, where Y, = Y(p,¢,p,7).
Using (4.5) we obtain

- -1 -1 -1 -1
V|(t,0) = (Bg 0-Bg Y, aTY|(t70) +Y, -H L Y,.

Moy =
Since Y (t) € Go, for every ¢t € I, then (Y10, Y|10))F = (Y5'0:Y](1,0))] =0. It
is now a computational matter to check that

(YJ'-H' Ly Y,) = —2187a' " Pwe*p + i3 pna/,
(Y71 H' Ly - Y,)d = 21870 Pw.

This implies
Vlzl(t,o) =t} +is] = —2187a*"3wep 4 e pna/ Vf‘(t,o) =1 = 2187a7/3w.

Using (4.2) and proceeding with elementary but rather tedious calculations, we get
Drsglixqoy Zax (t-w)|y where f =,k g means that f = g+ 1/, for some smooth
function r such that supp(r) C K. Then,

Sglo = 0, (/ sgdt> » =/ 5‘ng|(t’0)dt = / t - wdt.
Kg T= Kg K

We are now in a position to conclude the proof of the first step. Suppose that v is a
critical curve. If 7y is a cycle there is nothing to prove. If v is not a cycle we denote
by I, be the zero set of a and we put I, = I\ I,. Then, our preliminary discussion
implies that t is zero on I,. Obviously, t is zero on the interior of I,. Hence, t is
everywhere zero.

Step II. We prove that if t = 0, then - is either a cycle or is generic. Preliminarily
we show that for every t, € I there exist an open interval J C I containing ¢, and
a smooth, strictly increasing function h : J — R such that the quadratic Fubini’s
form of yo h~! : h(J) — S is zero. The collection of all such functions defines a
projective structure on I, ie an atlas Py = {(Jo, ha) taeca whose transition functions
are orientation-preserving linear fractional transformations. This assertion can be
justified as follows: let b be the quadratic Fubini’s density of v. For every ¢, € I
and every hg, h1,ho € R, hy > 0, we consider the solution of the Cauchy problem

h/// 3 h//2 P , "
F_iﬁ—i_h (bOh,):O7 h(t*):ho, h(t*):h1>0, h (t*):hg

Shrinking the interval of definition we assume that h is strictly increasing. Proposi-
tion 1 implies that the Fubini’s quadratic form of yoh ™" is identically zero. We call
h a projective chart. We prove that the family P, = {(Ia, ha)}aca of all projective
charts is a projective structure on I. Let h, : I, — R and hg : Ig = R be two
projective charts such that I, NIg # @ and 2 =hgo hgl be the corresponding
transition function. Since the Fubini’s quadratic forms of o hgl and yo h ! are
both identically zero, (3.3) implies that S(f2) = 0. Then, f? is a strictly increasing,
linear fractional function. Using this projective structure we show that if the stress
tensor is zero and if v(¢,) is a sextactic point, then a and all its derivatives vanish at
t.. From Proposition 1 and making use of the projective structure, we may assume
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b =0. For every n € N we put

¢ — Lbnt1)
T T(n+1)57
S I'(Gn+1) I I'(5n+1)
T T(m)(n + 1)3T(n + 2) ST T(n)2C(n+ DI (n + 2)2°
B I'(bn+1) B I'(5n+1)
A T P —DD(n+ D)2T(n+2)2 " T(n— )T(n)D(n+ 2)%’
I'(5n+1) I'(5n+1)
Ce,n = Crm =

I'(n—=2)T(n+1)I'(n+2)3’ I'(n—3)I'(n+2)*
where, in this context, I' is the Euler gamma function. Note that
¢, = 6160cq 5, — 13200c2 , + 5400c3 y, + 3600c4,, — 1350c5 , — 675cs r, + 8lcy p,
4T (5n + 1) (4n* + 7613 + 51902 + 1501n + 1540)
B T(1+n)(n+2)*
Let f be a smooth function and denote by =,, the equality of functions modulo the
ideal generated by f, f/, ..., f(™). Then, proceeding by induction, we see that
(f/S)(Sn) =, cl’n(f(n-&-l))s7
(FF3 1™ =, con(fOTD)5,
(f21 7)) =, ean(fOHD)P,
(4.6) (folzf(S))(Em) =n C4,n(f(n+1))5:
(
(

> 0.

f3f//f(3))(5n) =, cs n(f(n+1))57
f3f/f(4)>(5n) =, Co n(f(n+1))5
(f4f(5))(5n) =, ¢r n(f(n+1))5-
Putting b = 0 in (3.12), the stress density takes the form
t = — 6160a’ + 13220aa"a” — 5400a%a’a’"? — 3600aa’%a® +

4.7
4.7 +1350a%a”a® + 675a%a’a'® — 81a*a'®.
If t = 0 and a|t, = 0, then (4.7) implies a'|;, = 0. By induction, suppose that
a®|,, =0, for every k = 0,...,n. From (4.6) and (4.7), we obtain
d5nt 5
— _ n+1
0= dtsn ‘. =—Ctn- (a( ) t*) +t|t*’

where t belongs to the ideal spanned by a, d’, ...,a(™. By the inductive hypothesis,
tl¢, = 0. Since ¢, # 0, we have a("“‘l)\t* = 0. Thus, a and all its derivatives vanish
at t.. We conclude the proof of the second step. By contradiction, suppose that
t =0 and that I, = {t € I: a(t) # 0} is a non-empty proper subset of I. Let I’ be
a connected component of I,,. There are two possibilities: either sup(I*) < sup(I)
or inf(I¥) > inf(I). Consider the first case, ie t, = sup(I*) < sup(I). Take ¢ > 0
such that J = (—e + t.,e +t,) C I and that a(t) # 0, for every t € (—e + t,t.).
We may assume that J is the domain of definition of a chart ¢ : J — R of the
projective atlas 3., such that ¢(t,) = 0. We put J' = (—¢,€') := ¢(J). Then,
¥ =n~0¢~!:J — Sisa Legendrian curve with zero quadratic differential and zero
stress tensor. In addition, the cubic density @ of 7 vanishes at ¢t = 0 and al; # 0,
for every t € (—¢,0). By our previous discussion, we know that a(™|,—y = 0, for
every n € N. Denote by B:J >5Ga Wilczynski frame along 7. Without loss



0 J oy U WD -

OO UOUTOUIOTOTO A DB S ESEDSDEDEODWOOWWWWWWWIONRNONNRNONNO NN R R R R R
R WNRPOWVWOJONNEWNRFROWOW®OJAUEWNRFRFOWOOJANUTEWNROW®O-JIOU®WNRLOWWJOU S WNR O L

13

of generality, we may assume that ]§\0 = Id3x3. Let @ : J — R be the smooth
function defined by

aly =al, ifte (—¢0),
aly =0, iftelo,e).

Retaining the notation (3.11), we put B = Bz, 0. Denote by B :J — G the solution
of the linear system

(4.8) BB’ =B, Bly=Idsus.
Then, 7 : J — [ 1] € S is a Legendrian curve and Bis a Wilczynski frame along
5. By the Cartan-Darboux congruence Theorem [30], we have B( 60 = B( 0]
Note that @ is the cubic density of ¥ and that b=0andt=0. We put
7a? —6aa” . 1 .1
k= —cr—, k=-—2k, k=-—2FK
18a8/3 Va Va

and we define Y : (—€/,0) = G and H: (—€¢/,0) — h by

wirm (D ~
Yoy 1 ’1 szgn(a)ﬂ_’iai/vo
Tl 2 3a

and by
1 .
H=2(i(Ej + E}) + E3) +2k(§(E} —2E} +E3) —ikE}) + - k(E2 +iE3) — ikE“I’.

Let A : (—¢/,0) > hbegivenby A=Y 1-H-Y. A dlrect computation shows
that A? = 2ia=2/3. Then, A can’t be extend smoothly on the whole interval J’.
On the other hand, T =0 implies (A’ + [B,A])|(_er0) = 0. Consequently, (B-A-

)|( ¢,0) = m, where m is a fixed element of h. Then, B~!.m-B is a smooth

extensmn of A on J'. We have thus come to a contradiction. If inf(I} > inf(I) we
can use similar arguments, coming to the same conclusion.
Step ITII. We prove that if t = 0, then « is critical. By the second step, if t = 0,
then either v is a cycle or else is generic. In the first case 7 is obviously critical.
Assume that ~ is a natural parameterization of a generic Legendrian curve with
t = 0. Let g be an admissible variation defined on the open rectangle R.. Since
ag(t,0) = 1, for every ¢, then ag is strictly positive on an open neighborhood of
Ix {0}. From (3.12) and (4.2) we have

8ng‘(t,0) =d,Kg —§(/<,;( ) + SHHI)‘t . t1|t = —§tt1 =0.
Then, &,lo = 0. Consequently, a generic Legendrian curve with zero stress tensor

is critical. This concludes the proof of the Theorem. |

Remark 4.2. Leaving aside the cycles, a Legendrian curve such that t = 0 is generic.
Thus, it can be parameterized by the natural parameter. Putting a = 1 in (3.12)
one sees that the cr-curvature s is a solution of the third-order ode

(4.9) K"+ 8kk' = 0.

Therefore, either  is constant or else —2k/3 is a real form of a Weierstrass -
function. In the first case y is an orbit of a 1-parameter group of cr-transformations.
If k is non-constant, the natural parameterization of the curve can be found by
solving a system of linear ode whose coefficients are real forms of elliptic functions.
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This is a classical problem already studied by Picard [47] at the turn of the nineteen
century. It is known that the solutions can be written in terms of elliptic functions
and incomplete elliptic integrals. In the last section we will explicitly address this
problem when £ is a periodic solution of (4.9).

Definition 4.3. Let v : I — S be a natural parameterization of a generic curve, B
be a Wilczynski along v and A : I — b be defined by
(4.10)

1 2 2
A=2(i(E} + E}) + E3) +2n(§(E} —2E3+E3)—ikE}) + §m’(Ef +iE3) — gm”Ef.
If t =0, then (4.9) implies
(4.11) B-A-B'=m,
where m is a fixed element of h, the momentum of ~.

Remark 4.4. The conservation law (4.11) has the following theoretical explanation.
Put Z = G x R?, denote by k, &, k the fiber coordinates and by (o + i8)1<i <3
the pull-back on Z of the Maurer-Cartan form of G. Let v : I — S be a natural
parameterization of a generic Legendrian curve with cr-curvature s, zero stress
tensor and Wilczynski frame B. Then, s — (B, k, k', k")|s € Z is a lift of v to Z,
the prolongation of 7v. The prolongations are integral curves of the Reeb vector field
X of the contact form x = o2 + (a} —a?)/3 — (k+3k?)a3 /9 + 2kB2/9+ 261 /3. The
action of G on the left of Z is Hamiltonian and co-isotropic [22]. Using the pairing
induced by the Killing form, the contact momentum map [1, 45] of the action is
given by (B, k, k, k) €Z— iB- Ak, k, k) -B~!. Hence, (4.11) is a consequence of
the Nother conservation theorem, i.e. that the momentum map is constant along
the integral curves of X. The manifold Z and the contact form x are build via
the Griffith’s approach to the calculus of variations [24, 22]. Since the action is
co-isotropic, then X is collective completely integrable and, a fortiori, Liouville-
integrable [39]. Hence, in principle, its integral curves can be found by quadratures
linearizing the restriction of X on the fibers of the momentum map.

5. CLOSED CRITICAL CURVES
5.1. Closed critical curves with constant curvature. For every ¢ > 1 we put

r(q) = \/2+4q—4 q(1+q),
(o) = 3(16 + 56r(q)* + r(q)®)

2(2(—64 + 528r(g)* + 132r(q)® — r(q)'2))**
Then, c: (1, +00) — (2%/1, +00) is a smooth diffeomorphism.

(5.1)

Theorem 5.1. A generic Legendrian curve with constant cr curvature Kk = c is
closed if and only if ¢ = c(q), where ¢ = m/n > 1 is rational number. Using the
Heisenberg picture, such a curve is cr-equivalent to the solenoidal torus knot (see
Figure 3) of type (—m,n) parameterized by

o it € R = Roz(mt/n)ne(q) (8),

where Ro(0) is the rotation of an angle § around the Oz-azis and 1. is the
parameterization of the elliptical profile of the standard Heisenberg Cyclide with
parameter r(q), defined as in (2.6).
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FIGURE 3. Generic Legendrian curves with constant curvature
¢(5/3) ~ 1.69321 (left) and ¢(7/6) =~ 3.63111 (right).

Proof. A Legendrian curve with constant pseudo-conformal curvature c is congruent
to V. : s € R — Exp(sK,) - Po, where K. = (E} + E} +iE2%) — ¢(E? —iE}). Thus, its
trajectory can be closed if and only if IC(c) has three purely imaginary roots, that is
if and only if the discriminant Ay, of the characteristic polynomial of K, is negative.
It is an easy matter to check that Ak, < 0 if and only if ¢ > 3/2+/4, ie. if and only
if ¢ = ¢(q), for a unique g € R, ¢ > 1. With an elementary calculation we see that
4 is a Legendrian curve of R? and that the Fubini’s densities of ~, = pgl 07, are
given by
712 —132r% — 528r% + 64 - r® + 56r* + 16

6912r6 T 384rt 7
where 7 = r(g). Hence in view of (5.1), 0 < r < 2 —+/2. This implies x = b/ Va2 =
¢(q). To conclude the proof it suffices to note that two generic Legendrian curves
with the same cr-curvature are equivalent each other. O

a=—

Remark 5.2. We briefly comment on the topological structure of the torus knots
constructed in the Theorem above. It is known that the contact isotopy class of a
Legendrian torus knot is uniquely determined by the tours knot type, by the Maslov
index and the Bennequin-Thurston invariant [21]. In addition, if the torus knot is
negative, of type (m,—n), with m > n, then its Bennequin-Thurston invariant tb
is less or equal than —mn. If tb = —mn then its Maslov index is in the range
{x(m —n —2nk) : k € Z,0 < k < (m —n)/n}. It can be shown that the Maslov
index and the Thruston-Bennequin invariant of ¥4, ¢ = m/n > 1, are m — n and
—mn respectively. This can be verified with elementary techniques, although the
proof is non trivial from a computational viewpoint. Thus, each isotopy class of a
negative torus knot with maximal Maslov index and maximal Thurston-Bennequin
invariant can be represented by a Legendrian curve with constant cr-curvture ¢(g).

5.2. Critical curves with non-constant periodic curvature. Now we focus on
cr-strings, ie generic Legendrian curves parameterized by the natural parameter,
with non constant periodic cr-curvature and zero stress tensor. The equation of
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motion k" 4+ 2kk’ = 0 implies the existence of two constants my, m3 € R such that

{ K 4 4K2 — %mQ =0,

5.2
(5:2) (K')2 + 8K — 3mar + 9(1 + ™) = 0.

Periodic solutions of (5.2) do exist if and only if m3 — 54(msz + 8)2 > 0. Let £ > 0
and m € (0,1) be defined by

{mg =3(1—m+m?),

5.3
(5.3) mg = & (£5(2m? — 3m? — 3m +2) — 27) .

Modulo a possible translation of the independent variable, the periodic solutions of
(5.2) can be written as

(5.4) Fm.e(s) = 262 (m;—l —-m sn2(€s,m)) ,

where sn(—,m) is the Jacobi’s elliptic sine with parameter* m € (0,1). Note that
Km,e is an even periodic function with least period® wy, , = 2K(m)/f. If v is a
string whit cr-curvature Ky, ¢, then (m,¢) are said the characters of v. Let m be
the momentum of a string with characters (m, ¢). The discriminant p(m, ¢) and the
spectrum {A;};=1,23 of m are given by

p(m,€) =64 (m2(m— 1)%0'> + 2(m — 2)(1 +m)(2m — 1)¢° - 27),
M(m, 0) = —Xy(m,l) — A3(m, (),

)\2(m7£) :7%\/m£28in (M)’

(55) )\3(m7€) = %\/m £2 Sin (w) i
2T mm — 1) {2 cos (Mg

~ _ (m=2)(1+m)(2m—1)£5—27
p(m,0) = 2(1+(m—1)m)3/2¢6

The eigenvalues are sorted as follows:

A(m,0) < Ag(m, £) < Az(m, £), if p(m, £) > 0,
A1(m, 0) € R, Ao(m, €) = Ag(m, ¢) € C, Im(A3(m, £)) > 0, if p(m,¥) <0,
)\1(m, E) = —2)\2(m,€), )\Q(m, ﬂ) = >\3(m,€) > 0, if p(m,é) =0.

For every (m,¢) € (0,1) x R we put

6me>
611 (2(1+m)z2+3xj(m7z) ) m)
7l (2(1 + m)e% + 3)\;(m,0))’
where II(n,m) is the complete integral of the third kind.

(56) @j(m,é) = ] = 1a2737

Theorem 5.3. A cr-string with characters (m, £) is closed if and only if p(m,£) > 0
and ©2(m, £),03(m, ) € Q.

Proof. First we analyze eigenvectors and generalized eigenvectors of the momentum
m of a string with characters (m,¢). Denote by A the map defined as in (4.10),

4The parameter is the square of the modulus.
5K is the complete elliptic integral of the first kind.
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with kK = K ¢. Let X be an eigenvalue of m. Then, X is an eigenvalue of Al;, for
every s € R. From (4.10) it follows that

(5.7) Ux(s) =" <;(4/€|s +3) (§n|s —A),6(1+ %m’|5)74n\5 + 3)\) ,

generates the A-eigenspace Ly|s of Al;. Hence, L,|s is 1-dimensional. If B is a
Wilczynski frame and if we put

(5.8) U, =B U,,

then, Uy(s) belongs to the 1-dimensional A-eigenspace M of m, for every s € R.
Hence, U, = pU,, where p is a complex-valued function. From this we deduce
that

(5.9) A+ (B — old3x3)Ux =0,

where B is as in (3.11), with ¢ = 1 and b = k. The third component of the left
hand side of (5.9) is equal to 1(2x" — (4% + 3X) + 6i). Since £ is real-valued, the
equation 2k’ — g(4k + 3A) + 6¢ = 0 implies

2k + 61

4k 43X

Let v/4k + 3\ be a continuous determination of the square root of 4k + 3\ and
Vi, Wy : R = C?! be defined by

1

(5.10) 4k(s) +3X#0, Vs € R, and p =

(5.11) V= 7,4%6-1—73)\{%\’ Wy, = e O/ w¥my,,
Then
(5.12) Wy =B-W, =e b /s w¥xB .V,

is a constant eigenvector of m. If p(m,£) = 0, the characteristic polynomial of m
has a double positive real root \. We put

oo 2(k4+3X)2  (26—3X\)(k+3X) i(26—3))
(5.13) Va=viar+3\° (_ 3(Zn+3>\)’ N3(,@'+§i) ) Z4:+3A ) ;
Wy =e % Jo s ¢ (\7)\ + 162X\ fog (4&#)2\6\) ,

where V), is as in (5.11). Then, W,(s) is a rank two generalized eigenvectorS of
A(s), for each s € R. Since W), satisfies W) 4+ B - W) = 0, we infer that

— — s e ~ B dt
5.14 Wy =B Wy=c 0l w¥=B. (V 162)\/ — VvV
(5.14) A A=e€ P L (dr 43072 A
is a constant rank-two generalized eigenvector of m. From this we can deduce the
following conclusion: if p(m,£) # 0 then there exist C € GL(3,C), a periodic map
P : R — GL(3,C) with least period wy, ¢ such that

C=B(s) P(s) - D(s),

5.15 . s dt ] dt i s dt
( ) D(S) _ e—61fo WE% + 6_61‘[0 Zr+3Ag(m,0) Eg + e—ﬁz fO T s (D) Eg

Bthat is (A(s) — AId)Wx(s) # 0 and (A(s) — AId)2W, (s) = 0.
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Similarly, if p(m,£¢) = 0, there exist C € GL(3,C) and a periodic map P : R —
GL(3, C) with least period wy, ¢ such that

C=B(s) - P(s) D(s) T(s),

(5.16) B S 162X9(m, 0) 5
T(s) = Idsxs + </0 Gt 3)\2(m’£))2dt> E2.

We now prove that, if p(m,£) < 0, then there are no closed stings with characters
(m, ). By contradiction, suppose that «y is periodic. Then, B is a periodic map too.
Hence, its Hilbert-Schmidt norm ||B||gs is a bounded function. Assume p(m,¢) < 0.
Then,

)\l(m) 6) = 2)‘m,€7 )\Z(ma K) - _Am,f - iTm,(a )\3(ma g) = _)\m,l + Z'Tm,ev

where A, ¢, Tm ¢ € R and 7, ¢ > 0. Observing that

/S dt / (45 = BAm)dt | o / dt
= 1Tm
o 46 +3xa(m,0) ~ Jo (45— 3hm0)? +972, )y (4K = 3Amg)? + 972

m, L
and using (5.15), we get”
IBfisIPlifs > B - Plls =
s dt _ s d
_ ||Cl||2 + 63677"1 Jo (4”*3>‘m‘;)2+9772mé HCQH2 +e 367m.e Jg (4~73A,,n,1,t)2+97,2n,e ||CB||2,
where C; are the column vectors of C. This implies that |B| s is unbounded.

Similarly, if « is periodic and p(m,£¢) = 0, then A;(m,¥) = =2\, ¢, Aa(m, {) =
As(m, £) = Ap,¢ where A, o > 0. From (5.16) we obtain

IBfisIPllfs > B - Plls =

5 162M, 0 dt 5 162X dt
= [ICf3 = - Cal|* — 2Re((C2,C3)) ) -
H ||HS+A (4H+3)\m,€)2 </0 (4K/+3)‘m,€)2|| 2” Re(( 2 3)))

Hence, ||B||lus is unbounded. So even in this case there are no closed strings.
Suppose p(m,f) > 0. Keeping in mind (5.15) and taking into account that P is
periodic with least period wy, ¢, then B is periodic if and only if

3 Wm,, e dS
5.17 —
(5.17) T /0 4k () + 3X;(m, £) €Q

j=1,2,3. From (5.4) it follows that the above integral is equal to ©;(m, £). This
proves that a string with p(m, £) > 0is closed if and only if ©;(m, ¢) € Q, j = 1,2, 3.
From (5.15) we have

i 53 s dt
(5.18) det(Cf1 -P) = 66 i o TN (. 0)
Since det(P) is a periodic function with period wi, ¢, then (5.18) implies that

O1(m, L) + O2(m, £) + O3(m, £) =z 0. Therefore, if O3(m,l),O3(m,£) € Q, then
©1(m,¢) € Q. This concludes the proof of the Theorem. O

7in this context, || - || and (-,-) are the standard norm and hermitian inner product of C3.
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6. THE PERIOD MAP

Denote by D (see Figure 4) the planar domain {(m,¢) € (0,1) x RT/¢ > [(m)},
where

27
(6.1 fm) = \/(m —2)(1+m)2m —1) +2(1 + (m — 1)m)*/*

Definition 6.1. Let ©3 and O3 be the real-analytic functions defined in (5.6). We
call © : (m,l) € D — (O2(m, L), O3(m, L)) € R? the period map of the total strain
functional. By construction, © is real-analytic and non-constant.

10 06
0.4

8
0.2

6
0.0

4
-0.2

2
o -04
0 0.6

0.0 0.2 0.4 0.6 0.8 10 "“os -0.4 -0.2 0.0 0.2 0.4 0.6

FIGURE 4. The domains D (left) and M (rigth), the dark portion of the ellipse.

Definition 6.2. The monodromic domain is the planar domain (see Figure 4)
defined by

M={(r,y) eR*: 2 +ay+y?* <1/d, 2 —y >0, x+y>1/2}.

Remark 6.3. The boundary of the monodromic domain (see Figure 5) consists of
three vertices P;(1/4,1/4), Py(1/2v/3,1/2+/3) and P3(1/2,0), the segments 7y » =
[P1,P3] and 013 = [P1,P3] and the arc oa3 of the ellipse 22 + xy + y* = 1/4
connecting Py and P3 parameterized by ¢ € [0,1] — (z(¢),y(¢)), where

- Vi-t
Z‘(t) - \/§(1+2 sin(arcsmgkzt)))a

(6.2)

_ i—t
y(t) - 3 COS( arcsinél—zt) )+\/§(1fsin( arcsin§172t) )) .
The content of Theorem 5.3 can be rephrased as follows:

Corollary 6.4. There is a one-to-one correspondence between the equivalence classes
of closed strings and the set D, of all (m,£) € D such that O(m,£) € Q x Q.

Thus, Theorem B can be reformulated as follows.

Theorem 6.5. The period map is a diffeomorphism of D onto M.
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Since the proof is rather technical, we split the discussion into three parts (Propo-
sitions 2, 3 and 4). In the first one we prove that © is a local diffeomorphism. In
the second part we prove the injectivity of © and in the third part we show that
O(D) = M.

Proposition 2. The determinant of the Jacobian matriz J(©) of the period map
18 strictly positive.

Proof. Let @7, : D =R, j=23,a,b=1,2 be the real-analytic functions

o 9 (m,0)+6(m—1)¢>
] 1(m, f) = Al (A((m—D)m 1) e —9A, S(m,0)2) >
P! L(m,f) = 9N (m,£)+6(2m—1)¢2
J - w(m— 1)m1(€(4((m 1()m+1))l4 9Nj(m,L0)2)?
_ 18); (m,£)+12(m—2)¢?
_7 (m 6) T w2 (4((m—1)m+1)€1—9x; (m,£)2)"
36
;22(m 6 = 7(A((m—1)ym+1)A—9x; (m,0)?)

We prove that
63 {amejhm,@ = @1, (m, OK(m) + @}y (m, OB(m),

KO,y = 2y (m K (m) + 82, (m, OE(m),

where K and E are the complete elliptic integrals of the first and second kind
respectively. In fact, Ao and A3 are solutions of the overdetermined system of PDE

| _ 4 (2(1=2(m—=1)m)L8+3(1—2m)L* f (m,£)
(6 4) m f (m,0) § 4(1+(m—1)m)€2—9f(m,0)2
) 8f| _ (m—2)(14m)(2m—1)°+3(14+(m—1)m)e> f(m,€)
Ll mey A(1+(m—1)m)*—9f(m,€)?

and the partial derivatives of the complete integral of the third kind are given by
{8 H‘ _ nE(m)+(m—n)K(m)+(n?—m)(n, m)
o (nm) T

E(m) 2(m— TL)(TE 1)’()L
8ml_[|(n,m) = 2(m—1)(n—m) + 2( :

Then, (6.3) follows immediately from (5.6), (6.4) and (6.5). Using (6.3) we obtain

{det(J(@))|(m = stmp BE(mM)? + (1= m)K(m)? + 2(m — 2)E(m)K(m)) ,

T“bm(m
o(m, €) 4A2(m£)<kgin@ Il,- 23( (1 —m+m2)et —9\;(m, £)2) .

(6.5)

n—m)

Since o(m, £) < 0 and 3E(m)? + (1 —m)K(m)? +2(m — 2)E(m)K(m) < 0, for every
(m,£) € D, then det(J(0)) is strictly positive on D, as claimed. O

Proposition 3. The period map is injective.

Proof. The proof is organized in six steps, a comment and a conclusion.
Step I. In the first step we prove that

(66) Om©a < 0, 097 > 0.

Since 4(1 + (m — 1)m)¢* — 9z (m, €)% > 0, then (6.3) implies that 8,,0, < 0 if and
only if
(6.7)

(6(2m — 1)€% + 9Xo(m, £)) E(m) + (6(m — 1)*£% +9(m — 1)Aa(m, £)) K(m) > 0

and that 9,05 > 0 if and only if
(6.8) 360°E(m) + (12(m — 2)¢€% + 18)2(m, £)) K(m) > 0.
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We prove (6.7): let g(m,£) be the the left hand side of (6.7). We claim that,
for every m € (0,1), the function f,, : £ € (I(m),+o00) — g(m,£)/6(? is strictly
decreasing. From (6.4) and keeping in mind that

69 K= B0y B K
we obtain
, V1 —m+m?cos (% arcsin (p(m, £))) (E(m) + (m — 1)K(m))
Finle =—96v3 : :
£y/p(m, L)
where p and p are as in (5.5). Since
(6.10) E(m)+ (m —1)K(m) >0, Vm e (0,1)
and
(6.11) —1<p(m,f) <1, ¥Y(m,0) €D,
we infer that f] |, <0, for every £ € ([(m), +00), as claimed. Then,
g(ng) = fu(0) > lim_fu(€) = 2(2m — DE(m) + (m — 1)(3m — 2)K(m) > 0.

Now we prove (6.8). The reasoning is similar to the previous one. Let g(m,¥¢)
be the left hand side of (6.8). Then, g(m,¢)/12¢> = 3E(m) + K(m)r(m, ¢) where
r(m,£) = (m — 2 — 2v/1 — m + m?sin(arcsin(p(m, ¢))/3). We claim that, for every
m € (0,1), the function f,, : £ — r(m,£) is strictly decreasing. From (6.4) and
(6.11) we obtain

V1 —m + m? cos (% arcsin (p(m, £)))

F o= —96v3 N <0.
Then,
5(1’;6’2@ = 3E(m)+K(m) fm (£) > 3E(m)+K(m) Jim fm = 3E(m)+3(m—1)K(m) > 0.
Step II. We prove that
(6.12) 0m©3 >0, 0,03 <0.

Since 4(1 + (m — 1)m)* — 9A3(m, £)? < 0, then §,,03 > 0 if and only if
(6.13)
(6(2m — 1)€% + 9X3(m, £)) E(m) + (6(m — 1)*¢% + 9(m — 1)A3(m, £)) K(m) > 0

and 9,03 < 0 if and only if
(6.14) 360°E(m) + (12(=2 + m)¢* 4+ 18X3(m, £)) K(m) > 0.

We prove (6.13): denote by g(m, ) the left hand side of (6.13). Given m € (0,1),
we put £,, : £ € (I(m), +00) — g(m, £)/6¢2. From (6.4) and (6.9) we obtain

£ 1= 48\/1 —m+m? (E(m) + (m — 1)K(m))
" l+/p(m, 0)

hp, (£),
where

(615)  Bm(f) = v3cos (; arcsin ((m. g))) ~ 3sin (; arcsin (B(m. z))) .
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Then, (6.10) and (6.11) imply that £/, > 0. Hence,

g(m, ()
602

=f()> lim f=mE(m)+
£—1(m)

+(=1+m+V1-—m+m?)(E(m)+ (m—1)K(m)) > 0.

Now we prove (6.14). Let g(m, £) be the left hand side of (6.14). Given m € (0, 1),
we consider the function £, : £ € (I(m), +00) — g(m, £)/6¢%. Proceeding as above,

we get
96v1 — m + m?2
£+/p(m,0)

where h,,,(¢) is defined as in (6.15). Then,
gm0 _ £(0) > lim £ =6E(m)+2(-2+m+ 1 —m+m2)K(m) > 0.
602 £—1(m)

Step III. We show that ©5(D) = (1/4,1/2). Since O is strictly increasing with
respect to the second variable, to verify that sup(©5(D)) = 1/2 it suffices to show
that, for each m € (0, 1), the limit of ©3(m, ¢) as £ — +o0 is equal to 1/2. To this
end we observe that

nlg?f (Il(n,m)v1 —n) =

This implies

fle= K(m)hs,(£) > 0,

62
lim 6 =1

m
21 —m’  t—+o0 2Xa(m, £) + 2(1 4+ m)e?

3 3
6.16 lim Oy(m,f)= lim —— = lim ——
( ) £—+o00 2( ) £—+00 F(m7 E) r—0+ F(ma 1/7")

where
F(m,0) = 02(1 —m)(3X2(m, £) + 2(1 + m)€%)(3Aa(m, £) + 2(1 + m)£* — 6me?)).
Note that F(m,1/r) = (1 — m)r=SA(m,r)B(m,r) where

A(m,r) =2(14+m)—4y/1+ (-1 4+ m)msin (a(m,r)),
B(m,r) =—-6m+2(1+m)—4y/1+ (-=1+m)msin(a(m,r)),

1 —27T6+(—2+m)(1+m)(—1+2m)) '

a(m,r) = 3 arcsin ( I (=1t m)m)3/2

We fix m € (0,1). Taking the Taylor expansions of A(m,r) and B(m,r) at r = 0,

we obtain
A(m,m)= 2(1+m)—4y/1+ (=1 +m)msin (a(m,0)) +
+—4\/g VIHCLEm)m o (a(m,0)) r5 +O(r?),

m(l—m)
B(m,r) = 2(1—-2m)—4y/1+ (=14 m)msin(a(m,0))+
AL mm (a(m,0)) 75 + O(r?).

m(1l—m)

Observing that

sin (a(m,0)) = 1-2m cos (a(m,0)) = V3
’ 2,/1+ (m—1)m’ ’ 2,/1+ (m—1)m’
we have
6 6
A(m,r) ~6 <m+ m(l—m)) , B(m,r) ~ h, asr — 0.
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Then, 1im+ F(m,1/r) = 36. This implies glim O2(m, t) =1/2, for every m € (0,1),
r—0 —00
as claimed. Next we prove that inf(©2(D)) = 1/4. Preliminarily we observe that
3(17m)mH(m+1f lfm(lfm),m)

m(m+1+4/1—m(l—m))p(m)

where ¢(m) is the positive square root of

m (m(2\/(m “Omr143-2m)—2/(m—m+1+ 3)+2( (m—Dm +1-1).

Then, ¥ is strictly decreasing and lim ¥(m) = 1/4. On the other hand, ©2(m,¢)
m—1-

(6.17) ¥(m):= lim ©Oy(m,f) =
£—1(m)

is strictly increasing with respect to the variable ¢ and

lim Oz(m,£) =I(m) > linll d(m) =1/4.
m—1—

£—1(m)
This implies that inf(04(D)) = 1/4.
Step IV. We prove that ©3(D) = (0,1/21/3). O3 is strictly decreasing with respect
to the variable ¢. Then inf(©3(D)) = 0 if and only if , liIJP ©3(m,¢) =0, Vm €
—+4o00
(0,1). Indeed, from

1 1
li -
o0 Bhg(m, O + 2(1 + m)B 603’
6me? E(m)
lim II =7
Pl <%1+mWLHMﬂmJym> 1-m
we have
6me>
lim ©s(m,f) = lim 611 (2(1+m)e2+3,\3(m,e) ’ m) _ E(m) lim 1 0
oo PN T oo ml(2(1 + m)2 4 3Xs(m, 0))  w(1—m) totoo B
The functions ¢ and £ — ©3(m, ¢) are strictly decreasing and, in addition
(6.18) lim O3(m,f) =d(m) > lim 9(m) = 1/2V3.
¢—1(m) m—0+

Then, sup(03(D)) = 1/2V/3.
Comment. For every xo € (1/4,1/2) and every x3 € (0,1/21/3), we denote by
Co(x2) and C3(x3) the level curves

Ca(x2) = {(m,£) € D: Oz(m,l) =x2}, Cs(xs3)={(m,f) € D:Oz(m,l) =x3}.

Since the partial derivatives of Oy and ©3 are non-zero at each point (m,¢) € D,
then Ca(x2) and C3(x3) are smooth embedded curves, for every xs and x3. To prove
the injectivity of © we show that Ca(x2) and Cs(x3) are either disjoint or have only
one point of intersection. This follows from the next two steps.

Step V. We claim that there exist a function my : (1/4,1/2) — (0,1) such that,
for every xo € (1/4,1/2), the curve Ca(x2) is the graph of a strictly increasing
differentiable function ¢y, : (ma(x2),1) — R satisfying

 0uOs

6.19 [(m) < px,(m), | = .
(6.19) (m) < pualm), el =-m2|

The function ¢ is continuous and strictly decreasing on [0, 1], is differentiable on
(0,1) and Im(d) = [1/4,1/2V/3]. Its inverse 9! : [1/4,1/2v/3] — [0,1] is continu-
ous, strictly decreasing and differentiable on (1/4,1/2v/3). If ¢ € (1/4,1/2/3), then
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FIGURE 5. Left: the level curves of the components of Oz (blue) and
O3 (red) of the modified period map ©. Right: plot of the modified
period map, the monodromic domain M and the polygonal region R.

m. = 97 1(c) is the unique element of (0,1) such that , l%l(m )62(mc,£) =, =c.
—1(me

If x, > 1/2V/3, we put my(xs) = 0. We prove that, for every m € (0,1), the
equation Oz(m,¥) = x has a unique solution ¢y, (m) € ([(m),+00). Indeed,
fm £ € ((m),+00) = ©Oz(m,¥) is a differentiable, strictly increasing function
satisfying eii{(n )fm(é) = 9(m) < 1/2v/3 and ZEI-P fm(€) = 1/2. Consequently,

there exist a unique @y, (m) € ([(m),+00) such that ©2(m, x,(m)) = x2. Then,
Ca(x2) is the graph of the function ¢y, : m — @x,(m). We prove that ¢y, is dif-
ferentiable and that its derivative is as in (6.19). Since Ca(x2) is smooth, for every
ms € (0,1) there exist a smooth embedding S = (2, 83) : (—¢,€) — D such that
B(0) = (M, @x, (Mmy)) and that B((—e¢, €)) C Ca(x2). Since the partial derivatives of
O, are never zero, the derivatives of 82 and (3 are non-zero, for each t € (—¢,€).
Hence, B2 and B3 are invertible and, by construction, ¢y, = 30 85 L This implies
the differentiability of ¢,,. Differentiation of Oq(m, ¢y, (m)) = xo with respect to
m implies that the derivative of ¢y, is as in (6.19). If 1/4 < x5 < 1/2v/3, we put
ma(x2) = 971 (x2). Let (mu, L) be a point of Ca(x2). We prove that m, > ma(x2).
By contradiction, suppose that m. < ma(x3) and Oz (my, £y) = x3. Since O(m, £)
is strictly increasing with respect to the variable ¢ and 4 is strictly decreasing, then
Xo = Og(mu, by) > e_l}{r(rlm) O2(my, £) = ¥(m.) > H(ma(x2)) = xo. Next we show

that, for every m > my(x2), the equation ©3(m,f) = x5 has a unique solution
¥x,(m) € (I(m),400). In fact, ¥ is strictly decreasing and satisfies

d(m)= lm ©Oy(m,f) < I (ma(x2)) = %o,
L—1(m)+
while f,, : £ = ©2(m, {) is strictly increasing and satisfies

11
1. = e — - = l. .
et Snll) =0(m) <z <5 < 5 = lim Fnl)
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Then, there is a unique px,(m) € (I(m), +00) such that Oz(m, fx,(m)) = x2, as
claimed. Hence, Ca(x2) is the graph of the function ¢y, : m € (my(m),1) —
©x,(m) € (I(m), +00). Using the same arguments as above it is shown that ¢y, is
differentiable and that its derivative is as in (6.19).

Step VI. We prove the existence of a function m3 : (0,1/2v/3) — (0, 1) such that,
for every x3 € (0,1/2v/3), the curve C3(x3) is the graph of a stricly increasing
differentiable function 1, : (0,m3) — R such that

_ Om©s
0003 |(m ey (m))

(6.20) (M) < teg(m) U], =

If x3 € (0,1/4], we put mg(x3) = 0. We show that for every m € (0,1) the equation

©3(m, ) = x3 has a unique solution ¥, (m) € (I(m), +00). Indeed, it suffices to

note that for every m € (0,1), the function £, : £ — ©3(m, £) is strictly decreasing

and satisfies lim f,,(¢) = 1/4, lim £,,(¢{) = 0. Consequently, Cs(x3) is the
L—[(m)t {—~+o00

graph of the function ¢y, : m € (0,1) — 1)x,(m). Reasoning as in the previous
step, one sees that 1)y, is differentiable and that its derivative is as in (6.20). If
x3 € (1/4,1/2v/3) we put m3(x3) = 9~ (x3). We prove that, if (m.,l.) € C3(x3),
then m, < ms(x3). By contradiction: suppose m, > msz(x3). Since O3 is strictly
decreasing with respect to the variable ¢ and ¥ is strictly decreasing, then

x3 = O3(mu, ly) < , li[I(n )@3(m*,€) = J(my) < I(ms(x3)) = x3.
—I(m

Finally, we prove that, for every m € (0, ms3(x3)), the equation O3(m,£) = x5 has
a unique solution ¢y, (m) € ([(m),+00). In fact, O3 is strictly decreasing in the
second variable, ¥ is strictly decreasing and
ZJ?(T@ﬁ ©3(m, £) = ¥(m) > J(ms(x3)) = xs, eiﬂfw ©3(m, ¢) = 0.

Then, C3(x3) is the graph of the function vy, : m € (0,m3(x3)) — ¥, (m). Rea-
soning as in the previous cases one proves that vy, is differentiable and that its
derivative is as in (6.20).

Conclusion. We conclude the proof showing that Ca(x2) and Cs(x3) are either
disjoint or else have a single point of intersection. If Co(x2) N C3(x3) # 0, then
(ma(x2),1) N (0, m3(x3)) is a non empty open interval I, , C (0,1) and (m.,¢s) €

CQ (XQ)ﬂCfﬁ (XS) lf a‘nd Only lf my € Ixz,xs and (m*7 E*) = (m*7 @Xz (m*)) = (m*a d}Xs (m*))

From (6.19) and (6.20) and keeping in mind that 9,02 > 0, 9,03 < 0 and that
amegag@3 — 8@@28m@3 > 0, we have

. 8771@282@3 - 8692877163

I
x2 — Px = >0
(Psz = ¥s) . 00:005  lmot)
Then, ¢y, — Yx, vanishes at m, and its derivative is strictly positive at its zeroes.
So, m, is its only zero. O

Proposition 4. The image of © coincides with the monodromic domain

Proof. The proof is subdivided into four intermediate steps and a conclusion.
Step I. The image of the period map is contained in the polygonal region (see
Figure 5)

R={(z,y) eR*:x—y>0,04+y>1/2,1/4 <z <1/2,0 <y <1/2V3}.
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The inequalities 1/4 < O3 < 1/2 and 0 < ©3 < 1/2v/3 have been verified in the
proof of the previous proposition. For every m € (0, 1), the function £ — O3(m, {)
is strictly decreasing and ¢ — ©y(m, ) is strictly increasing. Thus

¢ e ([(m), +00) = O3(m, £) — O3(m,£) € R
is strictly increasing, for every m € (0, 1). Since

lim ©3(m,l) = lli(m)+ O3(m, ) =9(m), Ym € (0,1)

£—1(m)+ )4
then, ©; — ©3 is strictly positive on D. From (6.3) it follows that 9y(©2 + O3) is
strictly negative on D. Then, ¢ € (I(m), +00) = O2(m, £) + O3(m, ) € R is strictly
decreasing, for every m € (0,1). In the proof of Proposition 3 we showed that
ziiinoo O2(m, £) =1/2 and that eEToo O3(m, ¢) =0, for every m € (0,1). Hence

O2(m, £) + O3(m, ) > EETOO(GZ(m’K) + O3(m, £)) =1/2.

Step II. We prove that ©(D) C M. The arc o3 (see Remark 6.3 and Figure
5) divides the interior of R into two disjoint connected sub-domains: M and the
region above g 3. Since ©(D) N M # 0, it suffices to check that ©(D) Nog 3 = 0.
To this end, we consider the reparametrization of D defined by

(6.21) F:(m,h) € Q:=(0,1) x (0,1) = (m, (1 —h)~Y%(m)) € D.

Let © be the modified period map, defined by ©=00F (see Figure 5). From (6.3)
and (6.21) we obtain

V1 — ha(m)
ra(m, h)b(m)’

V1 — ha(m)rz(m,h)

(6.22) 9Ol (mny = b(m)

amé3|(m,h) = -

where

a(m) = ag(m)E(m) + ax (m)K(m),
ap(m) = =21+ /1 + (m — 1)m) +m(4 +3y/1+ (m — L)m)+
+3m?(\/1+ (m — D)m —2) — 2m3*(m — 2+ /1 + (m — 1)m),
axc(m) = (1=m) (201 + T+ (m = Dm) = m(3+2y/T+ (m— m)) +
m*(1 —=m)(8 —m —+/1+ (m —1)m),

and
ro(m,h) = 1+251n( arcsin(qz(m, h))),
\/gcos( arcsin(qs(m, h)))Jrsm( arcsin(qs(m, h)))
rg(m,h) 1+cos( arc51n(q3(m h))) \/gsm( arcsin(qg(m, h)))
h h2m +2(14+v1— m+m2)+m2(2\/1 m+m?2—3)—m(3+2vV1— m+m2)
qz(m’ ) 2(1—m+m?2)3/2
gs(m, h) = —2h+3hm+3hm?—2hm>+2(14(—1+m)m)>/2 —2h(1+(— 1+m)m)3/2

2(1—m+m?2)3/2

Observing that a and ry are strictly positive and b and r3 are strictly negative,
one sees 8m@2 and Bm@g are strictly negative on Q. Thus, @2 and @3 are strictly
decreasing functions with respect to the variable m. On the other hand, the arc
02,3 is parameterized by

B:he(0,1) — lim O(m,h),
m—0

b(m) =2mm(m —1)(1 —m+ m2)\/3(m —2)(1+m)(2m — 1)+ 6(1 + (m — 1)m)3/2
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whose components (02, 83) are respectively given by z(h) and y(h) as defined in
(6.2). Note that 3y is stricly increasing and that 3 is strictly decreasing. By
contradiction, suppose that Im(©) N g3 # . Then, there exist (m., h.) € Q and
k. € (0,1) such that é(m*, hi) = B(ks). Consequently, we have

Ba(hs) = lim ©s(m, h.) > Oa(m., he) = Ba(k.) = lim Oa(m, k),
Bs(hy) = lim Os(m,hy) > O3(my, hy) = Bs(ky) = Lim Oz(m, k.).
m—0 m—0
Since 2 is strictly increasing and (s is strictly decreasing, we get h, > k, and

ks« < h,. We have thus found a contradiction.
Step III. Note that

Vv1-—

@ < Cyflog(1—m)|, 0< V3 VT=T ra(m,h) < 1/2,
b(m) y(m, h) ) 2

where C; is a positive constant and (m,h) € [0,1) x [0,1]. From these bounds and

using (6.22) we obtain
(6.23) ‘amé2|(m,h)’ < Gy |log(1 —m)],

f”méskm,m’ < C1[log(1 —m)],

for every (m, h) € [0,1) x [0,1] and some positive constant Cy.
Step IV. Now prove that

5 Cy .
OhOj|(m,n)| < , =2.3, Y(m,h)€[0,1) x (0,1/2),
08slmi| < (m.h) € [0.1) x (0.1/2)
(6.24) =
OO | < ————2 =23 ¥(m,h)e(0,1)x(1/2,1),
985l | < R (m.h) € (0.1) x (1/2,1)

for some positive constant Cy . From (6.3) and (6.21) we obtain

g(m)ss(m, h)ts(m, h)
31— h)

g(m)SQ(m h)ta(m,h)
3(1—h)

(6 25) 8}1@2‘(7-” h) = ahé3|(m,h) =

where

(m—2)(1+m)(2m—1)+2(1+(m— 1m3/2
g(m) = V=2 12 ()

sa(m,h) =3E(m)+ (m—2+2vV1—-—m+ m2 sin (%ﬂmh)))) K(m),
s3(m,h) = 3E(m) + (m — 2+ 2v1 — m + m? (\/gcos(w)—

_ sin( arcsin(cgg(m,h)) )))K(m),
t2(m7 h) = =

1-2 COS(LW) )

_ —1
tS(m, h) - 1+COS(2arcsin(g2(m,h)))_\/gsin(Zarcsin(gz(m,h)))

The function g is positive on [0, 1) and bounded above by a positive constant C on
[0,1]. The function to satisfies

(6.26) [ta(m, k)| (1 —m?)Vh < V1 —h,
for every (m,h) € [0,1) x (0,1/2). Similarly, s3 and t3 satisfy
3T

(6.27) 0 < C" < 3E(m)+(m—24++v1—m+m?)K(m) < s3(m,h) < 3E(m) < 5
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for every (m,h) € [0,1] x [0,1], and
(6.28) —V/1—h < 2t5(m, h)(1 —m?)Vh <0,
for every (m,h) € [0,1) x (0,1/2). Since sz is non-negative and bounded above, the
bounds in the first line of (6.24) follow from (6.26)-(6.28). The functions ty and t3
satify
0 < 3V3 tao(m, h)m(1l —m) < V2
and
—V2/3 < t3(m, h)(1 —m)m < 0,
for every (m,h) € (0,1) x (1/2,1). Then, using (6.27) and recalling that g and sq

are non-negative and bounded above, we see that 0,0;, j = 2,3, fulfill the bounds
in the second line of (6.24).

Conclusion. We are now in a position to prove that C:)(D) = M. Preliminarily,
we observe that

TO’Q(h = lim (:jg 1=

) e (m, h) = V3(1+2 sin(arcsin(1—2h)/3))’
— 3 O _ 1-h
T0,3(h) := mll_{]%+ O3(m, h) = V3(14~/3 cos(arcsin(1—2h) /3) —sin(arcsin(1—2k)/3))
T12(h) == lim ©3(m,h) = 3 — L arcsin(1 — 2h),
m—1—
m1,3(h) == lim ©Oz(m,h) = § + = arcsin(1 — 2h),
m—1—
To,2(m) := lim Oz(m,h) = J(m),
h—0t+
T0,3(m) = }lim O3(m, h) = 9(m),
—
Ti,2(m) := lim ©3(m,h) =1/2,
h—1—
T1,3(m) := lim ©3(m,h) =0,
h—1—
Then,

e 19 :hel0,1] — (10,2(h), 70,3(h)) is a parametrization of o3 3,

o1 :hel0,1] = (m,2(h), m 3(h)) is a parametrization of the segment o 3,

e Ty :hel0,1] — (70,2(h),70,3(h)) is a parametrization of the segment oy 2,

where 02 3, 01,3 and o7 2 are defined as in Remark 6.3 (see also Figure 5).

By contradiction, suppose that Im(é) is properly contained in M. Then, there exist
q € M such that q € 6(Im(é)). Let {qn fnen C Im(0©) be a sequence converging to
q. For each n € N, we choose d,, = (my, h,) € Q such that (:)(dn) = q,. Without
loss of generality, {d, }nen converges to d. = (m.,h,) € Q. Since q ¢ Im(0), the
point d, belongs to Q. There are four possible cases: m, = 1 and h € [0, 1], or
ms =0 and h € [0,1], or h, =0 and m, # 0,1 or else h, = 1 and m. # 0, 1.

Case 1: m, =1 and h € [0,1]. From (6.23) we have

\/(8m@2<m,h))2 + <3mé3\<m,h>)2 < Cllog(1 —m)],

for some positive constant C. This implies

A6 n0) = [ (0u8lun) + (08slun) am <
1

<C llog(1 —m)|dm = C(1 = m,, —log(1 — my,) 4+ my log(1 —my,)).

My
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Hence,

Tim d(6(d), 71(h)) < Tim d((dn),i(ha)) + lim d(71(hn), 71(Ra) ) = 0.
Thus, q = 71(hs) € OM, contradicting the hypothesis that g € M.
Case 2: m,, =0 and h € [0,1]. We assume m,, < 1/2, for every n. From (6.23) we
infer that (8mé2|(m,h))2 + (3mé3|(m,h))2 is bounded on (0,1/2) x (0,1). Reasoning
as above, we obtain lim d((:j(dn)77'1(h*)) = 0. Hence, 9 = 71 (h.) € OM. So, even
in this case, we haven:()orile to a contradiction.
Case 3: m, # 0,1 h, = 0. We assume h,, < 1/2 and m,, < m.. < 1, for every n.

Then, (6.24) implies that (Bh(:)2|(m h))2 (8h(:)3|(m h))z is bounded from above by
C2/h on (0,m.) x (0,1/2), for some positive constant C. Hence,

hn - 2
d(e(d 7ol m* / \/ ahe)z|(m h) (ah@3|(m,h)) dh < 2C\/hy,.

Reasoning as above, we deduce that q = 7o(m.) € M. So even in this third case
we have reached a contradiction.

Case 4: h, =1 and 0 < m, < 1. We may assume h,, € (1/2,1) and 0 < M. <
My < Mass < 1. From (6.24) we infer that (ahé2|(m7h))2 + (8hé3|(m7h))2 is
bounded from above by C?/(1 — h) on [Mus, Maxs] X (1/2,1), for some positive

constant C. Proceeding as before, this implies that d( (dn),71(m.)) tends to 0
as n — oo. Then, q = Ty(m,) € OM. So even in the last case we reached a
contradiction. g

7. QUANTIZATION
7.1. Characteristic numbers.

Definition 7.1. Let D, = {(z,y) € D : O(x,y) € Q?} and ~ be the canonical
parameterization of a closed string with characters (m, ) € D.. We call (g2,¢3) =
©(m, £) the modulus of . The positive integers h;, k;, j = 1,2, such that h; /k; =
2¢2 + g3, ha/ka = g3 — ¢2 and that ged(hy, k1) = ged(ha, ko) = 1 are said the
characteristic numbers of «y. The integer n = lem(ky, ko) is the wave number of ~.
A symmetry of v is an element [A] € G, such that [A] - |[7]| = |[7]]. The set of all
symmetries of v is a subgroup Gv of G.

Remark 7.2. The cr-curvature &, ¢ of v is the periodic function with least period
Wme = 2K(m)/¢ defined in (5.4). From (5.15) and (5.17) it follows that -~y is
periodic, with least period nw,, . Its trajectory decomposes as the disjoint union
of n-fundamental arcs |[v,]| = Y([(n — 1)wm,¢, nwm ), n = 1,...,n, referred to as
the indecomposable waves. The indecomposable waves are congruent each other
and their total strain is wy, ¢. We may think of wy, ¢ to as the wavelength of . The
total strain of 7y is nwy, 4.

Definition 7.3. The stabilizer of the momentum m,, of v is a maximal compact
Abelian subgroup T,2Y c G. The singular orbits O'ly and (9,% of the action of T,QY
on § are said the azes of symmetry of v. Let B, is a Wilczysnki frame, then
Ry = [By(wm.e) - By(0)7'] € T2 is called monodromy of ~.

Definition 7.4. A closed string + is said in a symmetrical configuration if Tgf =T?,
where T? is the maximal torus defined in (2.4). Every closed string is congruent
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to a symmetrical configuration. The axes of symmetry of a symmetrical configura-
tion are the chains O; and Os considered in Definition 2.1. If ~ is a symmetrical
configuration and if L € G is as in (2.7), then, v¥ = L - is another symmetrical
configuration, the dual of .

7.2. The proof of Theorem C. We now prove the third main result of the paper.

Theorem C. Let v be a closed string with characteristic numbers (hi,k1,ha, ks).
Then, é.y is a non-trivial subgroup of order n contained in a unique mazimal torus
T% and, in addition, |[v]| doesn’t intersect its axes of symmetry and the integers
1; = nhy/ke, 15 = —nhy /ky are the linking numbers of v with the symmetry axes.

Proof. The proof is organized into in five parts.

Part I. We build, for every (m,¢) € D,, a natural parameterization 7,, ¢ of a closed
string with characters (m, ). Our construction is based on what has been shown
in the subsection 5.2 (particularly in the proof of Theorem 5.3), therefore we are
going to adopt a notation consistent with that one already used.

Denote by ®;, j = 1,2, 3, the angular functions

(7.1)
2
By sl ) = [ = 1 (s g 2an(f ), m)
0 4km.e(u) +3X;(m,£) C(2(1 4+ m)e2 +3X;(m, L))
We put
ri(m,f) = V6

Vs (m,0) =1 (m,£)) (Aa (m,£)— X2 (m,£))
V6

ra(m,f) = VO (1,0) =22 (m,£)) (a (1m,6) — A1 ()’

0 = 6
3 ) = ) e )

and we define
(7.2)
z1(s|m, ) = r1(m, €)\/Aa(m, £) — X (m, £)\/46m 0(s) + 3Az(m, £) e~ Pa(sIm:0)
2zo(s|m, £) = ro(m, €)\/4km o(8) + 3o (m, £) e~ ®2(sImb),
z3(s|m, €) = r3(m, €)\/As(m, ) — Ao (m, £) /A 0(s) + 3A1(m, £) e~ ®1(sIm.6)
Let ¢ € GL(3,C) be as in (2.5) and ~,, ¢ : R — S be defined by

Yoo 28— [L- T (21(8|m, £), 22(s|m, £), 23(s|m, £))].

We prove that v, ¢ is a natural parameterization of a closed string with characters
(m, ). To this end we consider any natural parameterization v of a closed string
with characters (m, ) and Wilczynski frame B. Let Z; : R — C*>!'—{0}, j = 1,2,3,
be defined by

(7.3) Z1 =r3(m, OOWx,(m,eps  Z2 = 12(m, OWinymyey,  Zz = r1(m, )W, (m0),

where Wy (im0, j = 1,2,3, are as in (5.11). From the proof of Theorem 5.3 it
follows that B - Zy, B - Zy and B - Z3 are constant eigenvectors of the momentum,
paired with the eigenvalues As(m, ), Aa(m,£) and Ai(m,£) respectively. It is a
computational matter to check that (Z;,Z;) = €;0;5, €1 = €2 = 1, €3 = —1 and
that Q(Z1,Z2,Z3) = 1. Then, Z|, = (Z1(s),Z2(s), Z3(s)) is a unimodular, pseudo-
unitary basis of C>' and B - Z = ¢, where € is a constant unimodular, pseudo-
unitary basis of C*!. Let M be the unique element of G such that M - ¢ = §l.
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By construction, the first column vector of - Z~! is a normalized lift of 7, , and
B,/= #-Z~1 is a Wilczynski frame along Ym,¢- Since B,,, , = M-B, then v, , and
«y are congruent with each other. This shows that 7y, ¢ is a natural parameteriziation
of a closed string with characters (m, £).

Part II. We prove that v, ¢ is a symmetrical configuration, the standard symmet-
rical configuration with characters (m,¢). By construction,

(74) Z_1|s _ (6_i¢)3(slm’Z)E% + e—i¢2(s|m,£)E% + ei(@g(s\m,£)+¢>3(s|m,é))Eg) . 1:)|87
where P is periodic, with least period wy, ¢. Then, (7.4) and (7.1) imply that the
monodromy R, ¢ of v, ¢ is given by

(75) le _ [Ll (62i7rq3E% + e2m‘q2E§ + e*21Ti((13+q2)E§) 'ﬂil],

where (g2, g3) is the modus of v, o. Hence, R, € T?.
To conclude the reasoning we show that T2 is the stabilizer of the momentum.
From (7.5) we have

(7.6)
R = ;n,é ;/n,b
Tih 27ih
e =675 (cos(n ) (B + B9) + sin(n ) (B} — BY)) + e 0 B3],
2mih. . 4mih
e = e7 5 (B4 BY) e 5 B3,

Then, phoR;njop;l = Ro.(27hy /kq) and p;Lo[L]-R;;L7€-[L]_lop;1 = Ro,(—27hsy /ke),
where Ro. () is the rotation of an angle 6 around the Oz-axis of R3. Hence, Rins
has order k; and RZM has order ky. Consequently, R, ¢ is an element of order
n > 1 belonging to T? and stabilizing the momentum m,, ¢ of 7, ¢. This implies
that T2 is the stabilizer of m,, ¢ and that v, ¢ is a symmetrical configuration.

Clearly, it suffices to prove the Theorem in the case of the standard symmetrical
configurations

Part III. We show that the symmetry group ém’g of ym,¢ is generated by R, ¢.
Since By, o = U-Z7! and Rye = [Be(wime) - Bine(0)7!] then, using (7.4) and
(7.1), it follows that v ¢(s + wm ) = Rm,e - Yme(s). Hence, Ry, ¢ € Gmf. Let
[C] be a symmetry of v, ¢ then, for every s, € R, there exist an open interval I
containing s, and a strictly monotonic differentiable function f : I — R such that
C - Ym,e(8) = Ym,e(f(8)), for every s € I. In particular, v, ¢ o f and v, ¢ are both
natural parameterizations. From this we infer that f(s) = s+ ¢, for some constant
¢ (see Remark 3.8). Thus, there exist a sequence {¢, }nen and a covering {I, fnen of
R by open intervals such that 7, ¢|1, is injective and that C-vy, ¢(s) = Ym.e(s+cn),
for every s € I,,. This implies that ¢, = ¢, = ¢, for every n,m € N. The constant
¢ is a period of K, ¢, ie ¢ = pwp, ¢, for some p € Z. Therefore, we have C = an,e.
Part IV. We prove that [[Ym.e]| N O1 = |[Yme]| " O2 = 0. The chain Oy is
contained in the complex line 22 = 0 of CP?. Since za(s|m, £) # 0, for every s € R,
then |[Ym.e]| N O1 = . Keeping in mind that L interchanges the role of O; and O
then, v, ¢ N Oz = 0 if and only if fyfn_f NO; = . By using (2.7) and (7.2), we get

that the second homogeneous component zg of fyfm ¢ is given by

irs(1m, £)rs (. £) (Aa(m, €) — Xg(m, 0))y/Ahip, ¢ — 3N (m, £) €510,

Then, zg(s) # 0 for every s € R. This implies that 'an,z NO; = 0.
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Part V. Let 1k; and lks be the linking numbers of v,, ¢ with its symmetry axes O;
and O respectively. We show that 1k; = 1; and lkg = 15. To this end we consider
the Legendrian curve ¥, ¢ = pp © Yme : R — R® and its Lagrangian projection
Qe @ R — R? (ie the projection of 7, onto the Oxy-plane). By construction,
Am, ¢ is periodic with least period nwy, ¢ and |[m, ¢]| doesn’t intersect the Oz-axis.
The plane curve o, ¢ is periodic, nwy, ¢ is one of its periods, and |[a;, ¢]| does not
pass through the origin. Consequently, the components x,, ¢ and ¥, ¢ of ¢ can
be written as Tm.¢ = 0m.ec0S(Vm.e)s Ym.g = Om e 5i0(Vpy ), where gpm e : R — RT
and Yt R — Sl o R/27Z are smooth functions. Let 71 and 72 be the integers
defined by n = 1k and by n = 7pks. Using (7.5) and (7.6) we get

2

ki1h
Pho (Rme)* = Ro. <27T 11{ 2) O Ph.

This implies

:)/'m,é(s + klwm,é) = ROz(Qﬂkth/k2):}7m,Z(5)7
im0 (8 + Kiwim, ) = Ro(2mkiha /ka)otm, e(S),

where Rp(6) is the rotation of an angle § around the origin of R?. Thus, g, ¢ is
periodic and kjw,, ¢ is one of its period while ¥, ¢ is a quasi-periodic function such
that

kihy

(77) ﬁm,l(s + klwm,f) = ﬁm,@(s) + 27 ko
2

Since k; = Ik(Jm,¢, Oz) and expressing 1k(Fm ¢, Oz) via the Gaussian linking integral
[48], we get

b L[ ( [ Gt) D i) x B dt) N

4m Jo —c0 [T e (5) — t]|?

On the other hand, from (7.2) we have

[ Ot =) Gl ) 2B, _

~o0 [Fm e (s) — E[|?

+oo T sy ,(8)—x ,(s s
- W) = el
oo (@me(8)2 + Yme(8)2 + Zme(8)2 + 12 — 2tz 0(5))3/ ,
Using (7.7), we obtain
1 Rm.. £ 1 T1ik1Wm 0 T1k1ho ho
Ik, = g/o 0y, 0(s)ds = ), me(s)ds = Y nk—2 =1.

To prove that lko = 15 we consider the dual configuration vfn’ ¢ =L Yme Since
1k (Ym0, 02) = k(L™ - fyfn’e,L_1 - 0y) = lk(vfnj,(’)l), it suffices to prove that
lk('yihe, 0;) = 15. The monodromy of ’Ygz,e is given by

RE =L Ry L7 = [(eH ™ E] 4 e 202 E2 — 2 4 ™0 E) - 4],

Then
(7.8) Ph © (an,e)“ = Ro:(—27koha /k1) © pp.
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Let ifn,e =ppo 'an,z and aﬁnl be the Lagrangian projection of :Y'fn,é‘ Denote by of

and by ¥* the radial and the angular functions of afn’ - From (7.8) we get

3. (5 + Kawn,¢) = Roa (—2mkohy /K1), 4 (s),
ab, (s +kowme) = Ro(—2mkohy /K1 o, ((s).

The radial function of is periodic and koW ¢ is one of its periods while

(79) 1911(8 + kgwm’g) = ’(9’1(8) - 27Tk2h1/k1.
Then,
~ 3. (E () X
1 [awWm.e T (Y o(8) —tk) - (7,4 (8) X k
lly Ik(+. ,, Oy) — 7/ / (T e )~n )- (3 Y (s) )dt e —
™ S V N =
1 W, ¢ 1 TokoWm, ¢ koh k
=— 9 (s)ds = —/ 9 (s)ds = B N Y
21 Jo 21 Jo ky hy

O

7.3. Examples. We use the notation |n,1;,15 > for the standard symmetrical
configuration with wave number n and linking numbers 1; and 15. The Maslov index
of |n, 11,15 > is equal to 15+1;. The cardinality o(n) of the set C, of the equivalence
classes of closed string with symmetry group of order n exhibits a quadratic growth
(see Figure 6). There are no closed strings with wave number n < 7. In Table 1 we

3500 .- . gL ORELE IR SEOAE X3 0 BT 14 :;‘. 1MoLy
s A UGN

i1 0.03
2500 (e A il dah s
1 . . .

2000

0.02
1500

1000
0.01

501

S

Al
- .
.
Gyl
"
.
_—Mﬁ
50 100 150 200 250

FIGURE 6. o(n) (left) and o(n)/n? (right), 7 < n < 300; red = n even,
blue = n is odd but not prime, black = n is prime.

300 50 100 150 200 250 300

list the standard symmetrical configurations with wave numbers 7,8,9 and their
basic invariants: characteristic numbers hi, k1, ha, ko, characters (m, £), wavelength
Wm,¢, total strain &, Maslov index t, Bennequin-Thurston invariant tb and the
knot type kt. Figures 7 and 8 reproduce the corresponding standard symmetrical
configurations. The characters (m,¢) are computed with numerical methods. The
invariants, v and tb are found via numerical integration of the total curvature of
the Lagrangian projection of pj o v and of the Gaussian linking integral of pp oy
with pp, o’y+€E, 0<e<x1]21, 48].
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string (%, %) (m,?) Wi e S v | th kt
7,1,-5> | (5,%) |(0.894052,2.78109) | 1.83449 | 12.8414 | —4 [ —5 | trivial
8,1,—6> | (3,%) | (0.762709,2.13126) | 2.04567 | 16.3654 | —5 | —6 | trivial
9.1,-7> | (%,%) | (0.616723,1.82908) | 2.15197 | 19.3677 | —6 | —7 | trivial
9.2,—6> | (2,2) |(0.906698,3.05894) | 1.70697 | 15.3627 | —4 [ —3 | trefoil

TABLE 1
The experimental evidence suggest that a standard symmetrical configuration with
1; = 1is a trivial Legendrian knot with tb = 15 and v = tb + 1. Thus, a string with
1; =1 can be obtained from a cycle, via |12| negative stabilizations [14, 16].

FIGURE 7. |7,1,—5 > (left) and |8,1, —6 > (right).

In Table 2 we list the basic invariants of two standard symmetrical configurations
with less obvious knot types. Figure 9 depicts these two strings.

string (&) (m, 0) Win, 0 S v [ th | kt
113,3,-9 > | (33, 73) | (0.70944,2.14341) | 1.94971 | 25.3462 | —6 | —1 | 819
21,5,—15 > | (2, 2%) | (0.36972,1.71141) | 2.05338 | 43.1209 | —10 | 9 | T(7 5

TABLE 2

The shape of the strings becomes more complicated when n, 1; and 1o increase.
Figure 10 reproduces the standard symmetrical configurations |70,2,—42 > and
[112,21,—80 >. As one can see from the pictures, the stands of the string may
approach each other and it is not always evident if the string is simple or not.
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