
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (32nd cycle)

Security and trust in a Network
Functions Virtualisation

infrastructure

Marco De Benedictis
* * * * * *

Supervisor
Prof. Antonio Lioy, Supervisor

Doctoral Examination Committee:
Prof. Billy Brumley, Referee, Tampere University of Technology
Prof. Panagiotis Papadimitratos, Referee, KTH Royal Institute of Technology
Prof. Iluminada Baturone, Universidad de Sevilla
Prof. Francesco Bergadano, Università di Torino
Prof. Maria Grazia Fugini, Politecnico di Milano

Politecnico di Torino
July 6, 2020

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Marco De Benedictis
Turin, July 6, 2020

www.creativecommons.org

Summary

Modern digital infrastructures are undergoing a significant evolution thanks to
the advantages offered by virtualisation techniques in terms of flexibility, scalability
and the overall reduction of hardware-related costs. More specifically, the Cloud
computing paradigm foreshadows large scale virtualisation as a viable technology to
manage on-demand allocation and distributed deployment of computing resources
in a dynamic environment. More recently, virtualisation has gained momentum in
the networking domain as well, where network operators are exploring technologies
to enhance the flexibility of their infrastructure and to reduce the overall provi-
sioning, maintenance and upgrade costs associated to traditional appliances. In
this regard, the latest trend concerns the implementation of networking functions
(i.e. routers, switches, Network Address Translation boxes) in softwarised instances
that run on top of commodity hardware in a data-center. This aims to achieve
a higher degree of scalability of network functions when compared to traditional
hardware-based infrastructures, wherein each topology change and service deploy-
ment typically imply a physical manipulation at the appliance level. Moreover,
the operators are interested in reducing the vendor lock-in, which often leads to
substantial upgrade and maintenance costs.

From a security perspective, virtualisation exposes network infrastructures to
different families of threats. In particular, software modules may include vulnera-
bilities that can be exploited remotely, compromising both the network itself and
its clients’ privacy, both at virtualisation and networking level. Additionally, the
softwarisation of the network makes it more prone to software bugs introduced
by the developers. Given the privacy sensitive nature of public networks, security
and trustworthiness of the platform are considered paramount. Because of this,
network virtualisation should be supported by appropriate means to ensure that
the software domain is protected against manipulations and that an attack can be
detected by the monitoring systems.

In this thesis, we propose a platform to assess the trustworthiness of a soft-
warised network infrastructure. This offers a generic approach to integrity veri-
fication so that heterogeneous virtualisation platforms can be protected. This is

iii

particularly relevant in today’s cloud infrastructures, that adopt different virtual-
isation strategies ranging from traditional virtual machines to more light-weight
forms of virtualisation (i.e. containers). In the proposed approach, adherence to
existing standards on network softwarisation and hardware platform trust is consid-
ered paramount to ensure market readiness of the solution, and ease its application
by existing frameworks. We have developed the system within the SHIELD Hori-
zon 2020 project, that aimed to the definition of a secure platform based on an
interplay of network softwarisation, trusted computing, and artificial intelligence
to both support the deployment of networking functions in a operator network and
to monitor their life-cycle against external attacks or malfunctions. Compared to
existing approaches, the system offers a generic approach to network integrity ver-
ification, making it applicable to heterogeneous hardware platforms. Moreover, it
targets elements acting both at the physical and virtual level to protect the entire
cloud software stack. This work addresses the current limitations in the state of
the art in the field of security and trust of a virtualised network infrastructures
with the following contributions: (1) a trust architecture tailored for a highly-
virtualised environment that targets both the physical and the virtual domains of
execution; (2) an integrity verification technique that enables run-time attestation
of lightweight virtualised instances against manipulation by external attackers; (3)
a monitoring process that enhances the threat response capabilities in a softwarised
network infrastructure by integrating the previous contributions in a cloud practical
scenario.

iv

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Cloud Computing . 2
1.2 Network virtualisation . 3
1.3 Security and privacy of virtualised networks 4
1.4 Motivation of this work . 5
1.5 Bibliographic foundation . 7
1.6 Organisation of the thesis . 8

2 Background 11
2.1 The NFV paradigm . 11
2.2 Exploitation of containers in NFV networks 14
2.3 NFV security analysis . 18
2.4 Impact of containers on NFV security 20
2.5 Trust assurance of softwarised networks 22
2.6 Open issues . 26

3 Architecture 29
3.1 Target use cases . 29

3.1.1 Security-as-a-Service . 30
3.1.2 Protection of the CSP infrastructure 31

vi

3.1.3 Security information and event management 32
3.2 Requirements . 32
3.3 Design overview . 33
3.4 Process . 36
3.5 Cloud Verifier . 37
3.6 Whitelist Database . 41
3.7 Attestation Driver . 43
3.8 Attester . 44
3.9 Application Programming Interface 45
3.10 Connector . 47
3.11 Audit Database . 48
3.12 Scheduler . 48
3.13 Compliance to requirements . 49

4 Container-based VNF attestation 51
4.1 Requirements . 51
4.2 Overview . 52
4.3 Technology . 54

4.3.1 TPM-based integrity measurement architecture 54
4.3.2 The Docker Device Mapper storage driver 57

4.4 Compliance to requirements . 59
4.5 Implementation . 59
4.6 Experimental evaluation . 61
4.7 Deployment as Attestation Driver 66

5 NFV threat mitigation 69
5.1 Requirements . 69
5.2 Threat model . 71
5.3 Integration within the NFV SECaaS scenario 73

5.3.1 Inbound communication . 73
5.3.2 Outbound communication 75

vii

5.4 Workflows . 76
5.4.1 NFVI centralised monitoring process 76
5.4.2 VNF integrity verification process via DIVE 77

5.5 Implementation . 78
5.6 Experimental evaluation . 84

6 Conclusions and future work 89

Bibliography 97

viii

List of Tables

3.1 Cloud Verifier host registration table. 38
3.2 Cloud Verifier global attestation status data. 39
3.3 Cloud Verifier host integrity report data. 39
3.4 Cloud Verifier remediation data. 40
3.5 Cloud Verifier virtual instance integrity report data. 41
3.6 Trust Monitor Management API . 46
3.7 Trust Monitor Newcomer API . 47
3.8 Trust Monitor mapping to requirements 50
4.1 DIVE mapping to requirements . 60
4.2 DIVE performance index . 64
4.3 Latency of DIVE integrity verification 65
4.4 Evaluation of Docker latency to retrieve Device IDs 66
4.5 Performance analysis of the DIVE Attestation Server 66

ix

List of Figures

2.1 Transition from traditional networks to NFV 12
2.2 NFV high level architecture . 13
2.3 Lightweight virtualisation architectures 15
2.4 The Remote Attestation workflow 22
3.1 The Security-as-a-Service use case in NFV 31
3.2 The Trust Monitor high-level architecture 34
3.3 The Attestation Driver deployment options 44
3.4 The Connector architecture . 48
4.1 DIVE high level architecture . 52
4.2 The Integrity Measurement Architecture process 55
4.3 IMA event log . 55
4.4 IMA application policy . 56
4.5 Docker file-system layer structure 58
4.6 IMA container attestation template 59
4.7 DIVE performance drop at container spin-up 62
4.8 DIVE performance drop at container stop 63
4.9 DIVE performance drop at container removal 63
4.10 DIVE integration as Attestation Driver 68
5.1 Trust Monitor process to retrieve VIM data from the Orchestrator . 74
5.2 Trust Monitor process to retrieve container data from the target VIM 75
5.3 Trust Monitor process to retrieve container VNF data 75
5.4 SECaaS integrity verification workflow 77
5.5 NFVI periodic attestation workflow 77

x

5.6 Container compute host integrity verification workflow 78
5.7 Attestation result with manipulated digests 80
5.8 Attestation result with unknown digest 81
5.9 VNF security manifest in JSON notation 82
5.10 Multi-container deployment of the Trust Monitor application 83
5.11 Latency of the Trust Monitor verification process 85
5.12 RAM consumption of the Trust Monitor at subsequent attestations 86
5.13 CPU utilisation of the Trust Monitor with a variable number of VNFs 87

xi

Chapter 1

Introduction

Computer networks have been of significant importance since their initial def-
inition, addressing the need of inter-communication between computers, and ulti-
mately the end users. Although computers have revolutionised the world we live
in since their initial mass production, by defining new ways to perform human
activities and even creating completely new use cases, networking has been a key
factor towards the global exploitation of Information and Communication Technol-
ogy (ICT). In fact, without computer networks there would not be a way to offer
a remote service to users, as all software would strictly need to be executed locally
on the machine. Distributed computer architectures would not exist, as all the
computing would be centralised and there would be no way to exchange informa-
tion among machines. Ultimately, there would not be Internet, which is by many
considered the latest industrial revolution in human history.

During the last few years, networks have evolved by gaining a prominent role
in the way information technology is consumed by end users. In fact, more and
more technological services are not directly managed by the consumers anymore, as
they are provisioned by often humongous companies that own the largest portion
of the market, such as Facebook, Amazon, Google, and Netflix. The end user
typically owns a client device, such as a smartphone, a laptop, or a smart TV,
which grants him access to these services via the network. In fact, many software
development companies have completely abandoned the target of creating native
applications that run on an Operating System (OS) in favour of web apps that
are easily accessible via a modern browser and therefore can reach a variety of
end user devices, such as traditional personal computers, mobile phones and even
smartwatches. This paradigm shift also means that information is often managed
and stored outside of the user device, as in the “cloud”. This approach makes the
end user a consumer of his own data (e.g. photos, documents) rather than the sole
owner of such data.

1

Introduction

1.1 Cloud Computing

Cloud Computing is a key enabler for this digital transformation, as it defines
novel service models wherein the computing, storage, and networking resources can
be allocated on-demand, according to the needs of the services and applications
that are often intertwined with the activity of the end users. Large-scale virtualisa-
tion and dynamic allocation of resources are at the base of the inherent scalability
of cloud infrastructures, as each service can either be replicated or granted more
resources in a flexible manner. With respect to data, large clouds have latency and
availability guarantees that are enabled by the geographical distribution of their in-
frastructure, which allows the Cloud Service Provider (CSP) to provide information
at the edge of the network faster and more consistently. Traditionally, the cloud
paradigm addressed the need for sharing computational power and storage among
different services, in an effort to optimise the overall utilisation of physical resources
made available by the hardware. In this regard, several service models have been
identified in literature to address the end users’ needs to have different levels of
control towards the cloud resources: Infrastructure as a Service (IaaS), wherein the
CSP offers a share of the cloud raw resources to its client, i.e. a tenant, so that a
fully customisable virtual environment can be set up, including the selection of vir-
tualised nodes, their storage volumes and the local network links that interconnect
them; Platform as a Service (PaaS), wherein the cloud infrastructure takes care of
the execution environment so that the user can focus on the development and de-
ployment of applications on top of it; Software as a Service (SaaS), where the CSP
fully manages the software itself and just provides access to the end user — either
anonymous or subject to authentication. In this regard, both private and public
clouds are feasible. The first requires the infrastructure to be entirely managed by
its user, i.e. the company or organisation that aims to leverage the cloud services.
The latter, as effectively demonstrated by solutions such as Amazon Web Services
and Google Cloud Platform, allows the end user to just use the cloud resources
made publicly available by the CSP in return of a fee. Technology-wise, cloud
service models are exposed to heterogeneous forms of virtualisation. Traditional
virtualisation options are enabled by hypervisors, managers that allocate resources
to virtual machines and are responsible for their life-cycle. Typically, hypervisors
leverage the isolation capabilities offered by the OS kernel so that each Virtual
Machine (VM) has a limited view of the resources available at the physical level,
yet they are presented to the VM as standard components (e.g. devices, memory,
disk). More recently, OS-level virtualisation has gained momentum, proposing a
novel mechanism to isolate processes rather than the complete execution environ-
ment in lightweight virtualised instances, i.e. containers. The target virtualisation
technology is relevant to the CSP as it drives the selection of a target cloud deploy-
ment framework. Different solutions are available both as open-source tools (e.g.
OpenStack, and Kubernetes) and proprietary services (e.g. OpenShift, VMware).

2

1.2 – Network virtualisation

1.2 Network virtualisation

Compared to modern computing architectures, networks have traditionally been
grounded in physical infrastructures composed of hardware appliances, specific to
vendors of networking equipment and typically subject to non-negligible mainte-
nance and upgrade costs. This approach has been driven by the need for high
network performance and resilience, at the cost of flexibility and of limited service
provisioning. In fact, whenever the network had to support new services or just
update their configuration, this would require its administrator to log to the spe-
cific appliance console and to issue commands in a proprietary language so that the
network could be adapted. Although this approach is still relevant today in certain
scenarios such as home environments or small enterprises, it cannot keep up with
the ever increasing needs of flexibility demanded by modern ICT services.

Because of this, the scientific community has recently addressed the limitations
of traditional network infrastructures by proposing novel technologies that leverage
the same key enablers of cloud computing, namely large-scale virtualisation, on-
demand orchestration of resources and centralised dynamic configuration.

Network Functions Virtualisation (NFV) is a novel paradigm, standardised by
the European Telecommunications Standards Institute (ETSI), that proposes a
framework to deploy network components in virtualised instances on top of a cloud
infrastructure. Compared to the traditional network scheme, NFV allows to reduce
the overall maintenance and upgrade costs by switching from proprietary appli-
ances to commodity hardware, wherein each networking capability is implemented
in software by a Virtual Network Function (VNF) that runs on top of the hardware.
Similarly, Software-Defined Networking (SDN) proposes software mechanisms to
configure network components via a centralised management plane that is sepa-
rated from the forwarding plane, in contrast with traditional packet processing.
NFV and SDN are considered complementary to each other, given their common
goal in addressing the limitations of traditional networks in terms of vendor lock-
in, on-demand deployment and reconfiguration of network components. Moreover,
they both define novel orchestration and management elements that reside in the
administrative domain of the Internet Service Provider (ISP) so that they centralise
the services’ deployment and configuration. Among the recent trends, Edge Com-
puting paradigm has also proposed technologies to distribute computing as close
as possible to the end user at the edge of the network, so that both the service
latency is reduced and a more optimised management of network resources can be
achieved. Because of this, Edge is particularly relevant for operators and is con-
sidered a key enabler for the 5G network, particularly in combination with NFV.
Internet of Things (IoT) and smart cities can benefit from network softwarisation
as well, as traditional networks cannot cope with the requirements of the diversity
of IoT devices and the dynamic grid of services. In a software network scenario,

3

Introduction

the ISP may own a cloud infrastructure — acting as a CSP — wherein the users’
traffic flows through network services implemented in software and managed by a
centralised orchestration domain.

1.3 Security and privacy of virtualised networks

Security and privacy regulations are very relevant as of today, as both national
and international bodies are discussing means and rules to protect the users’ infor-
mation against misuse by the private companies that store this data. In fact, data is
considered an extremely valuable information in modern ICT infrastructures: many
organisations have a significant interest in data harvesting and mining so that they
can leverage this data to improve their reasoning processes and use them to solve
problems. For instance, profiling of users’ habits and interests is very profitable
for online e-commerce sites so that they can suggest — or trick (depending on the
perspective) — the users about purchasing more products. As data is exchanged on
the communication networks, their resilience, security and privacy is paramount to
protect the investments by organisations on the digital market. In fact, if networks
were compromised by malicious users, the services and data distributed on them
would be at risk, possibly causing severe economic losses for the digital businesses.
Moreover, given that communication networks may be used for privacy-sensitive
operations, such as e-banking transactions and electronic identification, their vi-
olation may cause significant damage to the end users themselves. For instance,
leaks of credentials and credit card details by malicious users may lead to loss of
personal funds and identity theft. Because of this, techniques to address security
properties on the network infrastructure are needed. In this regard, integrity of
data and services have to be guaranteed by the ISP, which deploys and maintains
the networking equipment and communication links for the exchange of the users’
traffic.

In the softwarised scenario, integrity of the network is even more critical, as
the users’ traffic is processed by software components that run in VNFs on top of
untrusted commodity hardware, rather than specialised appliances. More specifi-
cally, the networking-specific software runs in a more generic execution environment
along with other services and applications, hence the attack surface is increased
by the possible vectors introduced by malfunctions or targeted attacks to these
elements. Software bugs may be introduced by the VNF developer and not be
detected by functional testing, harming the overall functionality of the network
function and possibly damaging the users’ data and communications. Moreover,
compared to traditional networks, the NFV scenario suffers from threats specific
to virtualisation as well. In fact, scientific literature has demonstrated that certain
vulnerabilities can be exploited by malicious users to break the isolation enforced

4

1.4 – Motivation of this work

by the hypervisor on the virtual instance, allowing an attacker to gain access to
virtual resources belonging to a different tenant, and even to gain root privileges of
the hypervisor itself. The conjunct presence of both virtualisation and networking
threats, along with the impact of software bugs on the software codebase, make the
exploitation of the NFV paradigm in a production environment still a challenge
from the ISP perspective. With respect to virtualisation technologies, the scientific
literature targets lightweight forms of virtualisation as the most fitting solutions
for the implementation of each VNF, as their stateless nature and smaller footprint
make them highly scalable and suitable for the service composition needs of NFV.

1.4 Motivation of this work

The work described in this dissertation is motivated by the context that was
just presented. More specifically, we believe that networks must be protected for
integrity against manipulations by attackers and misbehave due to software bugs
or incorrect configuration by administrators so that the network operation is not
compromised and the privacy of the end users is not harmed. In this regard, sci-
entific literature has proposed Remote Attestation (RA) as a viable solution to the
problem. This is an integrity verification method that requires a target platform
to record measurements about its own execution state so that they can be verified
against known-good values by a trusted verifier. This method is suitable for differ-
ent implementations, wherein both the measurement and the integrity verification
scheme vary depending on the actual target. Traditional RA schemes consider a
measure as a cryptographic hash of software executed by the target platform, so
that the resulting digest is compared against a white-list of hashes that has been
previously defined by the verifier. This scheme is known as binary attestation, and
has been proposed as one of the key enablers of Trusted Computing (TC). This
paradigm, as defined by the Trusted Computing Group (TCG), has proposed RA
protocols based on the integrity verification of the whole software stack of the tar-
get platform, starting from the boot process up to the OS user space. Moreover,
TCG has standardised dedicated hardware components that provide hardware-level
protection for secrets owned by the target platform, so that the integrity measure-
ments can be securely stored and protected by malicious users that have access to
the physical system. In particular, several iterations of a cryptographic device, i.e.
the Trusted Platform Module (TPM), have been produced by the TCG partners.
This acts as a hardware Root of Trust (RoT) that offers secure storage, authen-
tication credentials and cryptographic acceleration to effectively support the RA
scheme. The TPM is commonly used for many applications such as trusted boot,
full disk encryption (e.g. Microsoft BitLocker), and digital right management.

5

Introduction

More recently, integrity measurements have targeted the behaviours of the pro-
grams executed on the target platform so that the control flow of their execution is
attested against misbehaviours. Although promising, the latter approach does not
easily scale to the protection of the whole target system, as it would require each
program to include specialised instructions at the OS level so that their execution
can be measured. Because of this, traditional TC patterns for RA are particularly
relevant whenever the target platform needs to run a large and ever evolving soft-
ware codebase, as traditional integrity measurements are not tailored to specific
components or binaries. In this regard, the cloud nodes of an NFV platform are
suitable targets for these mechanisms, as they are expected to run several software
elements that may be implemented by many software developers. Nonetheless, bi-
nary attestation inherently suffers from limitations with respect to scalability in
case of large white-lists. Moreover, the reference measurements must be kept up-
dated by the infrastructure maintainer to avoid false positives. Finally, traditional
RA schemes as proposed by TC do not easily translate to virtualised environments,
as the hardware-level protection offered by the TPM is typically limited to a single
owner (whereas virtual instances are many and may belong to different tenants).
More recently, platform trust has been addressed by the proprietary technologies
proposed by microprocessors’ vendors such as Intel, ARM, and AMD. Each of these
companies has embedded proper instructions and data structures in their CPU to
implement a Trusted Execution Environment (TEE). This consists of a secure area
for both data and code execution that offers hardware-level protection with re-
spect to confidentiality and integrity. Attestation of the secure area is typically
supported so that a verifier can ensure that its state has not been tampered with.
This process leverages TEE capabilities and cryptographic keys that are protected
by the hardware, making it a viable alternative to TPM-based attestation schemes.
The commercial interest by hardware vendors in hardware platform trust makes it
readily available in heterogeneous computing systems, although this requires the
need to support non-uniform architectures from a verifier’s perspective.

The final goal of this work is to propose remote attestation as an effective
technology to secure a cloud NFV platform by demonstrating that (1) hardware
platform trust can provide a higher degree of security in a privacy-sensitive infras-
tructures, such as NFV, when compared to software-based mechanisms; (2) different
virtualisation and trust technologies should be addressed to make integrity verifica-
tion a viable solution in heterogeneous scenarios; (3) the orchestration and reacting
capabilities of NFV infrastructures can be significantly improved by platform trust
assessment, even enabling novel use cases that revolve around cloud security ser-
vices.

In order to achieve this goal, this research has focused on the design of protec-
tion mechanisms to secure the NFV platform, addressing both the need for support

6

1.5 – Bibliographic foundation

of heterogeneous cloud environments and application to novel forms of virtualisa-
tion. The initial contribution of this work to the state of the art in the field of NFV
security is the design of an abstract trust monitoring architecture tailored for the
softwarised networks and based on TC principles and technologies, i.e. the Trust
Monitor. The key aspects of this solution, in contrast with the existing designs from
literature, are the integration with the reference ETSI NFV framework, in partic-
ular within the administrative domain, and the generic approach to attestation
that enables heterogenous TEEs to be adopted by the network operator. Starting
from the abstract design, this work proposes a novel technique for attesting the
integrity of software in a generic VNF that can be generalised to a generic cloud
environment to provide a reliable, hardware-based protection mechanism for vir-
tualised instances. This technique is based on open-source tools and Linux kernel
capabilities, focusing on a specific TEE, i.e. the TPM, to protect both the measure-
ments of the host and the containers. As final contribution, this work addresses the
integration of the aforementioned technique in the abstract security architecture
and the definition of specific processes to enrich the orchestration and management
capabilities of the NFV platform.

A driving factor of the overall research work is to propose mechanisms that can
be effectively implemented and integrated in a reference NFV framework, as they
are grounded in technologies that are readily available in existing hardware archi-
tectures. In fact, although scientific research in this area has already addressed
security mechanisms tailored for the NFV scenario, they either lack a strong bind-
ing to hardware protection mechanisms, such as the TPM, or they don’t assume
a generic approach to integrity mechanisms so that they could be applied to het-
erogeneous computing infrastructures. In this regard, a practical validation of the
contributions of this research has been achieved in the scope of the SHIELD1 Hori-
zon 2020 European project. This proposes a universal solution for deploying vir-
tualised security infrastructures into operator and corporate networks, leveraging
platform integrity as a guarantee that the virtual resources are not tampered with
by malicious users. The project started in September 2016 and ended with excellent
results in February 2019.

1.5 Bibliographic foundation

The contributions that compose this research work have been originally dis-
cussed and validated in scientific publications that are available at the time of
writing:

1SHIELD project website - https://www.shield-h2020.eu

7

https://www.shield-h2020.eu

Introduction

• “NFV-based network protection: the SHIELD approach” [62], focusing on
the early study of security requirements of an NFV platform with respect to
the SHIELD architecture;

• “On the establishment of trust in the cloud-based ETSI NFV framework”
[19], presenting an early design of our security monitoring architecture in the
scope of the ETSI reference framework for NFV;

• “Integrity verification of Docker containers for a lightweight cloud environ-
ment” [18], that discusses in depth our novel technique for runtime integrity
verification of software components running in containers;

• “A proposal for trust monitoring in a Network Functions Virtualisation In-
frastructure” [17], that presents the final architecture of the Trust Monitor
and the workflows that are in place to include integrity verification as part of
the NFV administrative and orchestration domain.

1.6 Organisation of the thesis

The rest of the thesis is organised as follows: Chapter 2 analyses the scientific
literature and industry standards wherein hardware platform trust and softwarised
networks lay their foundation, as well as the open issues in addressing security
and trust in the NFV scenario; Chapter 3 introduces our novel architecture of the
trust monitoring entity tailored for the NFV scenario and also details its generic
approach to attestation; Chapter 4 describes our novel technique for VNF attes-
tation by presenting its requirements, the design and implementation along with
its experimental evaluation; Chapter 5 demonstrates how our novel trust monitor-
ing architecture, together with the aforementioned attestation technique, can be
used to effectively support the NFV threat mitigation strategies against tamper-
ing attacks; Chapter 6 draws the conclusion about this work and envisions future
activities in the field of hardware-backed integrity verification for the NFV scenario.

Acknowledgements

I would like to thank prof. Antonio Lioy for being a sincere mentor during
my Ph.D activities, providing advice and direction of the work yet helping me to
independently tackle the challenges in my research and drive the final outcomes.

I also thank the people in the Computer and Network Security lab who helped
me to grow — both as researcher and as a person, which is more important to me

8

1.6 – Organisation of the thesis

— during my time as Ph.D student. I fondly remember the time we have spent
together.

I have to acknowledge the incredible opportunity I had to work on interna-
tional projects together with talented researchers and to experience different places
abroad, thanks to my involvement in such activities. In particular, I would like to
thank all the partners in the SHIELD project for their significant efforts.

9

10

Chapter 2

Background

This chapter outlines the state of the art in the field of Network Functions Vir-
tualisation security, with particular attention to trust assurance and active integrity
monitoring. Because of this, a concise introduction over the NFV paradigm is pre-
sented first, along with a throughout discussion on the usage of lightweight forms
of virtualisation in the context of NFV. Then, a security analysis of the paradigm is
presented, followed by an outline of the proposals available in literature to address
its weaknesses and a discussion on the limitations of existing approaches. Finally,
the key concepts around platform trust assurance are detailed, as they are required
to understand the technical aspects of the approach proposed in this dissertation.

2.1 The NFV paradigm

NFV [27] aims to overcome the limitations of existing networked infrastructures
by leveraging standard virtualisation. Compared to traditional networks, hardware
appliances are dropped in favour of a software-based design, made possible by the
extensive use (and capabilities) of standard virtualisation in today’s ICT platforms,
as depicted in Figure 2.1.

Since 2012, the ETSI NFV Industry Specification Group (ISG) started its spec-
ification activities by defining the requirements of the paradigm and consolidating
its architecture and target use cases. The most significant benefits that have been
identified since the beginning were the reduced cost for network equipment and its
power consumption due to consolidating equipment, the reduced time to market,
more flexible multi-tenancy and multi-version support, targeted service definition
and openness to the software market, when compared to vendor-specific fixed solu-
tions [25]. In 2017, the ETSI NFV ISG had reached over 290 organisations in total,
including 38 telecom operators [26].

11

Background

Figure 2.1: Transition from traditional networks to NFV

Given the momentum gained by this paradigm, in the last few years several ISPs
have publicly announced their interest in the NFV technology, such as Telefonica
Spain [57], AT&T [6] and Deutsche Telekom [65]. More recently, the paradigm has
been sponsored by ETSI as one of the key enablers for the definition of the 5G
networks, as these are expected to leverage the higher degree of flexibility ensured
by softwarised networks. More specifically, the NFV concepts on VNF service
composition can be leveraged to implement and manage the 5G network slices, i.e.
heterogeneous network service layers that share the same physical infrastructure.

The main capability offered by NFV is the Management and Orchestration
(MANO) of the virtualised resources for the provisioning and the life-cycle of net-
work functions that are to be chained together into more complex network services.
The VNFs [36] are deployed within a standard virtualised infrastructure, com-
prising several hardware compute nodes that share their computation, storage and
networking resources among the tenants. This platform, i.e. the NFV Infrastructure
(NFVI), is built upon commodity hardware resources and standard virtualisation

12

2.1 – The NFV paradigm

Figure 2.2: NFV high level architecture

technologies, such as OpenStack [72], Kubernetes [52] and VMware [95]. A high
level view of the NFV architecture [29] is depicted in Figure 2.2. This clearly
shows the separation between the operation environment, wherein the VNFs are
executed, and the management plane where the resources are orchestrated. This
is achieved by introducing a centralised entity, i.e. the Network Functions Virtu-
alisation Orchestrator (NFVO), as a high-level controller of the virtual instances
made available by the underlying physical infrastructure. The NFVO manages the
life-cycle of VNFs and their composition into more complex network services by
interacting with the VNF manager. This, in turn, issues commands to the Virtu-
alised Infrastructure Manager (VIM), the software abstraction that manages the
virtualisation domain. This approach is shared with other network softwarisation
paradigms, such as SDN [84], that aims to separate the network forwarding plane
from the control plane through software abstractions. Differently from traditional
networks, the NFV ecosystem requires a cooperation between the ISP and the CSP,
the latter being the organisation that provides the cloud infrastructure to host the
instances of VNFs. Although the MANO functionalities are typically served by the
same organisation serving the NFVI, effectively merging the ISP and CSP roles in
the same organisation, alternative approaches may be possible in case of federated
arrangements between telco providers.

The NFV paradigm is appealing for the operators to implement several novel
use cases [28] wherein the network programmability can effectively overcome the
limitations of traditional networks. First, the NFV infrastructure itself may be
implemented by a large operator and offered as a service to its clients, i.e. smaller
operators or enterprises, so that they can run their network service. In this regard,
ETSI foresees the Security as a Service (SECaaS) approach as a novel approach

13

Background

to target cybercrime in the public networks, thanks to the creation of security
services that leverage NFV technologies to address threats occurring in real time
in the network so that the end users, i.e. the ISP customers, can be freed from
acquiring and managing security equipment in their own premises. Moreover, VNF
aims to virtualise the mobile core network — in the scope of 5G — to reduce the
Radio Access Network (RAN) footprint and energy consumption thanks to smart
and dynamic resource allocation and load balancing, in addition to faster time-to-
market and operation. Other use cases involve virtualisation of the home network
devices, so they can be programmed to offer heterogeneous services to the end users
with reduced deployment and upgrade costs, and leveraging the NFV technology
to dynamically deploy nodes of a virtual Content Delivery Network (CDN) to offer
data (e.g. movies, music streams) as close as possible to the demand.

2.2 Exploitation of containers in NFV networks

Lightweight forms of virtualisation are gaining momentum in modern ICT in-
frastructures, and both the scientific literature and the ETSI specification efforts
[30] in the field are addressing containers for the NFV platform.

As previously stated, containers propose to offer a more agile life-cycle manage-
ment and service composition than standard VMs, as their main goal is to sandbox
specific sets of applications rather than a complete system. Moreover, they are
typically defined as stateless entities by declarative descriptors that allow them
to be deployed on demand from scratch in heterogeneous virtualisation platforms,
without the need of exporting large images and managing them in ad-hoc storage
solutions. Their stateless nature makes containers more scalable than VMs as they
can be dynamically replicated and decommissioned depending on the load of the
infrastructure. Micro-service architectures benefit from containers as well, as their
smaller memory footprint and modular approach better suits the composition of
complex services than VMs. Different lightweight virtualisation architectures exist
in literature, i.e. process (or application) containers and machine (or full system)
containers, and are represented in Figure 2.3.

The first approach lets the virtual instance to sandbox a single application so
that it is isolated from the other processes running on the host system, following
the one process per container paradigm. This approach maximises the service
composition capability of the architecture, as a complex service may be built from
a series of applications chained together. Because of this, process containers are
typically meant to be stateless, as their persistent data should be managed by an
external database service (being it another container or a standard application).
In case persistence is required in the instance, each process container can mount
portions of the host file-system so that it is visible from inside the container instance.

14

2.2 – Exploitation of containers in NFV networks

Figure 2.3: Lightweight virtualisation architectures

Machine containers, on the other hand, allow to sandbox a full OS user-space.
Because of this, they are more similar in use to the standard VMs, as they are
based on a stand-alone disk image and persistent file-system. They do not provide
easier service composition than traditional approaches, as they must be built from
a base image and they must be exported as disk images in order to be moved to
another host.

Differently from VMs, both process and machine containers share the same
kernel as the host system. In fact, they isolate the user space from the kernel by
leveraging standard functionalities available in the Linux kernel, namely namespaces
[61], control groups (or cgroups [60]) and root capabilities [59]. These represent the
building blocks that are shared among the different container technologies [43],
providing the basic mechanisms that allow each container to have a specific view of
the execution environment that does not take into account other instances nor the
underlying host platform. Namespaces represent abstractions of system resources
that can be exposed to a virtualised instance as if it was the sole owner of such
resource. To date, seven namespaces exist:

• Inter Process Communication (IPC), which manages process-level message
exchange;

• Mount, which manages the data volumes mounted by the instance;

• Network, which gives to each container an abstracted network stack and in-
terface;

• IPC, which restricts the visibility of processes to the ones executed by the
instance;

• UNIX Time Sharing (UTS), which allows each container to have its separate
hostname and domain name;

15

Background

• User, which allows each container to be run by a separate user (so that it
cannot interfere with other containers’ or host’s users);

• cgroup, which enables each container to have its separate configuration of
control groups.

Cgroups allow to specify constraints for the usage of resources shared by all pro-
cesses belonging to a separate group, such as CPU, memory, storage, network band-
width. For instance, a system administrator could specify the maximum usage of
memory for each process or pin a specific CPU to it (if more than one are available
on the platform). Finally, kernel capabilities can be configured for each container so
that it can have access to certain privileged resources, i.e. the host network stack,
without being run in its entirely as a privileged process (i.e. as a super user). Each
container runs by forking a process with proper namespaces, cgroups and kernel
capabilities, so that it is isolated from the host system and other containers. The
isolated process is then used as an entry-point to the container instance, in charge
of running either the target application in case of process containers or a standard
Linux init process (or very similar) in case of machine containers.

Docker [23], Podman [75] and Rkt [79] are well-known technologies that imple-
ment the process container paradigm, while Linux Containers [58] and Canonical
LXD [63] are popular machine container alternatives. To date, Docker is con-
sidered as a de-facto standard for containerisation of processes [16], being largely
utilised in both the scientific community and production environments. In fact, hu-
mongous CSPs such as Amazon Web Services, Microsoft Azure and Google Cloud
Platform already support the Docker container runtime, allowing for easier integra-
tion of container-based workflows in public clouds. Moreover, the vastly popular
OpenStack private cloud solution supports Docker [37, 101], along with the Google-
backed Kubernetes cloud management engine, that is rapidly evolving as a de-facto
standard in cloud systems. The success of Docker, when compared to other alter-
natives, is due to the efficient definition of each container (thanks to a declarative
approach via a textual descriptor, i.e. the dockerfile) and its management (via a
well documented and largely supported command line interface). Moreover, Docker
offers a public registry of images, i.e. the Docker Hub, which allows to download
pre-made images of well-known software (such as databases, web services, caches
and even desktop applications).

Docker is discussed by ETSI as a viable solution for deploying lightweight forms
of virtualisation on a Linux platform in the NFV ecosystem [30]. In this regard, the
Open Source MANO (OSM) reference framework for NFV [70], whose development
is backed by ETSI, offers built-in support for Docker containers along with Open-
Stack and other container management solutions. Nonetheless, both OSM and
other MANO solutions (such as the university-driven Open Baton project [68] and
the Linux foundation’s OPNFV [73]) typically offer a better support for traditional

16

2.2 – Exploitation of containers in NFV networks

forms of virtualisation. Hypervisor-based technologies are still perceived as more se-
cure solutions, as they are more mature and they may provide more isolation when
compared to containers. In fact, VMs encapsulate their own kernel, which may
be completely different from the host’s kernel. On the other hand, this approach
has a larger overhead when compared to containers both in the image footprint
and in the management efforts, as VMs may be slower to run and they must be
stored by ad-hoc cloud image services. The overhead is particularly apparent if we
consider a scenario where isolation of the kernel is not a primary goal. Application
of lightweight virtualisation technologies to NFV has been broadly discussed in
scientific literature as well. Anderson et al. [2] propose Docker as an enabling tech-
nology to effectively deploy and manage VNFs among different lightweight cloud
environments, given its portability and small footprint. The authors also discuss
the benefits introduced by the Docker image registry as a viable solution for sharing
containers by the different VNF developers. Moreover, the Dockerfile itself is con-
sidered a powerful solution for the specification of a VNF package, as it abstracts
the definition of the container from the underlying physical infrastructure. With
respect to performance, Cziva et al. [14] state that the deployment time of container
VNFs is reduced by 68% over a popular virtualisation technology, i.e. Kernel-based
Virtual Machine (KVM) [56] on average, when tested within a VNF framework,
i.e. Glasgow Network Functions (GLANF), that manages the life-cycle of complex
network services. In another work, Cziva and Pezaros [15] also discuss the ap-
plicability of containers to the Edge Computing paradigm thanks to the GLANF
framework, specifying that containers are the most suited technologies that would
allow the operators to benefit from next generation mobile networks in the scope of
5G. M.Raho et al. [76] compare Docker with traditional hypervisor-based technolo-
gies, such as KVM and Xen [99], for the implementation of VNFs tailored for the
ARM CPU architecture. The authors’ results display that containers perform bet-
ter in CPU-bound workloads and in networking interactions based on request and
response by two peers. On the other hand, hypervisors typically perform better in
disk input and output operations and TCP streaming, due to their caching mecha-
nisms. Bonafiglia et al. [9] present a comparison between Docker and KVM in case
of VNFs deployed on the same server running Open vSwitch [71], a widespread SDN
solution that allows to define the forwarding rules of packets exchanged by virtual
instances in a flexible way. The authors evaluate both approaches and show that
Docker containers are well suited for VNFs in case of applications associated with
a specific thread or process, as they perform similarly to KVM from the network-
ing perspective and they also require less resources due to the sharing of the host
kernel. The authors also note as a drawback that containers provide less isolation
than VMs.

17

Background

2.3 NFV security analysis

Given the extensive usages of NFV technologies within the telco operator do-
main, and considering the security and privacy implications of data that are ex-
changed on public networks by the end users, it is important to identify the potential
security weaknesses inherent to the paradigm and to define countermeasures that
can effectively mitigate such threats.

The NFV ISG group has addressed the potential areas of concern of the NFV
architecture since its initial specifications, laying the foundation on the definition
of protection mechanisms to address problems that are specific of this paradigm,
when compared to traditional networks [31], along with scientific literature [38, 54,
53]. In this regard, the scientific community typically elaborates solutions that are
based around the standards on security and trust proposed by the ETSI ISG. From
a high-level perspective, the NFV platform can be subdivided into three major
domains, each of which may be targeted by specific attacks: the NFVI, the MANO
and the virtual Network Security Function (vNSF)s.

On the NFVI side, the network topology is critical because of the isolation
required between the infrastructural nodes and the virtual instances running on top
of them. In this regard, it is to be noted that both physical and logical segregation
of topologies shall be considered, as cloud-based services typically rely on network
protocols that logically separate different kinds of traffic, e.g. via Virtual Local Area
Network (VLAN) or tunnelling. Because of this, the topology enforced on the NFVI
should be validated so that unauthorised users cannot eavesdrop the traffic. In this
regard, technologies such as SDN require additional validation, to ensure that an
SDN controller has not been attacked. Lal et al. [54] discuss the disadvantages
of the software-based approach to network, stating that it may lead to improper
separation between the operator network and the virtual networks that are reserved
to each tenant, with the risk of exposing details about the physical infrastructure
to a malicious user that accessed the VNF instance. Another work [53] discusses
the limitations of traffic security among current cloud providers, proposing that
privacy-sensitive virtual instances, such as VNFs, should leverage communication
channel protection mechanisms such as Virtual Private Network (VPN) to secure
the packets shared among the network service against eavesdroppers. Moreover,
integrity assurance of the hardware and software is paramount, as it is discussed in
depth in this dissertation. In fact, it is both required that the network operator can
trust the virtualisation platform sufficiently to run its VNFs and that the platform
can ensure that VNFs are genuine. With respect to integrity assurance, TC-based
attestation of a platform by means of a hardware RoT is a viable solution to ensure
that the platform has not been tampered with during its life-cycle, as it will be
discussed in depth in Section 2.5. Along with integrity preservation, resilience and
management of bugs is important to not compromise end user data. Because of

18

2.3 – NFV security analysis

this, the NFVI shall handle crashing in a graceful way, clearing data and state
information that is not relevant anymore in case of a component crash. This allows
to reduce the amount of information that is exposed to an attacker in case he
manages to crash a system by means of a targeted attack to it. In this regard, it
is to be noted that the hypervisor is in charge of deleting the dangling references
to virtual instances that have been terminated. Performance isolation is much
more important on the NFVI when compared to a traditional hardware network
platform, as the same physical resources are shared by many software appliances
that may belong to different tenants, with the risk of introducing privacy violations.
With respect to privacy, Authentication, Authorisation and Accounting (AAA)
facilities in the NFVI platform must take into account the different users that
have access to it: the physical infrastructure maintainers, that administrate the
hardware resources of the cloud nodes; the network operator, that has full control
over the virtual domain that is running on top of the physical infrastructure and
can create virtual tenants for its clients; the tenant user, which has a limited view
over a portion of the virtual infrastructure, comprising a series of network services
composed by VNFs; the VNF developer, which implements and shares its VNF on
the platform (if made available by the specific use case).

AAA management is particularly important in the MANO domain too [34]. in
this regard, as MANO is considered as an enclosed system, all malicious users are
by definition insider attackers, having legitimate access to the system and introduc-
ing possible vulnerabilities to it. Protection against insider threats is not trivial, as
it must take into account both physical and logical access to the NFV services. In
this regard, both integrity verification of MANO entities and active monitoring by
means of intrusion detection systems represent countermeasures to the aforemen-
tioned vulnerabilities. Jaeger [50] defines an architecture, i.e. the NFV Security
Orchestrator, as a focal point of the platform to monitor and gather security infor-
mation about the deployment and configuration of network services in the NFVI.
This is meant to interact with the MANO domain as an external, pluggable element
that can provide on-demand security services to the platform administrator.

Finally, VNFs represent another significant attack vector as they are the front
elements of the NFV network, directly managing the end users’ traffic. Because of
this, software bugs in the VNF code are critical as they could open back doors to
malicious users. Depending on the virtualisation technology, weak isolation of the
virtual instance may cause significant damage to other instances, even belonging
to a different tenant, and to the underlying physical infrastructure as well. Lal et
al. [54] state that the vulnerabilities associated to the weak isolation of virtual in-
stances represents a major risk introduced by NFV when compared to a traditional
network, as a malicious user could break into the hypervisor domain by leveraging
a form of privilege escalation, harming both the physical infrastructure and the
other tenants’ instances. The VNF software package itself may be modified by an

19

Background

attacker, hence integrity verification of the image and its descriptors is important
as well [35]. In this regard, software-based validation involving digital signatures is
the base countermeasure to these attacks, although it implies that proper certificate
management is put in place so that each VNF signature can be verified properly. A
significant improvement over signature-based validation is represented once again
by attestation, although existing approaches from literature are limited towards
specific virtualisation technologies. Ravidas et al. [77] propose an architecture to
bind the life-cycle management of the computing nodes in the NFV cloud platform
together with integrity verification of the images and configurations utilised by the
network services. Finally, vulnerabilities that are specific to standard networking
and virtualisation technologies and are not altered by the virtualisation of network
functions should be considered. For instance, incorrect topologies may lead to loops
that delay the communication between VNFs.

2.4 Impact of containers on NFV security

With respect to the utilisation of lightweight virtualisation technologies in the
NFV platform [30], additional aspects shall be considered from the security per-
spective. The U.S. National Institute of Standards and Technology (NIST) has
developed a classification of the risks related to containers regardless of the partic-
ular technology [67], given the overall similarities between the available solutions
from the technical point of view. Analyses of specific container technologies have
been discussed in literature as well, mainly focusing on Docker due to its popularity
[64, 11, 8].

The different areas of concern with respect to containers: the images, their dis-
tribution, the orchestration process, the runtime for the execution of virtualised
instances. The scientific literature has broadly discussed the vulnerabilities of spe-
cific Docker container engine has been proposed in a work by Martin et al. [64]. As
aforementioned, each container is deployed starting from a software image, i.e. a
packaged set of applications and configurations, that is typically built from a base,
minimal execution environment, i.e. the base image. The first risk related to im-
ages in the context of NFV is the possibility that the developer installed malicious
software in order to run the VNF application. This is particularly critical in case
of open-source VNF development, as there are almost unlimited software sources
available on the web. Then, a software may become vulnerable over time because
a vulnerability is discovered. In order to address the possible threats associated to
images, both integrity verification (as already stated in Section 2.3 and a periodic
refresh of the image shall be performed. In case of Docker, all containers that share
the same image would carry the same vulnerability unless the image itself is explic-
itly re-built in the local container image service. Then, the way container images

20

2.4 – Impact of containers on NFV security

are distributed among different execution environments must be carefully consid-
ered. Similarly to a public VM image service, the container registry, i.e. Docker
Hub, is used by thousands of developers to pull software images. Hence, the access
to such registry should be secured by means of mutual authentication between the
parties involved in the communication so to mitigate Man-in-the-Middle (MitM)
attacks. Moreover, a monitoring process should be put in place to ensure that stale
images are automatically removed, so to avoid that they run outdated software that
may carry a serious vulnerability. Regarding image distribution and verification,
Docker Content Trust architecture is recommended so that container developers
are required to sign their images, although this introduces a complex management
of cryptographic keys. The orchestration of container instances represent another
significant element from the security perspective. In this regard, trustworthiness of
the orchestrator should be verified along with the access policies, so that no mali-
cious users can leverage it to gather access to the virtual instances. In the context
of NFV, a container orchestration platform such as Kubernetes acts as a VIM, in
charge of the execution of virtualised instances that are managed at a higher level
by the NFV orchestrator, i.e. OSM. Finally, the container runtime should be veri-
fied against manipulations or misconfigurations, so that it can be effectively used
only by authorised entities, such as the container orchestration platform. In this
regard, poor configuration may also reduce the security of each container instance,
granting root privileges via unnecessary kernel capabilities (Section 2.2). With
respect to Docker, although the remote control of the container engine is made
possible through a TCP socket, this should be secured against attackers by means
of TLS secure channel and mutual authentication. This is due to the fact that the
Docker daemon is run with root privileges, hence it could be used by an attacker to
run a vulnerable image with root privileges and try to gain access to the physical
host. Other container technologies, such as Podman, try to address this issue by
not requiring a privileged daemon to run the container instances. As discussed in
literature [64], privileged containers can expose the host system to attacks, hence
they should not be adopted in a production environment. In this regard, limitations
of the containers’ resources — via cgroups — should be enabled on a per-container
basis, given the expected load of the virtual instance.

Given the possible risks introduced by containers in an information-sensitive do-
main such as NFV, protection mechanisms should be put in place at infrastructure
level to ensure that each element in the chain has not been manipulated: first, the
image software must be checked for malware and out-to-date software; then, the
container runtime on the host OS must be verified against manipulations that could
lower the security level of all containers; finally, the underlying host OS must be
checked against manipulations that could signify that an attacker has gained access
to it (both by exploiting a container vulnerability or an external attack vector).

21

Background

Figure 2.4: The Remote Attestation workflow

2.5 Trust assurance of softwarised networks

Trust assurance is a key element towards the exploitation of the NFV platform
in production environments. In fact, both the network operators and their clients
would benefit from trustable technologies that enable a secure validation of the exe-
cution environment. In this regard, hardware RoTs are typically perceived as more
secure than software-based approaches, as they often provide tamper-resistance by
design. This means that the cryptographic material used by the security process,
i.e. a digital signature scheme, is stored in the hardware RoT and is protected
against a series of attacks occurring at the physical level. Moreover, a hardware-
based cryptographic device may have been certified by an external authority, as
the TPM compliance to the FIPS 140-2 certification [90]. The ever increasing role
of hardware-based trust is apparent in the consumer market as well, wherein the
largest technology providers advertise the hardware-level security of their devices,
as in the case of Apple with its T2 chip [4] or Google with the Titan M [42].

According to TC, the RA work-flow, as depicted in Figure 2.4, allows a Trusted
Third-Party (TTP), also known as Verifier, to query the status of an Attester
platform and compare the resulting Integrity Report (IR) [88] against reference well-
known values that are previously stored in a Whitelist Database. The IR is certified
by the RoT by means of cryptographic operations, such as digital signature. This
allows the Verifier to detect tampering at boot level or even in software executed
at runtime.

ETSI discusses trust in the NFV platform in several specifications [31, 32, 33],
with particular attention to the TC methodology. In particular, the Trustworthy
Boot process is introduced. This encompasses the technologies that allow the vali-
dation of the boot process of the following entities: hardware; hypervisor and NFV
virtualisation platform; virtual instance wherein the VNF is deployed; VNF operat-
ing system; VNF application. The process may include features such as the Unified
Extensible Firmware Interface (UEFI) Secure Boot [98] and the TC Measured Boot
workflow [89].

The first allows to validate that the firmware and software run by the machine

22

2.5 – Trust assurance of softwarised networks

are trusted either by the platform manufacturer and/or by the platform owner
by means of digital signatures. Each component in the boot process is verified by
computing its signature and comparing it to a known-good value, either in software
or by leveraging an available RoT. In case of an untrusted element of the chain, the
boot process is aborted. The latter, on the contrary, aims to record information
about the boot process by transitively compute measurements (i.e. cryptographic
hashes) on both the firmware and software elements executed at boot and to store
them in the TPM.

As briefly introduced before, the TPM is a discrete cryptographic coproces-
sor that is already available in commodity machines and can serve as an enabling
technology for several security workflows. Since its beginning, the TPM has in-
cluded basic functions such as key generation, secure storage and reporting. The
first widely available TPM release was 1.1b, although the 1.2 version has been the
most used for a number of years. To address the early privacy issues that arose
from using a TPM, the 1.2 specification included a privacy Certification Authority
(CA) to assess that a key was generated by a TPM without disclosing the TPM
instance it came from. Later, new cryptographic protocols have been proposed
in literature to enhance the privacy of TPM-based integrity verification, such as
Direct Anonymous Attestation (DAA) [10]. Although being inexpensive, the TPM
embeds several multi-purpose security features, described as follows. The Platform
Configuration Register (PCR) is defined in the TPM memory to store the integrity
of boot time measurements (e.g. BIOS, boot-loader). The TPM includes a number
of PCRs, whose size depends on the supported hashing algorithm digest output
length. These registers could be securely reported by an identity key generated
by the TPM so that an external entity could verify the integrity of platform. The
1.2 release provided a standard interface to be implemented by all the vendors,
which helped platform manufacturers to adopt the TPM device in their machines.
A particular feature of the TPM is the way the PCRs are updated. In fact, they
cannot be overwritten by arbitrary data, as the TPM cannot directly write in their
memory. In particular, the TPM implements an extend operation, described as
follows:

PCRnew = SHA_function(PCRold || measured_data) (2.1)
where PCRold is the value present in the register before the extend operation,
SHA_function is the cryptographic hash function, || is the concatenation operator,
and measured_data is the new measure to be inserted.

Moreover, the TPM should include some Non-Volatile Random Access Mem-
ory (NVRAM) space that can store any type of data. A limited portion of the
TPM is usually used to store the TPM’s vendor certificate of the TPM Endorse-
ment Key (EK) [86]. Up to, and including, the 1.2 release, the TPM specification
only supported the RSA, AES and SHA-1 cryptographic algorithms. The TPM
supports secure storage by sealing data to a cryptographic storage key so that it

23

Background

can be decrypted only in case some conditions are met (e.g. the PCRs have pre-
defined values). The latest TPM 2.0 specifications [91, 92, 93] deeply differ from
the previous version, as TCG has redefined the internal structures, commands and
algorithms (particularly cryptographic agility to allow for multiple ciphers, such
as SHA-2 family and Elliptic Curves Cryptography (ECC)) with respect to the
previous chip iteration. Nevertheless, the security capabilities of the device have
been kept intact and extended with new features. The TPM implements the Root
of Trust for Storage (RTS) and Root of Trust for Reporting (RTR) fundamental
services that are required in any TC-compliant Trusted Platform (TP), i.e. the
computing platform that has a trusted component as a foundation of trust for
software processes [89]. In addition to these, each TP requires a Root of Trust
for Measurements (RTM), i.e. a computing engine that can make reliable integrity
measurements about the platform status. The standard RA scheme proposed by
the Measured Boot process requires the target host to run a particular instruction
set, i.e. the Core Root of Trust for Measurements (CRTM), that may be stored
within the BIOS and starts the transitive trust process. Then, the measurements
are included in an IR that is signed by a cryptographic key whose private part never
leaves the TPM secure storage, i.e. the Attestation Key (AK), and is presented to
an external verifier. Compared to Secure Boot, this allows the external verifier to
both ensure that the target machine was not tampered with and to notify exter-
nal entities in case a manipulation was detected. Moreover, Secure Boot requires
the platform administrator to properly update the UEFI configuration on all the
target machines in case their software changes, i.e. because of an OS update. This
is particularly apparent in case of some Linux distributions, which may not have
associated a UEFI cryptographic key, hence they are practically unable to boot.
Finally, Measured Boot allows the verifier to have a more flexible approach to in-
tegrity verification. In fact, it could decide whether to disallow the target platform
to boot, or to still boot with restricted access to other entities and privileges (or
flag for investigation).

Apart from the boot phase, a computing platform would require periodic mon-
itoring of its runtime execution to ensure that its software is not corrupted at later
stages. In this regard, Sailer et al. proposed Integrity Measurement Architecture
(IMA) [80] as a practical solution to record measurements about software events
happening during the life-cycle of the computing platform. As described by the
authors, IMA can benefit from an available hardware RoT such as the TPM to
securely store such measurements in its secure storage, and to provide them to a
TTP for continuous verification. IMA has been implemented in the Linux kernel as
a standard module that keeps track of each software event executed in a platform
(e.g. a binary that has been run, or a file opened for read) and securely stores
its measurement, i.e. a cryptographic hash computed over the software event, in a
PCR. IMA is readily available in many distributions both in the consumer and in

24

2.5 – Trust assurance of softwarised networks

the enterprise markets. Although widely popular, TC-based integrity verification
does not easily translate to a generic virtualised domain by keeping the same secu-
rity assurance than a physical domain. This is due to the nature of the TPM, which
is limited to a single platform owner and hence cannot be shared among several
virtual instances.

Application of Trusted Computing mechanisms to the softwarised network envi-
ronment, comprising both SDN and NFV, has been discussed in the work by Jacquin
et al. [49] that propose RA to be implemented by the NFVI, individual VNFs and
the MANO sub-systems. More specifically, the authors discuss the challenges in
Virtual Machine attestation and propose IMA as a practical implementation of a
run-time integrity measurement architecture. The work by Yan, Zhang and Vasi-
lakos [100] proposes an NFVI Trust Platform middleware to be embedded in the
virtualised infrastructure by an authorised party, e.g. the ISP. This acts at the
virtualisation layer and it leverages a hardware RoT, so that executed components
are measured in a secure way. In this context, the TPM is referenced as an example
implementation of RoT that is readily available in several hardware architectures.
Faynberg and Goeringer [38] describe the establishment of a hardware-based RoT
among the execution components of the NFVI, and propose Remote Attestation
as part of a security monitoring and management component in the NFV environ-
ment. Schear et al. [81] have proposed a solution based on TPM, IMA and the Xen
hypervisor that allows to attest a private cloud environment hosting VMs equipped
with a virtual Trusted Platform Module (vTPM), i.e. a software implementation of
a TPM. Its original design was developed by Berger et al. [7], focusing on the 1.2
specification and the Xen hypervisor. The authors proposed that a vTPM manager
application, running in a Xen privileged VM, served as an access broker between
the underlying physical TPM (pTPM) and the different vTPM instances. The di-
rect access to the pTPM by the vTPM manager is provided by the Xen hypervisor.
In this scheme, the vTPM manager manages the vTPMs persistent data (includ-
ing their cryptographic keys) in the privileged domain and seals them with pTPM
storage keys. Wan et al. [96] discuss the limitations of traditional TPM design
when applied to a virtualised environment. In fact, the TPM is originally designed
to support a single host and cannot handle simultaneous access by multiple en-
tities. The authors discuss alternative designs for vTPMs in literature, including
the original proposal [7] and an alternative approach based on para-virtualisation
of pTPM [24]. Compared to previous solutions, the latter tries to overcome the
security issues of fully virtualised TPMs when exposed to VMs, although it does
not overcome the limitations in current TPM design.

Alternative proposals to Trusted Computing that focus on hardware-based meth-
ods to secure the NFV platform exist in literature. TEEs such as Intel Software
Guard Extensions (SGX) [48], AMD Secure Encrypted Virtualisation (SEV) [1] and
ARM TrustZone (TZ) [5] have been proposed as a solution to secure software run

25

Background

in virtualised instances. Wang et al. [97] have proposed protection of a virtualised
instance of TPM 2.0 (based on the open-source libtpms library) in a SGX enclave,
a shielded memory area wherein only trusted code is allowed. The work by Shih
et al. [83] proposes a protection scheme, named S-NFV, that aims to isolate the
states of NFV applications (i.e. the VNFs) via SGX. States are internal data of
the VNF that are leveraged to enable cross-packet and cross-flow analysis. The
authors propose the split of each NFV application in a S-NFV enclave and a host
processing part. The S-NFV enclave includes the states of the VNF, while the rest
of the processing is done outside of it. The communication between the trusted and
untrusted parts of the VNF should be minimal, as it can deeply affect the perfor-
mance of the solution. The authors also propose the SGX RA feature to monitor
S-NFV applications remotely, although this approach requires the ISP to implicitly
trust the Intel attestation service. Poddar et al. [74] also discuss application of
SGX to the NFV platform as part of the SafeBricks, a system that shields VNFs
from each other and from the untrusted CSP. In this platform, each VNF is run
in a multi-threaded SGX enclave, hence it inherits the limitations in memory size,
the impossibility of run system calls and to create timestamps, and the vulnera-
bility to certain side-channel attacks. Nonetheless, this approach enables flexible
remote attestation at VNF level, which has a lower impact on performance than
TPM-based Measured Boot. Lefebvre et al. [55] discuss the blocking factors on
integration of TEEs within the NFV and SDN domains, and propose an universal
abstraction layer to overcome these issues. Moreover, the authors describe AMD
SEV and Intel SGX as most preferred candidates for trust management in soft-
warised infrastructures, as they enable attestation without the need of measuring
the entire platform. In this regard, the authors criticise the TPM-based integrity
verification as it only supports a static RoT and requires the whole system to be
measured, making its use not practical in a cloud setting. Coughlin, Keller and
Wustrow [13] also discuss the usability of SGX in arbitrary NFV applications and
propose an extension of the Click modular router to perform secure packet process-
ing in SGX. Although promising, SGX requires end-user applications (e.g VNFs)
to be aware of the enclave mechanism, as their code has to be designed to interact
with an enclave (in case of the VNF untrusted part) or to export proper method
calls from the enclave itself (in case of the VNF trusted code).

2.6 Open issues

The scientific literature has addressed the security and trust of an NFV plat-
form broadly, as presented in the previous sections. This is mainly due to the ever
increasing interest in the paradigm both by the research and development commu-
nity and by the telco operators. Nonetheless, there are several open issues that are

26

2.6 – Open issues

still not entirely tackled by the literature, and they represent the motivation for
the research work that is being discussed in this dissertation.

Existing approaches lack an integrity verification solution that is generic enough
to suit different execution environments, hence it allows remote attestation of cloud
nodes equipped with heterogeneous TEEs and even software-only techniques, as in
resource-constrained environments such as IoT fleets.

In addition, existing approaches consider NFV security architectures as elements
that are external to the existing platform. In contrast to this approaches, the
proposal of this work is to tightly couple the trust assurance mechanisms within
the life-cycle of the NFV platform, with particular attention to the NFVI and the
VNFs. Because of this, this work aims to integrate the proposed solution within
the MANO stack, similarly to the Trust Manager defined by ETSI [32].

Hardware-based platform trust for virtualised instances is a major limitation of
existing approaches to cloud security, as discussed in Section 2.5. In this regard, we
believe that a security mechanism tailored for the NFV environment must ensure
that both the physical and the virtual infrastructures are checked against manipu-
lations by attackers. In this regard, the limitations of TC technologies when applied
to a virtual environment are to be addressed by the research.

Finally, the impact on performance and scalability of trust assessment must
be addressed as well. This is already important in an environment wherein sev-
eral virtual instances are sharing the same physical infrastructure, and it becomes
crucial in the networking domain, wherein the latency and load balancing are key
performance indicators.

In the next sections, a proposal for a security and trust monitoring solution
tailored for the NFV environment will be discussed in depth, i.e. the Trust Monitor.
First, the architecture design will be presented so to clarify the main requirements
that have been defined, along with the components that are expected to implement
these requirements. Then, a novel technique for container VNF attestation will be
presented, along with its experimental evaluation in a lab environment. Finally,
the integration of the proposed architecture and VNF attestation technique will
be presented, as a practical approach to NFV threat mitigation. This is made
possible by the deep interaction between the Trust Monitor and the MANO domain,
which allows the infrastructure to timely react in case of manipulations to both the
computing nodes and the VNFs that are deployed on them.

27

28

Chapter 3

Architecture

This chapter details the novel architecture for centralised integrity verification
of an heterogeneous computing platform, comprising both physical and virtualised
instances, i.e. the Trust Monitor. The overall goal of the design is to theoretically
support any cloud-based ICT infrastructure as it abstracts from the practical use
of the virtualised resources. Nonetheless, the softwarised network scenario, as it
was discussed in depth in Chapter 2, is referenced in this chapter as a practical use
case for the proposed architecture. NFV requirements on the security management
process and life-cycle of virtual resources are considered for the design, as they fit
into a more general demand for security of cloud architectures.

Compared to existing literature, the designed architecture does not fit a single
use case and a specific integrity verification technique. On the contrary, it aims
to define a generic trust framework that can be specialised to specific cloud use
cases, such as NFV, regardless of the underlying technologies. The design work
has been driven first by the definition of target use cases specific of cloud-based
architectures. Then, we have derived a series of requirements (both functional and
non-functional) from such use cases. Finally, we have defined an abstract design to
comply to the requirements, and later developed a software architecture composed
of several building blocks, detailed as follows.

3.1 Target use cases

The work described in this dissertation focuses on different use cases that are
enabled by the creation of a security architecture tailored for the NFV cloud sce-
nario. These differ by the deployment model adopted by the CSP, and they are
not specific to a pre-defined cloud service model. In fact, the approach proposed
in this work is meant to be transparent to the services that are offered by the CSP

29

Architecture

to its end users. They are all significative for the NFV scenario, wherein the telco
operator is typically in charge of the maintenance of the physical infrastructure and
leverages it to offer softwarised network and security services to its clients.

3.1.1 Security-as-a-Service

CSPs may leverage the SECaaS paradigm when offering novel security services
to their clients. Compared to in-house deployments, SECaaS allows the complexity
of the security analysis to be hidden from the client, who can therefore be freed
from the need to acquire, deploy, manage and upgrade specialised equipment. In
this use case, the CSP would be able to insert new security-oriented functionalities
directly into the network of the customer, through its provided gateway or in the
core infrastructure. In order to fully exploit SECaaS, the CSP should be able to
ensure that the platform has not been tampered with, so that the security services
are protected as wall. Hence, both the CSP and its clients would benefit from
practical means to asses the trustworthiness of their resources.

SECaaS is detailed by ETSI [28] as one of the key use cases that are enabled by
NFV, as the flexibility and dynamic resource allocation introduced by the paradigm
can effectively support the needs of on-demand protection as envisioned by it. This
use case is motivated by the need of protecting ICT infrastructures effectively in
an evolving threat environment, where vNSFs can be exploited to both monitor
and react upon detected attacks. An ISP could build SECaaS services to secure his
clients’ networks, freeing them from the costs of managing, operating and upgrading
dedicated network and security devices. In this scenario, big data analytics can play
a significant role to fulfil the anomaly detection and define a mitigation strategy.

A high-level architecture of the SECaaS use case is depicted in Figure 3.1. It
includes the following components:

• Data Analysis and Remediation Engine (DARE). It performs threat
detection using analytics, cognitive intelligence and monitoring of the infras-
tructure, in order to define a mitigation strategy for an attack.

• Monitoring vNSF. It monitors the traffic of the network, acting as a net-
work probe, event generator or honeypot. The relevant information of moni-
tored traffic is fed to the DARE.

• Reaction vNSF. It applies a mitigation strategy defined by the DARE, with
the aim of preventing or stopping a threat.

• vNSF store. A catalogue of vNSFs that can be instantiated in the network.

30

3.1 – Target use cases

Figure 3.1: The Security-as-a-Service use case in NFV

• Dashboard. A visualisation component that can be accessed by the in-
frastructure administrator, to display the analytics result and recommend
mitigations for incoming threats.

The vNSFs can be deployed onto the client gateway or in the ISP network infras-
tructure. In addition to these components, the SECaaS use case also specifies vNSF
and infrastructure attestation as a necessary step to ensure that the SECaaS service
is trustworthy. In this scenario, the design and development of a container-based
vNSF should take into account the need for providing monitoring and/or reac-
tion capabilities for specific security threats, in addition to reporting the relevant
network and security information to trusted third-parties for analytics.

The SECaaS use case introduces relevant challenges in terms of correctness,
availability and scalability of the vNSFs, given their critical role in a ISP infras-
tructure. These requirements are typically implemented in traditional deployments
of security middle-boxes, hence they should be considered by the NFV paradigm
as well.

3.1.2 Protection of the CSP infrastructure

In order to protect their own infrastructure, NFV telco operators usually have
to deploy specific hardware that is very expensive, since this hardware has to be
maintained by specialised operators. Furthermore, the operators may need to ini-
tially invest time to figure out the attack before being able to stop it. In this use
case, the virtualisation offered by the cloud paradigm aims at dramatically reduc-
ing both costs by replacing specific hardware for virtualised instances, as well as

31

Architecture

providing centralised interfaces to present the implications of the gathered data, its
analysis, and then act in the infrastructure. Because of this, integrity verification
of the core infrastructure wherein the cloud services are deployed is paramount for
the telco operator.

3.1.3 Security information and event management

Any telco provider requires to deploy a Security Information and Event Man-
agement (SIEM) to gather security informations about his platform. Often, it also
require ways of sharing threat information with third-parties who wish to synchro-
nise information and research on measures to be taken on recent attacks, suffered
by others. Currently, if a Cybersecurity agency wants to retrieve statistical infor-
mation about a network, it has to agree with the ISP to deploy specific hardware
on the infrastructure. This is a very costly procedure — both in terms of time and
money — that makes it prohibitive in the current market situation. Particularly,
attacks are constantly evolving and require a fast, reactive and flexible solution.
Using NFV and trustworthy security services, Cybersecurity agencies can establish
agreements with the ISP and deploy VNFs quickly and without specific hardware
in the infrastructure.

3.2 Requirements

The requirements detailed in this section have been defined as a consequence of
the use cases proposed in Section 3.1, in addition to the analysis of the scientific
literature and of specifications in the field of cloud security, as done by ETSI in
case of NFV.

Security. The architecture has to follow the principles on attestation as de-
tailed in [12], so that it does not incur in security weaknesses that have been
already discussed and overcome in literature. In this regard, the platform should
support both on-demand and periodic integrity verification. Moreover, the archi-
tecture must be designed by ensuring that AAA principles are implemented on the
interfaces that allow its interaction with external entities and its actors, i.e. the
CSP.

Privacy. The information gathered on the attested platform should not allow
tracking of end users of the system by storing their private information (i.e. IP
addresses, as in the case of VNFs that forward users’ traffic in a telco network).
With respect to interactions of the platform with external actors and systems,
communications should be secured against eavesdroppers by means of well-known
communication security technologies, such as TLS.

32

3.3 – Design overview

Expandability. The system must be able to support heterogeneous attestation
workflows, depending on the available security technology available on the target
platform. Moreover, the system should manage remote integrity verification of tar-
get platforms with a variable level of assurance, according to the desired attestation
technique. For instance, a core system deployed in the internal network may be ver-
ified for boot-time manipulation only, while the systems that are directly exposed
to the internal network may be subject to a run-time inspection. In this regard, it
is important that the specific RA workflows can be scheduled independently from
each other.

Interoperability. The system should be designed in a way that its notifi-
cation and reporting capabilities are separate from the core integrity verification
process, so that it can be easily extended to push information about the trustwor-
thiness of the target platforms to different actors. Hence, it is important to define a
well-known communication protocol and data format for the exchange of integrity
reports.

Scalability. The server-side part of the system must be able to scale horizon-
tally to support attestation of multiple target platforms in parallel. With respect
to the client part of the RA process, each target node is expected to host a single
Attester.

Traceability. The system must log information about the attestation requests
issued to the different target nodes, allowing a trusted party (i.e. a cyber-security
agency) to process such information in case of off-line forensic analysis.

Availability. The system should be able to recover in case of software fail-
ures so that a single failure does not compromise its life-cycle within the cloud
infrastructure.

Compliance to international standards. In order to be effectively consid-
ered as a close-to-market solution for adoption in a production-level NFV environ-
ment, the system must comply to international standards in the field of security
and privacy.

3.3 Design overview

This section introduce the trust architecture designed as part of the research
work. The assumptions that motivate the design are presented, along with a high-
level description of the architectural building blocks and a generic cloud attestation
workflow.

Assumptions. The target use case is a cloud service model, i.e. IaaS, wherein
the components that provide the end users’ with virtual resources to be exploited by

33

Architecture

Figure 3.2: The Trust Monitor high-level architecture

cloud native services and applications are interconnected in a Local Area Network
(LAN). This assumption is motivated by the exploitation of the remote attestation
process, as each of the software elements that are subject to verification should be
reachable via standard network protocols by a remote TTP living in the adminis-
trative domain of the platform. More specifically, following traditional networking
models exploited by wide-spread cloud management solutions (e.g. OpenStack [72]),
the remote attestation process should take place on the management network that
is internally managed by the CSP, and which is separated from the provider ex-
ternal network by means of network isolation mechanisms (e.g. VLAN tunnels).
Moreover, the proposed architecture leverages a client-server architecture wherein
the Verifier, acting as a server, is responsible of requesting a proof of integrity to
each Attester, i.e. a client, so that any unexpected malfunction at the client side
can be detected in a timely manner by leveraging periodic polling. Moreover, this
assumption enables the capability by the Verifier to request attestations for any
Attester at a given time, on a on-demand basis (e.g. in case a critical operation was
to be performed on the target node by the cloud infrastructure manager depending
on the result of attestation). Finally, the software components that are executed
in the administrative domain are implicitly trusted in the proposed design, so that
the overall integrity verification process can be both simplified and targeted to the
most exposed software components of the target infrastructure, i.e. the processes
that are directly exposed on the provider public network.

Figure 3.2 depicts a high-level view of the proposed design, i.e. the Trust Mon-
itor. This is composed of several elements, which can be grouped in the following
areas:

• the core integrity verification logic, which orchestrates the RA workflow as a

34

3.3 – Design overview

server-side entity and, hence, has internal knowledge over the target Attesters
and their specific integrity verification scheme;

• the generic RA client-server model, which allows to remotely request a proof
of integrity to heterogeneous target nodes, i.e. implementing different TEEs
or software-based integrity mechanisms;

• the notification and reporting logic, which encompasses the modules that are
either used to timely inform external entities about failed attestations or to
store logs about the ongoing RA processes for further analysis.

The Cloud Verifier is the central element of the core integrity verification logic,
in charge of initiating RA workflows depending on the supported scheme by each
target node, being it a physical or virtualised instance. Moreover, this component
is in charge of the verification process, which requires it to validate the proof of
integrity, i.e. the IR, of the target node according to the specified RA scheme. It
supports both on-demand and periodic attestation processes thanks to its coopera-
tion with the Scheduler. This is a long-lived module that triggers the Cloud Verifier
for periodic trust assurance of the target nodes, and is external to the verification
logic. Finally, the Trust Monitor leverages a Whitelist Database as a centralised
entity responsible for the long term storage of integrity measurements, so that they
can be compared against those retrieved at run-time from the target nodes.

The client-server attestation process is modelled by an Attestation Driver and
the target node, i.e. the Attester. This represents the server-side Verifier for a
specific RA workflow, allowing the Trust Monitor to support Attesters based on
different architectures (e.g. ARM, Intel) and RoTs. Each Attestation Driver is
proposed as a plug-in to the central Cloud Verifier, and can be selected according
to the target node. Software-based approaches are supported alongside hardware
solutions, although they may provide lesser assurance about the integrity proof in
principle.

With respect to the notification capability, the proposed architecture encom-
passes interfaces towards external modules so that it can either send information
about the trustworthiness of the platform or receive commands regarding its func-
tionalities. The first type of interaction is defined as a Connector, i.e. a software
module that connects to an external service via its Application Programming In-
terface (API). Several Connectors can be implemented depending on the target
environment. The second interaction is made available via APIs that are directly
exposed by the Trust Monitor, i.e. the Management API and the Newcomer API :
the first serves requests about the status of the Trust Monitor and of the trust-
worthiness of the target system; the latter allows registration and attestation of
newcomer nodes in the platform. Finally, the reporting capability of the Trust
Monitor is made available via an Audit Database, a centralised storage of integrity

35

Architecture

reports that can be leveraged by external entities (i.e. cybersecurity agencies) to
retrieve historical information about the trustworthiness of any attested node.

The architecture that is proposed in this dissertation can fit different use cases
and target platforms, such as NFV, by ensuring that the following operations are
performed:

• develop the desired Attestation Drivers that fit the target Attesters;

• develop the proper Connectors to integrate the architecture within the target
environment (e.g. to interconnect the Trust Monitor with the NFV Orches-
trator, in case of NFV);

• populate the Whitelist Database with measurements that are relevant to the
integrity verification process.

3.4 Process

The purpose of the Trust Monitor is to assess the trustworthiness of the nodes
composing the target cloud infrastructure, in order to act on compromised nodes
(e.g. exclusion from the platform) and validate the integrity state of newcomers.
In order to do so, the Trust Monitor should be able to interact and cooperate
with other components of the cloud platform, as it is expected to leverage existing
information about the target platform that is already available in the administrative
domain. A high-level description of the steps that are envisioned for the complete
integrity verification process is depicted in Figure 3.2, and is hereby presented to
the reader.

1. The cloud infrastructure manager registers a node to the Trust Monitor via
its Newcomer API, providing the proper parameters to allow its further attes-
tation (e.g. the proposed Attestation Driver, its hostname and/or IP address,
its hardware architecture). Moreover, the manager defines the proper ref-
erence measurements for the target node and stores them in the Whitelist
Database.

2. The Cloud Verifier initiates the RA process for the target node. This may
happen in two different phases:

• on-demand request via the Management API;
• periodic request via the Scheduler.

36

3.5 – Cloud Verifier

3. The server-side logic of the Attestation Driver is instantiated, according to
its original definition for the target node, so that it can request an integrity
proof to the target Attester. This typically involves sending a nonce for the
freshness of the response.

4. The Attester responds to the query by providing a proof of integrity that is
ideally secured by a verifiable RoT.

5. The Attestation Driver validates the response and extracts software measure-
ments from the integrity proof, forwarding them to the Cloud Verifier.

6. The Cloud Verifier verifies the measurements against the reference list pro-
vided in the Whitelist Database, storing the outcome of the process in the
Audit Database.

7. The Connector presents the result of attestation to the cloud infrastructure
manager and/or to a cloud administrative service for further operation (e.g.
exclusion of the node in case of untrusted proof).

The process does not specify the actual RA technology supported by the target
cloud node, as this strictly depends on the Attestation Driver chosen by the plat-
form owner. Because of this, our design suits different integrity verification mech-
anisms, and it does not require an implementation based on TC technologies only.

The following sections give a detailed description of the features of the archi-
tecture’s components.

3.5 Cloud Verifier

The Cloud Verifier is the central component of the Trust Monitor, responsible
for the execution of the integrity verification process as a centralised entity. Because
of this, it can be considered as the workflow manager of the architecture, as it is
responsible to orchestrate interaction with the other components (e.g. the Whitelist
Database, the Connector, the Audit Database) during its life-cycle. It manages the
following functionalities:

• registration of a node to the trusted domain, i.e. the list of cloud nodes that
are verified for integrity;

• instantiation of the Attestation Driver for each node in the trusted domain
when attestation is requested;

• aggregation of integrity proofs determined by each Attestation Driver;

37

Architecture

Attribute Type Description
address String (16) IPv4 address of the target
analysis_driver String Identifier of the Attestation Driver
host_name String Target hostname
operating_system String Operating System of the target node
analysis_type String Type selector for the Attestation Driver
analysis_init_data Dictionary Initial data for the Attestation Driver
virt_technology String Virtualisation technology

Table 3.1: Cloud Verifier host registration table.

• trigger notifications based on the result of attestation;

• store the attestation log for audit.

The registration phase is needed to properly setup the attestation process with
each target node composing the infrastructure. The information required at this
stage is detailed in Table 3.1. At minimum, the Cloud Verifier requires the IP v4
address of the target node and the identifier of the Attestation Driver, which must
be uniquely defined in the Trust Monitor configuration. In addition, the user may
specify the hostname of the node, if available, so that it can be used alternatively
to the IP address during the attestation phase. This feature is particularly relevant
in a cloud environment, wherein the physical location of an instance may vary
over time because of migration of re-location in another cluster, hence using its
IP address may not be as effective as relying on the DNS name resolution. At
registration, the user may also specify the OS adopted for the target node. This
is relevant in case of run-time integrity verification of software packages executed
in the target machine, as they would be specific to a certain OS. In that case, the
Whitelist Database may be previously populated with the known-good software
for the specific system, allowing easier integration of nodes that share the same
configuration. Then, the registration may include additional information to trigger
a specific integrity verification routine in case the Attestation Driver allowed for
different solutions (e.g. boot-time versus run-time checks), and an opaque data blob
for initial data that may be required by the Attestation Driver at each attestation
(specific to the RA workflow). Finally, the node virtualisation technology may be
required in case of compute hosts, so that the Attestation Driver can apply specific
verification logic depending on the hypervisor architecture.

With respect to attestation, the Cloud Verifier does not directly interact with
each Attester that was previously registered. When prompted, it cycles through the
list of registered nodes and instantiates the proper Attestation Driver by leveraging
the identifier as defined in Table 3.1. In order to improve performance, each Attes-
tation Driver is executed independently from each other by leveraging threading at

38

3.5 – Cloud Verifier

Attribute Type Description
attestation_time Timestamp Instant of the attestation request
trust_level Boolean Identifier of the Attestation Driver

host_ir_list List of host
integrity reports

List of Integrity Reports, one for each
Attestation Driver

Table 3.2: Cloud Verifier global attestation status data.

Attribute Type Description
node_name String Name of the target node
trust_level Boolean Trustworthiness of the target node

analysis_status Integer Is different from zero in case of
failure by the Attestation Driver

analysis_extra_info Dictionary
Key-value pairs of additional data
regarding attestation
(e.g. list of untrusted binaries)

analysis_driver String Identifier of the Attestation Driver
analysis_time Timestamp Instant of attestation request

virt_ir_list List of virtual
integrity reports

List of Integrity Reports for each
virtual instance run on the physical
node

host_remediation Object
Object that suggests a remediation
option for the node in case it is
found untrusted

Table 3.3: Cloud Verifier host integrity report data.

application level. In this regard, the Cloud Verifier manages a pool of threads by
assigning to each of them a separate Attestation Driver instance, and then waits
for all of them to terminate.

Although more efficient, parallelisation requires all the threads to agree on a
common data format for the exchange of information with the main process. Hence,
we have specified a proper data format for the exchange of information about the
trustworthiness of each node. As reported in Table 3.2, the Cloud Verifier identifies
each integrity verification of the whole target platform with the request timestamp,
the global trust status and a list of the integrity reports, one for each host that was
attested. Each of the Attestation Drivers is bound to return an integrity report
that complies to this interface, as the Cloud Verifier is responsible to derive the
global trust level of the infrastructure by analysing the content of each integrity
report. Table 3.3 shows the full list of parameters that are specific to each host
IR. They include the name of the target node (which defaults to its IP address

39

Architecture

Column Type Description

isolation Boolean If true, the node shall be isolated
from the network

termination Boolean
If true, the node shall be terminated
by either executing a command
manually or via the hypervisor.

Table 3.4: Cloud Verifier remediation data.

in case no hostname was provided), its trustworthiness and various details about
the actual attestation process. For instance, the Attestation Driver may signal
that there was a software error that made the attestation unsuccessful, or it can
provide details about the result (e.g. the list of software measurements that were
not white-listed). Moreover, each host attestation is bound to a timestamp and
a list of IRs belonging to the virtual instances (e.g. containers) that are verified
along with the physical platform. Integrity verification of the virtual instances
may be performed according to the defined Attestation Driver, and it may imply
either static validation of the image or some form of TC-compliant RA scheme. In
this regard, limitations on attestation of virtualised environments apply. Finally,
the Attestation Driver can propose a mitigation strategy in case of an untrusted
node, following another well-defined data interface that is defined in Table 3.4. As
the Attestation Driver is the only component that is actually responsible for the
verification of the Attester, it is considered as the most suitable entity responsible
for defining a possible mitigation strategy. Two possible strategies have been defined
in the scope of this dissertation, the first being the termination of the node and the
latter its isolation from the management network.

As aforementioned, each virtual instance may be attested along with the phys-
ical platform. In this case, each host IR will include a list of data as specified in
Table 3.5. This shares similarities with the host IR specified in Table 3.3, although
it also allows the specification of additional data of the virtual instance, such as its
tenant. The generic approach to the design of attestation data formats allows for
further customisation depending on the practical use case (e.g. to bind each virtual
instance to a specific network service, in case of a VNF).

Once the global attestation result has been generated by aggregating all the
individual integrity proofs, the Cloud Verifier leverages the Connector to notify the
result to interested third parties. Finally, the global attestation result is forwarded
to the Audit Database for long-term storage.

40

3.6 – Whitelist Database

Attribute Type Description
node_name String Name of the target node
trust_level Boolean Trustworthiness of the target node

node_extra_info Dictionary Key-value pairs of additional data
regarding the node (e.g. tenant)

analysis_status Integer Is different from zero in case of
failure by the Attestation Driver

analysis_extra_info Dictionary
Key-value pairs of additional data
regarding attestation (e.g. number
of untrusted binaries)

analysis_driver String Identifier of the Attestation Driver
analysis_time Timestamp Instant of attestation request

virt_remediation Object
Object that suggests a remediation
option for the node in case it is
found untrusted

Table 3.5: Cloud Verifier virtual instance integrity report data.

3.6 Whitelist Database

The Whitelist Database is the centralised source of reference measurements
of the trusted domain, in charge of collecting the data relevant to each specific
Attestation Driver. As aforementioned, the measure is typically a cryptographic
hash computed on a software component that is executed by the target. Examples
of measures include the BIOS, the boot-loader, the OS kernel, the services and
applications run in user-space.

As the traditional RA process is tailored for a single target system, it is typically
subject to a single whitelist. This approach cannot be applied as is to a cloud
environment, wherein heterogeneous platforms may be verified for integrity by the
same Trust Monitor instance. Because of this, this component should contain
multiple data sources that can be specific to a certain OS or architecture, so that
each Attestation Driver can leverage the correct database according to the target
platform.

Moreover, the origin of such data may be different according to the target
platform and attestation technique. In case of the physical nodes comprising the
cloud infrastructure, they are expected to run a fixed and pre-defined firmware and
software configuration for stability and ease of management. Hence, attestation of
the physical platform is expected to rely on a limited number of stable whitelists,
specific to a certain OS (e.g. CentOS server distribution) and hardware architecture
(64 bit). At high level, an OS-level whitelist would include the following information
for each file to be measured:

41

Architecture

• its cryptographic hash, i.e. the digest;

• the full path of the file on the target file-system;

• the packages in which it is contained or it refers to (grouped by distribution
and architecture).

Given the supported distributions and architectures, the database is initialised
and updated periodically by downloading the packages’ lists from their official
repositories. Alternatively, the database can be updated with release information
for components that do not come from public repositories. Additionally, the OS-
level database should store the history of each package, reporting the information
about its updates (e.g. the type of update). Given the packages’ history, several
trust levels can be specified by the Attestation Driver:

• Level 1. OS-level integrity verification in the node is running correctly.

• Level 2. Integrity verification is working correctly and all the software is
found in the reference database, but there is at least one binary with a known
security vulnerability.

• Level 3. The integrity verification process is running as expected and all the
software is both well-known and without security vulnerabilities, but at least
one binary has a known functional bug.

• Level 4. Integrity verification has successfully detected all the software as
trusted, and neither security vulnerabilities nor functional bugs are found in
the measured software.

On the other hand, virtualised instances are much more volatile in nature,
as they rely on software images that may be updated, overwritten and deleted
frequently. Moreover, they may be running custom software and configuration
more probably than the physical system, as they are not required to be as stable as
the OS at hypervisor level. In addition, the whitelists of virtual instances can be
significantly different depending on the type of virtualisation. As aforementioned,
containers share the same kernel as the host and focus on sandboxing the user-
space. Because of this, the whitelist of a certain container is expected to focus on
user space programs rather than firmware or kernel measures (which would be still
attested as part of the host integrity verification).

With respect to the NFV environment, attestation of VNFs introduces a sig-
nificant challenge regarding reference measurements. Several use cases, such as
SECaaS, imply that developers can push their own VNF images to the centralised

42

3.7 – Attestation Driver

image store. These shall be attested against reference measurements that are ei-
ther managed by the CSP (e.g. the database of the packages published for a certain
Linux distribution) or provided by the VNF developer itself, e.g. in case of custom
binaries or configuration. Hence, there is a need to establish a trust relationship
with the VNF developer. It is to be noted that a successful attestation does not
ensure that the software is not harming the system, but only that it behaves as
expected originally.

3.7 Attestation Driver

The Attestation Driver is one of the key features of the Trust Monitor when
compared to other existing trust assurance solutions for the cloud environment,
as it aims to overcome their limitations with respect to the practical technique
that is used for attestation. In fact, the cloud ecosystem comprises several devices
with heterogeneous architectures, capabilities and very different computing power.
Because of this, it is not possible to propose a single mechanism to secure a generic
cloud platform, as it would greatly limit the applicability of the proposal.

The Attestation Driver serves as an interface between the Cloud Verifier and
the Attester, that logically acts as the verifier in a generic RA scheme. Its goal it so
offer a generic set of functions that are then implemented according to the specific
integrity verification scheme. This flexibility enables different use cases, depicted
in Figure 3.3 and detailed as follows:

• the Attestation Driver directly requests a proof of integrity to the remote
Attester and verifies it (either in software or leveraging a hardware RoT);

• the Attestation Driver, acting as a proxy, triggers an attestation request to
an external RA verifier, which manages the connection with the Attester.

Although both approaches are viable and ultimately result in the integrity verifi-
cation of the target, they have very different costs from the CSP perspective: the
first requires more development efforts but allows to centralise the attestation work-
flows as part of the Trust Monitor application, reducing the surface of attack of the
platform; the latter requires a more distributed system but it significantly reduces
development and integration costs, as it may leverage off-the-shelf software such as
readily available attestation frameworks (e.g. Intel Open ATtestation (OAT) [46]
and [47] open-source initiatives).

As aforementioned, the Cloud Verifier is the only component that instantiates
Attestation Drivers and triggers commands on their interface. The Attestation
Driver interface supports both registration and attestation of a node, and it should

43

Architecture

Figure 3.3: The Attestation Driver deployment options

provide a health-check value at runtime as well (that depends on the type of commu-
nication with the Attester). Although not strictly required, registration is provided
in case the Attestation Driver acts as a proxy towards an external RA verifier so
that it can provide to it the data of the new Attester. At this stage, the Attestation
Driver receives data about the Attester has defined in Table 3.1. Apart from the
origin of the target, additional input data and a type selector can be provided to
the Attestation Driver. In fact, we have designed the Attestation Driver to support
different types of integrity proofs with respect to the desired trust level. This can
be helpful in case the CSP aims to deploy several instances of the same Attestation
Driver to protect its nodes and to choose different trust levels depending on the
end node (e.g. by enabling TC-compliant run-time verification only for the mission
critical services to spare computing power). Attestation is performed according
to the specific integrity verification scheme of the Attestation Driver, and it may
leverage the additional data inputs provided during registration. For example, in
case of TPM-based RA, the PCR 0 value should be provided as external input
to the integrity verification, so that the Attestation Driver can properly start the
verification of the chain of trust from the boot phase (via the CRTM) up to the
run-time software events. All the Attestation Drivers must comply to the same data
format with respect to the attestation result, as already presented in Table 3.3 and
Table 3.5 depending on the type of node.

3.8 Attester

The Attester represents the client-side of the integrity verification scheme, whose
server part is implemented via the Attestation Driver (both internally or as a proxy,
as detailed in Section 3.7). Given the distributed target environment, the Attester

44

3.9 – Application Programming Interface

should communicate via the network with the server by leveraging standard proto-
cols that can effectively ensure a secure, privacy-sensitive exchange of data. As for
the Attestation Driver, the Attester is not tailored for a specific attestation scheme,
hence it is a more general definition than the one provided by TC. In fact, it does
not imply the use of a hardware-based RoT, nor a TC-compliant IR format. From
the logical perspective, it acts as a passive component that is able to provide a
proof of trust to the Attestation Driver once requested to do so. The way the proof
is constructed is entirely up the specific technology that was chosen by the CSP.
Practical examples of Attesters can be found in existing attestation frameworks,
such as Keylime [51].

The deployment of the Attester can significantly differ depending on the node
it is protecting. In case of a physical host, it is expected to run a single instance
of Attester in the user-space of the OS, with sufficient permissions to access the
hardware RoT, if any available. In case of a virtual host, it could both be specific
to a single instance or be still deployed in the host space, depending on the virtu-
alisation technology (e.g. VMs or containers) and the conjunction with a hardware
RoT. In fact, solutions like vTPMs in the Xen hypervisor [7] allow each VM to have
its own RoT and, therefore, its own Attester. On the other hand, our proposal that
will be detailed in Chapter 4 leverages a single per-host Attester regardless of the
number of virtual instances that are spawned on the host.

3.9 Application Programming Interface

The Trust Monitor is designed to be a stand-alone entity that runs within the
administrative domain of the CSP infrastructure. Hence, it is part of a distributed
architecture and, therefore, it relies on external APIs so that other components can
interact with it. In the scope of this work, we have chosen the Representational
State Transfer (REST) architectural style [39] for the API specification. This allows
a straightforward definition of functions based on resources and HTTP methods.
A resource is a specific functionality or state of the application, and it is uniquely
defined by a URL. The HTTP methods differentiate the operation that is performed
on each resource: GET refers to the retrieval of the resource; POST is used to add
a new resource (or to modify it, although PUT is also possible); DELETE is used
to remove the resource. The proposed design includes two separate APIs, namely
the Management API and the Newcomer API, that deal with different resources
and with operations that can be performed on them.

The Management API exposes commands to check the status of the Trust Moni-
tor, and to retrieve relevant information about the attestation of the infrastructure,
as it is fully detailed in Table 3.6. The resources that are managed by this API
are the status of the application, the trust level of the infrastructure, the digests

45

Architecture

API call HTTP method Parameters Description

/status GET None Retrieves a health-check report
about the TM application.

/trust GET None
Retrieves the latest global
attestation status of the whole
infrastructure.

/trust GET Node name Retrieves the latest node
attestation status.

/digest GET None Retrieve the list of digests that
are whitelisted at a given time.

/digest POST
Digest
Path name
OS data

Adds a new digest for a given file
(identified by its path name) for a
certain OS.

/digest DELETE Path name Remove the digest for a given file
from the whitelist.

/audit GET None Retrieve all the audit logs for the
whole infrastructure.

/audit GET
Node name
Start date
End date

Retrieves the audit logs for a
certain node and for a specific
period.

Table 3.6: Trust Monitor Management API

in the Whitelist Database and the audit logs. Apart from the reference measure-
ments’ functionalities, the majority of the API calls are read-only. With respect to
the calls related to attestation, they may be implemented by retrieving the latest
attestation result that is already available in the Audit Database, especially in case
of frequent periodic integrity checks.

The Newcomer API is focused on the on-demand registration and attestation
of newcomers to the infrastructure. Differently from the Management API, it may
be utilised by the CSP at each stage a new physical node is added to the existing
compute hosts. Moreover, it can be utilised whenever a virtual instance is executed,
so that its trust level is assured at an early execution stage. The API calls are
detailed in Table 3.7 as follows. With respect to registration, the data that is either
retrieved from the Trust Monitor or provided for newcomer complies to the format
specified in Table 3.1. Differently from the Management API, the attestation API
call triggers a fresh integrity verification for the target node.

46

3.10 – Connector

API call HTTP method Parameters Description

/registration GET None Retrieves all nodes that were
registered to the Cloud Verifier.

/registration POST
Host
registration
data

Adds a new node to the list of
registered nodes in the Cloud
Verifier.

/registration DELETE Node name Removes a node from the list
of registered nodes.

/attestation POST None Retrieve the list of digests that
are whitelisted at a given time.

Table 3.7: Trust Monitor Newcomer API

3.10 Connector

The Trust Monitor has a plug-in approach to interaction with external services
via Connectors. Each of them acts as an independent module that links the Trust
Monitor core verification logic, i.e. the Cloud Verifier, and other services belonging
to the CSP. The interactions envisioned in this design belong to two main areas:

• notification of attestation results and remediation strategies to any high-level
management process of the cloud infrastructure, e.g. the NFVO in case of the
NFV paradigm;

• gathering of information from the other services of the cloud infrastructure
that are relevant to the attestation process, e.g. the tenant that owns a specific
set of virtual instances of a target compute host.

In order to achieve both results, each connector is designed as a three-tier entity
as detailed in Figure 3.4. On one side, its inbound interface is used by the Cloud
Verifier to request or provide information at any stage of the verification process. On
the other side, the outbound interface implements the API of the external service
either to provide or to request data from it, depending on the type of connection
that is required by the Trust Monitor. In the middle, a business logic takes care of
data manipulation (e.g. filtering) if required, and format manipulation between the
two interfaces. In this regard, it is expected that the data formats adopted by the
Trust Monitor and the CSP services are not consistent to each other, hence format
manipulation allows integration of heterogeneous external services with the Trust
Monitor core logic.

47

Architecture

Figure 3.4: The Connector architecture

3.11 Audit Database

In addition to the immediate action when detecting a misbehaviour by one
component (isolation of the component, migration of the untrusted virtual instance
to a trusted component, modification of the network topology), the Trust Monitor
centralises the measurement in the Audit Database through an Enterprise Service
Bus (ESB). This is the base component to control the security of the infrastructure
over a period of time.

As aforementioned in Section 3.9, the Audit Database records attestations for
all the registered nodes and allows a third party to filter data about past verifi-
cations. This can be particularly helpful for forensics analysis, in case a node is
found untrusted and the cyber-security analyst is interested in recollecting the trust
history of the node. As in the case of the Whitelist Database, the Audit Database
is a passive component of the proposed architecture, as it acts as a persistent data
source. Its inputs are human-readable representations of the global attestation
status, as described in Table 3.2.

3.12 Scheduler

The Scheduler is an independent module that periodically invokes the Cloud
Verifier for attestation of the registered nodes by leveraging the Management API.
This can be entirely skipped in a use case wherein periodic attestation is not de-
manded, although constant monitoring of the trustworthiness of the platform is
desirable in most cases.

48

3.13 – Compliance to requirements

3.13 Compliance to requirements

The architectural proposal described in Section 3.3 has been elaborated with the
aim of achieving the general high-level requirements of Section 3.2. In this context,
Table 3.8 explains how the proposed design is compliant with the requirements set.

49

Architecture

Requirement Components Justification

Security

Cloud Verifier
Attestation Driver
Attester
API

The TM enables secure integrity
verification via heterogeneous
RoTs that can be bound to the
hardware. The APIs must be
protected against misuse by
unauthorised entities.

Privacy

Whitelist Database
Attestation Driver
Attester
Audit Database

The TM databases do not carry
specific information about the
users of the platform. The data
that is exchanged during the
attestation procedure is protected
for confidentiality and integrity.

Expandability Attestation Driver
Connector

The TM supports heterogeneous
integrity verification mechanisms.

Interoperability API
Connector

The TM can fetch information by
external actors with customisable
outbound interfaces, and can be
invoked by external actors with
a standardised API.

Scalability

Cloud Verifier
Whitelist Database
Audit Database
Scheduler

The server-side components of
the TM can be easily scaled as
the data sources are centralised in
few entities that can be replicated.

Traceability Audit Database

The TM records logs of all its
operations so that further analyses
(e.g. forensics) can be performed
on its data,

Availability Cloud Verifier
Whitelist Database

The TM is mostly composed of
stateless components that are
resilient to failures. The few data
sources can be replicated for
increased availability.

Compliance
to standards

Attestation Driver
Attester
API

The TM supports TC-compliant
remote attestation with tools that
are readily available on the market
and leverages de-facto standards
on data formats and communication
(e.g. REST, TLS).

Table 3.8: Trust Monitor mapping to requirements

50

Chapter 4

Container-based VNF attestation

This chapter drills down on the technical details of the VNF attestation tech-
nique that we have developed and integrated within the Trust Monitor as part of
this thesis, i.e. Docker Integrity Verification (DIVE). The goal of this part of the
work is to offer a practical mechanism that is readily available to implementers
to secure the run-time life-cycle of VNFs by assessing their execution state at any
given time.

4.1 Requirements

We have defined a specific set of requirements for the design of the run-time
integrity verification scheme for container-based VNFs. These address the current
limitations of the state of the art on container security, and try to overcome them
by encompassing TC principles in the design.

Hardware-level security and privacy. The integrity verification scheme
must rely on a hardware RoT, i.e. its security and privacy must be guaranteed
by secrets and mechanisms that are protected in a secure, tamper-resistant (or
tamper-proof, ideally) device.

Run-time validation. The system must allow for run-time validation of con-
tainers during their whole life-cycle, so to ensure that the chain of trust is not
invalidated at any stage after the initial deployment.

Scalability. Given the highly virtualised target environment, the integrity
verification scheme must be built to scale at the increase of the number of containers.

Technological readiness. The solution must rely on software tools that
are consolidated in the market, so that it can be effectively implemented in a
production-oriented environment.

51

Container-based VNF attestation

Figure 4.1: DIVE high level architecture

Interoperability. The solution should abstract from the practical deployment
use case, so that it can be applied to generic integrity verification schemes tailored
for lightweight virtualisation. Hence, the technique itself should not depend on
domain-specific information, such as VNF data in the case of NFV.

4.2 Overview

The DIVE architecture complies to the TCG standardised RA scheme, which
includes the Attester and the Verifier as the two main actors. The first is the
attesting party that runs on the target node and measures its state, leveraging
the hardware RoT as a trust anchor for storing measurements in a secure way
and to authenticate the proof of integrity, i.e. the IR. The latter is the remote
party that initiates the RA scheme and validates the IR, allowing trusted third
parties to discriminate about the trustworthiness of the target node. In this regard,
the concept of trust does not address whether the node is good or bad, but only
if it behaves according to a known-good state. Figure 4.1 represents the DIVE
architecture, including the Attester, the Verifier, the Whitelist Database, and the
Infrastructure Manager.

The Attester is deployed on the container compute node, which runs the con-
tainer runtime (acting as a local hypervisor) and is able to run virtualised workloads
via containers. It is equipped with a hardware RoT, i.e. the TPM, that secures the

52

4.2 – Overview

run-time measurement architecture. The Verifier is deployed in a trusted domain
together with the Infrastructure Manager, and is connected to a Whitelist Database
as a centralised data source of reference measurements. The Infrastructure Manager
represents a logical monitoring entity that sits in the administrative domain of the
virtualised infrastructure, in charge of issuing RA requests to the Verifier for any
Attester available in the infrastructure. Being an administrative entity, the Infras-
tructure Manager is capable of taking action in case any container or the underlying
host is detected as untrusted. For instance, the physical host may be segregated
from other compute hosts in case it has been tampered with. On the other hand,
an untrusted container may be simply terminated by the container runtime in case
the underlying host is in a trusted state. Finally, as the Infrastructure Manager is
responsible of the scheduling of RA requests for each compute host, it has to keep
records about all the physical nodes available in the infrastructure, alongside with
the containers that are running at any given time. In order to achieve this goal, the
Infrastructure Manager may interact with the container runtime available on each
target host. The goals of the DIVE verification scheme performed by the Verifier
are multifold:

1. first, the Verifier has to check the boot-time integrity of the target host,
ensuring that its BIOS and firmware were not tampered with since the last
startup;

2. then, the Verifier ensures that the run-time software events performed by
the host comply to reference measurements that were previously white-listed,
including the execution of the container runtime;

3. finally, the Verifier validates the run-time software events performed by each
container that is running at the RA request instant, ensuring that they do
not deviate from a white-list of known good measurements.

Our proposal aims to overcome limitations of existing boot-time integrity validation
solutions, that are typically performed with a static methodology. Technologies
such as Docker Content Trust (DCT) [22], Intel Trusted Docker Containers can only
detect whether images have not been tampered prior to launch [101] by verifying a
digital signature over the image.

A similar approach is adopted by the Cloud Integrity Technology (CIT) [47], a
cloud attestation framework which enables load-time integrity verification for VM
and container-based virtual instances, and integrates with the OpenStack cloud
management system. Unfortunately, these solutions protect against fake or manip-
ulated images but do not cover the whole service lifetime, because the image and its
internals may be changed at run-time by the host or by external attackers exploit-
ing some vulnerability. For instance, an attacker that has gained a privileged access

53

Container-based VNF attestation

to a running container may compromise it by modifying service configurations and
binaries, launching malicious scripts, or starting new processes, all without being
detected by the aforementioned techniques (since they are concerned only with in-
tegrity at load time). In order to tackle this problem, we propose a solution for
software integrity attestation of a Docker environment at run-time, which covers
both the host and the services in the containers. Our focus is to demonstrate
whether the software that is running in the host and the containers has not been
tampered with, in order to support trust in the correct behaviour of the node.

4.3 Technology

This section describes the technological selection for the DIVE solution that
fulfils the Technological readiness requirement specified in Section 4.1. This en-
compasses several open-source tools that are readily available on standard Linux
distributions, so to maximise their applicability to practical use cases.

4.3.1 TPM-based integrity measurement architecture

Containers leverage Linux kernel functionalities that allow to segregate a pro-
cess (or a group of them) from the others that are running on the host OS, letting
each container instance to have a limited view of the execution environment as if
it was a completely separate host. From the application point of view, a container
is similar to a VM as it is able to access certain resources independently from the
other instances and the underlying host. In practice, each container is executed
on the same kernel, which both enables better performance (i.e. smaller memory
footprint, faster spin-up time) and less overhead when integrated with hardware
security mechanisms. In this regard, we have investigated the feasibility of extend-
ing the IMA technology [45, 80] to containers. IMA is a kernel module that is
readily available in modern Linux distributions (since 2.6.30) and implements the
TCG Integrity Measurement Log specification [87]. This consists of an extension of
TCG measurement process (that leverages the TPM secure registries, the PCRs)
to software that is run dynamically at application layer via the binary attestation
approach. This consists of the recording of software events, i.e. binaries run on
the system or file open for read, via their cryptographic hash. The list of digests,
alongside the corresponding file path and name, is provided to the Verifier for ver-
ification against a white-list. In this context, the TPM secure storage is used as a
trust anchor for implicit integrity verification of the measurement list, as its PCRs
are not directly compared to known-good values. In fact, as each PCR is only
updated via an extend operation that depends on the previous history, it would

54

4.3 – Technology

Figure 4.2: The Integrity Measurement Architecture process

PCR# template -hash template filedata -hash filedata -path
10 ddee ... b59b ima -ng sha1 :9797...45 ee boot_aggregate
10 180e...8 a52 ima -ng sha1:db82 ... cf3a /init
10 ac79 ... ea65 ima -ng sha1:f778 ... f4db /bin/bash
10 0a0d ... bb05 ima -ng sha1:b0ab ...59 a7 /lib64/ld -2.27. so
10 0d6b ...0011 ima -ng sha1:ce82 ... c838 /etc/ld.so.cache

Figure 4.3: IMA event log

be impossible to ensure that software events are recorded in the same exact order
within different executions.

The IMA process, depicted in Figure 4.2 is straightforward: once activated at
startup, it starts the recording of software events by computing their digests and
appending them to an internal data structure, i.e. the IMA Event Log, which is
exposed to the host as both binary and textual files via the securityfs virtual file-
system. An excerpt of a standard Event Log is presented in Figure 4.3, and it
includes the following information:

• the PCR index (that defaults to PCR-10);

• the template hash, which consists of a cryptographic hash computed over the
pathname and software component;

• the template identifier, selectable from a list of pre-defined templates available
at kernel level (e.g. ima-ng);

• the file content cryptographic hash;

• the pathname of the software component that is measured by IMA.

55

Container-based VNF attestation

measure func = FILE_MMAP mask = MAY_EXEC
measure func = BPRM_CHECK mask = MAY_EXEC
measure obj_type = CONFIG

Figure 4.4: IMA application policy

The default cryptographic hash algorithm used by IMA is SHA-1, although recent
development efforts are extending support to the SHA-2 family. The list of software
components that are measured by IMA depends on the policy that is specified by
the system administrator in the configuration files of the module, and that is read
at each boot by the kernel. Figure 4.4 presents an application policy that prescribes
the measuring of all files mapped in memory as executables (e.g. binaries, scripts),
any file executed by the execve() system call, and any file labelled as configuration.
Although IMA could be theoretically enabled in a system that is not equipped with
a TPM, its security is significantly enhanced in presence of the hardware RoT.
In fact, IMA automatically extends each measurement in the target PCR before
the corresponding software component is accessed by the system, guaranteeing
that the digest cannot be tampered by the component itself. In order to achieve
this capability, IMA leverages the Linux Security Modules (LSM) framework. In
particular, the LSM kernel system hooks allow processes executed in kernel space to
take action in case specific policies are met, such as the execution of a system call.
Compared to user space solutions, LSM hooks have a lower performance overhead
and indeed they represent the building block at the base of Mandatory Access
Control solutions such as SELinux.

IMA is considered by the TCG as the preferred solution for run-time integrity
verification in a RA scheme: on the Attester side, the IMA Event Log is presented
as part of the IR alongside a quote of the PCRs that include the register used by
IMA for aggregation (typically the PCR-10); on the Verifier side, the verification
consists of re-computing the PCR aggregate by extending all measurements in the
IMA Event Log and comparing the final value with the PCR extracted from the
quote. Compared to TCG standard Measured Boot, IMA is more flexible as it does
not discriminate about the order of execution of software components, making it
more practical in real use cases.

When applied to a container compute host, we have observed that IMA is not
capable of discriminating software events of the host from containers. In fact, all
the software events are recorded by IMA regardless of their execution environment,
as they leverage the system calls of the same kernel. This capability is exclusive to
containers based on the Linux Container (LXC) paradigm, and it cannot translate
as is to VMs (that encapsulate their own kernel). Because of this, we base DIVE
on the exploitation of LSMs as kernel system hooks to record measurements in
containers, alongside the host. In order to achieve this goal, the following limitations

56

4.3 – Technology

must be addressed:

• neither the LSM framework or IMA have built-in support for container names-
paces, hence all measurements are recorded regardless of their execution en-
vironment;

• the built-in IMA templates present all measurements in the global Event Log,
hence a Verifier cannot easily guess if a container or the host is not trusted
at any given time.

Both of them have been overcome in this research by investigating low-level evi-
dences of container instances that are available at kernel level and can be exposed
to IMA during the measurement phase. The result of this investigation, applied to
the well-known Docker container engine, is presented as follows.

4.3.2 The Docker Device Mapper storage driver

Docker [23] is an open source project that originally started as a minimal wrap-
per around the LXC technology [58], which provides built-in support in the Linux
kernel for sandboxing at application level. Docker has rapidly become the de-facto
standard of containers, it implements a custom runtime that is different from LXC
and is the technology that moves the Kubernetes [52] cluster management engine,
which is a well-known solution for deploying workloads in a cloud environment.

Any Docker container is spawned from an image, which comprises a series of
read-only layers and a top read-write layer in which the container processes are exe-
cuted. Once spawned, each container is identified via a Universal Unique IDentifier
(UUID). This layered approach, depicted in Figure 4.5, allows multiple containers
to share a large part of the image thanks to a union file-system that implements
a union mount of different file-systems. The container runtime is responsible for
the merge of the image layers once the instance is deployed thanks to a copy-on-
write operation. This is enabled by the storage driver component, which is part of
the Docker engine and implements different mechanisms depending on the underly-
ing Linux distribution and host file-system. Depending on the Linux distribution,
Docker uses different storage drivers as the default option (e.g. Aufs on Ubuntu,
Device Mapper on CentOS), but this is not a constraint as it is a configurable
parameter during installation. Aufs operates at file level: if a file is going to be
modified, then the file is entirely copied inside the read-write layer and modified
there. Device Mapper operates at block level: when a file is going to be modified,
only the blocks of interests are moved to the read-write layer. Thus, the latter
one is a better choice for performance, because the latency for the copy-on-write
operations is reduced.

57

Container-based VNF attestation

Figure 4.5: Docker file-system layer structure

Device Mapper creates a new virtual device for each container created by the
Docker daemon, giving to the virtual device a fixed major number and a growing
minor number. In fact, any Linux device is identified by a 32 bit identifier com-
posed by the major number (the most significant 12 bit, typically associated with
the driver used for managing the device) and the minor number (the least signifi-
cant 20 bit, identifying the exact device). In particular, Device Mapper uses either
252 or 253 as major number, depending on the package compiled for each Linux
distribution. For example, considering 253 as the major number (as in CentOS),
the starting pool will have the device number 253:0, the first container will have
253:1, the second 253:2 and so on.

The virtual device identifier is an important parameter in our solution as it is
used in measuring the integrity state of different containers at run-time, allowing the
Verifier to differentiate among the measurements recorded in different containers.
In fact, once a file is measured via its inode according to the IMA policy, the Device
ID that is associated to it can be retrieved from the kernel data structure of the
inode and stored in the IMA Event Log. This extension of the IMA logic made
it possible to implement a custom template for container run-time attestation, as
presented in Figure 4.6. In this example, the measurements belong to the host
system (8:19) and two separate containers (253:1 and 253:2). The Device ID can
be then used at application level by the Attester to link each measurement to a
different container. This mapping step is necessary as, at the best of our knowledge,
there is not a direct way to access the Docker container run-time information (e.g.
its UUID) in kernel space.

58

4.4 – Compliance to requirements

PCR# templ -hash template dev -id filedata -hash filedata -path
10 ddee ... b59b ima -dev 8:19 sha1 :9797...45 ee boot_aggregate
10 180e...8 a52 ima -dev 8:19 sha1:db82 ... cf3a /init
10 ac79 ... ea65 ima -dev 253:1 sha1:f778 ... f4db /bin/bash
10 0a0d ... bb05 ima -dev 253:1 sha1:b0ab ...59 a7 /lib64/ld -2.27.

so
10 0d6b ...0011 ima -dev 253:2 sha1:ce82 ... c838 /etc/ld.so.

cache

Figure 4.6: IMA container attestation template

4.4 Compliance to requirements

Table 4.1 describes the mapping between the requirements described in Sec-
tion 4.1 and the DIVE architecture.

4.5 Implementation

Several TPM-based RA implementations are available from the open source
community, namely the Intel OAT and CIT frameworks, and the Keylime archi-
tecture (sponsored by RedHat and integrated in latest RedHat Enterprise Linux
distributions). The DIVE Proof-of-Concept (PoC) is based on the OAT framework
version 1.7 [46], as it is the only project that implements a TCG-compliant IR. It is
a Java project that implements both the Verifier, i.e. the OAT Attestation Server,
and the Attester, i.e. the OAT HostAgent. The OAT HostAgent is deployed on each
monitored node, it runs as a daemon with administrator privileges and is initialised
with the digital certificate of the OAT Attestation Server so that it can encrypt its
IR with the Verifier public key. The OAT Attestation Server offers both a REST
API, which is the primary tool for integration of the RA scheme in a monitoring
architecture, and a web interface to display the history of attestations. The REST
API leverages TLS for communication encryption and mutual authentication of the
parties. This allows only trusted third parties to query the attestation of registered
nodes. DIVE leverages the TPM 1.2 cryptographic device, although a more re-
cent version exists, i.e. TPM 2.0. In fact, the TCG-compliant IR does not support
the latest iteration of the device [88]. Moreover, the current IMA implementation
only extends measurements using the SHA-1 algorithm, hence it does not leverage
the extended PCR banks (supporting the SHA-2 family) of TPM 2.0. We have
modified the OAT HostAgent application so that it includes additional information
about attested containers in the IR, namely the mapping between their container
UUID and Device ID. To achieve this, we have integrated this component with the
Docker command line, which interacts with the local Docker daemon running on the

59

Container-based VNF attestation

Requirement Justification

Hardware-level
security and privacy

DIVE remote attestation relies on the TPM 1.2
as the hardware Root of Trust for establishing
a chain of trust from the boot phase up to the
run-time software events in both the host and
the containers.

Run-time validation

The DIVE Integrity Report includes the IMA
event log, comprising run-time measurements
about the host and the containers. The integrity of
this log is ensured by the TPM, whose PCR 10
contains an aggregate value of all the entries
recorded by IMA.

Scalability

The DIVE Verifier can request integrity proofs to
multiple Attesters simultaneously to limit the
overall integrity verification latency. Moreover,
the DIVE attestation scheme can scale
horizontally by increasing the number of Verifier
instances, as they are mostly stateless entities.

Technological
readiness

The DIVE architecture leverages the TPM 1.2
cryptographic device, readily available in several
commodity hardware devices. Moreover, the IMA
module is supported by the kernel of a wide variety
of Linux distributions. Finally, Docker represents
the de-facto standard of process containers.

Interoperability
The DIVE architecture enables run-time integrity
verification of container workloads regardless of the
application domain.

Table 4.1: DIVE mapping to requirements

compute host. This, together with the IMA Event Log presented in Section 4.3.2,
allows the Verifier to map each measurement to a different container.

We have extended the Docker command line tool to provide a mapping be-
tween each container UUID (provided to the Verifier by the Infrastructure Man-
ager) and its Device ID. Before release 1.10, Docker created a sub-folder inside
the /dev/mapper directory for each running container. The name of this folder
included both the container and its device identifier. Since release 1.10, this is
no longer true, as the mapping between identifiers must be retrieved by manually
inspecting the lsblk command output and the Docker command line tool (docker
inspect and docker ps commands). This process may introduce a non-negligible

60

4.6 – Experimental evaluation

delay at the Attester side at attestation time. Hence, we have added a new com-
mand, named docker raInfo, to reduce as much as possible the number of I/O
operations and provide the mapping between container UUID and Device ID for
each Docker container. The raInfo function leverages the Docker library bindings
for the Python programming language to inspect Docker containers in execution at
a given time via a UNIX socket, which allows to map the container UUIDs with
the Device IDs. This optimisation allows to bypass the latency required for the
invocation of the docker inspect and docker ps commands, and the subsequent
parsing of the commands’ output. Nevertheless, the raInfo function still needs to
execute the lsblk command (and parse the output) to retrieve the list of Device
IDs.

The default IMA process measures every file that respects the IMA policy only
the first time that it is loaded into memory, via its inode. Hence, the inode of the
file must vary if the file has been modified. This can be obtained by mounting the
host file system with the -i_version flag. IMA internally implements a hash-table
that keeps measures of software events together with their template entry. In order
to be included in the measurement log, a file must conform to the IMA policy, its
digest must not be included in the hash-table, and its inode must not be already
measured by IMA. This behaviour is due to performance reasons, but it can have
an undesirable effect in a dynamic environment, where a specific device ID may
be reused by a different container at execution time. To overcome this issue, we
have patched the IMA source code by adding two kernel boot flags: ima_cache1 to
re-measure each file by resetting the integrity information associated to its inode;
ima_cache2 to skip the check of the digest against the internal hash-table. The
ima_cache1 flag can be used to ensure that all software events are re-measured, even
if run by devices (i.e. containers) with the same identifier. The ima_cache2 flag
can be used to ensure that all software events executed by a device (i.e. container)
are present in the measurement log. This feature brings another advantage to our
solution, compared to the default IMA process: if more than one container share
the same Device ID at different stages of execution, their measurements will still
be included in the host measurement log, allowing the Verifier to reconstruct the
history of software events executed in each container.

4.6 Experimental evaluation

We have evaluated the DIVE PoC in a laboratory test-bed comprising two
separate machines: the first, equipped with a dual-core Intel Core i7-4600U CPU at
3.3 GHz and 16 GiB of RAM, that runs the OAT HostAgent, the Docker Consumer
edition version 18.03.1-ce with Device Mapper version 1.02.110, driver 4.34.0, and
the CentOS 7 server distribution with a modified Linux kernel 4.4 that includes the

61

Container-based VNF attestation

Figure 4.7: DIVE performance drop at container spin-up

IMA modifications; the latter, running in a VM with a dual core CPU at 2.4 GHz
and 4 GiB of RAM, that runs the OAT Attestation Server.

The first test focuses on the evaluation of the performance drop on Docker
containers when DIVE is enabled on the container compute host. In particular,
we have run a variable number of instances (up to 512 containers, as higher values
cause failure in resource allocation on the test-bed) and we enable an IMA policy
to measure all executables and files open for read in each container. Then, we have
measured the latency introduced by DIVE on specific phases of the container life-
cycle, namely the instance startup, its termination and removal of resources (e.g.
network interfaces, disk storage). The results are averaged over ten separate runs,
and are depicted in Figure 4.7, Figure 4.8, and Figure 4.9. These results are to be
interpreted as the latency introduced by the operation (run, stop and remove) on
a baseline of already active containers, whose number is specified on the X-axis.
The results in Figure 4.7 show that the average startup latency of the container
with DIVE enabled requires 170 ms more than in an insecure environment, and
is not dependent on the total number of containers. This is due to the fact that
a new container spin-up directly adds workload to the attesting platform, and at
each startup there is a number of measurements that have to be extended into
the TPM and added to the IMA Event Log. In this test, we estimate that any
new measurement at container startup requires 11 ms. With respect to container
termination and removal, Figure 4.8 and Figure 4.9 show that the DIVE impact

62

4.6 – Experimental evaluation

Figure 4.8: DIVE performance drop at container stop

Figure 4.9: DIVE performance drop at container removal

63

Container-based VNF attestation

No DIVE IMA only DIVE
Min 134855 133849 133799
Avg 135284 134623 134440
Max 135602 135626 134769
Index 100/100 99.51/100 99.37/100

Table 4.2: DIVE performance index

on performance is minor, if any, and it may depend on the LSM system hooks
triggered by IMA.

Then, we have simulated a real world use case, with the containers set to perform
operations similar to those of an HTTP server reacting to incoming requests. In
this test, each container creates a single 1 MiB file and then starts an infinite loop to
repeatedly compute the SHA-512 digest of this file. At every computation a counter
is updated on disk. This approach mimics the case of a server reading a request,
performing a computation and writing log data on disk. To avoid considering the
impact of the network interface performance (which could be a bottleneck with
many containers) we deliberately decided to perform only local I/O operations. To
start and stop all operations simultaneously (since all containers must be started
sequentially in our test and this takes a lot of time), all container are mapped to
a volume linked to the same folder, waiting for a trigger file to be present. Once
the trigger is created, all the containers start working simultaneously and at every
step test if the trigger file still exists. If not, the container enters a sleep mode,
stopping the computation and checking periodically if the trigger is re-created to
repeat the process again. In this test we started 256 containers to execute the
aforementioned task. Same as the previous test, we repeated the test ten times
for each of three different settings: plain Docker environment, Docker with IMA
enabled, and finally Docker with the DIVE process. Each run of the test lasts 300 s,
and the recorded results are presented in Table 4.2. It is clear that the differences
among these three settings are minor: the overall performance is only slightly
affected by the introduction of the Remote Attestation. Considering as a reference
the average value of performed operations without DIVE, the performance only
drops by 0.63% in the full case. So we conclude that the performance impact of our
proposed integrity verification feature is nearly optimal and suitable for application
in real-world cases, with respect to the overhead on the attested platform.

Table 4.3 presents the results of our test about the global performance of the
integrity verification process with different number of active containers (i.e. dif-
ferent number of IMA measures, since the relation is linear). The test addresses
the baseline latency that is recorded when no containers are being attested, as
the underlying host is measured for integrity nonetheless. The time is given as a
total and also split into two components related to the Attester and the Verifier,

64

4.6 – Experimental evaluation

containers 0 32 128 256 512

time (s)
Attester 3.71 3.80 4.05 4.99 6.56
Verifier 1.56 1.63 1.77 1.95 2.35

total 5.27 5.43 5.82 6.94 8.91

Table 4.3: Latency of DIVE integrity verification

since the time for transmitting the IR is very small and hence negligible: with
512 containers the number of IMA measures in our test is around 4500 and the
size of the IR is about 1.38 MiB, which only needs around 0.1 s to be transmitted.
The total time (and also the individual components) grow roughly linearly with
the number of active container (given that in this case each container produces
the same number of IMA measures). The time taken by the OAT HostAgent is
related to the quote operation and the generation of the IR, while the time of the
Verifier includes the effort to verify the signature of the IR and to compare the IMA
measures with the reference database. The other steps have small influence on the
overall time. Even with 512 active containers, the time needed to attest all their
individual measurements is less than 10 s that we deem a good result weighting
the integrity guarantee provided by our solution. In case this performance is not
considered adequate, there are margins for improvement. On the Attester side, the
hard limit is the time taken to perform the digital signature over the IR by the
TPM, which requires an approximate time of 2 s. The rest of the time is spent in
creating the IR and this time can be reduced by creating differential reports (i.e.
containing only those measures added since the last IR) that would benefit also the
Verifier as it would have to perform less queries to the golden database. In case a
high-frequency verification is desirable, then dedicating a whole core to the Docker
host system would be an option, so that the OAT HostAgent would not have to
compete with the containers for the CPU. Additionally re-implementing the OAT
HostAgent as native code would improve performance as current implementation
is in Java which pays some price on speed and size.

Then, we evaluate the impact of our Docker command line modification on the
OAT HostAgent. The significant reduction of the latency needed to retrieve the
Docker container mapping to its Device ID with the new command, compared with
the non-optimised solution (comprising lsblk and standard Docker command line
tool) is reported in Table 4.4.

Finally, the evaluation of the resource consumption of the OAT Attestation
Server is presented in Table 4.5. We have analysed the CPU and RAM utilisation
of the Verifier during the RA process, both for host-only and container verification,
up to 512 instances, in ten separate runs and we have averaged the results. The
Java program utilises a single core of the CPU on the Verifier VM, and its CPU
utilisation is significantly affected by the container integrity verification. This is due

65

Container-based VNF attestation

No. of
containers

Non-optimised
time (ms)

raInfo
time (ms)

1 23 13
2 32 16
5 61 19
10 115 22
20 211 31
50 510 58
100 1020 108
250 2746 364
500 5506 1087

Table 4.4: Evaluation of Docker latency to retrieve Device IDs

containers 0 32 128 256 512
% CPU (1 core at 2.4 GHz) 3.51 13.01 14.55 18.10 26.33
% RAM (4 GiB) 7.74 8.09 9.11 12.01 15.10

Table 4.5: Performance analysis of the DIVE Attestation Server

to the fact that the Verifier has to validate a larger IR, and it has to re-compute
the aggregate value for PCR-10 over a significantly longer IMA Event Log. On
the other hand, memory utilisation does not increase as much when containers are
attested, as the Verifier does not keep in memory the Event Log at each verification.

4.7 Deployment as Attestation Driver

The DIVE technique is designed to be agnostic on the specific domain of appli-
cation, as discussed previously in this chapter. Nonetheless, the final goal of this
research is to enable integrity verification in a lightweight virtualisation platform
so that it effectively address the lack of trustworthiness in its workloads. Because
of this, a significant effort has been pursued in this dissertation in order to offer
DIVE as a practical VNF run-time attestation technology that is readily available
for the Trust Monitor. In order to achieve this result, we have integrated DIVE as
an Attestation Driver, following the proxy architecture described in Section 3.7, al-
lowing it to attest both the container compute host and its network services. In this
scheme, the Trust Monitor represents the Infrastructure Manager, as it queries the
DIVE Verifier for attestation of target nodes. As discussed from the architectural
perspective in Section 3.7, the Attestation Driver should support both registration,
attestation, and health-check functionalities.

66

4.7 – Deployment as Attestation Driver

The registration phase of the target node assumes that an OAT HostAgent is
already deployed and running, and consists of the following operations, that are
remotely issued from the Cloud Verifier to the OAT Attestation Server via its TLS
API:

1. set the Original Equipment Manufacturer (OEM), the OS, and Measured
Launch Environment (MLE) of the node, i.e. the hardware and software con-
figuration of the node;

2. set the type of analysis to perform on the target node (e.g. the attestation of
containers alongside the host), which requires it to be previously set on the
OAT Attestation Server;

3. set the host connection data, such as its IP address and hostname;

4. set the host PCR-0 value, which must be retrieved beforehand and depends
on the CRTM available on the device.

The OEM, OS, and MLE parameters are necessary to the OAT framework to gather
multiple hosts in the same host set, i.e. a list of nodes that share the same hardware
and software configuration.

The attestation command of the Attestation Driver forwards the call to the OAT
Attestation Server endpoint that is responsible for initiating the RA scheme with
the target OAT HostAgent. The sequence of steps performed at each attestation
between the Cloud Verifier, the DIVE Attestation Driver and the OAT Attestation
Server is depicted in Figure 4.10, and described as follows:

1. the Cloud Verifier triggers the RA command to the DIVE Attestation Driver;

2. the DIVE Attestation Driver requests attestation of the pre-registered node
to the responsible OAT Attestation Server instance;

3. the OAT Attestation Server requests a TCG-compliant IR to the OAT HostA-
gent;

4. the OAT HostAgent provides the IR to the OAT Attestation Server, signed
with the TPM AK;

5. the OAT Attestation Server verifies the signature of the TPM with the Privacy
CA, re-computes the PCR-10 aggregate and ultimately extracts the measure-
ments from the IMA event log, forwarding them to the Attestation Driver;

6. the Attestation Driver interacts with the centralised Cloud Verifier to verify
whether all the measurements collected from the host and the VNFs are
consistent with the known-good values from the Whitelist Database;

67

Container-based VNF attestation

Figure 4.10: DIVE integration as Attestation Driver

7. the Attestation Driver provides the result about the white-list matching to
the OAT Attestation Server, as it acts as a proxy between the Cloud Verifier
and the DIVE Verifier;

8. the OAT Attestation Server internally records the result of attestation, which
includes the validation of both TPM signature, the boot-time PCRs and the
run-time measurements, and replies to the Attestation Driver with the node
attestation report;

9. the attestation report is returned from the Attestation Driver to the Cloud
Verifier, that merges it together with the other reports retrieved from the
different Attestation Drivers deployed in the infrastructure.

Although it is technically feasible, nor the Attestation Driver or the OAT Attesta-
tion Server internally perform the validation of run-time measurements against the
Whitelist Database, as they delegate this operation to the Cloud Verifier. This is
important to ensure interoperability in case of protection of the same host set by
different Attestation Drivers, as each of them would ultimately require an ad-hoc
connections to the Whitelist Database.

Finally, the health-check command polls a read-only API endpoint of the OAT
HostAgent, i.e. the call to retrieve the list of registered hosts, and returns with
either success or failure depending on the HTTP return code.

68

Chapter 5

NFV threat mitigation

This chapter discusses the requirements of the security management life-cycle
as defined by ETSI, and proposes a solution based on the Trust Monitor and the
container-based VNF attestation technique to address these requirements. In this
regard, a threat model that is specific to the NFV domain is presented as well, in
order to assess the effectiveness of the proposal hereby discussed. The SECaaS use
case, as defined in Section 3.1.1, is considered for the definition of the threat model
as it is one of the most security critical applications of NFV.

5.1 Requirements

As detailed by ETSI [32], the security management life-cycle in NFV is defined
a process that follows the VNF instantiation, operation and retirement. The steps
that compose such process are defined as follows:

• Architect. The security of the NFV platform requires the design of an ad-
hoc architecture that is deployed within the infrastructure according to the
separation of duties with other management entities.

• Assess. The assessment of security of the NFV platform requires the instal-
ment of proactive processes that can limit the exposure window of resources
to both internal and external threats, resulting in fresh proofs of integrity for
further validation.

• Validate. The security architecture is in charge of validating the proofs of
trust produced by the NFV infrastructure by leveraging strong authentication
and integrity verification schemes.

69

NFV threat mitigation

• Detect. The security management life-cycle allows the platform adminis-
trator to detect anomalies and misuse of NFV resources, so that the actors
involved (i.e. the end users, the ISP) can be notified.

• Prevent. The security architecture must be able to prevent attacks by per-
forming proactive monitoring of sensitive resources before they can harm the
entire system, i.e. by ensuring that VNFs have not been tampered with as
soon as they are instantiated.

• Respond. Once a resource has been detected as compromised, the security
architecture should help with the definition of a mitigation strategy, allowing
the infrastructure to recover from the security breach.

The process is iterative, and it should be lasting as long as the life-cycle of the NFV
platform.

The NFV threat mitigation scheme that is proposed in this dissertation complies
to the aforementioned security management life-cycle. In fact, the Trust Monitor is
presented as a long-lived entity that sits in the MANO domain and that periodically
assesses the trustworthiness of the NFVI and VNFs by validating their integrity
reports that rely on a hardware RoT, the TPM, for their authentication and in-
tegrity. This allows the Trust Monitor to detect and prevent incoming threats that
occur at infrastructure level via manipulations to firmware and software executed
both at the physical and virtual levels. Moreover, the threat mitigation process is
engineered to actively respond to threats by initiating a remediation once a node
is found untrusted. This leverages a deep integration between the Trust Monitor
and other NFV components, such as the NFVO.

At a technological level, the proposed solution relies on certain assumptions that
are hereby discussed. First, the target NFV platform relies on lightweight virtuali-
sation for the deployment of VNFs. This solution allows for both scalable and fast
instantiation of network services in the ISP infrastructure, and enables the runtime
integrity verification scheme that we have presented in this work. In particular,
the Docker container engine is deployed on each physical node that comprises the
NFVI. Moreover, the VIM interface is expected to expose information about each
container that is relevant for attestation, as it was discussed in Chapter 4. In par-
ticular, it is required that each VNF is associated to a specific container, so that the
Trust Monitor can effectively signal its trust level to the NFVO at each verification.
Then, the Trust Monitor is expected to be deployed on an already existing NFV
platform, hence a preliminary registration of each physical node is required. This
may leverage the API that was discussed in Chapter 3. Finally, the Trust Monitor
should be provisioned with golden values for its Whitelist Database, in particular
for the configuration and software packages that are deployed in each physical node
of the NFVI. This process can be executed off-line at the initial commissioning of

70

5.2 – Threat model

compute hosts, and should require interaction between the NFV platform owner,
i.e. the ISP, and the CSP. Because of this, private cloud environments that are
directly owned by the ISP are preferred. In case of public and externally managed
cloud infrastructures, the ISP should leverage on the IaaS service model so that
it has control over the resources that are available on the physical infrastructure.
Nonetheless, the ISP may not rely on hardware-bound integrity verification in case
it relies on virtual nodes only.

5.2 Threat model

The Trust Monitor assesses the trust in the network infrastructure bearing the
deployed VNFs, namely each NFVI Point of Presence (PoP) that is in charge of
deploying the virtual instances. The trustworthiness of the infrastructure is assessed
by performing both authentication and integrity verification. Although attackers
tend to exploit multiple vectors to breach into a system, the Trust Monitor focuses
on intrusion detection in the network infrastructure, assuming the control and
management plane components (VNF store, NFVO, DARE, Security Dashboard of
the SECaaS use case) are implicitly trusted. From a technical standpoint, extending
the Trust Monitor security concepts to assess the control and management plane,
is feasible since they are based on the same kind of computer architecture (in terms
of operating system, virtualisation technology and application packaging). Our
proposed threat model considers the following threats, classified on whether the
attacker has physical access to the infrastructure or not:

• Physical threats

– (T1) physical eavesdropping: on network wire, bus probing;
– (T2) physical modification of nodes: chip replacement;
– (T3) physical introduction of a new/alternate control plane;
– (T4) flashing of firmware/software of the infrastructure nodes (e.g. a

compute host);

• Software threats

– (T5) zero-day vulnerability exploitation;
– (T6) malicious (or accidental) administration: configuration modifica-

tion;
– (T7) installation and execution of arbitrary firmware/software (e.g. in

the VNF level);

71

NFV threat mitigation

The Trust Monitor aims at providing the network infrastructure with detection
mechanisms against software-based and low-end physical attacks: T1 and T2 are
clearly out-of-scope since the Trust Monitor does not provide any physical perimeter
protection. Using TPMs, remote attestation and other TC mechanisms, the Trust
Monitor protects the NFV network infrastructure against T3, T4, T6 and T7.
Particularly, the TPM protected log of all binaries executed on a node allows the
Trust Monitor to detect arbitrary code (T4 and T7). The same mechanism can be
used to detect unwanted configuration modification (T6). If an attacker manages
to introduce a new control plane entity in the network infrastructure (T3), the
Trust Monitor does not detect it directly but instead would detect any unusual
or modified behaviour of the computer or network nodes since it would not be
correct compared to the genuine control plane components, mainly the NFVO.
The Trust Monitor verifies each node against their expected state, as configured
by the NFVO; if an attacker changes — even slightly — the configuration of one
node, the Trust Monitor will detect it since it will not match the NFVO’s view.
Looking at T5, this cannot be detected by the Trust Monitor or regular Trusted
Computing mechanisms. Nevertheless, zero-day vulnerability can be reduced by
using code analysis tools and/or prevent their consequences by reducing the ability
of the attackers. Mechanisms such as control-flow protection for instance, could
help with that task. Even though, these kinds of attacks are usually the initial
attack vector to install additional malicious software on the target, the execution
log, verified by the Trust Monitor, permit to detect the subversion.

Each physical node must be successfully authenticated — using hardware-based
cryptographic identities — and verified by the Trust Monitor before joining the
NFV infrastructure. Leveraging the Remote Attestation workflow, the Trust Mon-
itor can verify the integrity of the code being executed (e.g. running instances of
VNFs, software directly managing virtualisation processes, etc) on each physical
node, as well as its configuration, both at boot and run-time. The Trust Moni-
tor acts as a continual verification engine for the physical infrastructure hosting
the network services, capable of interacting with the rest of the vNSF ecosystem
(NFVO, VNF store) as well as the DARE to provide an assessment of the trustwor-
thiness of the infrastructure. Each NFVI node, being equipped with a TPM and
suitable software, is able to collect the integrity measurements of both running code
(starting from boot-time) and configuration, it is also able to report this data to a
third party in a secure and trusted way. The resulting integrity report, which con-
tains the logged software events — as measured by IMA for example — is validated
by the Trust Monitor, which maintains a whitelist populated by measurements of
known software signatures and their valid configurations.

72

5.3 – Integration within the NFV SECaaS scenario

5.3 Integration within the NFV SECaaS scenario

The Trust Monitor modular architecture leverages Connectors to query exter-
nal services about information that is required for attestation and to notify results
about the ongoing security process, as defined in Section 3.10. This includes the
interactions that are specific to both integrity verification (i.e. the retrieval of white-
lists for VNFs) and mitigation (i.e. the notification of a failed attestation). From
a high-level perspective, the Trust Monitor embeds Connectors that offer two-way
communication, either by consuming or producing data from/to the external ser-
vices.

5.3.1 Inbound communication

With respect to consumption of external data, the Trust Monitor implements
Connectors towards the following remote APIs:

• NFVO. Given a target node identifier, retrieves information about its place-
ment in the CSP network (e.g. its IP address) and its activity status. In case
of a physical node, retrieves information about the VNFs that are instanti-
ated on it and the VIM that manages the node itself. Attestation of the entire
infrastructure never relies on the list of nodes that are available on the NFVO
side, but only on those that were pre-registered on the Trust Monitor by the
system administrator. This allows flexible verification of a subset of nodes,
in case the CSP does not provide hardware support for the entire compute
platform.

• VIM. In case of VNF attestation, the VIM is queried for additional infor-
mation that are specific to the virtualisation layer. In particular, the VIM
Connector aims at retrieving the list of deployment details for each container
that are specific to attestation (e.g. the device ID).

• VNF Store. This represents the data store for VNF packages, hence it is
considered as the most suitable store for white-lists of known good software
that is executed by each VNF. Given the decentralised nature of the NFV
deployments, it is not practical to record and store all digests into a single
database, hence a distributed approach is preferred.

Given its central role in the VNF attestation process, the interactions between
the Trust Monitor, the NFVO and the VIM are described in depth as follows. In
principle, as the NFVO is in charge of managing the VNFs life-cycle, its integration
with the Trust Monitor could be sufficient to support attestation and mitigation

73

NFV threat mitigation

Figure 5.1: Trust Monitor process to retrieve VIM data from the Orchestrator

strategies. Nonetheless, the Trust Monitor requires information about the virtual-
isation technology that is not available at NFVO level, as the VIM abstracts the
physical layer from the logical resources that are required by service and resource
orchestration. This limit makes it impractical for the Trust Monitor to implement
an integrity verification process that is independent from the VIM. Because of this,
the Trust Monitor initiates several communications towards the NFVO and the
VIM whenever it has to attest a VNF. This applies to both periodic attestation,
that typically affects the whole infrastructure, and to any targeted verification.

The first phase is depicted in Figure 5.1 and occurs between the Trust Monitor
and the NFVO via the Connector. In this phase, the Trust Monitor queries the
NFVO to retrieve the list of physical nodes that are available at infrastructure
level (e.g. compute hosts, switches). The Connector outbound interface is used
to retrieve identification data about each node, namely its IP address. Then, the
Trust Monitor filters the list of nodes by retrieving the compute hosts, i.e. the
VIMs, depending on whether they were registered to the Cloud Verifier database
and they support the container runtime (as available in Table 3.1).

The second phase, as shown in Figure 5.2, requires the Trust Monitor to query
each container-enabled VIM in order to retrieve run-time information about con-
tainers. In practice, the VIM interacts with the container runtime via an API that
is specific to the virtualisation technology. At this stage, the Trust Monitor is ex-
pected to retrieve the set of container IDs that are available at each VIM, together
with VNF information visible at VIM level (such as the VNF descriptor name, its
software image and the network service name).

The final phase of the interaction is depicted in Figure 5.3. At this stage, the
Trust Monitor requests to the NFVO a report of run-time information about each
VNF that is currently running. Differently from the previous case, at this stage the
Trust Monitor can request details about VNFs that are specific to a tenant, and
it retrieves the run-time identifier of each instance. This information is necessary

74

5.3 – Integration within the NFV SECaaS scenario

Figure 5.2: Trust Monitor process to retrieve container data from the target VIM

Figure 5.3: Trust Monitor process to retrieve container VNF data

to enforce a mitigation strategy in case a VNF is found untrusted. Moreover, the
network service name is used to correlate the available data from previous phases,
resulting in an in-depth view about the VNFs that are currently running on each
container VIM. This will be later used for the verification phase of the attestation
process.

5.3.2 Outbound communication

The Trust Monitor publishes data about the result of attestation via ad-hoc
Connectors that are targeted towards the following SECaaS entities:

• NFVO. In case of a failed attestation, both for newcomer nodes and periodic
assessment of the infrastructure, the NFVO is notified with a report about
the failing node (either virtual or physical) and a proposed mitigation strat-
egy, as previously defined by the security administrator (and introduced in
Table 3.4). This is proposed as a solution to enrich telemetry and logging by
the NFVO, and can even be used for automated remediation by the orches-
tration service. Nonetheless, the human factor is typically considered crucial
in security operations, hence a proactive approach to remediation may not be
desirable in most situations.

75

NFV threat mitigation

• DARE. Being the centralised log collector and the Big Data engine of the
NFV domain, the DARE is expected to leverage attestation logs as part of its
reasoning capabilities. In particular, it could leverage historical information
about untrusted nodes (e.g. the tenant that owns them, or the type of ma-
nipulation that is detected by the Trust Monitor) to improve the knowledge
about the infrastructure.

• Security Dashboard. As in most ICT infrastructures, NFV platform are ex-
pected to rely on manual processes by security analysts in order to address
security threats. Because of this, the Trust Monitor publishes records about
attestation to the Security Dashboard, that acts as a SIEM of the NFV plat-
form. These can be leveraged at the triage phase by the analyst to address
the possible security threat (e.g. a change in configuration file) and to de-
cide whether it represents an actual violation of the infrastructure. In this
case, the analyst should be capable of implementing a mitigation strategy via
the Security Dashboard, that in turn would leverage the NFVO to effectively
enforce the strategy on the compromised node.

5.4 Workflows

This section details the integrity verification workflows that we have designed
in this work. These comprise both the RA process itself, which is delegated to
each Attestation Driver implemented by the Trust Monitor, the verification logic
(which requires both internal and external communications, e.g. via Connectors),
and the notification and reporting mechanisms. Figure 5.4 shows a high-level view
of the process enabled by the Trust Monitor that allows to periodically evaluate the
trustworthiness of the NFV infrastructure and integrates with SECaaS components
to support mitigation of threats.

5.4.1 NFVI centralised monitoring process

The periodic monitoring process that is implemented by the Trust Monitor
relies on a pre-defined list of nodes that were registered to its Management API,
and aims to report a complete picture of the integrity of the NFVI infrastructure.
Parallelisation is adopted to ensure that the impact of integrity verification of a large
set of nodes has a limited impact on performance and latency. The pseudocode of
the workflow is reported in Figure 5.5 for completeness.

76

5.4 – Workflows

Figure 5.4: SECaaS integrity verification workflow

Data: Cloud Verifier node registration table, list of active nodes from
NFVO

Result: Global attestation status
retrieve list of nodes in active state from VNFO;
foreach node in list of active nodes do

if node is in set of registered nodes then
retrieve node attestation configuration;
instantiate node Attestation Driver;
add Attestation Driver to list of parallel jobs;

else
discard active node from list of attested nodes;

foreach job in list of parallel jobs do
run Attestation Driver job;

foreach job in list of parallel jobs do
wait for result of Attestation Driver job;
update global attestation status;

store global attestation status in Audit Database;
send notification to DARE, Dashboard and NFVO;

Figure 5.5: NFVI periodic attestation workflow

5.4.2 VNF integrity verification process via DIVE

The TPM-based Attestation Driver that we defined as part of this dissertation
is instantiated alongside the others, and its result is aggregated with the others

77

NFV threat mitigation

Data: VIM and VNF information from NFVO, reference measurements
from White-list Database and VNF Store

input : Compute host registration data
output: Compute host attestation status
retrieve VIM information by IP address from NFVO;
if node is in VIM list then

retrieve list of active containers from VIM;
if list of containers is not null then

get VNF run-time data from NFVO;
foreach VNF in list of run-time instances do

correlate VNF data with container ID;
retrieve list of reference measurements from VNF Store;

end
attest compute host with containers;
verify integrity proof against White-list Database and VNF
measures from VNF Store;

else
attest compute host;
verify integrity proof against White-list Database;

end
else

discard job;
end

Figure 5.6: Container compute host integrity verification workflow

in order to retrieve the global attestation status. The pseudocode detailing the
compute host attestation workflow is detailed in Figure 5.6. The same workflow is
applied in case of newcomer attestation, although it would typically be limited to
host integrity verification.

5.5 Implementation

We have developed a PoC of the Trust Monitor in the scope of the SHIELD
project, wherein it was deployed as a centralised monitoring entity for an NFV
platform. The SHIELD solution consists of several modules that adhere to the
SECaaS use case, allowing the deployment of network security functions, i.e. the
vNSFs, that are protected against manipulations by the Trust Monitor and that can
be used to protect the ISP client network. Moreover, big data analytics is imple-
mented via the DARE so zero-day threats can be detected by analysing deviations

78

5.5 – Implementation

from pre-classified traffic behaviour. In the scope of the SHIELD project, both
compute hosts based on the Docker container engine and physical SDN switches
are attested via TPMs in order to ensure that both the vNSFs and the network
flows that interconnect them have not been tampered with.

The Trust Monitor prototype, made available as open source software [82], al-
lows for deep customisation of its endpoints and interfaces:

• TLS encryption key/certificate for the web APIs;

• Whitelist Database with reference measurements of the NFVI platform nodes;

• different API Connectors to integrate with other SECaaS components, namely
NFVO, VNF Store, Security Dashboard, DARE and VIM;

• different attestation drivers to verify the integrity of different NFVI elements
(e.g. compute hosts, switches).

The Trust Monitor core application is based on the Django REST Framework [20],
a Python framework that allows to create full stack web services based on the REST
paradigm. We have selected this technology because of its built-in support for dif-
ferent API authentication methods, connection with heterogeneous databases, and
serialisation of data exchanged with other web services. The application does not
include a Graphical User Interface (GUI) as it leverages the Security Dashboard for
visualisation of attestation reports. The internal database of the Trust Monitor,
where the registered nodes are stored, is implemented via SQL. The Redis [78] in
memory key-value storage is used as a memory cache to store VNF measurements
during the integrity verification phase. This is helpful to mitigate problems with
network interaction with the VNF Store. The Connectors are deployed as sepa-
rate web modules via the Flask [40] technology, which allows to deploy minimal
web services that have a limited memory footprint and require little development
effort. The Management API and Newcomer API are authenticated and protected
for integrity and confidentiality thanks to a reverse proxy, implemented via NG-
INX [66], that terminates TLS connections with the web clients. Data processed
by the Trust Monitor (e.g. VNF white-lists, attestation reports) is described in
the JavaScript Object Notation (JSON) format [85], which is easily processed by
web-based applications and allows for greater flexibility when compared to formats
such as XML, which rely on schemas to enforce a pre-fixed structure to data. An
example of global attestation result in JSON format is presented in Figure 5.7. This
report shows that a single physical node, i.e. nfvi-node, has been verified success-
fully without unknown or manipulated software packages. Nonetheless, the global
attestation result shows that the infrastructure is untrusted, as one of the VNFs
that are deployed on the node (an instance of vnf-1) is running software modules

79

NFV threat mitigation

{
"hosts": [

{
"node": "nfvi -node",
" status ": 0,
"time": "2020 -02 -28 10:47:24.218939 +0000 UTC",
"trust": true ,
" driver ": "OAT",
" extra_info ": {

" n_digests_valid ": 465,
" n_packages_valid ": 135,
" n_digests_not_found ": 2,
" list_digests_not_found ": [

{
"/usr/sbin/httpd":

" b280b7d85bc0c00fbaa4b00aeb5a4a122dc20396 ",
" instance ":"4 c01db0b339c "

},
{

"/etc/httpd/httpd.conf":
"4 e1243bd22c66e76c2ba9eddc1f91394e57f9f83 ",

" instance ":"4 c01db0b339c "
}

],
}

"vnsfs": [
{

" vnsfr_id ": "d6c9d9ee -efef -4c2f -be4f - dbcbafd84457 ",
" vnsfd_id ": "vnf -1",
"ns_id": "ns -1",
" container ": "4 c01db0b339c ",
"trust": false ,
" remediation ": {
" terminate ": true ,
" isolate ": true
}

}
]

}
],
"trust": false ,
"vtime": "2020 -02 -28 10:47:24.219215 +0000 UTC"

}

Figure 5.7: Attestation result with manipulated digests

whose digests could not be found in the VNF white-list. The overall number of of-
fending digests is set in the n_digests_not_found field. In particular, as shown in

80

5.5 – Implementation

{
"hosts": [

{
"node": "nfvi -node",
" status ": 0,
"time": "2020 -03 -01 09:10:11.322931 +0000 UTC",
"trust": false ,
" driver ": "OAT",
" extra_info ": {

" n_digests_valid ": 465,
" n_packages_valid ": 135,
" n_packages_unknown ": 1,
" list_digests_not_found ": [

{
"/usr/sbin/ my_malicious_script ":

" c21a709dccca01fcad5612afeAa4a122dc27654 ",
" instance ":"nfvi -node"

}
],
}
"vnsfs": []

}
],
"trust": false ,
"vtime": "2020 -03 -01 09:10:11.421112 +0000 UTC"

}

Figure 5.8: Attestation result with unknown digest

the list_digests_not_found list, the httpd software has been manipulated with
respect to its reference value in the container identified as 4c01db0b339c, which
implements the vnf-1 application. In addition, the httpd.conf configuration file
has been manipulated as well. The implementation does not differentiate among
configuration files and binaries, as this information is not kept in the Whitelist
Database nor in the VNF security manifest. It is to be noted that the attestation
report includes additional information about each VNF, such as its network service
identifier and a mitigation strategy for the threat (in this case, to either terminate
or isolate the node).

Figure 5.8 shows another example of a JSON attestation result wherein an un-
known package is found in the host. The n_packages_unknown field shows that one
file named my_malicious_script has not been found in the Whitelist Database,
and that its pathname is unknown as well. This means that the file that has been
measured is not part of the golden image of the host.

The Whitelist Database, implemented via Apache Cassandra [3], contains the

81

NFV threat mitigation

{
" digests ": [
{

"/usr/sbin/httpd":
" c9d0a9b168584c5c2bf780a699c68c14a138e5be ",

" instance ": "vdu -1"
},
{

"/usr/local/bin/ custom_service ":
" bf151ae14b61a637cb48a5fa0d55c1f9a618c395 ",

" instance ": "vdu -1"
}
]

}

Figure 5.9: VNF security manifest in JSON notation

complete data of the executables allowed on the attested platforms. More specif-
ically, it contains the digest, the full path name, and the executable’s packages
(grouped by distributions and architecture). Given the supported distributions and
architectures, the database is initialised and updated periodically by downloading
the packages’ lists from their official repositories. Alternatively, the database can
be updated with release information for components that do not come from public
repositories. Additionally, the database stores the history of each package, report-
ing the information about its updates (e.g. the type of update). With respect to
the PoC, all compute hosts and containers are based on the CentOS distribution.
We have integrated the Trust Monitor with the OSM orchestration tool, which im-
plements a reference architecture of the ETSI NFV MANO stack. In this regard,
integration activities have considered different OSM releases, from 2.0 to 5.0. More-
over, we have developed its Audit Database as a client to Hadoop Distributed File
System (HDFS) [44], a distributed file-system built for scalability and high avail-
ability applications that is very popular for Machine Learning applications. The
Docker-enabled VIM is represented by the VIM-Emulator project [94], a compo-
nent that is implemented in the OSM solution as a container-based emulator for the
OpenStack APIs. Other SECaaS components have been developed from scratch in
the scope of the SHIELD project. For the integration of the Trust Monitor, the VNF
Store persists the attestation data retrieved from the security manifest to provide
it at the integrity verification phase. This manifest consists of a series of digests
(computed via cryptographic hash algorithms, such as SHA-1, and corresponding
paths of files that are measured inside each Virtual Deployment Unit (VDU), i.e.
each container that belongs to a specific VNF. An example of the JSON security
manifest is reported in Figure 5.9. From the network perspective, the Trust Monitor
requires network access to the NFVI (compute nodes and switches, as they are the

82

5.5 – Implementation

Figure 5.10: Multi-container deployment of the Trust Monitor application

target of attestation) and to the other SECaaS components (for proper integration
in the platform).

The Trust Monitor application is deployed as a multi-container system which
leverages the Docker Compose tool [21]. This is a tool that allows to specify multi-
container applications in a declarative approach, by leveraging a descriptor file to
reference all the services, networks and persistent data volumes that are required by
the application. In order to install the application, the target environment should
have both the Docker container runtime and Docker Compose installed. Instal-
lation of dependencies, setup of the different sub-components and deployment of
the full-fledged Trust Monitor application require minimal interaction of the user
thanks to the automation of the whole process via the Docker Compose tool. Fig-
ure 5.10 shows an architectural picture of the multi-container deployment of the
Trust Monitor and separation in different tiers, belonging to different domains: the
reverse proxy is the only component exposed on the frontend (ideally in a DeMili-
tarized Zone (DMZ) that is segmented from the internal network and protected by
a firewall); the periodic attestation Scheduler, the memory cache, the Trust Mon-
itor web service and the static assets server are deployed on an internal backend
domain; finally, the Connectors are exposed on the MANO domain so that they
can exchange information with the NFVO, the VIM, the VNF Store and the other
SECaaS components (namely the DARE and Security Dashboard).

83

NFV threat mitigation

5.6 Experimental evaluation

We have tested the Trust Monitor prototype in the scope of the SHIELD testbed,
comprising two different NFV PoPs on separate geographical locations intercon-
nected via a site-to-site VPN. In this context, both TPM-equipped compute hosts
and SDN switches have been targeted for attestation. With respect to the com-
puting platform, the OAT [46] and CIT [69] frameworks have been adopted for the
implementation of separate Attestation Drivers and Attesters, the first supporting
TPM 1.2 and container attestation (following the technique described in Chap-
ter 4), the latter supporting TPM 2.0 and run-time integrity verification of host
only. Both the OAT and CIT Verifiers run on VMs equipped with a dual-core CPU
at 2 GHz and 2 GiB of RAM. Both computing hosts have been provisioned with the
Linux CentOS 7.5.1804 server distribution, Linux kernel 4.4.19 and with the IMA
module enabled and configured for run-time measurement of software packages run
in the OS. The software repositories of CentOS 7.5.1804 have been used as a refer-
ence white-list of known good software in the Whitelist Database. In this regard,
both binaries and their dependencies (e.g. shared libraries) have been measured
by computing their SHA-1 digest and storing it, alongside their pathname, in the
reference database. Moreover, the container-based compute node leverages a cus-
tom version of the OSM VIM-Emulator that we ported to the CentOS distribution,
as it only supports the Ubuntu OS by default. Finally, the Trust Monitor core
application and the Whitelist Database are run on separate VMs equipped with a
dual-core CPU at 2 GHz and 2 GiB of RAM.

The evaluation of our solution is focused on the run-time VNF attestation func-
tionality, which represents the core contribution of this dissertation to the state
of the art. Because of this, the rest of the discussion focuses on the interaction
between the Trust Monitor, the OAT Attestation Driver, and the OAT Attester
for TPM 1.2. With respect to performance, three separate metrics have been con-
sidered: the CPU utilisation and RAM consumption at the Trust Monitor side, in
order to evaluate its scalability at the increase of the number of VNFs and uptime,
and the latency of the whole NFVI attestation process, so to understand whether
the Trust Monitor can effectively respond to incoming threats in a reasonable time.
We have evaluated the performance by repeating each test for a number of times
(10) and by averaging the results in order to reduce the impact of outliers. The
plot depicted in Figure 5.11 reports the latency of the VNF attestation process
at the increase of the number of containers on the same network service. In fact,
a container-based network service is expected to run a significant number of con-
tainers, i.e. VDUs, each executing a specific function within the VNF. The highest
number of concurrent VNFs in the experiment is 35, as higher values rendered the
OSM orchestrator not responsive in the test environment. Moreover, we observed
that OSM kills the network service as it saturates the available memory on the

84

5.6 – Experimental evaluation

Figure 5.11: Latency of the Trust Monitor verification process

compute host. In order to implement this test, four different network services have
been implemented with a variable number of VNFs, from 5 to 35. As shown, the
overall latency is composed of three different components:

• Connectors latency. Average time spent by Connectors to interact with the
other NFV components (both to request and to send data).

• Driver latency. Average time required by the OAT framework to provide an
IR to the Trust Monitor and to verify its authenticity. This includes the
client-server communication between the OAT Attestation Server and the
OAT HostAgent and the IR signature verification.

• Verification latency. Average time required by the Cloud Verifier to process
the Attestation Driver result and to verify VNF measurements against the
Whitelist Database and additional data available from the security manifest
in the VNF Store.

The plot shows that the overall attestation latency grows less than linearly at the
increase of the number of VNFs. The Connector component is affected by the
increase of VNF data that is retrieved by both the NFVO and VNF Store. The
Attestation Driver latency is not as affected by the number of containers, as the
signature verification is performed over the same amount of data (the PCRs), re-
gardless of the number of containers. Nonetheless, the IR validation time increases
as the IMA log includes more entries at the increase of the number of contain-
ers. Finally, the verification logic also increases as the Cloud Verifier needs to

85

NFV threat mitigation

Figure 5.12: RAM consumption of the Trust Monitor at subsequent attestations

verify a larger number of measurements against the data available in the Whitelist
Database. In this regard, the use of a key-value memory cache such as Redis aims
to reduce the overall latency with respect to retrieving the full white-list from a
relational SQL database, which is typically slower for managing a huge number of
small queries.

The plots in Figure 5.12 and Figure 5.13 depict the average impact of attes-
tations on the Trust Monitor application. We have monitored the Trust Monitor
RAM utilisation during its life-cycle, showing that subsequent attestations do not
affect the overall requirements of both the Trust Monitor core application and the
Connectors in a significant way. This behaviour shows the mostly stateless nature of
the Trust Monitor, which does not keep internal records of subsequent attestations
as it mandates the long-term storage of integrity proofs to external databases. This
is particularly significant in a long-lived cloud deployment, as it allows the Trust
Monitor to have a consistent behaviour and resource utilisation when deployed in a
production environment. In order to achieve this result, we have had to engineer the
application runtime to explicitly call the Python garbage collector [41] to dispose
of unnecessary memory (e.g. dangling pointers) during the application’s life-cycle.
In fact, unlike other languages such as Java, Python does not automatically release
memory to the OS. With respect to CPU usage, Figure 5.13 shows the behaviour
of both the Trust Monitor core logic and the Connectors ecosystem at the increase
of the number of VNFs targeted for verification. It is shown that the average CPU
required for the RA process via the DIVE Attestation Driver increases less than
linearly at the increase of attestation targets, as the Cloud Verifier verifies each

86

5.6 – Experimental evaluation

Figure 5.13: CPU utilisation of the Trust Monitor with a variable number of VNFs

target sequentially.

87

88

Chapter 6

Conclusions and future work

The work described in this dissertation aimed at the definition of an integrity
verification solution tailored for the NFV platform and based on TC principles and
mechanisms, so to tackle the security issues of softwarised network infrastructures.
In fact, given the high impact of privacy on telco network providers’ services, secu-
rity and trust in the platform that delivers those services is considered paramount
in order to effectively exploit the NFV paradigm in production environments.

The general approach of the work was to define an abstract architecture for trust
assurance that suits heterogeneous attestation mechanisms, i.e. the Trust Monitor.
This defines the key principles of a generic integrity verification workflow within the
NFV domain, specifying the high level interactions between the Trust Monitor core
logic and external actors without discriminating on the practical trust assurance
technique, which is left to the implementation. The architecture is designed by
ensuring that its building blocks are clearly separated so to ensure both modularity
and easier customisation by any implementer (e.g. a telco operator or CSP). In this
regard, the solution is generic enough to be exploited in a more generic cloud envi-
ronment, although NFV is considered as a target use case and motivates the work.
The security of this solution relies in the utilisation of well-known attestation mod-
els for integrity verification: this flexibility allows the telco operator to rely on both
hardware-based approaches, as envisioned by TC and practically implemented via
TPMs or other proprietary TEEs (e.g. SGX, SEV), and software-only mechanisms,
so that it could be exploited even in particular use cases wherein hardware-level
protection is not possible. The flexible design of the Trust Monitor is therefore
considered a key advantage of this solution when compared to existing approaches
from scientific literature.

Then, a practical approach to VNF attestation was investigated by this disser-
tation so to enrich the proposed architecture with a viable solution to secure the
NFV platform. In this regard, DIVE allows the services running in lightweight

89

Conclusions and future work

virtualised instances, i.e. containers, to be attested as if they were running on a
physical compute platform. We have focused on containers as they are considered
a more efficient form of virtualisation with respect to VMs, given their limited
memory footprint and sharing of host kernel resources. Thanks to DIVE, a cloud
attestation service can ensure that integrity reports produced by container-enabled
hosts are protected against remote attacks (e.g. MitM) via a tamper-resistant cryp-
tographic device, the TPM. Given its limited performance impact on the hosted
services, DIVE represents a practical solution to VNF attestation that does not col-
lide with the low latency and high throughput container applications, as required
by the NFV paradigm. When integrated into a cloud scenario, DIVE allows a
centralised verifier to identify which container or physical system has been compro-
mised by running a limited set of attestations, as each integrity report provides a
full picture regarding each host and all the containers that are running on it. This
simplifies the verification logic and reduces the overall number of messages that are
exchanged on the network. Moreover, the solution is transparent to the containers
themselves, making it readily applicable to an NFV platform by applying a limited
set of modifications to the host system. No changes are required on the VNF level,
hence complex network services can be attested without any modifications on their
side.

As final part of this dissertation, a concrete NFV threat mitigation process was
derived by coupling the abstract architecture with the practical VNF attestation
technique. Several threats were considered, ranging from the physical attacks to
software-based malicious actions, both locally and remotely. At this stage, the
research focused on the definition of workflows that could effectively integrate the
Trust Monitor into an existing NFV infrastructure, with particular attention to
the SECaaS use case. This is considered by ETSI as one of the most critical
NFV scenarios with respect to security, as it proposes the deployment of vNSFs
as virtualised security appliances (e.g. firewalls, intrusion detection and prevention
systems, honeypots) within the ISP client network. The validation of this activity
was performed in the scope of the SHIELD European project, wherein a PoC of the
Trust Monitor was developed from scratch together with the implementation of an
open-source DIVE prototype for the NFV domain. In this regard, integration of the
proposed architecture with the reference NFV orchestration framework, i.e. OSM,
was also performed so to propose a practical use case for NFV integrity verification
as close to off-the-shelf solutions as possible. Moreover, the SECaaS components
developed within the SHIELD project were also considered for integration with the
Trust Monitor to enhance its visibility over the platform and enrich its attestation
capabilities.

Concluding, integrity verification by means of remote attestation is a valuable
solution for modern ICT infrastructures that exploit large-scale virtualisation, such
as NFV. The main challenge towards its exploitation is represented by the large

90

Conclusions and future work

number of target hardware architectures and virtualisation techniques that are
available on the market. Because of this, cloud attestation architectures need to
acknowledge this diversity and propose generic methods to verify heterogeneous tar-
get platforms. In this regard, an even more significant challenge is the application
of hardware-based attestation solutions, such as the TPM-based scheme proposed
by TC, to virtualised instances. The presented solution consists of a generic trust
assurance architecture that is independent from the underlying hardware architec-
ture, and can be applied to different attestation schemes. With respect to TPM-
based attestation, the proposed technique enables run-time integrity verification of
software run within containers and, hence, it can be readily applied to a lightweight
NFV platform. Moreover, the proposed solution can be integrated into even more
complex security solutions because of its modular architecture and external inter-
faces, and could be even generalised to cloud deployments that are different from
NFV. Limitations of our proposal are in the non-negligible development efforts of
integrating heterogeneous Attestation Drivers to the core application and in the
maintenance cost of updating and securing the Whitelist Database, whose integrity
is fundamental to ensure that verification is performed correctly.

Future directions of this work may target either MANO attestation (which is
considered as a minimal upgrade over the proposed solution, from the technical
perspective) or the extension of integrity verification to heterogeneous virtualisation
mechanisms. In this regard, ongoing research activities are targeting VM-based
attestation by means of a vTPM. Compared to existing approaches from literature,
we plan on leveraging a strong binding between the physical TPM and the different
instances of vTPMs so that their persistent state and most security-critical elements
(i.e. primary keys, sealed objects) are stored by the pTPM. Another extension of
the work would target the IoT domain by proposing a software-only attestation
mechanism that could allow verification of hardware-constrained devices in IoT
fleets. Another challenge related to IoT exploitation of the Trust Monitor is the
deployment model: compared to a standard cloud domain, IoT platforms rely on a
large number of decentralised, heterogeneous nodes that are typically located at the
edge of the network. Because of this, a distributed deployment of the Trust Monitor
could be considered as well, leveraging separate Attestation Drivers deployed on
the edge of the network and a centralised workflow manager that orchestrates their
activities and white-lists.

91

Acronyms

AAA Authentication, Authorisation and Accounting. 19, 32

AK Attestation Key. 24, 67

API Application Programming Interface. 35, 45–47, 59, 67, 68, 70, 73, 74, 79, 82

CA Certification Authority. 23, 67

CDN Content Delivery Network. 14

CIT Cloud Integrity Technology. 53, 59, 84

CRTM Core Root of Trust for Measurements. 24, 44, 67

CSP Cloud Service Provider. 2, 4, 13, 16, 26, 29, 30, 32, 34, 43–47, 71, 73, 89

DAA Direct Anonymous Attestation. 23

DARE Data Analysis and Remediation Engine. 30, 71, 72, 76, 78, 79, 83

DCT Docker Content Trust. 53

DIVE Docker Integrity Verification. 51–54, 56, 59, 61, 62, 64, 66–68, 86, 89, 90

DMZ DeMilitarized Zone. 83

ECC Elliptic Curves Cryptography. 24

EK Endorsement Key. 23

ESB Enterprise Service Bus. 48

ETSI European Telecommunications Standards Institute. 3, 7, 8, 11–14, 16, 18,
22, 27, 30, 32, 69, 82, 90

GLANF Glasgow Network Functions. 17

93

Acronyms

GUI Graphical User Interface. 79

HDFS Hadoop Distributed File System. 82

IaaS Infrastructure as a Service. 2, 33, 71

ICT Information and Communication Technology. 1, 3, 4, 11, 14, 29, 30, 76, 90

IMA Integrity Measurement Architecture. 24, 25, 54–62, 64–67, 72, 84, 85

IoT Internet of Things. 3, 27, 91

IPC Inter Process Communication. 15

IR Integrity Report. 22, 24, 35, 39, 40, 45, 52, 56, 59, 65–67, 85

ISG Industry Specification Group. 11, 18

ISP Internet Service Provider. 3–5, 12–14, 25, 26, 30–32, 70, 71, 78, 90

JSON JavaScript Object Notation. 79, 81, 82

KVM Kernel-based Virtual Machine. 17

LAN Local Area Network. 34

LSM Linux Security Modules. 56, 57, 64

LXC Linux Container. 56, 57

MANO Management and Orchestration. 12, 13, 16, 18, 19, 25, 27, 70, 82, 83, 91

MitM Man-in-the-Middle. 21, 90

MLE Measured Launch Environment. 67

NFV Network Functions Virtualisation. 3–8, 11–14, 16–22, 25–27, 29–33, 36, 42,
47, 52, 69–73, 76, 78, 82, 84, 85, 89–91

NFVI NFV Infrastructure. 12, 13, 18, 19, 25, 27, 70–72, 76, 79, 82, 84

NFVO Network Functions Virtualisation Orchestrator. 13, 47, 70–76, 79, 83, 85

NIST National Institute of Standards and Technology. 20

NVRAM Non-Volatile Random Access Memory. 23

94

Acronyms

OAT Open ATtestation. 43, 59, 67, 84, 85

OEM Original Equipment Manufacturer. 67

OS Operating System. 1, 2, 5, 6, 15, 21, 24, 38, 41, 42, 45, 54, 67, 84, 86

OSM Open Source MANO. 16, 21, 82, 84, 90

PaaS Platform as a Service. 2

PCR Platform Configuration Register. 23, 24, 44, 54–56, 59, 66–68, 85

PoC Proof-of-Concept. 59, 61, 78, 82, 90

PoP Point of Presence. 71, 84

RA Remote Attestation. 5, 6, 22, 24–26, 33–38, 40, 41, 43, 44, 52, 53, 56, 59, 65,
67, 76, 86

RAN Radio Access Network. 14

REST Representational State Transfer. 45, 59, 79

RoT Root of Trust. 5, 18, 22–25, 35, 37, 43, 45, 51, 52, 56, 70

RTM Root of Trust for Measurements. 24

RTR Root of Trust for Reporting. 24

RTS Root of Trust for Storage. 24

SaaS Software as a Service. 2

SDN Software-Defined Networking. 3, 13, 17, 18, 25, 26, 79, 84

SECaaS Security as a Service. 13, 30, 31, 42, 69, 71, 75, 76, 78, 79, 82, 83, 90

SEV Secure Encrypted Virtualisation. 25, 26, 89

SGX Software Guard Extensions. 25, 26, 89

SIEM Security Information and Event Management. 32, 76

TC Trusted Computing. 5–7, 18, 22, 24, 25, 27, 37, 40, 44, 45, 51, 72, 89, 91

TCG Trusted Computing Group. 5, 24, 52, 54, 56, 59, 67

TEE Trusted Execution Environment. 6, 7, 25–27, 35, 89

95

Acronyms

TP Trusted Platform. 24

TPM Trusted Platform Module. 5–7, 22–26, 44, 52, 54, 56, 59, 62, 65, 67, 68, 70,
72, 77, 79, 84, 89–91

TTP Trusted Third-Party. 22, 24, 34

TZ TrustZone. 25

UEFI Unified Extensible Firmware Interface. 22, 24

UTS UNIX Time Sharing. 15

UUID Universal Unique IDentifier. 57–61

VDU Virtual Deployment Unit. 82, 84

VIM Virtualised Infrastructure Manager. 13, 21, 70, 73–75, 79, 82, 83

VLAN Virtual Local Area Network. 18, 34

VM Virtual Machine. 2, 14, 15, 17, 21, 25, 45, 53, 54, 56, 62, 65, 84, 90, 91

VNF Virtual Network Function. 3–5, 7, 8, 12–14, 17–20, 22, 25–27, 32, 40, 42, 43,
51, 52, 66, 67, 69–75, 79–82, 84–86, 89, 90

vNSF virtual Network Security Function. 18, 30, 31, 72, 78, 79, 90

VPN Virtual Private Network. 18, 84

vTPM virtual Trusted Platform Module. 25, 45, 91

96

Bibliography

[1] “AMD Secure Encrypted Virtualization project website”. url: https://
developer.amd.com/sev/

[2] J. Anderson, H. Hu, U. Agarwal, et al. “Performance considerations of net-
work functions virtualization using containers”. In: Int. Conf. on Comput-
ing, Networking and Communications (ICNC). Kauai (HI USA), Feb. 2016,
pp. 1–7. doi: 10.1109/ICCNC.2016.7440668

[3] “Apache Cassandra project website”. url: http://cassandra.apache.org

[4] Apple. “About the Apple T2 Security Chip”. url: https : / / support .
apple.com/en-us/HT208862

[5] “ARM TrustZone project website”. url: https://www.arm.com/products/
security-on-arm/trustzone

[6] AT&T. “Building an Enterprise-Focused Cloud Environment”. Oct. 2017.
url: http://about.att.com/innovationblog/enterprise_cloud

[7] S. Berger, R. Cáceres, K. A. Goldman, et al. “vTPM: Virtualizing the
Trusted Platform Module”. In: 15th USENIX Security Symposium. Van-
couver (Canada): USENIX Association, July 2006, pp. 305–320. doi: 10.
5555/1267336.1267357

[8] A. Bettini. “Vulnerability exploitation in Docker container environments”.
Tech. rep. FlawCheck, 2015. url: https://www.blackhat.com/docs/
eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-
Docker-Container-Environments-wp.pdf

[9] R. Bonafiglia, I. Cerrato, F. Ciaccia, et al. “Assessing the Performance of Vir-
tualization Technologies for NFV: A Preliminary Benchmarking”. In: 2015
Fourth European Workshop on Software Defined Networks. Bilbao (Spain),
Sept. 2015. doi: 10.1109/EWSDN.2015.63

[10] E. Brickell, J. Camenisch, and L. Chen. “Direct Anonymous Attestation”.
In: 11th ACM Conference on Computer and Communications Security. CCS
’04. Washington DC (USA): ACM, Oct. 2004, pp. 132–145. doi: 10.1145/
1030083.1030103

97

https://developer.amd.com/sev/
https://developer.amd.com/sev/
https://doi.org/10.1109/ICCNC.2016.7440668
http://cassandra.apache.org
https://support.apple.com/en-us/HT208862
https://support.apple.com/en-us/HT208862
https://www.arm.com/products/security-on-arm/trustzone
https://www.arm.com/products/security-on-arm/trustzone
http://about.att.com/innovationblog/enterprise_cloud
https://doi.org/10.5555/1267336.1267357
https://doi.org/10.5555/1267336.1267357
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments-wp.pdf
https://doi.org/10.1109/EWSDN.2015.63
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1145/1030083.1030103

BIBLIOGRAPHY

[11] J. Chelladhurai, P. R. Chelliah, and S. A. Kumar. “Securing Docker Contain-
ers from Denial of Service (DoS) Attacks”. In: IEEE Int. Conf. on Services
Computing (SCC). San Francisco (CA USA), June 2016, pp. 856–859. doi:
10.1109/SCC.2016.123

[12] G. Coker, J. Guttman, P. Loscocco, et al. “Principles of remote attestation”.
In: International Journal of Information Security 10.2 (June 2011), pp. 63–
81. doi: 10.1007/s10207-011-0124-7

[13] M. Coughlin, E. Keller, and E. Wustrow. “Trusted Click: Overcoming Se-
curity Issues of NFV in the Cloud”. In: ACM International Workshop on
Security in Software Defined Networks and Network Function Virtualiza-
tion. Scottsdale (AZ USA), Mar. 2017, pp. 31–36. doi: 10.1145/3040992.
3040994

[14] R. Cziva, S. Jouet, K. J. S. White, et al. “Container-based network function
virtualization for software-defined networks”. In: IEEE Symposium on Com-
puters and Communication (ISCC). Larnaca (Cyprus), July 2015, pp. 415–
420. doi: 10.1109/ISCC.2015.7405550

[15] R. Cziva and D. P. Pezaros. “Container network functions: bringing NFV to
the network edge”. In: IEEE Communications Magazine 55.6 (June 2017),
pp. 24–31. doi: 10.1109/MCOM.2017.1601039

[16] Datadog. “8 surprising facts about real Docker container adoption”. 2017.
url: https://www.datadoghq.com/docker-adoption/

[17] M. De Benedictis and A. Lioy. “A proposal for trust monitoring in a Net-
work Functions Virtualisation Infrastructure”. In: 2019 IEEE Conference on
Network Softwarization (NetSoft). Paris (France), June 2019, pp. 1–9. doi:
10.1109/NETSOFT.2019.8806655

[18] M. De Benedictis and A. Lioy. “Integrity verification of Docker containers for
a lightweight cloud environment”. In: Future Generation Computer Systems
97 (Aug. 2019), pp. 236–246. doi: 10.1016/j.future.2019.02.026

[19] M. De Benedictis and A. Lioy. “On the establishment of trust in the cloud-
based ETSI NFV framework”. In: 2017 IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks (NFV-SDN). Berlin (Ger-
many), Nov. 2017, pp. 280–285. doi: 10.1109/NFV-SDN.2017.8169864

[20] “Django REST Framework website”. url: https://www.django- rest-
framework.org

[21] “Docker Compose project website”. url: https : / / docs . docker . com /
compose/

[22] “Docker Content Trust description”. url: https://docs.docker.com/
engine/security/trust/content_trust/

98

https://doi.org/10.1109/SCC.2016.123
https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1145/3040992.3040994
https://doi.org/10.1145/3040992.3040994
https://doi.org/10.1109/ISCC.2015.7405550
https://doi.org/10.1109/MCOM.2017.1601039
https://www.datadoghq.com/docker-adoption/
https://doi.org/10.1109/NETSOFT.2019.8806655
https://doi.org/10.1016/j.future.2019.02.026
https://doi.org/10.1109/NFV-SDN.2017.8169864
https://www.django-rest-framework.org
https://www.django-rest-framework.org
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/

BIBLIOGRAPHY

[23] “Docker project website”. url: https://www.docker.com/

[24] P. England and J. Loeser. “Para-Virtualized TPM Sharing”. In: Trusted
Computing - Challenges and Applications. Ed. by P. Lipp, A.-R. Sadeghi,
and K.-M. Koch. Villach (Austria): Springer, Mar. 2008, pp. 119–132. doi:
https://doi.org/10.1007/978-3-540-68979-9_9

[25] ETSI. “Network Function Virtualisation - An Introduction, Benefits, En-
ablers, Challenges and Call for Action”. Oct. 2012. url: https://portal.
etsi.org/NFV/NFV_White_Paper.pdf

[26] ETSI. “Network Function Virtualisation - Network Operator Perspectives
on NFV priorities for 5G”. Feb. 2017. url: https://portal.etsi.org/
NFV/NFV_White_Paper_5G.pdf

[27] “ETSI Network Function Virtualisation (NFV) website”. url: https://
www.etsi.org/technologies-clusters/technologies/nfv

[28] ETSI NFV ISG. “ETSI GS NFV 001 Network Functions Virtualisation
(NFV); Use Cases”. Tech. rep. May 2017. url: https://docbox.etsi.
org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.
1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf

[29] ETSI NFV ISG. “ETSI GS NFV 002 Network Functions Virtualisation
(NFV); Architectural Framework”. Tech. rep. Dec. 2014. url: https://
docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/
NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.
pdf

[30] ETSI NFV ISG. “ETSI GS NFV-EVE 004 Network Functions Virtualisation
(NFV); Virtualisation Technologies; Report on the application of Different
Virtualisation Technologies in the NFV Framework”. Tech. rep. Mar. 2016.
url: https://docbox.etsi.org/ISG/NFV/Open/%5C%5CPublications_
pdf/Specs-Reports/NFV-EVE%5C%20004v1.1.1%5C%20-%5C%20GS%5C%20-
%5C%20Virtualisation%5C%20technologies%5C%20Report.pdf

[31] ETSI NFV ISG. “ETSI GS NFV-SEC 001 Network Functions Virtualisa-
tion (NFV); NFV Security; Problem Statement”. Tech. rep. Oct. 2014. url:
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-
Reports/NFV-SEC%20001v1.1.1%20-%20GS%20-%20Security%20Problem%
20Statement.pdf

[32] ETSI NFV ISG. “ETSI GS NFV-SEC 003 Network Functions Virtualisation
(NFV); NFV Security; Security and Trust Guidance”. Tech. rep. Aug. 2016.
url: https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/
Specs- Reports/NFV- SEC%20003v1.2.1%20- %20GR%20- %20Security%
20and%20Trust%20Guidance.pdf

99

https://www.docker.com/
https://doi.org/https://doi.org/10.1007/978-3-540-68979-9_9
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
https://portal.etsi.org/NFV/NFV_White_Paper_5G.pdf
https://www.etsi.org/technologies-clusters/technologies/nfv
https://www.etsi.org/technologies-clusters/technologies/nfv
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20001v1.2.1%20-%20GR%20-%20NFV%20Use%20Cases%20revision.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV%20002v1.2.1%20-%20GS%20-%20NFV%20Architectural%20Framework.pdf
https://docbox.etsi.org/ISG/NFV/Open/%5C%5CPublications_pdf/Specs-Reports/NFV-EVE%5C%20004v1.1.1%5C%20-%5C%20GS%5C%20-%5C%20Virtualisation%5C%20technologies%5C%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/%5C%5CPublications_pdf/Specs-Reports/NFV-EVE%5C%20004v1.1.1%5C%20-%5C%20GS%5C%20-%5C%20Virtualisation%5C%20technologies%5C%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/%5C%5CPublications_pdf/Specs-Reports/NFV-EVE%5C%20004v1.1.1%5C%20-%5C%20GS%5C%20-%5C%20Virtualisation%5C%20technologies%5C%20Report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20001v1.1.1%20-%20GS%20-%20Security%20Problem%20Statement.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20001v1.1.1%20-%20GS%20-%20Security%20Problem%20Statement.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20001v1.1.1%20-%20GS%20-%20Security%20Problem%20Statement.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20003v1.2.1%20-%20GR%20-%20Security%20and%20Trust%20Guidance.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20003v1.2.1%20-%20GR%20-%20Security%20and%20Trust%20Guidance.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20003v1.2.1%20-%20GR%20-%20Security%20and%20Trust%20Guidance.pdf

BIBLIOGRAPHY

[33] ETSI NFV ISG. “ETSI GS NFV-SEC 007 Network Functions Virtualisation
(NFV); Trust; Report on Attestation Technologies and Practices for Secure
Deployments”. Tech. rep. Oct. 2017. url: https://docbox.etsi.org/ISG/
NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20007v1.1.1%
20-%20GR%20-%20NFV%20Attestation%20report.pdf

[34] ETSI NFV ISG. “ETSI GS NFV-SEC 014 Network Functions Virtualisation
(NFV) Release 3; NFV Security; Security Specification for MANO Compo-
nents and Reference points”. Tech. rep. Apr. 2018. url: https://docbox.
etsi . org / ISG / NFV / Open / Publications _ pdf / Specs - Reports / NFV -
SEC%20014v3.1.1%20-%20GS%20-%20MANO%20Security%20Spec.pdf

[35] ETSI NFV ISG. “ETSI GS NFV-SEC 021 Network Functions Virtualisa-
tion (NFV) Release 2; NFV Security; VNF Package Security Specification”.
Tech. rep. June 2019. url: https://docbox.etsi.org/ISG/NFV/Open/
Publications_pdf/Specs-Reports/NFV-SEC%20021v2.6.1%20-%20GS%
20-%20VNF%20Package%20Security%20Spec.pdf

[36] ETSI NFV ISG. “ETSI GS NFV-SWA 001 Network Functions Virtualisation
(NFV); Virtual Network Functions Architecture”. Tech. rep. Dec. 2014. url:
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-
Reports/NFV-SWA%20001v1.1.1%20-%20GS%20-%20Virtual%20Network%
20Function%20Architecture.pdf

[37] “Exploring Opportunities: Containers and OpenStack”. url: https://www.
openstack.org/assets/pdf-downloads/Containers-and-OpenStack.
pdf

[38] I. Faynberg and S. Goeringer. “NFV Security: Emerging Technologies and
Standards”. In: Guide to Security in SDN and NFV: Challenges, Opportuni-
ties, and Applications. Springer International Publishing, Nov. 2017, pp. 33–
73. doi: 10.1107/978-3-319-64653-4_2

[39] R. T. Fielding. “Architectural Styles and the Design of Network-based Soft-
ware Architectures”. PhD thesis. University of California, 2000. url: http:
//roy.gbiv.com/pubs/dissertation/top.htm

[40] “Flask project website”. url: https://palletsprojects.com/p/flask/

[41] A. Golubin. “Garbage collection in Python: things you need to know”. url:
https://rushter.com/blog/python-garbage-collector/

[42] Google. “Titan M makes Pixel 3 our most secure phone yet”. url: https:
//www.blog.google/products/pixel/titan-m-makes-pixel-3-our-
most-secure-phone-yet/

100

https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20007v1.1.1%20-%20GR%20-%20NFV%20Attestation%20report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20007v1.1.1%20-%20GR%20-%20NFV%20Attestation%20report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20007v1.1.1%20-%20GR%20-%20NFV%20Attestation%20report.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20014v3.1.1%20-%20GS%20-%20MANO%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20014v3.1.1%20-%20GS%20-%20MANO%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20014v3.1.1%20-%20GS%20-%20MANO%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20021v2.6.1%20-%20GS%20-%20VNF%20Package%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20021v2.6.1%20-%20GS%20-%20VNF%20Package%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SEC%20021v2.6.1%20-%20GS%20-%20VNF%20Package%20Security%20Spec.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SWA%20001v1.1.1%20-%20GS%20-%20Virtual%20Network%20Function%20Architecture.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SWA%20001v1.1.1%20-%20GS%20-%20Virtual%20Network%20Function%20Architecture.pdf
https://docbox.etsi.org/ISG/NFV/Open/Publications_pdf/Specs-Reports/NFV-SWA%20001v1.1.1%20-%20GS%20-%20Virtual%20Network%20Function%20Architecture.pdf
https://www.openstack.org/assets/pdf-downloads/Containers-and-OpenStack.pdf
https://www.openstack.org/assets/pdf-downloads/Containers-and-OpenStack.pdf
https://www.openstack.org/assets/pdf-downloads/Containers-and-OpenStack.pdf
https://doi.org/10.1107/978-3-319-64653-4_2
http://roy.gbiv.com/pubs/dissertation/top.htm
http://roy.gbiv.com/pubs/dissertation/top.htm
https://palletsprojects.com/p/flask/
https://rushter.com/blog/python-garbage-collector/
https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/
https://www.blog.google/products/pixel/titan-m-makes-pixel-3-our-most-secure-phone-yet/

BIBLIOGRAPHY

[43] A. Grattafiori. “NCC Group Whitepaper - Understanding and Hardening
Linux Containers”. Tech. rep. NCC Group, June 2016. url: https : / /
www.nccgroup.trust/globalassets/our-research/us/whitepapers/
2016 / april / %5C % 5Cncc _ group _ understanding _ hardening _ linux _
containers-1-1.pdf

[44] “HDFS Architecture Guide”. url: https://hadoop.apache.org/docs/
r1.2.1/hdfs_design.html

[45] “Integrity Measurement Architecture project website”. url: https://sourceforge.
net/p/linux-ima/wiki/Home/

[46] “Intel OpenAttestation project website”. url: https : / / github . com /
OpenAttestation/

[47] “Intel OpenCIT project website”. url: https://01.org/opencit

[48] “Intel Software Guard Extensions project website”. url: https://software.
intel.com/en-us/sgx

[49] L. Jacquin, A. Lioy, D. R. Lopez, et al. “The Trust Problem in Modern Net-
work Infrastructures”. In: Cyber Security and Privacy. Brussels (Belgium):
Springer, Nov. 2015, pp. 116–127. doi: 10.1007/978-3-319-25360-2_10

[50] B. Jaeger. “Security Orchestrator: Introducing a Security Orchestrator in the
Context of the ETSI NFV Reference Architecture”. In: TRUSTCOM’15:
14th IEEE Int. Conf. on Trust, Security and Privacy in Computing and
Communications - Vol. 1. Helsinki (Finland), Aug. 2015, pp. 1255–1260.
doi: 10.1109/Trustcom.2015.514

[51] “Keylime project website”. url: https://keylime.dev

[52] “Kubernetes project website”. url: https://kubernetes.io/

[53] S. Lal, A. Kalliola, I. Oliver, et al. “Securing VNF communication in NFVI”.
In: IEEE Conf. on Standards for Communications and Networking (CSCN).
Helsinki (Finland), Sept. 2017, pp. 187–192. doi: 10.1109/CSCN.2017.
8088620

[54] S. Lal, T. Taleb, and A. Dutta. “NFV: Security Threats and Best Practices”.
In: IEEE Communications Magazine 55.8 (Aug. 2017), pp. 211–217. doi:
10.1109/MCOM.2017.1600899

[55] V. Lefebvre, G. Santinelli, T. Müller, et al. “Universal Trusted Execution En-
vironments for Securing SDN/NFV Operations”. In: Proceedings of the 13th
International Conference on Availability, Reliability and Security. Hamburg
(Germany): ACM, Aug. 2018, 44:1–44:9. doi: 10.1145/3230833.3233256

[56] “Libvirt - KVM/QEMU hypervisor driver”. url: https://libvirt.org/
drvqemu.html

101

https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/%5C%5Cncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/%5C%5Cncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/%5C%5Cncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/%5C%5Cncc_group_understanding_hardening_linux_containers-1-1.pdf
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://github.com/OpenAttestation/
https://github.com/OpenAttestation/
https://01.org/opencit
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
https://doi.org/10.1007/978-3-319-25360-2_10
https://doi.org/10.1109/Trustcom.2015.514
https://keylime.dev
https://kubernetes.io/
https://doi.org/10.1109/CSCN.2017.8088620
https://doi.org/10.1109/CSCN.2017.8088620
https://doi.org/10.1109/MCOM.2017.1600899
https://doi.org/10.1145/3230833.3233256
https://libvirt.org/drvqemu.html
https://libvirt.org/drvqemu.html

BIBLIOGRAPHY

[57] LightReading. “Telefonica Unveils Aggressive NFV Plans”. Feb. 2014. url:
https : / / www . lightreading . com / carrier - sdn / sdn - technology /
telefonica-unveils-aggressive-nfv-plans/d/d-id/707882

[58] “Linux Containers project website”. url: https://linuxcontainers.org/

[59] “Linux Programmer’s Manual - Capabilities”. url: http://man7.org/
linux/man-pages/man7/capabilities.7.html

[60] “Linux Programmer’s Manual - Cgroups”. url: http://man7.org/linux/
man-pages/man7/cgroups.7.html

[61] “Linux Programmer’s Manual - Namespaces”. url: http://man7.org/
linux/man-pages/man7/namespaces.7.html

[62] A. Lioy, G. Gardikis, B. Gaston, et al. “NFV-based network protection: The
SHIELD approach”. In: 2017 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN). Berlin (Germany),
Nov. 2017, pp. 1–2. doi: 10.1109/NFV-SDN.2017.8169869

[63] “LXD project website”. url: https://linuxcontainers.org/lxd/

[64] A. Martin, S. Raponi, T. Combe, et al. “Docker ecosystem – Vulnerability
Analysis”. In: Computer Communications 122 (June 2018), pp. 30–43. doi:
10.1016/j.comcom.2018.03.011

[65] B. C. News. “Deutsche Telekom experimenting with NFV in Docker”. Feb.
2015. url: https://telecoms.com/397152/deutsche-telekom-experimenting-
with-nfv-in-docker/

[66] “Nginx project website”. url: https://www.nginx.com/

[67] M. Souppaya, J. Morello, and K. Scarfone. “NIST Special Publication 800-
190 - Application Container Security Guide”. Tech. rep. NIST, Sept. 2017.
doi: 10.6028/NIST.SP.800-190

[68] “Open Baton project website”. url: https://openbaton.github.io/

[69] “Open Cloud Integrity Technology (Open CIT) project website”. url: https:
//01.org/opencit

[70] “Open Source MANO project website”. url: https://osm.etsi.org/

[71] “Open vSwitch project website”. url: https://www.openvswitch.org

[72] “OpenStack project website”. url: https://www.openstack.org/

[73] “OPNFV project website”. url: https://www.opnfv.org/

[74] R. Poddar, C. Lan, R. A. Popa, et al. “SafeBricks: Shielding Network Func-
tions in the Cloud”. In: 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18). Renton (WA USA): USENIX Associa-
tion, Apr. 2018, pp. 201–216. url: https://www.usenix.org/conference/
nsdi18/presentation/poddar

102

https://www.lightreading.com/carrier-sdn/sdn-technology/telefonica-unveils-aggressive-nfv-plans/d/d-id/707882
https://www.lightreading.com/carrier-sdn/sdn-technology/telefonica-unveils-aggressive-nfv-plans/d/d-id/707882
https://linuxcontainers.org/
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/cgroups.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
https://doi.org/10.1109/NFV-SDN.2017.8169869
https://linuxcontainers.org/lxd/
https://doi.org/10.1016/j.comcom.2018.03.011
https://telecoms.com/397152/deutsche-telekom-experimenting-with-nfv-in-docker/
https://telecoms.com/397152/deutsche-telekom-experimenting-with-nfv-in-docker/
https://www.nginx.com/
https://doi.org/10.6028/NIST.SP.800-190
https://openbaton.github.io/
https://01.org/opencit
https://01.org/opencit
https://osm.etsi.org/
https://www.openvswitch.org
https://www.openstack.org/
https://www.opnfv.org/
https://www.usenix.org/conference/nsdi18/presentation/poddar
https://www.usenix.org/conference/nsdi18/presentation/poddar

BIBLIOGRAPHY

[75] “Podman project website”. url: https://podman.io

[76] M. Raho, A. Spyridakis, M. Paolino, et al. “KVM, Xen and Docker: A perfor-
mance analysis for ARM based NFV and cloud computing”. In: 2015 IEEE
3rd Workshop on Advances in Information, Electronic and Electrical Engi-
neering (AIEEE). Riga (Latvia), Nov. 2015. doi: 10.1109/AIEEE.2015.
7367280

[77] S. Ravidas, S. Lal, I. Oliver, et al. “Incorporating trust in NFV: Addressing
the challenges”. In: ICIN-2017: 20th Conference on Innovations in Clouds,
Internet and Networks. Paris (France), Mar. 2017, pp. 87–91. doi: 10.1109/
ICIN.2017.7899394

[78] “Redis project website”. url: https://redis.io

[79] “Rkt project website”. url: https://coreos.com/rkt/

[80] R. Sailer, X. Zhang, T. Jaeger, et al. “Design and Implementation of a TCG-
based Integrity Measurement Architecture”. In: 13th USENIX Security Sym-
posium. San Diego (CA USA): USENIX Association, Aug. 2004. url: https:
/ / www . usenix . org / legacy / publications / library / proceedings /
sec04/%5C%5Ctech/full_papers/sailer/sailer.pdf

[81] N. Schear, P. T. Cable II, T. M. Moyer, et al. “Bootstrapping and Maintain-
ing Trust in the Cloud”. In: ACSAC ’16 Proceedings of the 32nd Annual Con-
ference on Computer Security Applications. Los Angeles (CA USA): ACM,
Dec. 2016, pp. 65–77. doi: 10.1145/2991079.2991104

[82] SHIELD. “Open-source prototype for Trust Monitor in NFV”. url: https:
//github.com/shield-h2020/trust-monitor

[83] M.-W. Shih, M. Kumar, T. Kim, et al. “S-NFV: Securing NFV States by
Using SGX”. In: 2016 ACM International Workshop on Security in Soft-
ware Defined Networks & Network Function Virtualization. New Orleans
(LA USA), Mar. 2016, pp. 45–48. doi: 10.1145/2876019.2876032

[84] “Software-Defined Networking (SDN) website”. url: https://www.opennetworking.
org/sdn-definition/

[85] “The JavaScript Object Notion data format”. url: https://www.json.
org/json-en.html

[86] Trusted Computing Group. “EK Credential Profile for TPM Family 2.0;
Level 0”. Tech. rep. Dec. 2018. url: https://trustedcomputinggroup.
org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.
pdf

103

https://podman.io
https://doi.org/10.1109/AIEEE.2015.7367280
https://doi.org/10.1109/AIEEE.2015.7367280
https://doi.org/10.1109/ICIN.2017.7899394
https://doi.org/10.1109/ICIN.2017.7899394
https://redis.io
https://coreos.com/rkt/
https://www.usenix.org/legacy/publications/library/proceedings/sec04/%5C%5Ctech/full_papers/sailer/sailer.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/%5C%5Ctech/full_papers/sailer/sailer.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/%5C%5Ctech/full_papers/sailer/sailer.pdf
https://doi.org/10.1145/2991079.2991104
https://github.com/shield-h2020/trust-monitor
https://github.com/shield-h2020/trust-monitor
https://doi.org/10.1145/2876019.2876032
https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_IWG_Credential_Profile_EK_V2.1_R13.pdf

BIBLIOGRAPHY

[87] Trusted Computing Group. “Guidance for Securing Network Equipment Us-
ing TCG Technology Version 1.0 Revision 29”. Tech. rep. Jan. 2018. url:
https : / / trustedcomputinggroup . org / wp - content / uploads / TCG _
Guidance_for_Securing_NetEq_1_0r29.pdf

[88] Trusted Computing Group. “Integrity Report Schema, Specification Version
2.0, Revision 5”. Tech. rep. Aug. 2011. url: https://trustedcomputinggroup.
org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf

[89] Trusted Computing Group. “TCG Architecture Overview, Version 1.4”. Tech.
rep. Aug. 2007. url: https://trustedcomputinggroup.org/wp-content/
uploads/TCG_1_4_Architecture_Overview.pdf

[90] Trusted Computing Group. “TCG FIPS 140-2 Guidance for TPM 2.0”. Tech.
rep. Feb. 2017. url: https://trustedcomputinggroup.org/wp-content/
uploads/TCG_FIPS_140_Guidance_for_TPM2_0_v1r1_20170202.pdf

[91] Trusted Computing Group. “Trusted Platform Module Library Part 1: Ar-
chitecture Family 2.0 Revision 1.38”. Tech. rep. Sept. 2016. url: https:
//trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-
Part-1-Architecture-01.38.pdf

[92] Trusted Computing Group. “Trusted Platform Module Library Part 2: Struc-
tures Family 2.0 Revision 1.38”. Tech. rep. Sept. 2016. url: https : / /
trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-
2-Structures-01.38.pdf

[93] Trusted Computing Group. “Trusted Platform Module Library Part 3: Com-
mands Family 2.0 Revision 1.38”. Tech. rep. Sept. 2016. url: https://
trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-
3-Commands-01.38.pdf

[94] “VIM emulator project website”. url: https://osm.etsi.org/wikipub/
index.php/VIM_emulator

[95] “VMWare project website”. url: https://www.vmware.com

[96] X. Wan, Z. Xiao, and Y. Ren. “Building Trust into Cloud Computing Using
Virtualization of TPM”. In: 2012 Fourth International Conference on Mul-
timedia Information Networking and Security. Nanjing (China), Nov. 2012,
pp. 59–63. doi: 10.1109/MINES.2012.82

[97] J. Wang, F. Xiao, J. Huang, et al. “A Security-Enhanced vTPM 2.0 for
Cloud Computing”. In: ICICS: International Conference on Information and
Communications Security. Beijing, (China): Springer International Publish-
ing, Dec. 2017, pp. 557–569. doi: https://doi.org/10.1007/978-3-319-
89500-0_48

104

https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_Guidance_for_Securing_NetEq_1_0r29.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
https://trustedcomputinggroup.org/wp-content/uploads/IWG_Integrity_Report_Schema_v2.0.r5.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_1_4_Architecture_Overview.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_FIPS_140_Guidance_for_TPM2_0_v1r1_20170202.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_FIPS_140_Guidance_for_TPM2_0_v1r1_20170202.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-3-Commands-01.38.pdf
https://osm.etsi.org/wikipub/index.php/VIM_emulator
https://osm.etsi.org/wikipub/index.php/VIM_emulator
https://www.vmware.com
https://doi.org/10.1109/MINES.2012.82
https://doi.org/https://doi.org/10.1007/978-3-319-89500-0_48
https://doi.org/https://doi.org/10.1007/978-3-319-89500-0_48

BIBLIOGRAPHY

[98] R. Wilkins and B. Richardson. “UEFI Secure Boot in Modern Computer
Security Solutions”. Tech. rep. Unified Extensible Firmware Interface Forum,
Sept. 2013. url: https://uefi.org/sites/default/files/resources/
UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.
pdf

[99] “Xen project website”. url: https://xenproject.org

[100] Z. Yan, P. Zhang, and A. V. Vasilakos. “A security and trust framework
for virtualized networks and software-defined networking”. In: Security and
Communication Networks 9.16 (Mar. 2015), pp. 3059–3069. doi: 10.1002/
sec.1243

[101] R. Yeluri and A. Gupta. “Trusted Docker Containers and Trusted VMs
in OpenStack”. 2015. url: https : / / 01 . org / sites / default / files /
openstacksummit_vancouver_trusteddockercontainers.pdf

105

https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://xenproject.org
https://doi.org/10.1002/sec.1243
https://doi.org/10.1002/sec.1243
https://01.org/sites/default/files/openstacksummit_vancouver_trusteddockercontainers.pdf
https://01.org/sites/default/files/openstacksummit_vancouver_trusteddockercontainers.pdf

BIBLIOGRAPHY

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

106

	List of Tables
	List of Figures
	Introduction
	Cloud Computing
	Network virtualisation
	Security and privacy of virtualised networks
	Motivation of this work
	Bibliographic foundation
	Organisation of the thesis

	Background
	The NFV paradigm
	Exploitation of containers in NFV networks
	NFV security analysis
	Impact of containers on NFV security
	Trust assurance of softwarised networks
	Open issues

	Architecture
	Target use cases
	Security-as-a-Service
	Protection of the CSP infrastructure
	Security information and event management

	Requirements
	Design overview
	Process
	Cloud Verifier
	Whitelist Database
	Attestation Driver
	Attester
	Application Programming Interface
	Connector
	Audit Database
	Scheduler
	Compliance to requirements

	Container-based VNF attestation
	Requirements
	Overview
	Technology
	TPM-based integrity measurement architecture
	The Docker Device Mapper storage driver

	Compliance to requirements
	Implementation
	Experimental evaluation
	Deployment as Attestation Driver

	NFV threat mitigation
	Requirements
	Threat model
	Integration within the NFV SECaaS scenario
	Inbound communication
	Outbound communication

	Workflows
	NFVI centralised monitoring process
	VNF integrity verification process via DIVE

	Implementation
	Experimental evaluation

	Conclusions and future work
	Bibliography

