
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (32.th cycle)

On the Orchestration of Dynamic
Services over Distributed IT

Infrastructures

Gabriele Castellano
* * * * * *

Supervisor
Prof. Fulvio Risso

Politecnico di Torino
July 2020



This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gabriele Castellano

Turin, July 2020

www.creativecommons.org


Summary

The arise of Network Function Virtualization and Software Defined Networking
enabled the programmability of the network infrastructure, hence allowing the dy-
namic deployment of complex services on top of the network. Additionally, Edge
Computing extends the Cloud paradigm towards the edge of the network, leading
to a highly distributed infrastructure and introducing new players in the service
provisioning ecosystem. This transformation leads to enhanced possibilities for ser-
vice providers, which, thanks to the flexibility and new capabilities offered by the
infrastructure below, may realize and deliver a plethora of new applications, such
as virtual reality, remote critical tasks, and more. However, managing such a dis-
tributed infrastructure and enabling interoperability between the multiple actors
involved introduces a series of challenges. A particularly challenging problem is re-
source management. Since resources (such as computing, networking, and storage)
should be partitioned in slices that are allocated for each service, a key compo-
nent called Orchestrator is often employed to decide on the deployment and the
management of each service. However, the optimality of the taken decisions may
not match the actual necessity of the services, as each of them may benefit from
different allocation strategies and may want to optimize on different parameters
and service-specific metrics. Such metrics are often unknown to the orchestrator,
which operates at the infrastructure level and based on a one-size-fits-all paradigm.
Moreover, mandating the existence of centralized coordination components may not
be suitable in a scenario where services are executed on scattered compute nodes,
e.g., at the edge of the network, which features arbitrary and dynamic topologies.
Finally, since resources are scarce and geographically distributed in different ar-
eas, service provisioning may involve multiple providers that should inter-operate
coordinating the deployment of applications on top of their clusters. Given these
considerations, this thesis investigates new service-centric orchestration paradigms,
which cover different aspects of the above problem. A novel Service-Defined Orches-
tration approach is proposed, which distributes the orchestration task and delegates
it to the service providers competent for each application. The problem of service
management, utilization, and dissemination in harsh environments is also investi-
gated, by designing highly distributed architectures and algorithms with the aim of
transparently enable a suitable service layer on heavily scattered IT infrastructures.
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Chapter 1

Introduction

The rise of virtualization technologies has drastically changed the way services
are deployed and delivered in new generation computing and networking infrastruc-
tures. In IT, Cloud Computing decoupled the role of infrastructure management
from the provisioning of final services to end customers, leading to the rise of a
variety of infrastructure providers (e.g., Amazon Web Services, Microsoft Azure)
and diverse platform frameworks (e.g., Google Cloud Platform) that enabled the
proliferation of a variety of applications and service providers (e.g., Netflix).

With new trends in IT applications, such as IoT, social networks, industrial
control loops, and more, data is increasingly produced at the edge of the network:
“things” in the network are estimated to double in a few years [8], and they mostly
produce data that is intended to be consumed at the edge; every single minute,
users upload more than 500 hours of content on the YouTube servers, and tens
of thousands of new pictures on Instagram [170, 78]. This change in the data
production/consumption flow makes cloud not efficient anymore for its processing,
because of the physical limitation of the Internet. For this reasons, as more and
more new applications require particular infrastructure capabilities and constraints,
such as low latency and high bandwidth (e.g., virtual reality, autonomous driving),
the virtualization paradigm has extended its domain from the IT area to the one of
telecommunication operators, which, given their position, are the best candidates
to manage and provide highly distributed computing facilities at the very edge of
the network (Edge Computing). Telcos are pursuing a digital transformation that
brings flexibility and programmability on their network infrastructures, through the
introduction of novel paradigms such as Network Function Virtualization, that is,
networking middleboxes are implemented in software and executed within isolated
VMs or containers, and Software-Defined Networking, which decouples the control
logic from the physical network devices.

The availability of cloud-like facilities within the boundaries of the telcos’ net-
works enables a large variety of scenarios. Users can benefit from fast offloading
for computation-intensive tasks such as augmented/assisted reality or face/speech
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recognition [174]; vehicle-to-everything (V2X) interactions can be extended into
the mobile network, by running roadside applications within the edge servers and
helping in enabling autonomous driving [105]; telcos may even benefit from the
presence of computation power in their networks deploying smarter optimization
services, e.g., for radio-backhaul coordination, analytic tasks, and more [104].

In such flexible and dynamic environment, automated configuration, manage-
ment, and coordination become crucial. Such tasks are commonly referred to as
“Orchestration” [128], whose overall aim is to enable flexible and dynamic deploy-
ment of complex services. The decisions that the Orchestrator takes mainly involve
how to optimally slice the infrastructure continuum of resources, which may encom-
pass computing, networking, storage, and even more heterogeneous IoT devices.

Challenges introduced by the new Edge paradigm are manifold. Since resources
are scarce and geographically distributed in different areas, multiple providers, even
playing different roles, should inter-operate, coordinating the deployment of services
on top of their clusters. In doing so, it is important to exploit any capability avail-
able on the infrastructure, a task that is often not trivial due to the heterogeneity
of such an unconventional environment. Coordination could not be demanded to
centralized components, as services are executed on scattered clusters and multiple
providers are involved. Additionally, different services may benefit from different
orchestration strategies and predefined one-size-fits-all approaches may not match
the actual necessity of the application, whose metrics are only known to the service
provider of competence. In this work, we investigate novel paradigms for service
management and orchestration that could overcome these challenges.

In particular, Chapter 2 analyzes the problems faced by a new generation Edge
provider while deploying and orchestrating services on top of a multi-technological
infrastructure. In this regard, we propose a capability-based solution, which aims
to spot and exploit any facility offered by the cluster of resources below. This
ensures flexibility and better optimization possibilities in service deployment.

In Chapter 3 we highlight the disadvantages and limitations of a centralized
and monolithic orchestration model in Edge Computing. Taking as reference the
Multi-access Edge Computing (MEC) architecture [86], we identify the new ac-
tors involved in service provisioning at the edge of the network and their mutual
interactions. Contextually, we propose a possible open and disaggregated model
for the business interactions between these new edge actors and some preliminary
considerations on their algorithmic optimization.

Chapter 4 overcomes the limitations of one-size-fits-all orchestration approaches
by proposing a novel Service-Defined Orchestration (SDO) paradigm, where the
orchestration task is distributed among the service providers. Using a formalized
declarative language, they may define custom strategies to manage their own ser-
vices, optimizing on metrics that are service-specific and therefore unknown to
a traditional orchestrator that operates at the infrastructure layer. To coordi-
nate the coexistence of such a variety of service providers orchestrating resources
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on the same shared infrastructure, we design DRAGON, a Distributed Resource
AssiGnment and OrchestratioN optimization algorithm that is then described in
Chapter 5. Through a fully distributed decision process, DRAGON leads a pool
of Service-Defined Orchestrators to reach a dynamic agreement on how resources
should be (temporarily) partitioned among them, providing guarantees on both
convergence time and performance.

The solutions adopted in Edge computing lead to a highly modular and dis-
tributed infrastructure that is populated with arbitrary new facilities, generally
exploited by service providers to compose the final application. In Chapter 6 we
design a configuration layer that enables interoperability between the existing ac-
tors, by mean of a model-based approach that facilitates service composition and
enables monitoring and tuning of arbitrary components.

Chapter 7 ultimately overviews the applicability of new generation service fa-
cilities on highly scattered infrastructures, with particular focus to the Industrial
Internet of Things, where services operate without relying on fixed networks and
exploit opportunistic connections between fleets of vehicles. To enable IoT ser-
vices to transparently operate on such environments we propose Æther, a service-
oriented communication system that provides service management features and
service-aware routing optimization on disrupted networks, with advantages over
state-of-the-art algorithms.

Part of the work described in this dissertation has been previously published
in other scientific manuscripts authored by the candidate. A list of the relevant
publications is available in Appendix A.
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Chapter 2

Capability-based Orchestration
across multi-technological
infrastructures

This chapter presents an open-source orchestration framework that deploys end-
to-end services across multi-technological domains, with a focus on OpenStack-
managed clusters and Software-Defined Networks controlled either by ONOS or
OpenDaylight. The proposed approach improves the existing work in two direc-
tions. First, it better exploits capabilities available in the infrastructure below,
by taking benefit from the different available technologies. This allows, for in-
stance, the usage of SDN domains not only to implement traffic steering but also
to execute selected network functions (e.g., NAT). Second, this work can deploy a
complex service by partitioning the original service graph into multiple subgraphs,
each one instantiated in a different domain, dynamically connected by means of
traffic steering rules and parameters negotiated at run-time.

2.1 Introduction
New generation infrastructure providers often manage a multitude of hetero-

geneous technological domains. In such scenarios, end-to-end service deployment
of Network Functions (NFs) usually involves two levels of orchestrators [148, 42]
(Figure 2.1), handling the deployment process in a hierarchical fashion [58, 167].
An Overarching Orchestrator sits on top of a multi-technology infrastructure and

Part of the work presented in this chapter has been first published in [26] and [41]. This work
is also partially described in the Ph.D. dissertation of Roberto Bonafiglia [24], who collaborated
in its study.

5



Capability-based Orchestration across multi-technological infrastructures

SDN controller

Overarching Orchestrator

Domain Orchestrator

Domain Orchestrator

Firewall

Adv. 
blocker

Private 
cache

OpenStack controller

Internet

Technological domain

Service graph

Private 
cache

Adv.
blocker

Firewall

Domain Orchestrator

OpenStack controller

?

??

??

Parameters needed to set up 
inter-domain traffic steering ?

CPE controller

Residential 
gateway

Domain orchestrator

SDN network

Telco 
data centerTelco PoP

(edge data center)

Figure 2.1: Service graph deployment in a multi-domain infrastructure.

receives service deployment requests in the form of service graphs, which define the
NFs to be deployed and their interconnections. This component is responsible for
(i) selecting the domains to involve in the service deployment (e.g., where NFs have
to be executed), (ii) setup the network parameters for the proper traffic steering
between different infrastructure domains, and (iii) creating the service subgraphs
to be instantiated in the selected domains.

At a lower layer, a set of Domain Orchestrators manage each a specific tech-
nological domain and interact with the given infrastructure controller (e.g., the
OpenStack [142] cloud toolkit in data centers, the ONOS [16] or OpenDaylight
(ODL) [108] controller in SDN networks) to actually instantiate the service sub-
graphs in the underlying infrastructure. In addition, Domain Orchestrators export
a summary of the computing and networking characteristics of their domains, used
by the Overarching Orchestrator to execute its own tasks. This architecture simpli-
fies the integration of existing infrastructure controllers in the orchestration frame-
work, as any possible missing feature is implemented in the Domain Orchestrators
themselves, while the infrastructure controllers are kept unchanged.

Existing orchestration frameworks (e.g., [31, 100]) present the following limita-
tions. First, they exploit SDN domains only to create network paths, neglecting the
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fact that modern SDN controllers can actually host many applications (e.g., fire-
wall, NAT) that program the underlying network devices according to their own
logic. Second, little importance is given to the problem of automatically configur-
ing the inter-domain traffic steering to interconnect portions of the service graph
deployed on different domains. For instance, this would require to properly charac-
terize subgraphs endpoints (called Service Access Point, or SAPs) with the proper
network parameters, thus replacing the question marks in the subgraphs shown in
Figure 2.1 with the proper information such as VLAN IDs, GRE keys and more,
based on the capabilities of the underlying infrastructure.

To overcomes these limitations, we propose a novel capability-based orches-
tration approach that (i) can transparently instantiate NFs wherever a suitable
implementation is available (e.g., either on cloud computing or SDN domains), and
(ii) enables the Overarching Orchestrator to enrich the service subgraphs with the
information needed for Domain Orchestrators to automatically set up the inter-
domain traffic steering.

In our approach, the Overarching Orchestrator executes its own tasks based on
domain capabilities, which are exported from a functional rather than a technolog-
ical point of view. This enables the deployment of NFs not only using traditional
VMs or containers on data centers or edge clusters, but also in domains where such
functions are implemented through more heterogeneous technologies (e.g., an SDN
enabled backbone or a Customer Premise Equipment).

We first present the overall approach and the architecture of the Overarching
Orchestrator, then detail the architecture and implementation of two Domain Or-
chestrators that deploy service graphs in vanilla SDN-based and OpenStack-based
domains, thus in Software-Defined Networks and in Cloud/Edge clusters. Notably,
other domains can be integrated into our orchestration framework as well (e.g.,
Customer Premise Equipment), provided that the proper Domain Orchestrator is
implemented and run on top of the companion infrastructure controller.

The remainder of this chapter is structured as follows. Section 2.2 describes the
information exported by Domain Orchestrators and shows how this is used by the
Overarching Orchestrator. Sections 2.3 and 2.4 detail respectively the OpenStack
and the SDN Domain Orchestrators. In Section 2.5 we provide and discuss the
experimental results, while Section 2.6 positions our contribution with respect to
the existing work. Finally, Section 2.7 concludes the paper.

2.2 Multi-domain orchestration
The Overarching Orchestrator receives from each Domain Orchestrator below

the characteristics of the portion of infrastructure under its responsibility, such
as its capabilities and availability in terms of computing and networking. When
a service deployment request is received, the Overarching Orchestrator (i) selects
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the domains to involve in the service deployment, (ii) for each of these, creates the
proper service subgraph based on its capabilities, and (iii) pushes the resulting sub-
graphs to the selected Domain Orchestrators (Figure 2.1). In this section, we first
present what and how is exported by Domain Orchestrators to describe the infras-
tructure below. Then, we describe the operations carried out by the Overarching
Orchestrator to deploy a service graph.

2.2.1 Exported domain information
Each Domain Orchestrator exports a summary of the available computing and

networking capabilities according to a specific data model (available at [1]) that
has been derived from the YANG [23] templates defined by OpenConfig [121].

From the point of view of computing, each domain exports the capability to
execute specific NFs. Examples of NFs include firewall and NAT, possibly with
some attributes such as the number of ports, support for IPv4 or IPv6, and more.
Additional metadata provide information on the current status of the NF within
the domain, such as any delay needed to fetch it from a repository, whether local
resources are currently enough to allow its execution, expected boot time, and more.
The description of each NF is in turn associated with its own YANG data model
and is used by the Overarching Orchestrator to evaluate scheduling possibilities.
An NF can be a software bundle available in the ONOS controller in case of an
SDN domain, a specific VM image on the VM repository in a data center domain,
or even a hardware module in a CPE. Information on the actual implementation of
the NFs is not advertised from the Domain Orchestrators. Thus the Overarching
Orchestrator is able to schedule portions of graphs on any domain advertising the
proper capabilities, regardless of the nature of the involved domains.

From the point of view of networking, the domain is described as a “big-switch”,
with a set of boundary interfaces, whose attributes are used by the Overarching Or-
chestrator to properly set up inter-domain traffic steering and provide the needed
instruction to the two domains that terminate the connection. First, the Domain
Orchestrator advertises whether the selected boundary interface is directly con-
nected with another domain (and, if so, who), with an access network (that repre-
sents the entry point for the traffic into the operator infrastructure), or to a WAN.
Second, it advertises a set of inter-domain traffic steering technologies, which indi-
cate the ability of the domain to classify incoming traffic based on specific patterns
(e.g., VLAN ID, GRE tunnel key), and modify outgoing traffic in the same way
(e.g., send packets as encapsulated in a specific tunnel, or tagged with a given
VLAN ID, and more). Each inter-domain traffic steering technology is then as-
sociated with the set of labels (e.g., VLAN ID, GRE key) that are still available
and can then be exploited to identify new types of traffic. Finally, other parame-
ters associated with interfaces are inherited from the OpenConfig model, e.g., their
Ethernet/IP configuration.
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Figure 2.2: Placement and splitting of a service graph: sub-graphs are interconnected through
traffic steering technologies exported by each domain.

2.2.2 Overarching orchestrator
The overarching orchestrator deploys service graphs that consist of service ac-

cess points (SAPs), NFs and (logical) links, as shown at the top of Figure 2.2. A
SAP represents an entry/exit point of traffic into/from the service graph; it may
be associated with a specific traffic classifier (i.e., a selector of packets that have
to enter in the service graph) and with a specific domain boundary interface that
corresponds, e.g., to the entry point of those packets in the multi-domain infras-
tructure. Links can be enriched with constraints on the traffic that has to transit
on that specific connection.

While scheduling each NF needed by the service graph, the Overarching Or-
chestrator takes into account any domain that advertised a compatible capability,
regardless of the nature of such domain. It can be a data center implementing the
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Figure 2.3: Inter-domain traffic steering based on SAPs parameters.

NF as a VM, or an SDN domain implementing it through an application executed
in the controller. In this phase decisions are taken only in accordance with known
information on the status of functional capabilities exported by the domains below
(e.g., which domains notified to be in condition to run a given NF within the re-
quired constraints). Deployment details that concern the actual technology used to
run the NFs, such as precise decisions on resource management, are then handled
by the particular Domain Orchestrator (Sections 2.3, 2.4), e.g. optimizing task
scheduling in a data center domain. This allows a certain level of scalability and
flexibility in the Overarching Orchestrator it jointly managing not a-priori known
domain types. Note that some SAPs may already be associated with specific domain
interfaces (e.g., customer access network), and then are constrained to be scheduled
on that specific domain. As shown in Figure 2.2, once the domains involved in the
deployement of NFs have been selected, the Overarching Orchestrator creates one
subgraph per each of them. The subgraph includes the NFs and SAPs assigned to
that domain and, possibly, new SAPs not present in the “original” service graph.
These are originated whenever a link between two NFs (or SAPs) is split across
different domains. Notably, some domains (e.g., domain-B in Figure 2.2) may only
be used to create network paths between NFs/SAPs instantiated somewhere else;
in such case, a service subgraph is generated for these domains as well, which just
include links between (new) SAPs.

In order to recreate the connection described in the service graph, each of the
two SAP generated upon the split of a link is enriched with the proper networking
parameters, thus allowing Domain Orchestrators to set up the proper communi-
cation tunnel. To this purpose, as shown in Figure 2.2, new SAPs are associated
with specific domain boundary interfaces, and a specific inter-domain traffic steer-
ing technology and label (e.g., GRE tunnel based on the key 0x01), chosing a
combination that is available in both the interfaces to be connected.

As shown in Figure 2.3, this information is then used by Domain Orchestrators,
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which configure the infrastructure below so that packets sent through a specific
SAP are properly manipulated (e.g., encapsulated in a specific GRE tunnel) before
being sent towards the next domain through a specific interface. Similarly, this
information enables to recognize received traffic as entering from a given SAP (e.g.,
domain-B in Figure 2.2 receives, from interface if-0, traffic for sap4 and sap5).
Notably, packets should be tagged/encapsulated just before being sent out of the
domain, while the tag/encapsulation should be removed just after the packet is
classified in the next domain.

2.3 OpenStack Domain Orchestrator
This section describes details on our implementation of the OpenStack Do-

main Orchestrator (OS-DO), which that enablesinstantiating service (sub)graphs
on cloud-based clusters managed by a vanilla OpenStack controller. Our imple-
mentation have been tested on Mikata release. Source code is available at [3].

2.3.1 Domain overview
As shown in Figure 2.4, an OpenStack domain includes the OpenStack infras-

tructure controller that manages: (i) high-volume servers, called compute nodes,
hosting VMs (or containers); (ii) a network node hosting the basic networking
services and representing the entry/exit point for traffic in/from the data center
network; (iii) an SDN controller; (iv) other helper services such as the VM im-
ages repository. Each compute node includes two OpenFlow-enabled virtual switch
instances (we used Open vSwitch [126]): br-int, connected to all the VM ports
running in that specific compute node, and br-ex, connected to the physical ports
of the server. Servers are connected through a physical network not necessarily
managed by the OpenStack controller.

Most interactions of the OS-DO are with the Nova and Neutron components.
Nova takes care of handling the lifecycle of VMs (e.g., start/stop) in the compute
nodes, while Neutron, is responsible for managing the virtual switches (e.g., cre-
ate ports, instantiate flow rules), also through the SDN controller. Particularly,
Neutron programs the forwarding tables of the virtual switches to create virtual
networks between VMs ports, which implement a broadcast LAN and may include
basic services (e.g., DHCP and routing) deployed on the network node. Manage-
ment of the boundary interfaces and their interaction with such virtual networks is
conducted through the SDN Controller.
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Figure 2.4: Interactions of the OS-DO with the components of an OpenStack domain.

2.3.2 Discovering and exporting domain information
One of the tasks of the OS-DO is to advertise a summary of the computing and

networking characteristics of the underlying domain, which includes the supported
NFs (taken from the OpenStack images repository) and information about the
boundary interfaces. Boundary interfaces are virtual/physical interfaces of the
network node(s), which are responsible for connecting the OpenStack domain to
the rest of the world and hence handling incoming and outgoing traffic (Figure 2.4).

The list of boundary interfaces and the associated parameters (e.g., neighbor do-
mains, available inter-domain traffic steering technologies/labels, etc.) is loaded at
the system bootstrapping, and exported both immediately and whenever a change
is detected (e.g., an inter-domain traffic steering technology cannot be used any-
more, an interface has been shut down).

2.3.3 Deploying service graphs
When receiving a service (sub)graph to be deployed, the OS-DO first checks that

the service satisfies specific constraints (that depend on the limitations described
in Section 2.3.4), and that the required NFs and inter-domain traffic steering pa-
rameters are available.

If the graph is valid, the OS-DO interacts with Neutron to define the NFs ports
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and create one virtual network for each link of the service graph; each virtual net-
work will then be attached to the two NFs ports that are supposed to be connected
by the graph link. In case of links between a NF port and a SAP, the virtual
network is first connected only to the port of the NF, since Neutron is not able
to attach domain boundary interfaces to such a network. At this point, the OS-
DO interacts with Nova in order to start the NFs; Neutron automatically creates
the NF ports declared before, connects them to the br-int switch in the compute
node(s) where NFs are deployed, and finally instantiates the flow rules needed to
implement the required virtual networks.

Then, the OS-DO creates all the links connecting a NF with a SAP and the
inter-domain traffic steering by interacting with the SDN controller (ODL in our
case). This is necessary because Neutron offers limited possibilities to control the
inbound/outbound traffic of the data center (e.g., only through IP addresses), which
are not suited to set up the inter-domain traffic steering. To create the link between
a NF port and a SAP (which is associated with a domain boundary interface in
the network node, and with inter-domain traffic steering information), the OS-
DO fetches from ODL the br-int switch connected to the NF. Then, it creates
a GRE tunnel between this virtual switch and the network node (that is where
boundary interfaces are connected), and sets up the flow rules that actually create
the connection. At this point, the OS-DO inserts in the network node also the flow
rules needed to properly tag/encapsulate outgoing traffic and to classify incoming
packets, as required by the inter-domain traffic steering parameters associated with
the SAPs.

2.3.4 Limitations
Vanilla OpenStack does not support either complex graphs that require to split

the traffic between different NFs (e.g., the web traffic exiting from a firewall has to
go to the HTTP proxy, while the rest goes directly to the Internet, as shown in the
graph of Figure 2.2), nor asymmetric graphs (e.g., traffic exiting from the firewall
goes to the HTTP proxy, but not vice versa). In fact, since Neutron only connects
VM ports to virtual LANs, it does not provide the possibility to create end-to-end
flow rules. Thus, in our implementation we implemented links by mean of such
virtual LANs, resulting in the impossibility to finely split network traffic and to
have asymmetric connections. Overcoming this limitation requires a set of deep
modifications to OpenStack, as authors show in [101], resulting in the impossibility
to rely on vanilla controllers.

An other problem is that, by default, OpenStack assumes that any vNIC is
associated to an IP / MAC address, hence it checks that the traffic exiting from
that port has a source MAC address that is compliant with the MAC address of
thet vNIC. However, this assumption does not hold in case a transparent network
function is deployed (e.g., a transparent firewall), which sends out traffic generated
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by other components and therefore featuring source MAC address not compliant
with the vNIC. Since it is impossible to know whether a VNF operates in transpar-
ent mode, when creating any NF port in Neutron the OS-DO also configures the
VM so that such checks are disabled on these ports.

2.4 SDN Domain Orchestrator
This section details our SDN Domain Orchestrator (SDN-DO) [5] that sits on

top of a network domain consisting of OpenFlow switches under the responsibility
of an SDN controller. It allows an Overarching Orchestrator to instantiate service
graphs that include both NFs and links, thus mimicking a typical compute domain.
The rationale behind this idea is that widespread SDN controllers can do much
more than just steer the traffic between two boundary interfaces. In fact, acting
as middle-layer between the control and the data plane, they expose a northbound
interface that specific software bundles (a.k.a. SDN applications) can exploit to
deploy advanced flow rules (e.g., OpenFlow) in the devices below. In principle,
the dynamic deployment of these flow rules may allow to even implement simple
network functions (NFs) such as NAT, stateless firewalls, and more.

As shown in Figure 2.5, the SDN-DO executes its tasks (e.g., retrieves the list
of NFs to be exported, implements the received service subgraph) by interacting
with the SDN controller through a specific driver, which exploits the vanilla REST
API exported by the controller itself. At the time of writing, a complete driver for
ONOS (Falcon, Goldeneye, Hummingbird and Ibis releases) has been developed. A
partial driver for OpenDaylight (Hydrogen, Helium and Lithium releases) is also
available, but it lacks the support for managing NFs.

2.4.1 Exploiting SDN applications as NFs in service graphs
The proposed SDN-DO exploits the possibility offered by widespread SDN con-

trollers to dynamically deploy and run applications in the form of software bundles.
However, the following main differences exist between NFs implemented as SDN

applications, and NFs implemented as VMs. First, SDN applications usually just
process the first packet(s) of a flow, then install specific rules in the underlying
switches so that the next packets are directly processed by the switches themselves,
while VMs reside on the data path and hence receive (and process) all packets
explicitly. Second, while VMs features virtual ports that can be connected among
each other through, e.g., a vSwitch, software bundles do not have ports, then it is
not trivial to guarantee that, for instance, flow rules instantiated by a NF B only
operate on traffic already processed by flow rules installed by a NF A, in case B
follows A in the service graph. Then, the current version of the SDN-DO prototype
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Figure 2.5: Service graph deployment in an SDN domain.

only supports graphs where two SAPs are connected by up to one NF1.
Unfortunately, not all the bundles available in the SDN controller may be used

as NFs. For instance, some of them may not implement any NF (e.g., the bundle
that discovers the network topology) while others, although implementing NFs,
may not accept the configuration of specific parameters such as the subset of traffic
on which they have to operate, thus preventing the SDN-DO to properly set up
graph links. In other words, SDN applications must be extended to be compatible
with our architecture; our implementation of the SDN-DO (details in Section 2.4.2)
looks at specific additional information in the Project Object Model (POM) of each
ONOS bundle to detect suitable applications.

1As described later in this section, we solved a similar problem when chaining flow rules
instantiated by NFs and those instantiated by the SDN-DO, e.g., rules needed to set up the
inter-domain traffic steering.
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Finally, SDN controllers usually do not support multiple instances of the same
bundle running at the same time, preventing the SDN-DO to deploy the same NFs
as part of different graphs; then multi-tenancy, if desired, has to be managed by
the application itself and specified, with the proper syntax, in the POM file as well.

2.4.2 Discovering and exporting domain information
One of the tasks of the SDN-DO is to export information about the domain

boundary interfaces and the list of NFs available in the domain. The former infor-
mation is managed in the same way as the OS-DO. For what concerns the list of
NFs, we implemented a new ONOS bundle (named “app-monitor” [2]) in charge
of collecting the needed information and make them available to the SDN-DO. In
particular, app-monitor interacts with a specific ONOS API to intercept the fol-
lowing events: (i) bundle installed - a new application is available, which may be
used to implement a NF; (ii) bundle removed - the application is no longer available
and cannot be used anymore to implement NFs; (iii) bundle activated - the appli-
cation is running; however, given that ONOS does not support multiple instances
of the same application, that application is no longer available for future services
(hence, the SDN-DO must not longer advertise that capability), unless it explic-
itly supports multi-tenancy; (iv) bundle deactivated - the application is no longer
used, hence it is available again. The app-monitor bundle is in charge to inspect
the POM of monitored applications to understand if they provide the capability of
running a NF. In such case, the POM should come with a reference to the YANG-
based model describing the NF implemented by the application. The app-monitor
fetch this information and make it available to the SDN-DO, enriched with any
additional status parameter. Each time the status of a NF bundle changes, the
SDN-DO updates the exported information and notifies the Overarching Orches-
trator accordingly.

2.4.3 Deploying service graphs
When receiving a service (sub)graph, the SDN-DO first validates the request

by checking the availability of the requested NFs in ONOS and the validity of
the parameters associated with the SAPs (e.g., VLAN IDs, GRE keys). If the
graph is valid, the SDN-DO begins the deployment by interacting with the network
controller in order to start the proper SDN applications, still not specifying any
particular configuration. Graphs links and inter-domain traffic steering information
are managed in different ways depending on the fact that the link is between two
SAPs, or between a SAP and the port of a NF.

In the former case (e.g., the connection between SAP-3 and SAP-4 in Fig-
ure 2.5), the SDN-DO, through the SDN controller, directly instantiates the flow
rules to setup the connection between the endpoints. Furthermore, it instantiates
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the flow rules needed to implement the inter-domain traffic steering, i.e., to prop-
erly tag/encapsulate the packets before sending them out of the domain, and to
classify incoming packets and recognize the SAP they “belong” to.

Instead, if a link connects a SAP to a NF (e.g., the connection between SAP-2
and the NAT in Figure 2.5), the SDN-DO configures the application (using the
ONOS Network Configuration Service) with information about the traffic on which
it has to operate, which is derived by the parameters associated with the SAP itself.
For instance, the above NAT is configured to operate on specific traffic coming
from interfaces s1/if-0 and s3/if-2 (i.e., with a specific source MAC address
in the former case, with VLAN_ID 12 in the latter), to tag traffic transmitted
on s3/if-2 with the VLAN_ID 12, and to untag traffic tagged with VLAN_12
and received from such an interface. Hence, in this case the inter-domain traffic
steering is handled directly by the ONOS application, which has to be aware of
these parameters. This is quite complex compared to what happens in the OS-DO,
where VMs completely ignore how they are connected with the rest of the graph.

2.5 Experimental Results
We run the proposed orchestration framework over the JOLNET [84], an Italian

geographical testbed consisting of an SDN domain that connects various compute
clusters and access networks. In our tests, we deployed a service graph consisting
of a custom connection between a user and a public server (Figure 2.6. Apart from
the SDN experimental backbone, the setup encompasses two other domains: (i) a
data center, running OpenStack (in Venice), and (ii) a CPE2 that represents the
network entry point for the user (in Turin).

Tests have been repeated in two configurations. Initially, (Figure 2.6(a)), the
SDN domain has no available NFs, hence it is exploited only for traffic steering. In
this case, the Overarching Orchestrator deploys the NAT as a VM on OpenStack,
while it manages to optimize the deployment of the firewall by exploiting the ca-
pabilities of the CPE. Inter-domain connections are implemented by setting up the
proper VLAN and GRE tunnels. In a second time (Figure 2.6(b)), the SDN-DO ex-
ports the capability of running the NAT as a bundle on top of the ONOS controller
3, hence the Overarching Orchestrator optimizes the deployment accordingly. As
shown in the figure, in this case, the traffic exchanged between the user and the
server only traverses the SDN domain, and the data center is not involved at all in
the service deployment.

2As Domain Orchestrator to integrate the CPE in our framework, we used a previous work
available at [25].

3The SDN NAT application used for this test is available at https://github.com/netgroup-
polito/onos-applications
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Figure 2.6: Deployment of a service graph in two different scenarios. In case (b), the SDN-DO
provides the capability of running a NAT (as SDN application), thus the Overarching Orchestrator
opts for better optimization. Performances are compared at the bottom.

For both the deployments, we measured the end-to-end latency introduced by
the service (using the ping tool) and the throughput (using the iperf3 tool to
generate TCP traffic). Results are at the bottom of Figure 2.6, where also values for
a direct connection without NFs are shown (baseline). As expected, the throughput
is higher when the NAT is deployed in the SDN domain (Figure 2.6). In fact, in
this case, the traffic is kept local to the SDN network, and the NAT is implemented
as a set of OpenFlow rules installed on the switches (only the first packet of a flow
is processed by the application in the controller).

Additionally, we measured the time needed by the orchestration framework to
deploy and start the service. Results are shown in Figure 2.7, which breaks the
total deployment time in the several steps of the process. As expected, the major
contribution to the service deployment time is given by the VM startup, while the
activation of the SDN bundle is almost immediate. As shown in the picture, we
also measured the time between the end of the service deployment from the point of
view of the overarching orchestrator, and the time when the two hosts were able to
communicate. In case of NAT implemented in a VM (on OpenStack), this time is
higher because the service starts only after the bootstrapping of the guest operating
system. Instead, in case of ONOS bundle, the service starts immediately.
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Figure 2.7: Time required to deploy the service graph, highlighting all the main operations and
components (horizontal axis not in scale — CPE domain not shown).

2.6 Related Work
The deployment of service chains in heterogeneous technological domains is

considered by ESCAPE [148] and FROG [42], two multi-layer orchestration ar-
chitectures proposed in the context of the FP7 UNIFY project [46]. Similarly,
Cloud4NFV [146] deploys network services on different OpenStack and OpenDay-
light based environments interconnected through a WAN, while the recent 5GEx
project [18] proposes an architecture to deploy services across multiple administra-
tive domains.

Additionally, the problem of embedding VNF graphs in multi-domain infras-
tructures is studied by many works in literature [149]. For instance, works as [163,
147] proposes to model physical domains based on: (i) available amount of resources
(e.g., CPU, memory and storage); (ii) inter and intra-domain link capacity.

None of these works focus on how to fully exploit the capabilities provided by
the heterogeneous domains below: while NFs are executed on VMs and Containers
on server clusters (e.g., edge data center), SDN controllers are only used to set up
the traffic steering between them, while any resource available on the CPEs at the
very edge of the network is not even considered.

Furthermore, existing works do not investigate the information needed to ef-
fectively set up the inter-domain traffic steering. Proposals like StEERING [173]
and FlowFall [115] can be considered orthogonal to our work, since they define
traffic steering architectures that could be exploited within a single infrastructure
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domain. A similar consideration also goes for the work carried on by the Service
Function Chaining Working Group (SFC) [70] in IETF, which defines a Network
Service Header identifying the sequence of NFs that a packet should traverse, pro-
vided that the data plane components understand can understand it. Moreover,
SFC mainly focuses on the architecture of data plane components.

2.7 Conclusion
In this chapter, we presented a multi-domain orchestration framework based on

two hierarchical layers. The proposed approach enables a telco/edge provider to
automatically manage its infrastructure, jointly distributing services across multi-
ple technological domains (e.g., SDN backbones, data centers, and even CPE). The
architecture needs a Domain Orchestrator for each specific technological domain,
which exports (i) the list of NFs that the domain is capable to run, and (ii) the
information associated with the domain boundary interfaces. The Overarching Or-
chestrator uses such information to transparently instantiate NFs exploiting any
capability provided by the infrastructure below. As a result, SDN domains are
enabled to provide richer service composition that goes beyond traditional traf-
fic steering, and even the resources of CPEs at the very edge can be exploited.
Whenever the service graph is split across multiple domains, the Overarching Or-
chestrator enriches every sub-graphs with the information needed to set up the
inter-domain traffic steering properly.

We also detailed the implementation of two different Domain Orchestrators:
one instantiates services in OpenStack-based cloud environments, the other one
interacts either with ONOS or OpenDaylight to deploy traffic steering in the SDN
network and (in case of ONOS) to execute NFs in the form of software bundles.
Other infrastructure domains can be integrated into our framework, assuming that
the proper Domain Orchestrator is implemented.

By evaluating our framework on the JOLNET (an Italian geographical testbed),
we shown that that the Overarching Orchestrator may introduce significant advan-
tages in the service deployment when all the capabilities of the infrastructure below
can be fully exploited.
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Chapter 3

Toward a Disaggregated Edge
Model: Business Consideration
and Optimization Opportunities

Network and Service Providers are exploring different exploitation for the Multi-
access Edge Computing (MEC), mainly motivated by the opportunities for saving
costs and generating new revenues (e.g., through new business models). While
a single provider that manages its own infrastructure may rely on an centralized
orchestration approach (e.g., the one described in Chapter 2), this may not be suit-
able when multiple providers with different roles (e.g., services, cloud, edge, IoT,
telco) and possibly different optimization objectives are involved. In this Chap-
ter, we argue that a clear separation of roles for MEC will help accelerating the
development of new business actors and models, possibly replacing the current
competition-oriented practices in the telco domain with new forms of cooperation,
which already appeared in the IT sector. In this direction, we propose a disaggre-
gated MEC architecture by identifying interfaces between MEC actors and their
roles, also performing a preliminary analysis of optimization opportunities and al-
gorithmic solutions, which will be then deepened in the next chapters.

3.1 Introduction
The digital transformation triggered by upcoming telecom and ICT technolo-

gies will bring a significant impact on current ecosystems, potentially re-designing
the roles of Network and Service providers. In fact, the massive softwarization

The work presented in this chapter has been partially published in [37].
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Figure 3.1: Layered model for telco 5G actors, inspired by ETSI White Paper [133].

provided by Network Functions Virtualization, the unprecedented agility guaran-
teed by Software-Defined Networking, advances in Artificial Intelligence (AI) and
the deployment of powerful general-purpose servers at the edge of the (telco) in-
frastructure, lead to the creation of a virtual continuum of resources and services
that span from the edge of the network to remote data centers, encompassing telco
nodes, IT servers and potentially even terminals (e.g., smartphones), smart things
and IoT devices (e.g., sensors).

Edge Computing represents an extension of the cloud paradigm towards the
edge (i.e., between core and access nodes) of a telco infrastructure, aiming at pro-
viding better QoS/QoE, optimizing the use of bandwidth, and potentially enabling
new services and business models. In this transformation, the Multi-Access Edge
Computing (MEC) paradigm [158] plays an important role, being it widely accepted
as the key technology to meet ultra-low latency requirements as well as to enable
a rich computing environment for value-added services closer to end-users.

Without questioning the importance of MEC in future 5G infrastructures, evi-
dence is rising that current well-established cloud computing models will extend to
telco operators not only in terms of individual technologies (e.g., general-purpose
servers instead of dedicated hardware appliances, deeply re-programmable net-
works, agile software micro-services), but also in terms of business models and
involved actors [137].

In particular, following the layered model in use in cloud computing [135, 99],
we speculate that the business value chain in a typical telco will evolve by origi-
nating specialized players such as infrastructure providers (a.k.a., Infrastructure as
a Service – IaaS), platform providers (a.k.a., Platform as a Service – PaaS), and
software providers (a.k.a., Software as a Service – SaaS). However, novel IaaS, PaaS
and SaaS operators may be able to offer resources that (i) go beyond the traditional
trio of computing/network/storage such as IoT devices, (ii) are more heterogeneous
and (iii) may be present in larger numbers, making a clear evolutionary difference
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with the existing cloud computing actors. In this respect, each actor will have a
clear technical and business role, being in charge of delivering (and selling) richer
services to actors that sits higher in the technological stack, which can be seen as
a sort of vertical interaction toward richer abstractions. In addition, we speculate
that, due to the peculiar characteristics of the telco market, additional horizontal
interactions and novel business opportunities will arise between peers (Figure 3.1).

In this respect, in this chapter we argue that the current monolithic MEC ar-
chitecture may not be appropriate for future 5G services because of (i) its unclear
separation of the many required functions between the above mentioned roles (IaaS,
PaaS, SaaS), (ii) the lack of well-defined software interfaces and (iii) the difficulty
of enabling new business and service models and new forms of cooperation between
network and service providers and third parties. Consequently, without any change
to the current MEC building blocks, we propose a novel disaggregated MEC archi-
tecture in which clear interfaces between the different actors are foreseen, and show
some possible business and optimization opportunities.

This chapter is structured as follows. Section 3.2 summarizes the recent MEC
activities in different standardization bodies, while Section 3.3 presents a definition
of the IaaS, PaaS and SaaS concepts applied to the 5G scenario, the characteris-
tics of their main interfaces and a disaggregated MEC business model. Section 3.4
discusses possible innovative use cases enabled by the novel disaggregated architec-
ture, while Section 3.5 analyzes the challenges in optimizing interactions between
MEC actors and introduces possible algorithmic approaches. Finally, we conclude
in Section 3.6.

3.2 State-of-the-Art in Standardization Bodies
Several standardization bodies and fora are addressing MEC and, in general,

Edge Computing. Examples include ETSI MEC [86], GSMA [68], TIP [159] —
WGs on Edge Computing, OpenFog [122], EdgeX Foundry [53], Open Edge Com-
puting [120], ONF – CORD [143], MobiledgeX [111], Akraino [6].

Let’s consider some examples of carried out activities. ETSI Multi-access Edge
Computing (MEC) Industry Specification Group (ISG) has released various ETSI
Group Specifications for the MEC architecture [86], and Application Programming
Interfaces (APIs) to support edge computing interoperability. MEC API Specifica-
tions provide a generic set of design principles and patterns. Compliance with these
principles ensures consistency across APIs. The work was inspired by TM Forum
and Open Mobile Alliance (OMA) work, as well as approaches currently used in
developer communities. At this stage, there is no proposition for operational APIs
at ETSI MEC ISG.

GSMA [68] has recently addressed MEC techno-economic issues. Major mes-
sages were both highlighting the key role of MEC in the Digital Transformation
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(Cloudification of telcos) and providing business guidelines for its exploitation.
Specifically, it was also recognized by Operators that a MEC functional and system
architecture based on a standard decoupling of MEC IaaS vs MEC PaaS is likely to
open concrete business opportunities for Telcos, boosting new cooperation models
in the direction of creating and developing open ecosystems for various verticals
(e.g., IoT, V2X, Industry 4.0, VR/AR, etc). These activities are continuing in
2019 as GSMA set-up a new Work-Item named “MEC API: business opportuni-
ties”. Main objectives of the group are: (i) to review the MEC APIs under definition
and standardization (e.g., in ETSI, but not only) in order to identify gaps, business
opportunities and exploitation models for the GSMA Stakeholders; (ii) to provide
recommendations on the use of MEC APIs for relevant business cases, including
potential proposals for standardization of further APIs.

Telecom Infra Project (TIP) — Edge Computing WG [159] focuses on enabling
service composition and provisioning at the network edge, leveraging open architec-
tures to build a service-aware and ease of use platform. Notably, the WG researches
on new revenue generation models for actors in edge computing, with also a focus
on providing implementations that could influence standards.

OpenFog Consortium [122] is a forum aiming at the definition of a reference
architecture for Fog Computing, which is defined as a further extension of the
Cloud–Edge Computing paradigm towards the end-Users’ CPE terminals, devices,
smart things. Examples of examples addressed by OpenFog include: Smart Build-
ing, High-Scale Package Drone Delivery, and more. ETSI MEC and OpenFog are
collaborating on the development of APIs for both MEC and Fog Computing: this
is meaning that the standardization of a functional architecture means more and
more the standardization of APIs to access enabled services.

MobileEdgeX [111] is pursuing the vision of enabling edge open ecosystems.
The overall ecosystem is based on an edge-cloud, composed by devices and appli-
cations that move from smart-phones to glasses to robots to cars to drones, and
the marketplace of edge developer services that power the applications and devices.
Underneath there is a distributed edge control fabric that allows efficient placement
in real-time and the edge resources and data.

Overall, we are witnessing a fragmentation of efforts in the standardization of
MEC/Edge Computing functional and system architectures. On the other hand,
all players joining these bodies and fora are recognizing that global interoperability
is a must for enabling open services ecosystems and new business models, although
most efforts are devoted to north-south interfaces, with little awareness about the
necessity of east-west standardization. We argue that the standardization of both
east-west and north-south interfaces (e.g., APIs) is crucial to promote innovation
and accelerates the development of third-party applications, capable of enabling
Network and Service Providers to further capitalize on their investments.
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3.3 Toward a new Model for MEC
This section defines IaaS, PaaS, and SaaS for a MEC scenario, characterizing

each actor with a precise role, pursued goals and possible constraints, as well as
business and functional interactions with the other actors. A summarized view of
these concepts is depicted in Figure 3.2.

3.3.1 Definitions
Infrastructure-as-a-Service (IaaS) provider

An IaaS provider virtualizes a set of physical devices, mainly servers and net-
work equipment, offering elementary resources such as CPU, memory, storage, and
bandwidth. As shown in Figure 3.2, resources1 are provisioned as virtual execu-
tion environments such as Virtual Machines (VMs) or containers (e.g., Docker) of
different sizes. Besides, an IaaS provider has to support slicing, i.e., the capabil-
ity to offer different virtual views of the same physical infrastructure, with strong
isolation properties. This represents the key feature to enable multi-tenancy, i.e.,
the capability to support multiple independent users (or tenants) at the same time,
possibly associated with different slices. Networking resources in an IaaS provider
include connectivity as well as commonly used functions such as bridges, routers,
load balancers, firewalls, tunneling endpoints. Additionally, external connectiv-
ity (e.g., toward the Internet, or to a set of xDSL customers) must be explicitly
advertised to enable proper connections to other domains; this represents a key
difference with the current cloud-based IaaS model. We refer to all the elementary
facilities provided by a IaaS (i.e., VMs, network functions, etc.) as infrastructure
components (Figure 3.2).

Platform-as-a-Service (PaaS) providers

PaaS providers offer platform resources and services (also to third parties) for
enabling the development of end-user applications and (end-to-end) services. PaaS
resources and services include run-time environment, identity and access manage-
ment, usage accounting, SLA/QoS management, security, Artificial Intelligence
tools, etc. The resulting software platform requires the creation of an additional
programming logic acting as a glue between the different components, usually made
with a mixture of high-level programming languages (e.g., Java, Python, Go, etc.)
and REST APIs. A PaaS provider maps high-level deployment requests into low-
level IaaS resources, hence consuming infrastructure components (VMs, storage,

1With resources we consider both hardware objects (e.g., CPU, network bandwidth, IoT de-
vices), as well as software services (e.g., a database server).
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Figure 3.2: Overall disaggregated edge architecture with business interactions.

etc.); this is achieved through a resource orchestrator (Figure 3.2). In MEC, the
design of such a central component needs to take into account (i) the heterogeneity
of underlying resources, (ii) the existence of multiple infrastructure providers and
(iii) the possible availability of a distributed allocation algorithm. Finally, PaaS
should also provide slicing capabilities.

Software-as-a-Service (SaaS) Providers

A SaaS provider delivers turn-key solutions, i.e., ready-to-use applications plus
a set of analytics to monitor the state of the service itself; tipically, no programming
effort is required from its users. Possible examples are video streaming services,
content delivery networks, augmented virtual reality, online games. A SaaS provider
exploits PaaS facilities to compose, deploy and manage the needed topology of
application components (Figure 3.2). Similarly to IaaS and PaaS, slicing capabilities
are required as well.

3.3.2 Interaction models
An overall view of all the interactions we identified in MEC is depicted in Fig-

ure 3.2. At a first sight, interactions between IaaS, PaaS and SaaS look similar to
the vertical interaction model in use in cloud computing: IaaS export resources to
PaaS, which deliver end-to-end services used by SaaS providers to create their ap-
plications. In the case underlying domains export different interfaces, entities of the
higher layer should create their own adaptation layers; for instance, a PaaS provider
may offer deperimetrized services by establishing relationships with multiple IaaS
providers covering different geographical areas.

However, we argue that future MEC players may greatly benefit from an ad-
ditional horizontal interaction model, in which same-level actors can collaborate,
enabling each provider to sell also resources owned by its (apparently) competing
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siblings. This represents a radical departure for most actors in the telco market,
which are more used to competition than collaboration.

Although we are aware that this change of paradigm can potentially create
disruption in the current ecosystems, we argue that there are both economic and
technical reasons why open collaboration may be a better (and forward-looking)
option than pure competition even for current telco players. Note that horizontal
interactions can be established not only at the connectivity level (e.g. what usually
happens between traditional network providers to enable worldwide communica-
tion) but, more important, also at the service levels.

IaaS to IaaS

While cloud computing services, provided by OTT operators in centrally acces-
sible data centers, can be largely considered location-independent, in Edge Com-
puting, services are definitely tied to the location of the physical infrastructure.
Interaction between multiple IaaS providers follows the well-established model of
creating standard interfaces between different telco operators, which e.g. enables a
phone call to cross the boundaries of a single telco. Although future cross-bordering
issues may be hidden by creating end-to-end service platforms that establish busi-
ness relations with multiple IaaS, we foresee several opportunities for an infrastruc-
ture provider to collaborate with its peers, enabling to offer a larger infrastructure
that may include also (part of) the resources available in partnering IaaS domains.
This (i) can simplify the operations of a PaaS provider, reducing the complexity
required by the interaction with multiple IaaS, and (ii) can enable new cooperation
strategies between IaaS operators. In fact, they can (i) offload services to their IaaS
partners in case of resource overload (hence enabling new optimizations) and (ii)
offer ubiquitous services even in geographic locations in which they have either no
access or no economic interest to invest. In particular, this enables an IaaS provider
to offer services available on “unconventional” IaaS actors such as enterprise facto-
ries or SOHO users, which represent new, tiny IaaS operators. Possible examples of
such resources are a set of fog computing nodes in a production plant or an outside
temperature sensor/webcam at home. Finally, this may enable further business
opportunities for large IaaS providers who can administer the above domain on
behalf of their owners, which may not have the technical skills and/or the will to
properly operate their infrastructure.

PaaS to PaaS

Future PaaS providers may specialize offered facilities in specific application
domains (e.g., high-performance computing, augmented virtual reality), hence pos-
sibly requiring their customers (e.g., SaaS providers) to interact with different PaaS
actors to create a complex application. In this respect, in addition to the above
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mentioned option (i.e., a SaaS establishing business relationships with multiple
PaaS providers), we foresee the possibility for a PaaS provider to offer services
that are in fact provided by another (partner) PaaS. Such as in the previous case,
this opens up optimization opportunities for PaaS operators due to the possibility
to specialize their offer in specific vertical markets, while buying other (platform)
services from their business partners.

SaaS to SaaS

This interface introduces two main benefits. First, it may be useful to provide a
minimum level of compatibility between (competing) applications, hence avoiding
e.g. the nuisance of users being forced to login into different instant messaging
applications at the same time; for instance, according to the Metcalfe’s Law, this
would increase the global value of the service. Second, it can be exploited by vertical
SaaS providers to create bundles of applications and deliver them together to final
users, also privileging a collaborative approach against a competitive one.

3.3.3 Interface standardization
For this systemic paradigm change to succeed, standardized interfaces (either

de-jure or de-facto) are required. Standards increase the utility of the system by
enlarging the number of potential users and offer new possibilities for cooperation
(horizontal interactions). Given that the northbound of a layer can be exploited in
either horizontal or vertical interactions, we should define three levels of interfaces.

A standard northbound IaaS interface is the initial mandatory step, facilitated
by the reasonably clear understanding of current requirements. Existing north-
bound of open-source IaaS platforms such as OpenStack [142] or Kubernetes [75]
can be taken as initial models and possibly extended to accommodate new charac-
teristics such as the presence of heterogeneous computing nodes, diverse network
connectivity between nodes (e.g., bandwidth, resiliency), non-negligible network
latency due to the geographically distributed infrastructure, and more.

Standardization of higher layers may be more problematic because of the hetero-
geneity of the services delivered by PaaS and SaaS platforms. However, restricting
the scope of the above platforms to the telco domain, we envision the possibility
to standardize typical telecommunication services (e.g., Virtual Private LAN Ser-
vice (VPLS) [91] or Cloud Radio Access Networks (C-RANs) [79]), hence enabling
different PaaS/SaaS platforms operating on diverse infrastructure to cooperate for
the end-to-end setup of the standardized services.
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3.3.4 Business models
IaaS provider

Infrastructure resources are likely to be provided through a pay-per-use business
model, i.e. revenue is proportional to the amount of reserved resources. Therefore,
an IaaS provider aims at maximizing the amount of resources used by customers
over time, e.g., by minimizing the number of physical servers.

Assuming a set of NE edge servers and NR different types of infrastructural
resources, we can represent the capacity of an infrastructure provider n, in terms
of resources available on its edge servers, through the matrix Pn ∈ RNE×NR

+ , where
vector ρn

i represents the total amount of resources featured by edge server i owned
by infrastructure provider n. A cost vector cn ∈ NR represents the unitary prices
that the IaaS sets for each resource type.

As shown in Figure 3.2, a northbound resource request will include the set
of needed infrastructure components along with the desired resource values (e.g.,
memory and CPU for each VM, the bandwidth for a network tunnel, etc.). More-
over, the IaaS interface enables to monitor the state of allocated resources (i.e., VM
utilization, latency) and to modify allocation at run-time. The total amount of re-
sources required in a given moment by a set of Nn

P PaaS over IaaS n can be modeled
with the matrix Rn ∈ RNn

P ×NE×NR

+ , where each row rn
m represents the amount of

resources required by PaaS m over the IaaS n, while each element rn
mi ∈ RNR

represents the amount of resources that PaaS m required on edge server i.
Since edge environments are characterized by resource scarcity and geographic

constraints, the IaaS also features a peer-to-peer interface that can be used to create
temporary coalitions. This enables sharing resources to satisfy a higher number of
requests, thus improving the overall revenue (Section 3.5).

PaaS provider

A PaaS m consumes resources allocated a IaaS n in the form of infrastructure
components. The amount of resources consumed by component i are modeled by
vector qm

ni ∈ RNR .
A platform provider aims at maximizing the number of customers while mini-

mizing the amount of IaaS resources consumed (e.g., trying to fit as many containers
as possible on the same VM). At the same time, it has to guarantee any SLA con-
tract stipulated with SaaS providers (e.g., throughput, maximum delay between
two application components). Given SLA contracts stipulated with its customers,
a PaaS may calculate the minimum amount of physical resources (of each type NR)
that each application component needs when mapped over the infrastructure to
work properly. For each application l, this is modeled by matrix Al ∈ N lm

A × NR,
where each row al

i represents the amount of resources required by component i of
application l (e.g., a point-to-point tunnel, or a web server) and N lm

A is the number
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of components of application l to be deployed by PaaS m.
The northbound PaaS interface (Figure 3.2) enables customers to ask for the

deployment of application components, along with additional parameters such as
logical topology, possible application-specific tunings, SLA constraints. Since plat-
form services are likely to be provided through a per-subscription pricing model,
customers are expected to pay a fixed fee plus the premium cost associated to ad-
ditional services, such as the desired SLA. Additionally, the interface toward SaaS
providers allows also (i) state monitoring (e.g., to estimate the current QoE) and
(ii) run-time components and topology tuning.

Finally, an additional peer-to-peer interface is used by multiple PaaS to op-
timally resolve possible conflicts that may occur while allocating the scarce IaaS
resources (details in Section 3.5.2).

SaaS provider

As, most likely, end-consumers will be charged with a subscription, the major
goal of a software provider is to maximize the number of users; hence, it has to
guarantee a competitive QoE (e.g., throughput, response time). On the other hand,
a SaaS needs to minimize the costs of its consumed resources, e.g. requesting the
appropriate SLAs and minimizing the number of PaaS providers.

A SaaS application l my be split on multiple PaaS. The portion of l that is
deployed on PaaS m may be represented as a vector σl

m ∈ NN l
A , where each element

models one of the N l
A application components deployed relying on m.

Assuming that SLA constraints are stipulated at the application component
level (i.e., SaaS specifies, granularly, one or more QoS requirement for each deployed
component), a SLA contract vector si ∈ RN i

QoS can be defined for each component
i of an application, where its size N i

QoS depends on the number of QoS parameters
that i may feature (e.g., throughput of an end-to-end channel, response time and
concurrency level of a web server), and each of its elements sij represents the
numerical value of the constraint.

3.3.5 Disaggregated MEC
Current standardization for MEC involves the functional definition of the over-

all architecture and the consequent interfaces between the resulting building blocks.
Particularly, the latter aims at guaranteeing the interoperability between different
implementations and, potentially, different vendors, which is only one of the re-
quirements in case of a scenario in which Infrastructure, Platform and Software
services may be provided by different actors. In fact, in this case, the interface
must support additional parameters such as authentication, accounting, billing;
the current monolithic architecture, instead, assumes that all the functional blocks
are under the control of the same organization.
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PaaS IaaSSaaS

Figure 3.3: Disaggregated MEC architecture.

We propose the disaggregated MEC architecture depicted in Figure 3.3, which
shows a possible splitting of functionalities between different IaaS, PaaS and SaaS
providers. In addition, we highlight some interfaces (Mp2, Mm6) that must be ex-
tended to support cross-actor interactions, enabling the MEC platform to run on
an infrastructure owned by a different entity, and even on different infrastructure
domains. Furthermore, interface Mp1 enables a third-party software provider to
install its applications on top of the MEC platform.

The standardization of the above interfaces will have a profound impact on both
technological and business sides. With respect to the former, the different pieces of
the architecture can be sold (if we refer to technological providers) and/or operated
(concerning network providers) by different actors, which can be different business
units of the same company or different companies. On the business side, this
would open up the market to multiple specialized actors, which can establish either
competition or cooperation relationships. Finally, we expect this to bring a new
breed of novelty to customers, which can experience new services and innovative
offers thanks to the breakage of current monolithic network providers, replaced by
more specialized and possibly competing actors.

This would transform the relatively slow world of network and service providers
into a fast-growing and innovative area, similar to personal computers and smart-
phones. The splitting of concern between different (vertical) actors is considered
one of the keys of the extraordinary evolution of the above markets over time, which
was possible by unleashing the power of independent developers that were contin-
uously enriching the original platform. Similarly, this vision aims at an innovative
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evolution of the concepts of Service Delivery Platforms and Service Layers of for-
mer times. Specifically, IaaS-PaaS-SaaS decoupling together with standardization
(either de-jure or de-facto) of the related interfaces will overcome static and verti-
cal service silos that delay open innovation. That “openness” will enable multiple
interactions of providers at different levels, will ease the role of apps developers,
allow “deperimetrization” of services and create new business opportunities for all
players of the new ecosystems.

3.4 Use Cases
As an example, we now present how two novel possible use cases can be mapped

to the disaggregated MEC model, identifying actors and analyzing their interactions
both from a business and technical point of view.

3.4.1 Everywhere in the city
In this first use-case, we provide each person the set of digital services more

appropriate in each given location. For instance, in a supermarket we provide
information about available offers; at work, we offer fast access to local services such
as shared printers and servers or calendars of business partners; at home present a
dashboard to control ambient-assisted living and smart appliances, heating, security
alarms, surveillance cameras, and more. Other examples are the provisioning of
infotainment services to both car drivers/passengers and pedestrians in smart roads
and city hot spots (e.g., commercial areas, stadium, stations, etc.).

We speculate there might be one or more telco IaaS providers covering the
overall city, while the stadium sets-up dedicated IT equipment to be used in case
of live events, and the supermarket shares part of its IT infrastructure for serving
local people. All the above actors may collaborate to provide a ubiquitous service
through a logically partitioned infrastructure. A disaggregated MEC can enable
end-to-end services, being them either provided through different infrastructures
or platforms. The pervasive distribution of MEC IaaS and PaaS allows improving
the users experience thanks to latency reductions and no service interruption on
mobility. Standard interfaces create an open ecosystems boosting the opportunities
for developers and providers. From a business perspective, a telco may wish to play
the role of IaaS provider and/or PaaS provider; in the former case, it will need to
engage business relationships with third parties playing the roles of MEC PaaS
providers (e.g., municipality, supermarket, stadium) owning MEC platforms.
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3.4.2 Enterprise connectivity services
This second use case envisions an enterprise willing to offer integrated connectiv-

ity services to its employees. The most common current options are to buy/install
services such as VPN, and/or buy a “private mobile network” to enable users to
communicate at convenient prices, possibly with internal (short) phone numbers. In
the case of telco services provided by distinct IaaS-PaaS-SaaS actors, the enterprise
may have several additional options. It can easily become a “virtual operator”, pro-
viding its remote users with native network services, being them xDSL connections
or direct data mobile connectivity (through enterprise-branded SIM cards), with the
assurance that its remote users will be always securely connected to the corporate
network without having to install/launch any VPN software. The “virtual oper-
ator” service can be either created by buying the elementary components from a
PaaS provider and adding the additional logic to create the requested service, or by
simply buying a turn-key software from a SaaS provider. The PaaS provider, from
its side, will be in charge of establishing the proper business agreements with mul-
tiple IaaS providers (e.g., the IT infrastructure in the main corporate site, which
represents the main infrastructure to connect to) to enable mobile users to take
advantages of the above services whatever physical infrastructure they are in.

3.5 Interactions Optimization
Based on the business model proposed so far, this Section analyzes the interac-

tions between different parties of the disaggregated MEC architecture, thinking to
each actor as a rational individual which aims at maximizing its own profit accord-
ing to the behavior of other providers. Additionally, we propose and discuss possible
optimization strategies that providers can adopt for each different interaction.

3.5.1 Interaction between PaaS and SaaS
This interaction is mainly driven by the prices that the PaaS decides to set for

its services. We identified two main prices: (i) the subscription price psub, i.e., the
fixed fee a customer has to pay in order to use the platform facilities (typically paid
periodically) and (ii) the prices pA of any additional SLA that the SaaS stipulate
for particular application components (Section 3.3.1).

PaaS can adjust its prices to motivate SaaS providers to use their virtual re-
sources. In so doing, it should try to optimize a trade-off. In fact, by setting low
unit prices, a higher number of customers (SaaS providers) will be encouraged to
purchase its services, but the overall outcome may result in sub-optimality. On the
other hand, high prices lead to higher revenues per unit of consumed resources, but
customers may decide to switch to other PaaS featuring lower prices.
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While deciding prices for its virtual resources, the PaaS is in a position of power
towards customers. Since SaaS providers take their decisions after the prices have
been set, a PaaS (leader) can predict the optimal SaaS (follower) decision given the
current market situation and anticipate it by determining the optimal service price.
A similar concept exists in economics, and it is known as Stackelberg leadership
competition [166]. The model can be solved by backward induction. The PaaS
estimates the best response function of customers given the current market situation
(subscription and SLA prices for all PaaS). Then, the best response function is
embedded in the PaaS profit function and maximized.

Profit for PaaS m can be modeled as

Πm
P aaS =

NS∑︂
l=1

ylm

⎡⎣pm
sub +

Nml
A∑︂

i=1
pm

Ai · sl
i −

Nml
A∑︂

i=1
CI(al

i)

⎤⎦ , (3.1)

where al
i (Section 3.3.1) is the amount of resources that PaaS needs to purchase

from IaaS to deploy component σl
i satisfying SLA constraints sl

i, CI(al
i) is its cost

on the infrastructure, and being variable ylm = 1 if SaaS l decides to use PaaS m,
zero otherwise.

Since SaaS tries to provide a high QoS while minimizing the platform costs,
PaaS may estimate the profit functions of its potential customers as

Πl
SaaS =

NP∑︂
m=1

ylm

⎡⎣Nml
A∑︂

i=1
QoSl

i(sl
i) − pm

sub −
Nml

A∑︂
i=1

pm
Ai · sl

i

⎤⎦ , (3.2)

where function QoSl estimates the quality of service SaaS l obtains by deploying a
particular component i with SLAs si, while Nml

A is the number of components that
the l decides to deploy using PaaS m. Of course, the QoS may depend on the nature
of the SaaS application; moreover, a PaaS may not know it exactly. However, a
PaaS may employ some representative QoS functions for given clusters of SaaS,
and proportionate them basing on known market analysis data (e.g., percentage of
video streaming applications, etc.).

PaaS may use (3.2) to find the best response function of each SaaS, i.e., a
function that, given as input the price vector of PaaS m, returns whether it is
convenient for SaaS l to use m or not (ylm(p)), and the values of any SLA constraint
to stipulate with each PaaS (sl(p)).

At this point, PaaS m can rewrite its profit in function of its price vector pm by
substituting best responses ylm(p) and sl(p) in (3.1). Finally, PaaS may determine
the optimal prices pm maximizing (3.1), by studying its gradient ∇Πm

P aaS(pm).
As a result, every PaaS will adjust their prices towards SaaS iteratively, based

on the current market situation.
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3.5.2 Interaction among PaaS providers
A key role of the PaaS is to map high level (virtual) resource requests com-

ing from the SaaS, i.e. application components, into low level (physical) resources
owned by the IaaS. As in MEC IaaS resources are constrained, it may be the
case that a PaaS, independently from business consideration, has to decide how
to distribute the allocation of application components on available IaaS. However,
multiple, potentially concurrent, PaaS providers try to allocate resources for differ-
ent applications over the same set of IaaS providers, thus exacerbating the already
hard problem of resource mapping introducing a distributed concurrency.

In [35], we proposed an asynchronous, fully distributed, resource assignment
algorithm that coordinates a set of actors in deciding how infrastructure resources
have to be temporarily assigned, basing on what they need to allocate to meet
service constraints and preserving the overall infrastructure optimality. The algo-
rithm, which is detailed in Chapter 5, can be used to solve the concurrent resource
mapping problem of PaaS. In the following, we provide a high-level description.

Each PaaS m runs an Orchestration Phase where an optimal allocation is com-
puted, i.e., the PaaS decides which resources it needs on every IaaS to deploy a
given application. The allocation of PaaS m to deploy application l is represented
with an allocation matrix Xm

l ∈ RNINR , where each element xm
lnk indicates the total

amount of resource k that PaaS m is going to allocate on IaaS provider n to deploy
application l. At this point, a score vector vm ∈ RN

S is assigned to the computed
allocation matrix, based on the benefit (e.g., QoS) it provides. In particular, a score
for each involved IaaS is generated. PaaS then uses generated scores to participate
to a distributed resource election, where last known information from other PaaS
are used to decide how to assign resources of each IaaS by mean of a greedy ap-
proach. If the election result changes from the previous iteration, PaaS sends to its
peers last known scores vm′ and allocations Xm′ for every known PaaS m′ ∈ NP ,
then waits for an analogous response coming from any number of them. During an
Agreement Phase, all new data received from each peer are used in combination
with the local values, to reach an agreement with it. The two phases are repeated
iteratively until an overall agreement is reached.

The algorithm above has been proved to guarantee both an upper bound on
convergence time and an optimal approximation bound with respect to the Pareto
optimal resource assignment.

3.5.3 Interaction between PaaS and IaaS
The main difference with the PaaS-SaaS interface is that in MEC, a IaaS features

scarce resources. Therefore, an infrastructure provider may not want to indefinitely
increase the number of its customers, since at a certain point it will stop to gain
profit from this. This means that a IaaS may set a high price for the remaining
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scarce resources if the number of customers is still high enough. We represent with
c ∈ RNR the vector of the unitary prices that the IaaS sets for each resource type.

The profit for an IaaS n can be modeled as the revenue obtained from selling
resources, minus the energy cost of active edge servers:

Πn
IaaS =

NP∑︂
m=1

NE∑︂
i=1

cn · rn
mi − ESS#(r)

subject to
NP∑︂

m=1
rn

mik ≤ ρn
ik ∀i ∈ [1, .., NE ], ∀k ∈ [1, .., NR],

(3.3)

where ES is the price in energy to keep a server active, while S# gives the minimum
number of servers needed to allocate all resources r (a calculation example for this
value can be found in [131]).

IaaS providers indirectly compete with each other while setting resource prices.
This model can be solved using the subgradient algorithm [19]. Being unaware of
concurrency, a new IaaS starts setting its prices at a high value. Then, it predicts
the profit that can be achieved by adjusting its price vector of a small quantity dc
and modify it consequently, waiting for feedback from the market. This is repeated
iteratively until no more profitable adjustments are found. On the other hand,
each PaaS, as a consequence, decides which resources to purchase based on the
optimization of its profit (3.1), which can be rewritten as

Πm
P aaS =

NS∑︂
l=1

ylm

⎡⎣pm
sub +

Nml
A∑︂

i=1
pm

Ai · sl
i −

Nml
A∑︂

i=1
CI(al

i)

⎤⎦ , (3.4)

substituting the linear costs cn of each IaaS provider.

3.5.4 Interaction among IaaS providers
In MEC, allocating the limited edge resources to a large number of customers is

a challenging problem for IaaS providers. Whenever an IaaS runs out of resources,
it may be convenient to cooperate with its peers borrowing the missing portion
of resources needed to satisfy some additional requests. IaaS providers may thus
increase their profit by sharing the revenue coming from the additional requests
satisfied this way.

In a recent work [172], authors propose a Game Theoretic approach for resource
sharing between servers belonging to different providers. The problem is modeled
as a coalition game between a set of players N , where the goal is to maximize a
characteristic function for each player n ∈ N :

max
X

⎛⎝wnun(X ) + ξn

∑︂
j∈N ,j /=n

un
j (X n)

⎞⎠ ∀n ∈ N , (3.5)
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where X is the allocation decision vector, which indicates how much resources each
player (IaaS) allocated for each customer request, while un(X ) indicates the profit
received by player n with allocation X for requests coming from its own customers.
Hence, un

j (X ) is the profit that IaaS n receives for sharing its resources with IaaS
j. Finally, wn and ξn are two weights that IaaS n may set to properly prioritize its
own customers, and then share remaining resources with peers.

Since solving the problem by computing the Shapley value (fair measurement
of the contribution of each player [144]) for the coalition game above requires solv-
ing the optimization problem 2N − 1 times, a heuristic than only need solving it
2N times is proposed. Each server first computes its optimal allocation without
considering resource sharing and updates residual resources accordingly. Then,
remaining resources are used to optimize the sum ∑︁

j /=n un
j (X n), i.e., the utility of

sharing them with peers. It can be easily proved [172] that the solution obtained by
this algorithm lies in the core of the coalition game, i.e. no player has the incentive
to leave the coalition.

3.6 Conclusion
MEC is expected to play a key strategic role in the transition towards 5G.

Network and service providers are exploring different strategies to introduce and
exploit MEC concepts, mainly motivated by the potential opportunities for saving
costs and generating new revenues.

Although several standardization bodies and fora are targeting MEC and, in
general, Edge Computing, current solutions are still lacking end-to-end interoper-
ability, which is a must for enabling open ecosystems. In this chapter, we argued
that a clear architectural decoupling of IaaS, PaaS and SaaS for MEC, and then for
5G, represents an evolutionary step of the digital transformation capable of enabling
new roles and business models. Furthermore, this may blur the borders between
current OTT operators, which are mostly offering datacenter-only services, and
network providers, which own the network infrastructure that connects datacenters
to the customers. In this respect, network providers represent the most suitable ac-
tors to also offer edge-based resources such as IoT and domestic/enterprise-owned
IT infrastructures at the edge of the network, hence positioning themselves in a
stronger position when competing with current OTT actors.

This chapter defined a disaggregated MEC architecture identifying the main
actors and their roles, also performing a preliminary analysis of optimization op-
portunities and algorithmic solutions, which will be deepened in the next chapters.
Eventually, we propose to pursue joint efforts of providers and vendors involved in
the MEC architecture. Such an open model is likely to boost the service provi-
sioning ecosystem with new business opportunities and cooperation of network and
service providers with third parties.
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Chapter 4

Service-Defined Orchestration of
Heterogeneous Applications in
Cloud/Edge Platforms

Edge Computing is moving resources toward the network borders, thus en-
abling the deployment of a pool of new applications that benefit from the new
distributed infrastructure. However, due to the heterogeneity of such applications,
specific orchestration strategies need to be adopted for each deployment request.
Each application can potentially require different optimization criteria and may
prefer particular reactions upon the occurrence of the same event. In this chapter,
we present a Service-Defined approach for orchestrating cloud/edge services in a
distributed fashion, where each application can define its own orchestration strat-
egy by means of declarative statements, which are parsed into a Service-Defined
Orchestrator (SDO). The problem of coordinating the coexistence of a variety of
SDOs on the same infrastructure while preserving the resource assignment opti-
mality, will be later addressed in Chapter 5. We evaluate the advantages of our
novel Service-Defined orchestration approach over some representative use cases of
services running at the edge of the network, assessing the benefits compared to
conventional orchestration approaches.

4.1 Introduction
With the expansion of Cloud Computing toward the edge of the network, the

diversity of the involved applications and their management requirements has been

The work presented in this chapter has been partially published in [36]. The first prototype
of the proposed solution has been implemented by Emanuele Fia during his master’s thesis [59].
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drastically exacerbated. Indeed, the largely heterogeneous set of (often distributed)
applications running over Cloud/Edge platforms may have different and unpre-
dictable deployment objectives; furthermore, reacting differently to network events,
such as a traffic load increase, became a necessity. In the above circumstance, some
applications may need to scale up or out, while others may migrate to a more
convenient location. Others may even modify the service behavior without asking
for additional resources. For instance, the optimization of a Content Distribution
Network (CDN) service may require to monitor the average miss-rate on deployed
caches, to identify occasional hot spots such as flash crowd during live events; this
in turn requires optimizing the service by relocating and possibly duplicating some
caches. Vice versa, a video streaming application may need to monitor the provided
quality of service in terms of Frames Per Second (FPS), opting for the deployment
of a more aggressive video transcoder whenever a particular high load deteriorates
the current frame rate, instead of asking for more processing resources.

While large service providers may run their applications on ad-hoc platforms and
therefore can define their best optimization strategies, most of the other providers
have to rely on third-party Edge/Cloud platforms, which host heterogeneous appli-
cations and hence in need of adopting service-agnostic one-size fits-all orchestration
strategies to handle the entire applications pool. Embedding of virtual services is
thus accomplished by optimizing generic metrics such as energy saving, latency,
load balancing [56]. Similarly, load increases are managed by taking into account
conventional infrastructure metrics such as CPU and memory consumption through
the traditional auto-scaling techniques (i.e., scaling up/down is performed when-
ever consumption goes above/below a certain threshold). In summary, existing
orchestration approaches cannot (i) take their decisions based on service-specific
parameters (i.e., cache miss-rate) and (ii) perform service-specific actions such as
modifying the internal behavior of the service (e.g., switching the transcoder), as
only infrastructure-related actions are possible. As a consequence, they often fail
to optimize application-specific goals.

This chapter fills this knowledge gap by proposing a novel Platform-as-a-Service
(PaaS) approach where the orchestration is fully distributed and provides the pos-
sibility to instantiate, prior to service deployment, small-scoped Service-Defined
Orchestrators (SDOs), each dedicated to handling the life-cycle of a particular ap-
plication. Such orchestrator may operate by modifying the current overall resource
assignment (e.g., if the application needs more resources or may release some) as
well as merely act on the application itself to adapt its operational state to the
current infrastructure situation (e.g., switch the used video codec on a streaming
service component). To avoid exacerbating applications development, which would
also include such an orchestration module, we present a distributed architecture
where SDOs are automatically synthesized starting from an high-level description of
their orchestration strategies (Orchestration Behavioral Model), used by the service
provider to specify metrics and objectives needed to build the proper orchestration
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strategy for the given application by means of high-level declarative statements.
The contributions of this chapter are as follows. We present a novel distributed

orchestration architecture and detail the design of its core component, namely the
Service-Defined Orchestrator. We also formally define a Declarative Behavioral
Model used to synthesize an SDO from an high-level description of its orchestra-
tion strategies. Finally, We assess the benefits of our approach analyzing three
reference use cases: (i) QoS degradation for a video streaming application, (ii)
cache placement for a CDN provider and (iii) edge migration for mobile gaming.

4.2 Related Work
The orchestration of infrastructure resources is primarily investigated in several

recent works. Most of them focus on the VNF deployment problem proposing algo-
rithms that rely on a centralized solver [52, 51, 150]. Among them, some propose
a joint computation of different phases of the problem to seek better optimiza-
tion. For instance, [51] proposes an algorithm in which scaling, placement, and
mapping are optimized jointly, while in [150] authors solve the embedding problem
combined with the service composition one. Other works as [96, 127] investigate
instead the problem of joint orchestration among multiple infrastructure providers,
proposing distributed optimization approaches. In [96], the authors propose a game-
theoretic approach, while [127] illustrates a decentralized algorithm on top of an
existing multi-domain architecture developed in the 5Gex project [18]. This last
one addresses relationships across multi-administrative domain orchestrators, dis-
tinguishing between Resource Orchestration, service-agnostic and performed at the
infrastructure level, and Service Orchestration, i.e., service-specific management of
a single slice [69]. Within the project, a distributed architecture enabling multi-
domain resource orchestration is proposed, as well as an analysis of their coordi-
nation [18, 48]. However, no focus is given on the service orchestrators and their
interaction, which is only theorized in [69] and is mostly outside the scope of the
project. Infrastructure level orchestration alone does not provide service specific
optimization.

Indeed, recent work on edge computing [109, 13, 165] proposes ad-hoc opti-
mization focusing single edge applications separately. For instance, [109] optimizes
the placement of roadside units on new generation vehicular networks; [13] focuses
on the service placement problem in mobile applications, where the dynamism of
the user’s location plays a key role; [165] proposes an optimal allocation for high-
performance video streaming in 5G networks. While the above solutions enable
optimization of isolated applications, to the best of our knowledge, it is still un-
clear how such a variety of service embedding algorithms can be integrated on top
of an existing framework to coexist on a shared infrastructure. SONATA [92] in-
troduced the concept of service-specific optimization in the ETSI NFV reference
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architecture, extending it with Service-Specific Managers (SSMs) micro-services, so
that service awareness can be dynamically introduced to the generic orchestrator.
In this work, we even go further by enabling a fully distributed approach to remove
such a centralized component. Indeed, mandating the existence of a centralized
component (featured both in [77, 92]) may not be suitable in Edge Computing,
where services are executed on scattered compute nodes and multiple providers are
involved. As this work proposes the usage of a declarative model to characterize
service specific orchestration strategies, we based it on existing solutions of declar-
ative modeling [132]. In particular, we generalize the application specific approach
of [113] by adopting some of the concepts from [76] on formalizing declarative work-
flows, with the aim of enabling the description of subsuming any deployment and
run-time orchestration strategy.

4.3 Overall Architecture
This section introduces our distributed orchestration architecture (Figure 4.1).

We identified three separated operational planes that have a correspondence with
the XaaS layered model [135], which is well-established in IT and that we analyzed
in Chapter 3 for the scenario of Edge Computing. An Infrastructure Plane (i.e.,
Infrastructure-as-a-Service) provides elementary resources (such as computing, net-
working, and storage) by virtualizing a set of edge or cloud servers (compute nodes)
scattered across the network. A set of Service-Defined Orchestrators, each dedicated
to the management of a given application, constitutes a distributed Platform-as-
a-Service that we name Orchestration Plane. Finally, the whole set of edge/cloud
end applications running on top of the distributed infrastructure constitutes the
Service Plane (i.e., Software-as-a-Service).

4.3.1 Service Plane
To preserve the generality of our approach, we assume that applications may fol-

low the micro-service paradigm [50], that is, services are composed of small compo-
nents, each specialized on a given task. For instance, a video streaming application
may feature a video source, a transcoder, and a web server, each one potentially
deployed on a separate location according to the placement decisions enforced by
the orchestrator.

Figure 4.1 shows a Service Plane where each application requires the deployment
of multiple components. The proposed architecture assumes that each application
component may feature multiple valid implementations when physically deployed
on the infrastructure. Each implementation may feature different characteristics,
for example, the execution environment could be over virtual machines, contain-
ers, or dedicated hardware. Each implementation may require different resources
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Figure 4.1: Overall distributed and service-defined orchestration architecture.

and provide different QoS levels. Based on the scenario, an application may ben-
efit more from a particular implementation policy set. As shown in Figure 4.1,
the Orchestration Plane features an Implementation Repository that stores valid
implementations for well-known components, along with details about their config-
uration and resource requirements. Additionally, at deployment request time, an
application may customize further each one of its components.

An application deployment request consists of (i) the list of components to be
deployed, along with their virtual topology, (ii) any custom implementation needed
for the deployment and (iii) a declarative description of the orchestration strategies
to be used to properly deploy and manage the application.

4.3.2 Orchestration Plane
Our approach defines a highly modular and dynamic Orchestration Platform,

whose building blocks are our Service-Defined Orchestrators (SDOs), each (i) dedi-
cated to a single application and (ii) generated and executed on demand. Note that
this approach makes the overall PaaS behavior defined by the application itself.

The orchestration platform accepts application deployment requests. These re-
quests come with additional information that is used to drive the orchestration
process (i.e., resource allocation, placement, and run-time management) in a way
that is optimal for that specific application. Metadata that comes with each appli-
cation deployment request are in the form of an Orchestration Behavioral Model,
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Figure 4.2: Interactions between an SDO and (i) the infrastructure controller and (ii) components
of the managed application.

which features declarative statements used to actually generate the Service-Defined
Orchestrator by means of an SDO Compiler. Details regarding the Orchestration
Behavioral Model and how its declarative statements are composed to generate an
SDO are discussed in Section 4.4.

Whenever a new SDO is generated, it is instantiated as an extension of the
existing platform and employed to manage the orchestration of the corresponding
application. Orchestration is performed with respect to both deployment and run
time. At deployment time, the SDO interacts with the infrastructure to decide
where each component should be physically deployed (placement) and the amount
of resources to reserve (resource allocation). At run time, the SDO monitors the
state of both application components and infrastructure, reacting to suboptimal
placements and resource allocation. SDO actions include rescheduling components
or resizing applications on demand.

4.3.3 Infrastructure Plane
After orchestration decisions have been taken, application components are phys-

ically deployed on a shared hosting infrastructure. The infrastructure is partitioned
in multiple hosting nodes (Figure 4.1), each featuring different physical capacity
in terms of resources of different types (e.g., CPUs, storage, network bandwidth,
etc.). The current state of the hosting infrastructure and the state of each deployed
application components are dynamically reported to the relevant SDOs by each
hosting node, by means of a distributed message broker. Additionally, infrastruc-
ture nodes expose resource controller APIs through which SDOs can deploy and
manage application components. Figure 4.2 highlights SDO interactions with both
the infrastructure and application components.
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4.4 Service-Defined Orchestrator
This section provides details on the Service-Defined Orchestrator (SDO), the

on-demand generated piece of the platform that manages deployment and run time
of a single application. We first provide a formal definition of the Orchestration
Behavioral Model, used to describe a specific SDO behavior through declarative
rules. Then, the architecture and synthesis of an SDO are detailed, and a practical
example is discussed.

4.4.1 Orchestrator Behavioral Model (OBM)
By definition, an SDO cannot be a generic module, as it should necessarily

be specialized for each particular application. Application needs in an edge/cloud
environment are usually unknown a priori, so we need a mechanism that allows, on-
demand, generation of any desired orchestration strategy. We propose an approach
that derives a specialized SDO starting from a high-level declarative description. In
this section, we formalize such a description through an Orchestration Behavioral
Model (OBM). Our design generalizes the application-specific approach of [113]
by adapting some of the concepts from [76] on the formalization of declarative
workflows, with the aim of subsuming any deployment orchestration strategy and
encompassing multiple run-time situations.

An OBM instance is provided with the application as deployment metadata,
specified by the service provider. It should feature at least the following: (i) param-
eters which the SDO should be aware of, such as infrastructure and/or application
state; (ii) the objective that should be optimized; (iii) events that may occur and
actions to be performed in response. We formally define the OBM by providing the
following abstractions.

Definition 1. (state S). We define as state S = SA ∪ SI ∪ SO the set of variables,
parameters and, in general, configurations, that the SDO can have access to. We
distinguish three separate sets composing it: Application State (SA), Infrastructure
State (SI) and SDO State (SO).

Each element s ∈ S represents a generic readable and, possibly, configurable
parameter within a given area, and is associated with a few information (e.g., name,
type, scope).

The Application State (SA) concerns the current deployment of each application
component. It includes (i) the list of implementations currently chosen for each
component (and where they have been physically deployed), (ii) their configuration
and (iii) any operational variable, i.e., read-only data that the SDO may obtain by
directly querying one or more components (e.g., the current miss-rate measured on
a given deployed content cache).
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The Infrastructure state (SI) is mainly the set of information the SDO obtains
from the hosting nodes below, namely, their resource capacity and topology data.
Since more than one SDO concurrently allocates resources over the same infras-
tructure, we add another piece of information to the Infrastructure State, i.e., how
much resources the SDO is allowed to allocate at the moment. This is obtained by
each SDO through our distributed agreement algorithm that will be described in
Chapter 5.

Additionally, the OBM features an SDO State (SO), which is maintained inter-
nally to the SDO itself and can be used to store some run-time information, thus
enabling the definition of stateful behaviors.

Definition 2. (constraints C). We define a set of constraints C, where each element
γ ∈ C is a mathematical statement (equation or inequation) between two functions
fL, fR : S |S| → R defined on state variables s ∈ S.

Constraints represent additional requirements associated with a given appli-
cation. They can state the maximum latency between two components, specific
characteristics of the physical nodes where a given component has to be deployed,
and more. If constraints are specified in the OBM, they are interpreted by the gen-
erated SDO as hard requirements that should always be satisfied, thus discarding
any deployment solution that would violate them. Moreover, since variations that
may occur at run-time in the State may possibly lead to a constraint violation,
Actions to be performed (see below) upon such violation must be specified for each
declared constraint.

Definition 3. (events E). Given a state S, a particular set of variations that may
occur at run-time on its variables may be declared to be an event e ∈ E, where E
is the set of all the events declared in the OBM.

A service parameter that exceeds a given threshold, the amount of a given
resource that drops below the configuration requirement, the expiration of a timer
defined at run-time on the SDO State, and more, can identify situations where the
application is suffering and reconfiguration actions should be performed. An Event
may be defined on a single state variable variation, or even when more than one
of the variables change in a predefined way. Each variation is defined through: (i)
the reference to the state variable in question; (ii) the kind of variation that must
be observed, i.e. equal to, higher or lower a threshold, or it simply changes in any
way; (iii) the value, if any, to which the changing variable should be compared,
which can be a static value (e.g., a string or a number) or even a reference other
variables on the state. Each event is labeled with a name, which is used to associate
Action(s) that should be performed upon its occurrence.

Definition 4. (actions A). Given an event e ∈ E that may occur on a state S,
we define as action a ∈ A, a vector of functions ai : S |S| → S, each giving the new
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value to “write” on a particular state variable si ∈ S. The size of the action vector
a represents the number of write operations to be performed on the state.

Executing an action may consist of one or more of the following: (i) modify
the configuration of a given application component; (ii) reschedule the deployment
of the application, or scale/migrate just a particular component; (iii) update some
local variables of the SDO State, e.g. to modify the SDO future behavior. Whenever
an action is invoked, it takes as implicit parameters any variation registered by the
triggering event.

Definition 5. (objective o). Given a state S declared in an OBM, we define the
objective of the associated SDO, and we denote it with o : S |S| → R, the numerical
function that the SDO should optimize during the application deployment.

The objective function of an application should model one or more service QoS
metrics (e.g., the frame rate in a video streaming application) through variables that
correspond to placement and resource assignment decisions during the deployment.
The objective optimization process is modeled through a default, implicit Action
ao, which is automatically invoked at deployment time. Additionally, one can
declare to invoke the same action in response to some particular events, in order to
reschedule application components on resources from scratch when necessary.

In declaring their own orchestration strategies through the OBM, service providers
are able to take into account the multiple situations a service may face while oper-
ating. The remote need for re-defining the strategies while the service is operating
may constitute a limitation. However, in a real framework product, an SDO speci-
fied through declarative statements should provide an increased level of flexibility
compared to developing and deploying ad-hoc software.

4.4.2 SDO Architecture
Figure 4.3 shows the architecture of the Service-Defined Orchestrator. The fig-

ure distinguishes between modules that are dynamically generated from the Orches-
tration Behavioral Model, and those that are fixed (hence application-independent).
Each of the dynamically generated modules has a direct correspondence to a precise
piece of the OBM. Their description is provided in the following.

The State Module maintains the run-time information about all the state vari-
ables described in the dedicated section of the OBM (Definition 1), distinguishing
between SDO internal variables, information related to the infrastructure and each
deployed application component. An Event Listener implements the detection of
events declared in the OBM through Definition 3. Whenever there is a variation on
one of the relevant state variables, the Event Listener checks for events that may
have occurred. Additionally, this module also checks if a state variation causes a
violation of one of the defined constraints. In any of these cases, the Event Listener
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Figure 4.3: Overall architecture of the Service-Defined Orchestrator.

invokes the corresponding Handler, that is one (or more) of the Actions defined in
the OBM. If the particular event that occurred requires to reschedule the entire de-
ployment of the application, action ao, i.e., the application deployment, is invoked
instead. This action implements the optimization of the application objective de-
clared on the OBM and is performed by the Deployment Manager, which schedules
a solution based on (i) the current state, (ii) defined constraints and (iii) the Ap-
plication Description. Upon SDO startup, this deployment action is automatically
triggered by the Event Listener.

Whenever an action is triggered, all writing operations are buffered by a helper
module, which checks if any of them requires the acquisition of additional resources
from the physical infrastructure. If this is the case, the execution is mediated by
an Agreement Module, which, through a distributed consensus algorithm, negoti-
ates resource assignment with other SDOs operating over the same infrastructure
(details are given in Chapter 5). After the agreement, adjustments deriving from
executing the action are propagated to the relevant modules.1 In particular, an In-
frastructure Manager acts as an interface towards the infrastructure controller and
is in charge of allocating resources on needed hosting nodes and scaling up/down
instantiated components. On the other hand, a Configuration Manager pushes any

1Note that such adjustments may derive both from the execution of a local Action, and from
any change on the equilibrium with external SDOs.
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new configuration on the appropriate deployed component. Both changes in infras-
tructure and on components are also propagated into the corresponding portion of
state maintained within the SDO. Additionally, the state is also updated any time
a change notification is received from the infrastructure or any application com-
ponent. Such communication occurs over a pub/sub based message bus, while the
state and configuration of each component are described using the YANG language.

4.4.3 A practical use case: the video streaming application
We now provide a practical example of declaring an orchestration strategy

through our model. As a reference use case, we use a video streaming application.
For the sake of brevity and clarity, we only focus the scope of a single component
within the service run-time.

Let us consider a video streaming application whose components are: (i) a video
transmitter (the media source), (ii) a transcoder, (iii) a web server and (iv) a series
of clients consuming the output video streams. The transcoder takes as input the
original video stream and generates multiple output streams at different bit rates
and resolutions, so that each client may select the most appropriate stream based
on the available bandwidth. In particular, it is in charge of three tasks: transsizing,
i.e., resizing the frames from the original media source; transrating, that is reducing
the bit rate of the stream in order to reduce the required bandwidth; transcoding,
i.e., re-encode the stream using a different codec, e.g., because certain codecs may
not be available on some end devices, or may require different computational re-
sources or energy. Let us assume that the available implementation is configurable
with the number of output streams to be generated. Each of these configurations
has associated a minimum requirement in terms of CPU resources. Within the
video streaming applications, the streaming protocol (e.g., RTMP, HDS, HLS) per-
forms periodical measures to estimate the end-to-end bandwidth and, whenever
this is not suitable for the current bitrate, switches to a lighter stream among those
generated by the transcoder. As it performs computation intensive tasks multiple
times on the original source to generate different output streams, the transcoder
may suffer in situations where assigned resources are not enough to guarantee the
proper generation of the desired output streams and the availability of resources is
temporary scarce.

In such a case, an example of a service-specific orchestration strategy is to fix
the number of output streams (transcoder configuration) according to the available
resources. A constraint is defined on a variable of the Infrastructure State, i.e., the
available CPU resources. The constraint definition references a parameter in the
transcoder component configuration: when the available CPU value drops below the
requirement specified for the current configuration, the constraint is violated and an
event is triggered. The action associated with this violation features a single write
operation defined as follows: the variable to modify is on the Application State,
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i.e., the set of output streams; the new value to assign is computed by selecting,
among the available setups, the one that (i) provides the higher number of output
streams and (ii) fits the newly available CPU resource. This run-time orchestration
strategy, alone, does not require any write operation on the Infrastructure State.

4.5 Experimental Results
To validate our approach, we implemented a prototype of the SDO compiler.

Our code is available at [61, 60, 34]. Our evaluation analyzes three use cases:
stream management on a video streaming application, cache placement for a CDN
provider and process migration for mobile gaming.

We show the advantages for service providers when deploying their applications
on an infrastructure that adopts our service-defined orchestration approach and
does not restrict the available orchestration strategies. We aim to show that, for
example, a CDN provider that relies on a third party platform/infrastructure to
serve a certain area may benefit from using its own cache placement algorithm
(e.g., [85]), running over DRAGON, rather than depending on a one-size fits-all
embedding orchestrator.

At first, we setup a virtualization infrastructure to orchestrate the deployment
and run-time of a video streaming application. Additionally, we setup a simulated
environment to evaluate two different edge use cases: (i) cache placement for a
CDN provider [158], and (ii) edge migration for mobile gaming [140]. In our tests,
we compared the provided QoS resulting from different deployment approaches,
also varying the concurrency level by adding some concurrent applications, thus
evaluating the behavior when resources become scarce.

Video Streaming

We deployed an use case analogous to the one described in Section 4.4.3. A VM
generating an RTMP stream through FFmpeg implements the video transmitter,
which sends a H264 stream of size 1080x640, with a frame rate of 24 FPS and a bi-
trate of 1330 kbps. Both the web server and the transcoder have been implemented
through the Wowza software [168], generating 9 streams at different bit rates (from
176x144 to 1080x640) using three different codecs (VP8, H263 and H264), with a
resulting bitrate ranging from 150 kbps and 1000 kbps. All streams use AAC (96
kbps) as audio codec. The streaming server delivers the output streams using the
HLS streaming protocol. We deployed all the server-side components on a KVM
based infrastructure (Hypervisor Debian Linux 4.14.0-3 on i7-6700 CPU 3.40 GHz,
RAM 32 GB). On a second machine, we run the VLC software to consume the out-
put streams and measure the QoS in terms of frame rate; we perform measurements
through the libVLC library, periodically evaluating the number of frames that are
correctly shown, their size, the player state (Playing, Stopped, Buffering, etc.), the
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Figure 4.4: Frame rate over time for a video streaming application in a resource constrained
situation. A Service-Defined Orchestrator may effectively mitigate the QoE deterioration being
able to explore alternative solutions.

number of lost frames (i.e., arrived out of sequence) and the current bit rate. We
emulated a scenario in which, after 240 seconds, some of the CPUs originally al-
located for the transcoder VM are no longer available. Figure 4.4 summarizes our
findings.
(i) When resources are reduced for the transcoder VM, a one-size fits-all orches-
trator can neither understand that the transcoder is suffering (it has no generic
parameter to base itself upon) nor it can identify a solution in such a constrained
situation, i.e. the VM cannot be scaled out since there are no more resources lo-
cally and no other edge nodes are available to migrate the VM. As a consequence,
Figure 4.4a shows a significant degradation of the provisioned service.
(ii) If the application is managed by an SDO, a custom action can be defined to
be executed whenever it is not possible to assign a given amount of CPUs to the
transcoder component; in such a case, a possible service-defined solution may con-
figure the transcoder component to disable some of the generated output streams
(e.g., those at a higher resolution), thus reducing its workload and resource require-
ments. Figure 4.4b shows that this behavior effectively preserves the frame rate
after switching to a lighter configuration.

CDN Caches

A CDN provider provisions content caches over an edge network where user
density dynamically changes across compute nodes. The objective of the provider
is to minimize the average miss-rate occurring on deployed caches. The CDN
application should be adapted on events where a set of users shifts from a node
to another. In our tests we simulated a set of 100 users moving over a network of
10 edge computing nodes. To visualize the user distribution among nodes, we also
report the Gini index (a high index indicates that most users are located near few
host nodes). We summarize our findings in a few take home messages:
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Figure 4.5: Evaluation of a CDN cache provisioning application comparing different placement
strategies: (a) miss rate over time varying the geographical users distribution; (b) distribution of
measured miss rate varying the number of concurrent applications.

(i) A one-size fits-all approach that places caches by balancing the resource con-
sumption per node achieves good performance when users are well distributed, but
the number of miss-rate grows fast when the concentration increases (Figure 4.5a).
A similar result is obtained by statically partitioning the resources among coex-
istent applications (Figure 4.5b) when their number is high with respect to the
available resources.
(ii) A one-size fits-all approach that places caches according with the traffic load on
each node achieves optimal miss-rates when users are concentrated on few nodes,
while the performance is poor otherwise. This is because a low traffic amount on
a certain node does not necessarily mean that users are consuming less variety of
contents. Figure 4.5b shows a slight degradation when increasing the concurrency.
(iii) If application caches are placed by an SDO based on current miss-rate on
each node, optimal miss-rate both for low and high users concentration is achieved
(Figure 4.5a). Moreover, note how Figure 4.5b does not show a noticeable QoS
degradation when increasing the number of concurrent SDOs, showing the scala-
bility of our approach. This is achieved through our coordination algorithm that
will be detailed in Chapter 5.

Mobile Gaming

A gamer moves into an area served by multiple edge nodes. Whereas it may
be convenient to relocate (part of) the game application components to better
fulfill the latency requirements, the relocation may happen in a crucial phase of the
game, causing undesirable service degradation [140]. Therefore, if the deployment
is managed by an SDO, it may be instructed to recognize the time frame in which a
relocation is most appropriate (e.g., after the gamer reaches a checkpoint or during
the loading of a new level).
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Figure 4.6: Evaluation of a mobile gaming application for different deployment strategies: (a)
QoE over time perceived by a user moving in different areas; (b) QoE distribution varying the
number of concurrent applications.

In our tests we simulated a user moving every 6 minutes across a network of 10
edge nodes. We measured the Quality of Experience perceived by the user based
on latency and packet loss, using the same Mean Opinion Score (MOS) described
in [82] for medium-paced games. Our findings are summarized as follows (Fig-
ure 4.6ab):
(i) Statically partitioning resources between applications does not scale (Figure 4.6b):
the application may be unable to migrate components on needed nodes, since re-
sources are assigned to other peers, despite not being currently used.
(ii) If the resources are managed by a one-size fits-all orchestrator that minimizes
the end-to-end latency, the user often experiences a QoE level that we label as bad
due to some process relocation occurring during the game session (Figure 4.6a).
Figure 4.6b shows that the percentage of bad QoE measurements even may in-
crease with the concurrency.
(iii) If the relocation decision is taken by an SDO, and resources are dynamically
assigned with DRAGON, it is possible to define a behavior that does not migrate
the service rapidly whenever the user moves away; even if this may temporarily
increase the latency, it prevents undesirable service degradation during a game ses-
sion and the overall perceived QoE results improved (Figure 4.6a). Figure 4.6b also
shows that this approach scales well with the number of concurrent SDOs.

4.6 Conclusion
In this chapter we proposed a Service-Defined approach for orchestrating ap-

plications in cloud/edge infrastructures. The proposal enables individual applica-
tions to define their own orchestration strategy by means of a behavioral declar-
ative model, which is used to dynamically generate a service-specific orchestrator
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(Service-Defined Orchestrator - SDO). This component is in charge of both the
deployment (e.g., resource allocation) and run-time orchestration (e.g., scaling, re-
configuration) of the given application. Being service providers free to define their
preferred Orchestration Behavioral Model instance, each application may benefit
from ad-hoc orchestration strategies encompassing service-specific metrics, objec-
tives, reaction to custom events and special constraints. We evaluate our Service-
Defined approach over three representative edge use cases, showing how infras-
tructure/platform providers may enable their customers (i.e., service providers)
to implement the preferred orchestration strategy for their services, without the
restrictions of relying on a conventional one-size fits-all orchestrator.

The coexistence of multiple orchestrators operating over the same infrastructure
introduces the problem of coordinating resource allocation while preserving the re-
source assignment optimality. In the next chapter we propose a time-bounded dis-
tributed approximation algorithm that solves the problem of optimally partitioning
a shared pool of resources between multiple SDOs.
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Chapter 5

A Distributed Orchestration
Algorithm for Edge Computing
Resources with Guarantees

Edge Computing brings the flexibility and scalability of virtualization technolo-
gies at the edge of the network, enabling service providers to deploy new applica-
tions over a richer network infrastructure. In Chapter 4 we proposed a distributed
orchestration approach where a small-scoped Service-Defined Orchestrator is as-
signed to each application, thus enabling custom optimization. However, the coex-
istence of such variety of decision entities on the same infrastructure exacerbates
the already challenging problem of coordinating resource allocation while preserv-
ing the resource assignment optimality. In fact, (i) each application can potentially
require different optimization criteria due to their heterogeneous requirements, and
(ii) we may not count on a centralized coordination due to the highly dynamic
nature of edge networks. To solve this problem, this chapter presents DRAGON,
a Distributed Resource AssiGnment and OrchestratioN algorithm that seeks opti-
mal partitioning of shared resources between different applications running over a
common edge infrastructure. We designed DRAGON to guarantee both a bound
on convergence time and an optimal (1-1/e)-approximation with respect to the
Pareto optimal resource assignment. We evaluate convergence and performance of
DRAGON on a prototype implementation, deploying both on physical nodes and
within a simulated environment. Results assess the benefits of DRAGON compared
to traditional orchestration approaches.

The work presented in this chapter has been partially published in [35] and [36].
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5.1 Introduction
The emerging Edge Computing paradigm has enabled service providers to sup-

ply a large variety of new applications, which benefit from the presence of storage
and computing facilities at the edge of the network, as well as reduced latency to-
ward end-users. Distributed content delivery and caching, Internet of Things, dis-
aster response, vehicle-to-everything automotive, and video acceleration are only
some of the multitude of services [158] that can benefit from being deployed at
the edge of the network. Thanks to virtualization technologies, such a different
applications can be isolated and simultaneously run on separated slices of the same
shared physical infrastructure.

In cloud-based environments, the slicing operation is often delegated to a cen-
tralized Orchestrator [57], that usually exploits some one-size-fits-all policies (e.g.,
energy-saving, number of used nodes, load balancing) to decide (i) where to place
service components, (ii) how many resources have to be assigned to each of them [74]
and (iii) the set of metrics/events signaling that the service has to be rescheduled
(e.g., because of an unexpected load increase).

As highlighted in Chapter 4, the scattered nature of the edge infrastructure,
along with the largely heterogeneous set of applications, suggests that such a cen-
tralized approach may be sub-optimal or not applicable in Edge Computing. There-
fore, using multiple Service-Defined Orchestrators to allocate resources of different
services over the same physical infrastructure seems a natural approach to enable
service-centric optimization. However, coordinating such a plethora of applications
without relying on a centralized orchestrator brings to light several challenges.
How could several optimization processes, each operating with different goals and
policies, converge to a globally optimal resource management over a shared edge
infrastructure? How could we avoid violations of global policies or feasibility con-
straints of several coexisting applications? How can we guarantee convergence to
a distributed resource allocation agreement and performance optimality given the
NP-hard [7] nature of the service placement problem?

To answer these questions, this chapter presents DRAGON, an asynchronous
Distributed Resource AssiGnment and OrchestratioN algorithm. DRAGON lever-
ages the max-consensus literature and the theory of submodular functions to enable
a set of applications, featuring diverse objectives and optimization metrics, to reach
an agreement on how infrastructure resources have to be (temporary) assigned,
without the necessity of a centralized orchestrator.

We first introduce the (NP-hard) Applications-Resources Assignment Problem
and use linear programming to model its objective and constraints (Sections 5.3).
Finding a centralized optimal solution is often infeasible even for a single optimizer.
We use the solution to the centralized problem as a baseline global optimal to show
DRAGON’s performance optimality guarantees.

Then, we detail our DRAGON asynchronous algorithm (Section 5.4) and we
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show how it provides non-improvable guarantees on resource assignment perfor-
mance to a set of independent edge application, and an upper bound on convergence
time (Section 5.5).

Finally, we evaluate both performance scalability and convergence properties
of DRAGON, comparing them with traditional approaches and deploying both on
physical nodes and within a simulated environment (Section 5.6). Our findings con-
firm the applicability of this approach in edge infrastructures and the performance
advantages over conventional one-size-fits-all orchestration paradigms.

5.2 Related Work
Despite recent work on edge computing proposes ad-hoc optimization focusing

single edge applications separately [109, 13, 165], it is still unclear how such a vari-
ety of service embedding algorithms can coexist on a shared infrastructure without
undermining the overall performance optimality. Indeed, most of the work on the
orchestration of infrastructure resources focus on the VNF deployment problem
proposing algorithms that rely on a centralized solver [52, 51, 150]. Some works
as [96, 127] investigate the problem of joint orchestration among multiple infras-
tructure providers, proposing distributed optimization approaches. In [96], the
authors propose a game-theoretic approach, while [127] illustrates a decentralized
algorithm on top of an existing multi-domain architecture developed in the 5Gex
project [18]. The 5Gex Project also identifies the difference between Resource Or-
chestration, service-agnostic and performed at the infrastructure level, and Service
Orchestration, i.e., service-specific management of a single slice [69]. However, ser-
vice orchestrators are only theorized and no focus is given on how to coordinate
resource partitioning among them, as this is mostly outside the scope of the project.

In cloud environments, Mesos [77] enables dynamic resource partitioning and
allows the coexistence of diverse cluster computing frameworks, each one featuring
different scheduling needs. It exploits a master that assigns resources dynamically
by making offers to demanding frameworks. However, mandating the existence
of such a component may not be suitable in a scenario where services are exe-
cuted on scattered compute nodes, e.g., at the edge of the network, which features
arbitrary topologies and multiple providers. In this context, we should rely on so-
lutions that provide decentralized consensus (e.g., Paxos [94] and RAFT [119]) to
reach agreement on resource assignment. In particular, RAFT is implemented in
widespread SDN controllers to enable data-store replication and resiliency among
multiple controller instances. Some of its limitations have already been highlighted
in [136], where authors also propose an enhancement of RAFT to improve recovery
times on the specific use case of SDN Controllers. More generally, none of [94, 119]
simultaneously provides (i) guarantees on convergence time and performance, and
(ii) a fully distributed approach.
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5.3 Problem Definition and Modeling
This section defines the (NP-hard) applications-resources assignment problem

by leveraging linear programming.
Let us model an application as a multiset — a set in which element repetition

is allowed — whose elements are selected among Nµ (abstract) application compo-
nents to be embedded on a shared (physical) edge infrastructure. A component is
an abstract instance of a physical function, e.g., a load balancer, a video transcoder
or a content cache, which can be run by selecting the best possible physical imple-
mentation among the Nf available ones. In fact, each implementation may feature
different characteristics such as execution environment (virtual machine, container,
dedicated hardware), required resources, or the capability to provide a specific level
of QoS. or provided level of QoS.

The infrastructure is partitioned in Nυ hosting nodes, each one with poten-
tially different physical capacities. We assume that each function consumes a given
amount of resources such as CPU, storage, memory, network bandwidth, etc., which
are modeled with Nρ different types.

Finally, let us consider Na applications, all simultaneously demanding resources
from a shared edge infrastructure, each one following a potentially different opti-
mization strategy. We assume that the application itself will select the best (fea-
sible) implementations that are required to realize its composing services, then
allocate them in the most appropriate location.

Our goal is to maximize a global utility U while finding an infrastructure-
bounded applications-resources assignment that allows the deployment of each
application. We define an applications-resources assignment to be infrastructure-
bounded if the consumption of all assigned components allocated on each hosting
node does not exceed the ρn available resources on that node.

We model the applications-resources assignment problem with an integer pro-
gram; its binary decision variable xijn is equal to one if an instance of the im-
plementation j has been assigned to application i on hosting node n and to zero
otherwise.

maximize
Na∑︂
i=1

Nf∑︂
j=1

Nυ∑︂
n=1

Uijn(xi)xijn (1.1)

subject to
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Na∑︂
i=1

Nf∑︂
j=1

xijncjk ≤ ρnk ∀k ∈ K, ∀n ∈ N (1.2)

Nf∑︂
j=1

Nυ∑︂
n=1

xijn =
Nµ∑︂

m=1
(σim)yi ∀i ∈ I (1.3)

Nf∑︂
j=1

(︄
Nυ∑︂
n=1

xijn

)︄
λmj ≥ yi ∀m ∈ M, ∀i ∈ I (1.4)

Nυ∑︂
n=1

xijn ≤ 1 ∀j ∈ J , ∀i ∈ I (1.5)

Nf∑︂
j=1

xij ≥ 1 − Nf yi ∀i ∈ I (1.6a)

Nf∑︂
j=1

xij ≤ 1Nf yi ∀i ∈ I (1.6b)

xijn ∈ {0,1} ∀(i, j, n) ∈ I × J × N (1.7a)
yi ∈ {0,1} ∀i ∈ I (1.7b)
cjk ∈ N ∀(j, k) ∈ J × K (1.7c)
ρnk ∈ N ∀(n, k) ∈ N × K (1.7d)
λmj ∈ {0,1} ∀(m, j) ∈ M × J (1.7e)
σim ∈ {0,1} ∀(i, m) ∈ I × M (1.7f)

where xi ∈ {0,1}Nf ×Nυ is the assignment vector for application i, whose jth ×
nth element is xijn. The auxiliary variables yi are equal to 1 if at least an in-
stance of any function has been assigned to application i, and 0 otherwise (con-
straints 1.6a, 1.6b, 1.7b). The index sets are defined as I ≜ {1, . . . , Na}, M ≜
{1, . . . , Nµ}, J ≜ {1, . . . , Nf}, K ≜ {1, . . . , Nρ} and N ≜ {1, . . . , Nυ}. Variable
ρnk represents the amount of resource k available on node n; furthermore, we de-
note ρn ∈ NN

n the overall capacity of node n ∈ N . With cjk ∈ N we capture
the cost of implementation j in terms of resource k; thus, we name cj ∈ NN

ρ the
cost vector of implementation j ∈ J . We set λmj = 1 if the abstract component
m can be implemented (i.e., deployed) through j, while σim = 1 if application i
needs service component m. Note how constraint (1.2) ensures that the solution is
infrastructure-bounded, while constraints (1.3 and 1.4) avoid partial allocations.

The utility function models the overall gain Uijn(xi), i.e., the utility that the
system gains by assigning cj resources to application i, allowing it to add the imple-
mentation j to its assignment vector xi. Note that the gain does not depend merely
from the given component; in fact, it depends (i) on the chosen implementation and
(ii) on the node selected for the deployment. In formulating the utility function,
we assume that different utilities of different applications can be normalized so that
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their sum is consistent, since originally each of them may refer to arbitrary physical
quantities and scales.

Please note that, as we model each application as a multiset of components,
no dependencies/connections between components are considered (e.g., maximum
latency that can be tolerated between a pair of components, which pair is supposed
to generate more traffic, etc.). We assume that such kind of parameters should be
modeled separately, as they are of competence of every single application (e.g., of
its Service Defined Orchestrator). Therefore, in our approach we do not directly
employ such additional parameters in the “coordination” process for the dynamic
and optimal resource partitioning.

5.4 Distributed Resource AssiGnment and Or-
chestratioN (DRAGON)

In this section, we describe DRAGON (Distributed Resource AssiGnment and
OrchestratioN), a novel approximation algorithm that we designed to solve the
NP-hard Problem 1 through a distributed approach.

5.4.1 DRAGON Overview
Each application i runs a DRAGON agent, which iterates between a local and

a distributed phase. Locally, the application builds its assignment vector xi, i.e.,
the set of component implementations to be deployed on each node. This is used
to participate in a resource election process by voting resources needed on each
hosting node. Each vote models the benefit that an application would gain from
the resources demanded on a given node and is directly related to the application
private utility. Voting and elections are performed at the node level. At first
(Orchestration Phase), each agent performs the election locally, based on its state
awareness. During an Agreement Phase, agents communicate and update their
votes to ensure the convergence of the election process by mean of max-consensus.
Applications that are “elected”, i.e., that they win the distributed election, gain the
right to allocate the demanded amount of (virtual) resources on a certain number
of (physical) nodes1.

Note that the assignment vector xi of each application i does not need to be
exchanged. Agents are aware of the resource demand from their peers but unaware
of the details regarding which application components they wish to allocate.

To detail the algorithm, we give the following definitions:

1Note how this is different from several existing leader election protocols (e.g. [118], [43]) that
are based on auctions, as they assume that a given item can only be assigned to a single player.
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Definition 6. (private utility function ui). Given a set I of applications allocating
a set J of component implementations over a set N of hosting nodes, we define
private utility function of application i ∈ I, and we denote it with ui : J ×N → R,
the utility uijn ∈ R that application i gains by adding implementation j ∈ J to
its assignment vector xi and deploying it on node n ∈ N , i.e., implementing an
application component on n through j.

Each application may have a different (conflicting) objective and may have no
incentive to disclose its utility; however, our model, and so our algorithm, maximizes
a global objective (Equation 1.1), that in DRAGON is a policy. Since we assume
that a Pareto optimality is sought, the global utility is a function of the applications
private utilities, i.e.,

U i(xi) = f(ui(xi)), ∀i ∈ I.

DRAGON needs a vote vector that we define as follows.

Definition 7. (vote vector vi). Given a distributed voting process among a set I
of Na applications, allocating resources on a set N of Nυ hosting nodes, we define
vi ∈ RNaNυ

+ to be the vector of current winning votes known by application i ∈ I on
hosting node n ∈ N . Each element vi

ιn is a positive real number representing last
vote of application ι on node n as known by i, if i thinks that ι is a winner of the
election phase for node n. Otherwise, vi

ιn is 0.

Since applications compute resource assignments in a distributed fashion, they
could possibly have different views until an agreement on the election winner(s) is
reached; we use the apex i to refer to the vote vector as seen by application i at
each point in the agreement process. During the algorithm description, for clarity,
we omit the apex i when we refer to the local vector (the same applies also for the
following vectors).

Definition 8. (demanded resource vector ri). Given a voting process among a set
I of Na applications on Nρ different types of shared resources distributed among a
set N of Nυ hosting nodes, we define as demanded resource vector ri ∈ NNa×Nυ×Nρ

+ ,
the vector of total resources currently requested by each application on every node;
each element ri

ιn ∈ NNρ is the amount of resources requested by application ι ∈ I
on node n ∈ N with its most recent vote vi

ιn known by i ∈ I.

Definition 9. (voting time vector ti). Given a set I of Na application participating
to a distributed voting process over a set N of Nυ hosting nodes, we define as voting
time vector ti ∈ RNa×Nυ

+ , the vector whose element ti
ιn represents the timestamp of

the last vote vi
ιn known by i ∈ I for application ι ∈ I on node i ∈ I.

We also give the following definition of neighborhood:
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Algorithm 1 DRAGON for application i at iteration t

1: orchestration(v(t − 1), r(t − 1), ρ)
2: if ∃ι ∈ I : vι(t) /= vι(t − 1) then
3: send(i′, t), ∀i′ ∈ Iī

4: receive(i′, t), ∀i′ ∈ Iī

5: agreement(i′, t), ∀i′ ∈ Iī

Definition 10. (neighborhood Ī i). Given a set I of applications, we define neigh-
borhood Ī i ⊆ I \{i} of application i ∈ I, the subset of applications that can directly
communicate with i.

The notion of neighborhood is generalizable with the set of agents reachable
within a given latency upper bound.

We are now ready to describe DRAGON (Algorithm 1), by detailing its two
main phases.

5.4.2 Orchestration Phase
After the initialization of local vectors v(t), r(t) and t(t) for the current iteration

t (Algorithm 2, line 2), each DRAGON agent uses Algorithm 2, line 8 to elect the
current winners according to the known votes updated at the last iteration. If
agent i has been outvoted (Algorithm 2, line 5), the algorithm starts to iterate
among (i) an embedding routine (Algorithm 2, line 6), which computes the next
suitable assignment vector xi maximizing i’s private utility, (ii) a voting routine
(Algorithm 2, line 7) where agent i votes for the resources that follow the last
computed assignment vector and (iii) the election routine (Algorithm 2, line 8),
which uses votes to compute winning agents.

The iteration continues until agent i does not get outvoted anymore (Algo-
rithm 2, line 9). This may happen if either (i) the selected assignment vector
allows i to win the election or (ii) there are no more suitable assignments xi (then
no new votes have been generated).

Remark. To guarantee convergence, DRAGON forbids outvoted applications to
re-vote with a higher utility value on resources that they have lost in past rounds.
Re-voting is, however, allowed only on residual resources.

Note that an asynchronous agreement may never terminate unless we forcefully
timeout the consensus process. However, we use the theory of max-consensus to
show that the agreement stops as long as we have reliable communication and each
vote traverses the network at least once (Section 5.5).
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Algorithm 2 orchestration for application i at iteration t

Input: v(t − 1), r(t − 1), t(t − 1), ρ, c
Output: v(t), r(t), t(t)
1: if t /= 0 then
2: v(t), r(t), t(t) = v(t − 1), r(t − 1), t(t − 1)
3: do
4: vī = vi(t)
5: if vi(t − 1) /= 0 ∧ vi(t) = 0 then ▷ outvoted
6: embedding(t) ▷ find next xi maximizing ui

7: voting(xi, c) ▷ vote xi using U

8: election(v(t), r(t), ρ)
9: while vī /= vi(t) ▷ repeat until not outvoted

Algorithm 3 voting for application i at iteration t

Input: xi, c
Output: vi(t), ri(t), ti(t)
1: ti(t) = t ▷ vote time
2: if xi /= 0 then ▷ valid assignment
3: for all n ∈ N do
4: rink(t) = Σjxijncjk, ∀k ∈ K ▷ resources required on node
5: vin(t) = score(xi, n) ▷ vote new assignment

Embedding Routine

Either during the first iteration (t = 0), or any time application i is outvoted,
DRAGON invokes an embedding routine (Algorithm 2, line 6) that, based on the
private policies of i, computes the next best suitable assignment vector xi. There-
fore, this routine is in turn private for each application, and strictly dependent on
the specific nature of the application itself (each of them may follow a different
deployment strategy, seek optimization of specific metrics and even feature addi-
tional deployment constraints). If DRAGON is running within a Service-Defined
Orchestrator (Chapter 4), when a set of operations is pending upon the execution of
an action, the framework builds the proper routine and passes it to the DRAGON
agent, in order to perform the desired changes under distributed agreement. For
what concerns DRAGON, this routine can be viewed as a private decision process
that selects, for each component needed by the application, both the implementa-
tion j ∈ J to be used and the node n ∈ N where j should be deployed.

Voting Routine

After a new assignment vector has been built, each DRAGON agent executes a
voting routine, updating the time of its most recent vote; if the assignment vector
is valid, all demanded resources are updated and voted, through a score function
derived from the global utility (Algorithm 3). Since voting is performed at node
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Algorithm 4 election for application i at iteration t

Input: v(t), r(t), ρ
Output: v(t)
1: do
2: for all n ∈ N do
3: Wn = node_election(v(t), r(t), n, ρn)
4: WF = election_recount(Wn ∀n) ▷ detect false-winners
5: vι = 0, ∀ι ∈ WF ▷ reset false-winners votes
6: while WF /= ∅ ▷ repeat until no false-winners are detected
7: vι = 0, ∀ι ∈ I \

⋃︁
n∈N Wn ▷ reset votes that did not win

Algorithm 5 node_election on node n at iteration t

Input: v(t), r(t), n, ρn

Output: Wn

1: ρn̄ = ρn ▷ residual resources
2: Wn = ∅ ▷ winner set
3: do
4: Ib = {i ∈ I| rink(t) ≤ ρ̄nk, ∀k ∈ K} ▷ valid candidates
5: ω = arg maxi∈Ib\W

{︂
vin(t)

∥rin(t)∥

}︂
▷ candidate with the highest vote

6: Wn = Wn ∪ {ω} ▷ add to winners
7: ρ̄nk = ρ̄nk − rωnk, ∀k ∈ K ▷ decrease residual resources
8: while Ib \ W /= ∅ ▷ repeat until no candidate remains

level, this routine generates a vote for each hosting node involved in the current as-
signment xi. Although the raw global utility itself may be used as score function to
compute votes, in Section 5.4.4 we give recommendations on which function should
be used to guarantee convergence and optimal approximation bound (Section 5.5).
Since the value of ti is updated in any case (Algorithm 3, line 1), if application i
does not find any suitable assignment vector, the recent timestamp associated with
an empty vote will let its peers know that i agrees with an election definitively lost.

Election Routine

The last step of the Orchestration Phase (Algorithm 2, line 8) is a resource
election that decides which applications are capable of allocating the demanded
resources on the chosen hosting nodes (Algorithm 4). Based on the most recent
known votes v(t), the related resource demands r(t) and the capacity ρn of each
node, this procedure selects applications by means of a greedy approach. For every
node n ∈ N (Algorithm 4, line 3-4), the node_election subroutine (Algorithm 5)
(i) discards every application whose demanded resources ri exceed the residual
node capacity and (ii) selects the one with the highest ratio vote to demanded
resources (Algorithm 5, lines 4-5). The one elected is then added to the winner set
of that particular node and the amount of resources assigned to the new winner is
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SDO #2

node 1

SDO #3

node 2

SDO #3

node 3

SDO #5

node 4

SDO #1 SDO #2 SDO #4 SDO #4

losers

Election results per node

winners

SDO #5

Figure 5.1: Example of false winners after an election routine: SDO #2 prevents #1 to allocate
needed resources on node 1, although #2 cannot be deployed, since it lost elections on node 2.

removed from the residual ones (Algorithm 5, lines 6-7). The greedy election on
each node ends when either all candidates result winners, or residual node resources
are not enough for any of those remaining.

In Section 5.5 we show that the greedy heuristic gives guarantees on the optimal
approximation.

Remark. In DRAGON an assignment xi is considered valid only if application i
wins all elections on each node n involved in the assignment xi. If any node election
is lost, DRAGON resets the vote vector and a new assignment is built from scratch
to avoid suboptimal assignments.

Since elections are performed separately for each node of the infrastructure, the
election routine includes a conflict resolution subroutine named election-recount
(Algorithm 4, line 4), which handles potential suboptimality deriving as a result
of the election process. Let us consider the assignment scenario in Figure 5.1;
most resources of node 1 have been assigned to application #2, thus preventing
the deployment of application #1; however, having #2 lost the election on node
2, releases its previous vote on node 1 at the next iteration. Therefore, app. #1
could be considered a winner.

The election-recount subroutine copes with this problem by identifying which
applications should be removed from the election so that the solution is optimized.
We call these applications false-winners, i.e., applications that only won a subset of
the needed nodes, preventing peers that would maximize the global utility to win.
False-winners are identified recursively. Given a potential false-winner ω, i.e., it lost
elections on a subset of needed nodes, the idea is to temporarily extend residual
resources on these nodes, whether that amount of resources have been assigned to
other false-winners during the previous election round. If the extended residual
resources are still in deficit with respect to the resources that ω needs, then the
candidate is a false-winner as well.

For instance, let’s consider the election results in Figure 5.1. To determine if
application #2, that is a winner for node 1, is valid or not, we check if it is possible
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to free some resources on node 2, where it lost. On that node, the only winner is
application #3; however, it is a valid one, since it has not lost any other needed
node. Therefore, application #2 definitely lost node 2, and can be removed from
the winners of node 1 (it is a false-winner), thus enabling application #1 to win
the elections. Situations in which some Applications cross-lose nodes are resolved
in favor of the one whose vote on any node is the highest; see e.g., Figure 5.1:
applications #4 and #5 cross-lost nodes 3 and 4.

The election process is repeated until the recount subroutine does not detect
any false-winners (Algorithm 4, line 6). When the election result is confirmed, votes
of applications that did not win the election are reset (Algorithm 4, line 7).

5.4.3 Agreement Phase
Once vectors vi′ , ri′ and ti′ are received from every neighbor i′, each agent

runs an Agreement Phase. During this phase, applications make use of a consensus
mechanism to reach an agreement on their vote vector vi, hence on the overall
resources assignment (Algorithm 6). By adapting the definition of consensus [103]
to the application-resources assignment problem, we define our own notion of con-
sensus on the election results as follows:

Definition 11. (election-consensus). Let us consider a set I of Na applications
sharing a computing edge infrastructure through an election routine driven by, for
each application i ∈ I, the vote vector vi(t) ∈ RNo×Nυ

+ , the demanded resource
vector ri(t) ∈ RNa×Nυ×Nρ

+ and the voting time vector ti(t) ∈ NNa×Nυ . Let e :
RNa×Nυ

+ ,NNa×Nυ×Nρ → 2I be the election function, that given a vote vector v and
the demanded resources r gives a set of winners. Given the consensus algorithm
for application i at iteration t + 1, ∀ι ∈ I,

vi
ι(t + 1) = vi′

ι (t), ri
ι(t + 1) = ri′

ι (t),

with i′ = arg max
i′∈Iī∪{i}

{ti′

ι (t)}, (5.2)

election-consensus among the applications is said to be achieved if ∃t̄ ∈ N such that,
∀t ≥ t̄ and ∀i, i′ ∈ I, {︄

e(vi(t), ri(t)) ≡ e(vi′(t), ri′(t))
vi

ι(t) /= 0 ⇐⇒ ι ∈ e(vi(t)), ∀ι ∈ I,
(5.3)

i.e., on all applications the election function computes the same winner set and
only winner votes are non zero.

The agreement on votes of an application ι is performed by every application
i once received vectors vi′ , ri′ and ti′ from each i′ in its neighborhood, comparing
them and selecting the most recent information received, if any (Equation 5.2).
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Algorithm 6 agreement with SDO i′ at iteration t

Input: v(t), r(t), t(t), vi′(t), ri′(t), ti′
(t)

Output: v(t), r(t), t(t)
1: for all ι ∈ I do
2: for all n ∈ N do ▷ for every hosting node
3: if tιn(t) < ti′

ιn(t) then ▷ the vote is new
4: vιn(t) = vi′

ιn(t)
5: rιnk(t) = ri′

ιnk(t), ∀k ∈ K
6: tιn(t) = ti′

ιn(t)

Since DRAGON is asynchronous by design, at each iteration t the agreement phase
can start even if agents have received vote messages from only a subset of their
neighbors.

5.4.4 Recommendations on the score function
DRAGON’s score function is a policy. Many policies may work well in practice,

but in some cases they may lead to arbitrarily bad performance. As we will see in the
next section, DRAGON guarantees both convergence and a given performance lower
bound as long as the function maximized during the election routine is submodular
(Definition 12). In this section we give recommendation on the score function V
that each application should use during the voting routine described in Algorithm 3
to satisfy this property. Analytic results are shown in the next section.

Let Uin(xi) = ΣjUijn(xi)xijn be the overall node utility of application i on node
n. To guarantee convergence of the election process, we let each peer i communicate
its vote on node n obtained from the score function:

Vi(xi, Wn, n) = min
ω∈Wn

{Uin(xi), Sin(ω)}, (5.4)

where Wn ⊆ I is the current winner set for node n, i.e., vωn(t) /= 0 ∀ω ∈ Wn, and
Sin is defined as

Sin(ω) =
⎧⎨⎩+∞ if i never voted on n,

∥rin(t)∥ vωn(t)
∥rωn(t)∥ otherwise.

Since Uin(xi) ≥ 0 by definition, if i computes each vote with the function V , it
follows that, ∀(i, n) ∈ I × N , Vi(xi, n) ≥ 0. Note how, if it is not the first time
that i votes on n, the vote vin(t) generated at iteration t never results as an outvote
of any application that has been previously elected on node n, during the election
process described in Algorithm 5.
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5.5 Convergence and Performance Guarantees
In this section, we present results on the convergence properties of our DRAGON

distributed approximation algorithm. As in Definition 11, by convergence we mean
that a valid solution to the applications-resources assignment problem is found in
a finite number of steps. Moreover, starting from well-known results on submod-
ular functions, in this section we show that DRAGON guarantees an (1 − e−1)-
approximation bound, and that this bound is also optimal, i.e. there is no better
guarantee, unless NP ⊆ DTIME(nO(log log n)).

Note that, if (5.4) is used as score function, the election routine of DRAGON
is equivalent to a greedy algorithm attempting to find, for each node n, the set of
winner applications Wn ⊆ I such that the set function zn : 2I → R, defined as

zn(Wn) =
∑︂

ω∈Wn

Vω(xω, Wn, n), (5.5)

is maximized. By construction of V , we have that zn is monotonically non-decreasing
and z(∅) = 0.

Definition 12. (submodular function). A set function z : 2I → R is submodular
if and only if, ∀ι /∈ W ′ ⊂ W ′′ ⊆ I,

z(W ′′ ∪ {ι}) − z(W ′′) ≤ z(W ′ ∪ {ι}) − z(W ′). (5.6)

This means that the marginal utility of adding ι to the input set, cannot increase
due to the presence of additional elements. Next we show that the total score zn

(5.5) is submodular. Our intuition behind its submodularity is that the score
function Vn can, at most, decrease due to the presence of additional elements in
Wn. Formally, we have:

Lemma 5.5.1. zn (5.5) is submodular.

Proof. Since W ′
n ⊂ W ′′

n, we have

min
ω∈W ′′

n

{︃
∥rιn(t)∥ vωn(t)

∥rωn(t)∥

}︃
≤ min

ω∈W ′
n

{︃
∥rιn(t)∥ vωn(t)

∥rωn(t)∥

}︃
,

and so, for (5.4),
Vι(xi, W ′′

n, n) ≤ Vι(xi, W ′
n, n). (5.7)

By definition of zn, the marginal gain of adding ι to Wn is

zn(Wn ∪ {ι}) − zn(Wn) = Vι(xi, Wn, n), ∀ι /∈ Wn ⊆ I,

therefore, substituting in (5.7), we have the claim.
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Convergence Guarantees

A necessary condition for convergence in DRAGON is that all applications are
aware of which are the winning votes for a hosting node. This information needs
to traverse all applications in the communication network (at least) once. Theo-
rem 5.5.2 shows that a single information traversal is also sufficient for convergence.

The communication network of a set of applications I is modeled as an undi-
rected graph, with unitary length edges between each couple i′, i′′ ∈ I such that
i′′ ∈ Ī i′ and i′ ∈ Ī i′′ , being Ī i′ ⊆ I \ {i′} and Ī i′′ ⊆ I \ {i′′} respectively the
neighborhoods of i′ and i′′.

Theorem 5.5.2. (Convergence of synchronous DRAGON). Consider an infras-
tructure of Nυ hosting nodes, whose resources are shared among Na applications
through an election process with synchronized conflict resolution over a communi-
cation network with diameter D. If the communications occur over a reliable channel
and the function (5.5) maximized during the election routine is submodular, then
DRAGON needs at most N2

a NυD iterations to converge.

Proof. We first show by induction that agents agree on the first k assignments in at
most kNaD iterations. Given the submodularity of zn, the assignment (i⋆

1, n⋆
1) with

the highest vote computed at iteration 1 can be outvoted at most Na −1 times, i.e.,
until every agents voted on node n⋆

1 at least once. Since each time D iterations are
needed to propagate the vote, every agent will have agreed on the highest vote vi⋆

1n⋆
1

at most after NaD iterations. Let us suppose that at iteration hNaD all agents agree
on the first k-best assignments. Since the next-best vote propagated at iteration
k + 1 can be outvoted at most Na − 1 times, it follows that every agent will have
agreed on (i⋆

h+1, n⋆
h+1) by iteration hNaD+NaD. Then, together with (i⋆

1, n⋆
1) being

agreed to at NaD, every agent will have agreed on (i⋆
k, n⋆

k) within kNaD iterations.
In DRAGON each compute node may be assigned to each application, then, in the
worst case there is a combination of NaNυ assignments. Therefore, agents reach
agreement in at most N2

a NυD iterations.

As a direct corollary of Theorem 5.5.2, we compute a bound on the number
of messages that applications have to exchange in order to reach an agreement on
resource assignments. Because we only need to traverse the communication network
at most once for each combination applications per hosting nodes (i, n) ∈ I × N ,
the following result holds:

Corollary 5.5.2.1. (DRAGON Communication Overhead). The number of mes-
sages exchanged to reach an agreement on the resource assignment of Nυ nodes
among Na non-failing applications with reliable delay-tolerant channels using the
DRAGON algorithm is at most NmspN2

a NυD, where D is the diameter of the com-
munication network and Nmsp is the number of links in its minimum spanning tree.
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Performance Guarantees

The election routine in DRAGON is trivially extended with partial enumera-
tion [88], leading to the following two results (for brevity, the extension has been
omitted in Algorithm 4).

Theorem 5.5.3. (DRAGON Approximation Bound). DRAGON extended with
partial enumeration yields an (1 − e−1)-approximation bound with respect to the
optimal assignment.

Proof. (sketch) During the election routine, DRAGON uses a greedy heuristic to
assign node resources to a set of winners Wn. The objective of the heuristic is to
maximize the value of the set function zn(Wn) without exceeding the node capacity
(knapsack constraint). From a recent result on submodular functions [156], we
know that a greedy approximation algorithm used to maximize a non-decreasing
submodular set function subject to a knapsack constraint is bounded by (1 − e−1)
if the algorithm is combined with the enumeration technique due to [88]. Being
the set function zn(Wn) positive, monotone and non-decreasing, it remains to show
that the overall utility maximized by DRAGON is submodular, which comes from
Lemma 5.5.1; hence the claim holds.

Theorem 5.5.4. (DRAGON Approximation Optimality). The DRAGON approx-
imation bound of (1 − e−1) is optimal, unless NP ⊆ DTIME(nO(log log n)).

Proof. (sketch) To show that the approximation bound given by DRAGON is opti-
mal, we first show that the applications-resources assignment problem addressed by
DRAGON can be reduced from the (NP-hard) budgeted maximum coverage prob-
lem [88]. Given a collection S of sets with associated costs defined over a domain
of weighted elements, and a budget L, find a subset S ′ ⊆ S such that the total
cost of sets in S ′ does not exceeds L, and the total weight of elements covered by
S ′ is maximized. We reduce the applications-resources assignment problem from
the budgeted maximum coverage problem by considering (i) S to be the collection
of all the possible set of applications, i.e., S = 2I , (ii) L to be the total amount
of resources available on the hosting node (in this particular case Nρ = 1), and
(iii) weights and costs to be, respectively, votes and demanded resources of each
application. Since [88] shows that (1 − e−1) is the best approximation bound for
the budgeted maximum coverage problem unless NP ⊆ DTIME(nO(log log n)), the
claim holds.

5.6 Experimental Results
To validate the approach presented in this paper, we implemented a prototype of

DRAGON, available at [33]. Our evaluation focuses on assessing both DRAGON’s
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Figure 5.2: Convergence evaluation of DRAGON for different system policies.

asynchronous convergence properties and performance. We deployed our prototype
on an environment with 4 physical nodes (deployed on the CloudLab distributed
research infrastructure [134]), each with a different amount of computing resources
(CPU, memory, and storage). We run 6 diverse application components, whose
implementation can be chosen among 9 different options; on average, each imple-
mentation uses about 13% of a node capacity. These numbers, combined with the
rest of our parameter space, allowed us to test the behavior of the algorithm when
the hosting resources are saturated, even running a moderate number of applica-
tions. All tests have been repeated varying the number of concurrent applications.
To test scalability, we also run larger experiments by deploying our prototype on a
simulated environment.

Convergence Evaluation

DRAGON convergence properties have been evaluated by measuring the time
needed to reach consensus and the total number of messages exchanged. To stress
the convergence of the algorithm, we evaluated it when up to 20 allocation requests
arrive simultaneously.

Figure 5.2 shows our results comparing three system policies: (i) components
of an application are preferably allocated on the lowest number of nodes; (ii) com-
ponents of an application are spread across as many nodes as possible; (iii) no
preference on the number of nodes is given. For each configuration, we ran 25
instances, gradually varying the average number of services per application (with
averages from 2.4 to 3.6 services). Plots show mean values; all confidence intervals
(not shown) were statistically significant.

In particular, Figure 5.2a shows the mean convergence times. We found that,
when a large number of applications interact, encouraging the system to use fewer
nodes significantly lowers convergence time. Some consequences of this policy are (i)
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Figure 5.3: DRAGON convergence evaluation on large scale simulation varying the number of con-
current applications and available hosting nodes, where resource allocation requests are randomly
performed over time.

a reduced probability to lose a node election and (ii) re-voting on residual resources
located on additional nodes is discouraged. Hence, the highest convergence times
have been registered enforcing the usage of many nodes, while convergence is slightly
faster when applications are free to arbitrarily decide the number of nodes to use.
This pattern is more evident for a number of applications greater than 10.

The total number of exchanged messages follows a similar behavior (Figure 5.2b).
However, in this case the previous trend is not marked as for convergence times.
This means that changing this policy does not seem to significantly impact the
number of messages that DRAGON needs to exchange to reach convergence.

Other than offline deployment, we also evaluated online convergence on a large
scale simulation, where an increasing number of applications demand resources over
time (Figure 5.3ab). The convergence is evaluated on the variation of the number of
applications and hosting nodes. Figure 5.3a shows that the number of concurrent
applications affects convergence times more than the number of available nodes.
Although this result is expected (see Theorem 5.5.2), the increase of processing time
may be partially due to the limited number of physical CPUs (the simulation runs
on an i7-4770 CPU @ 3.40GHz, where each DRAGON agent is a separate process).

Figure 5.3b shows that increasing the number of available nodes does not intro-
duce noticeable variations on the total number of exchanged messages. This result
suggests that the number of steps DRAGON requires to converge (hence also the
number of exchanged messages) does not significantly depend on the number of
nodes in the problem. Since, instead, Figure 5.3a highlights that convergence times
increase, we can conclude that what changes is the duration of every iteration, as
more nodes need to be processed.
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Figure 5.4: Performance evaluation of DRAGON comparing (a) different system utilities and (b)
DRAGON solutions against (i) three one-size fits-all common approaches and (ii) a reference
solution obtained running a centralized solver.

Performance Evaluation

Figure 5.4a compares DRAGON performance for the same three system policies
previously introduced. The plot shows the percentage of applications successfully
deployed after the distributed assignment process. We found that, when the num-
ber of concurrent applications stays below 8, all requests are allocated, since the
overall resources demand (considering average size functions) is bounded by the
total amount of available resources. Above that threshold, all analyzed policies
achieve approximately the same average allocation ratio, with the exception of the
“few-nodes-policy”, whose allocation ratio is lower for less than 12 applications,
although it shows the fastest convergence time (Figure 5.2). This is because, when
resources on the already used nodes terminate, this policy discourages the usage of
residual resources available on other nodes. However, this disadvantage disappears
as the number of applications grows, since the system implicitly introduces more
allocation options. This result suggests that DRAGON allocation ratio scales well
with the application concurrency regardless of the system policy.

Finally, to evaluate our performance in practice we compared DRAGON with
traditional orchestration approaches. In particular, we compare against three one-
size fits-all allocation policies, i.e., a centralized orchestrator that uses the same
objective function to optimize the deployment of every application. The evaluated
optimization policies are as follows: (i) minimization of total power consumption,
(ii) greedy selection of the potentially best performing component implementations,
(iii) load balancing among nodes. Figure 5.4b also shows the performance obtained
by switching between these three policies based on which one fits best the needs of
each application. Additionally, we plot the reference solutions, obtained by running
a centralized solver to Problem 1. Values obtained with this experiment set have
been used as reference to evaluate the other approaches.
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Figure 5.4b compares solutions in terms of overall Quality of Service, i.e., the
sum of the QoS obtained by each application successfully deployed2. Varying the
number of concurrent applications, for each configuration we ran DRAGON multi-
ple times. Results are shown with a 95% confidence interval. Centralized algorithms
always give the same solution. Results show that deploying each application ac-
cording to its own objective through DRAGON provides a considerably higher QoS
compared to one-size fits-all approaches, despite DRAGON being a distributed al-
gorithm. In particular, for less than 8 concurrent requests, i.e., before resources
start to run out, DRAGON is always equivalent to the reference solution, considered
as optimal. For a higher number of requests (and thus, of distributed instances),
as expected, the mean QoS departs from the optimal. However, the total QoS
continues to grow, following the trend of the reference solution. This result sug-
gests that DRAGON effectively prefers the deployment applications that introduce
higher utilities to the overall solution.

Other findings from Figure 5.4b are summarized as follows. (i) A common
objective that minimizes power consumption provides poor total QoS, except for a
high number of applications, since this strategy accommodates the largest number
of requests. (ii) Greedly selecting the best performing implementation provides high
values of overall QoS only when there are few applications. Finally, (iii) switching
among different common strategies based on the one that fits best each application
does not necessarily provide a higher QoS. This is because some generic allocation
strategies work well when they are applied to the whole set of applications (e.g.,
load balancing and power minimization). Noticeable, none of the one-size fits-all
approaches is able to increase the overall QoS after resources are saturated.

5.7 Conclusion
In this chapter, we complemented the work on Service-Defined Orchestrations

by proposing DRAGON, a time-bounded distributed approximation algorithm that
solves the problem of optimally partitioning a pool of resources between multiple
edge applications (hence, multiple Service-Defined Orchestrators). DRAGON al-
lows such applications to coexist over a shared infrastructure by means of a dynamic
agreement on how resources have to be (temporary) assigned to the existing appli-
cation. We used linear programming to define and model the application-resources
assignment problem, that DRAGON solves in a distributed fashion providing guar-
antees on both convergence time and performance. Our evaluation assesses con-
vergence and performance properties, comparing different policies of our system
and showing benefits over conventional orchestration approaches. Together with

2The QoS of each application have been modeled through its private utility. Values have been
normalized between 0 and 100 for each physical function.

74



5.7 – Conclusion

Service-Defined Orchestration, DRAGON enhances the capabilities of Edge In-
frastructures; indeed, an infrastructure provider may enable their customers (i.e.,
service providers) to deploy applications through the preferred embedding algo-
rithm and orchestration strategies, without the restrictions deriving by relying on
a conventional one-size-fits-all orchestrator.
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Chapter 6

Configuring Services in Highly
Modular Environments: a
Model-Based Solution

With the transformation introduced by Edge Computing, the highly modu-
lar and distributed infrastructure becomes populated with new arbitrary facilities
(e.g., application components, network functions, SDN applications, and more),
which are generally exploited by service providers to compose the final service. In
this process, service providers may require a mechanism to access the run-time
state of microservices below (e.g., NAT, traffic monitors), monitoring them and
potentially modify their configuration to deliver the proper service composition,
possibly through a uniform API. Unfortunately, most of existing microservice fa-
cilities feature ad-hoc interfaces, while many other are not even designed by taking
into account the possibility to be used as part of higher-level service workflows,
hence not providing an adequate interface that would allow overarching services to
exploit their features. In this chapter, we address this problem by proposing an
approach to allow access to the run-time state of arbitrary components by mean
of high-level model-based structures. In particular, we focus the use case of SDN
applications, which are available on modern network controllers and usually lack
of interoperability and configurable interfaces, although they could be exploited to
compose richer services (e.g., by service-layer orchestrators). The mapping from
the high-level data model to the actual data representation within the SDN ap-
plication is enabled by a suite of algorithms that are generic enough to operate
independently of the actual source code of the application, thus avoiding undesired
and invasive modifications to existing services.

The work presented in this chapter has been first published in [40].
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6.1 Introduction
New generation programmable networks require enough flexibility to cope with

the emerging communication requirements (e.g., QoS, security) of modern high-level
services (e.g., Smart City, Cloud Robotics) operating on top of a distributed and
dynamical environment of networked smart systems (e.g., sensors, smart terminals,
and buildings). These smart environments require punctual and reactive network
and service management operations to adapt systems to context changes and to
assure and preserve proper levels of user experience [124].

The solutions discussed in the previous chapters enable the use of multiple in-
frastructure components in the scope of composite high-level workflows. This can
lead to the delivery of richer added-value applications enabled by control and co-
ordination tasks performed by higher-level service control applications (that we
shorten in ServiceApps). For instance, Service-Defined Orchestrators (Chapter 4)
are in charge of collecting context information and taking coordinated actions in
order to handle service deployment and prevent/recover from service corruption or
degradations. Similarly, an access control system extended with anomaly detection
in resource usage [32] may retrieve data throughput on a per-user flow basis by
leveraging a traffic monitoring analytics tool available on board of an SDN con-
troller, leveraging a traffic shaper in case a misuse is detected.

In general, a ServiceApp, while composing the final workflow, may need to
actively interact with diverse lower-level components both to collect their current
run-time state and to modify previously established configurations. Unfortunately,
many of the existing low-level facilities are not designed with the possibility to
be used as part of higher-level service workflows. This problem is particularly
evident in the case of Software-Defined Networks (SDN), where SDN applications
(shortened in SDNApps) perform arbitrary network-related tasks such as traffic
monitoring, firewall, NAT, deep packet inspection. In fact, SDNApps generally only
offer a partial view of their run-time state, which is kept in completely arbitrary
structures and exposed (if any) through custom APIs. This heterogeneity in SDN
application may prevent ServiceApps from taking effective run-time decisions based
on the current context of the underlying network layer, or at best, makes their
implementation more difficult and less flexible.

To cope with the aforementioned challenges, in this chapter we present an ab-
straction layer enabling ServiceApps to dynamically inspect the run-time state
and/or change the current configuration of any SDNApp based on implementation-
agnostic data-models, also enabling ServiceApps to promptly react to any event
occurring in the controlled infrastructure. We design our system to also allow the
integration of components that were not originally engineered to export their data
to an external consumer (e.g., service orchestrators).

More specifically, our contribution is twofold.
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6.2 – Related Works

First, we propose an overarching software architecture that enables novel Ser-
viceApps to leverage run-time state and configuration of multiple infrastructure-
specific components (SDNApps), with the aim of creating complex workflows span-
ning across multiple infrastructure domains (e.g., possibly managed with different
SDN controllers), and independent from the actual implementation of any given net-
work application. The proposed architecture leverages an abstraction layer based
on a YANG [23] data model associated with each SDNApp, which describes its
configuration and run-time state in an implementation-independent way, and a set
of application-agnostic high-level APIs that enable an external module (i.e., Ser-
viceApp) to access and monitor such data.

Second, we define a set of application-agnostic mapping algorithms that map
incoming requests for a specific data, specified according to the high-level YANG
abstraction, into a read/write operation of the actual run-time internal variable(s)
of the SDNApp. These mapping algorithms are generic enough to be independent
from the specific SDNApp logic (and source code). Moreover, they can be put into
operation without requiring the application developer to create a specific code to
provide access to the selected data.

We evaluate the proposed algorithms in terms of execution time of both read
and write operations, as well as notification latency. Moreover, we assess the perfor-
mance of our approach under specific use cases and evaluate its overhead comparing
with direct access to the application variables. Results show that the execution of
the proposed software framework introduces a relatively low overhead and provides
insights on how to optimize notification performance. Finally, we also provide a
discussion on the advantages of the proposed approach against the requirements
SDNApps should fulfill to be part of the proposed software framework.

This chapter is structured as follows. Section 6.2 analyzes the related work.
Section 6.3 presents some use cases that highlight possible deployments where the
solution presented in this chapter can be adopted. Section 6.4 presents the overall
software architecture. Section 6.5 describes the algorithms that transparently map
the SDNApps variables in a YANG-based structure. Validation, including both
mapping algorithms and the complete architecture, is carried out in Section 6.6.
Finally, Section 6.7 discusses the main lessons learned while prototyping and vali-
dating this approach, and Section 6.8 concludes the chapter.

6.2 Related Works
A number of recent works address the management of the state of SDN appli-

cations [21, 27, 71]. In particular, OpenState [21] and P4 [27] propose modern data
planes that allow instantiating stateful flow rules whose output may change based
on previously processed traffic. In [71], instead, authors address the problem of con-
sistency between the control plane and a stateful data plane. However, these works

79



Configuring Services in Highly Modular Environments: a Model-Based Solution

focus on the limitation of standard SDN data planes (usually OpenFlow) rather
than considering the problem of exposing the application state to an external and
not pre-defined, service.

The Open Daylight controller [108] features a Model-Driven Service Adapta-
tion Layer (MD-SAL), also available in other proprietary software such as Cisco
Network Services Orchestrator [44], which employs user-defined YANG models to
provide messaging and data storage functionality that simplifies the development
of new SDN applications. The approach we propose in this chapter has a different
scope, being applied at a different level, i.e., to export the features of existing SDN
applications to services outside the controller domain.

The problem of handling the run-time state of an application is also tackled in
other fields different from SDN. For instance, works such as [130, 129, 65] investigate
the problem of automatic Virtual Network Functions (VNFs) scaling and/or creat-
ing (either hot or cold) standby copies of a given network service instance. More
specifically, Pico [129] proposes an approach to move and/or duplicate portions of
state among replicas; state is managed in a flow-centric way through FreeFlow [130],
which models the state of a VNF as a flow table (where each line is usually iden-
tified by the TCP/IP five-tuple) and requires a per-VNF agent able to get, put
and migrate flows. OpenNF [65] defines a northbound interface oriented to the
use case of moving state between multiple instances. Although authors mention
that some VNFs may not provide access to their run-time state, they do not focus
this problem, In general, [130, 129, 65] address the problem of moving the state
on new VNFs instances that are analogous to the original one, omitting the case
in which the state has to be shared among applications that feature different pur-
poses. Moreover, these works are oriented to the particular case of a flow-based
state (that is typical in middle-boxes), i.e., the state can always be modeled as a
table where a row (or a set of) concerns a precise traffic flow. By contrast, we
provide an approach to model any state of the application, not only flow-based
ones. Finally, we focus on SDN applications that, being software bundles running
within the environment an SDN controller (e.g., exploiting the OSGi technology),
they may have implementation constraints that prevent from trivially exposing the
desired configuration interface through ad-hoc agents.

In the area of service orchestration, a number of research works are devoted to
creating integrated workflows across application and network layers. The EU H2020
SELFNET project [116] focuses on an autonomic network management framework
based on the Self-Organized Networks (SON) paradigm to significantly reduce oper-
ational costs and improving user experience. More specifically, the authors propose
the deployment of a set of sensors to dynamically identify possible issues that are
then solved by a set of actuators. While such an approach fits nicely with the final
goal of keeping QoS under control, it may not be suitable for a broader scope, such
as to enable generic services and applications to communicate and share arbitrary
information. With this respect, our work is a first, partial implementation of a
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possible 5G Operating System (5GOS) first presented in [107], which extends to a
distributed network infrastructure the concept of “everything as a service” [125].

Ultimately, the analysis of the state of the art reveals a lack of solutions to enable
SDNApps to effectively share their internal run-time state and to communicate with
upper-layer functionalities (i.e., network services or application-layer orchestrators)
and, thus, to be part of composite and dynamically-established workflows. In this
direction, this work proposes a software architecture with an abstraction layer to
enable the real-time exposition and modification of SDNApps internal variables,
where data are exported according to high-level model-based structures. The map-
ping from the high-level data model to the actual data representation within the
SDNApps is enabled by a suite of algorithms that are generic and independent
from the specific source code of the SDNApp, thus avoiding undesired and invasive
modifications to existing applications.

6.3 Use Cases
The capability to collect the run-time state of a running SDNApp and modify

it transparently at run-time (either by issuing the proper configuration commands
or by crafting its state, if needed) brings important advantages in several use cases.
Some possible examples are provided below.

SDN-based Intrusion Prevention System (IPS)

The first use case is depicted in Figure 6.1. An IPS (ServiceApp) coordinates a
workflow involving the current status of an SDN-based Intrusion Detection System
(IDS) and/or additional information collected by other SDNApps (e.g., network
monitors) to feed an SDN-based firewall with the proper policies to block incoming
attacks or suspicious traffic patterns. For instance, the IPS may need to observe
the run-time state of the IDS (e.g., the internal variables that keep the list of
policy violations) and of a network monitor to become aware of any anomalous
state change and thus to detect anomalous traffic patterns (e.g., spikes in non-
working hours). As soon as one among a set of particular changes occurs (i.e., a
threat is detected by the IDS or anomalous traffic is observed through the network
monitor), the IPS service triggers the creation of the required firewall rules that
are then injected in the target SDNApp to protect the network infrastructure.

Migration Service

Another common use case is the migration of a running SDNApp, e.g., a NAT,
to a new location, for instance, to follow user movements [157]. In this case, a
Migration Service (i.e., ServiceApp) may need to acquire the run-time state of
the existing SDNApp instance to properly bootstrap the new instance with the
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Figure 6.1: Use case example: an Intrusion Prevention System service (ServiceApp) requiring the
access to the run-time state of multiple SDN applications (SDNApps).

current/correct state, which in case of a NAT, consists in the network address
translation table. This technique avoids copying the entire memory of the SD-
NApp such as in the traditional Virtual Machine migration approach [15] and it
exploits the idea of moving only semantically rich information as proposed in [65].
In this respect, an application-agnostic Migration Service that operates on what-
ever application internal data structure is possible only thanks to the capability of
dynamically inspecting the run-time state of the SDNApp under consideration.

Service Orchestrators

This use case refers to the deployment and lifecycle management operations
carried out by a Service-Defined Orchestrator (SDO — Chapter 4 on a set of in-
frastructure components that jointly realize an end service. During the service
lifecycle, the Orchestrator may leverage data analytics tools to derive given perfor-
mance indicators to optimize Network Service management operations or to prevent
SLA violations. Indeed, data analytics tools run applications (i.e., SDNApps) that
collect monitoring data from the underlying cloud (e.g., VNFs and virtual links) or
network resources (e.g., OpenFlow switches and links) and then aggregate them to
derive consolidated performance data indicators (e.g., user data flow throughput)
[66]. These data may be used by the SDO to maintain an up-to-date view of resource
usage and/or performance offered by the underlying infrastructure to promptly re-
act in case of service degradations due to concurrent usage of resources from many
different Network Services or due to any adverse event (e.g., service outages, net-
work congestions, improper usage of VNFs). In this context, application-agnostic
data models may foster composite and comprehensive service lifecycle workflows
where both cloud and network resource status information are considered to offer
high-quality services and highly effective resource utilization.
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Figure 6.2: Overall software architecture. ServiceApps (on top) relies on a northbound interface
(composed by the Pub/Sub message bus and on the Rest-based channel) to perform get, set
and subscribe operations on the run-time state of SDNApps. These are accessible through this
northbound thanks to the YANG-based mapping performed by ToY Agents.

6.4 Architecture
This section presents the software architecture that enables ServiceApps to

read and modify the run-time state of SDNApps1, while being agnostic to the
implementation-specific data structures they use internally. The overall architec-
ture is depicted in Figure 6.2. ServiceApps are envisioned to exploit SDNApps
across SDN controllers while relying on the following main components: (i) a
YANG-based data model associated with each SDNApp and describing its run-time
state through high-level and application-independent structures (Section 6.4.1); (ii)
a communication infrastructure enabling interactions between ServiceApp and SD-
NApps where exchanged information and the communication APIs are defined by
the YANG data models associated with SDNApps (Section 6.4.2); and (iii) a To-
Yang (ToY) Agent, injected in each SDNApp that enables ServiceApps to access
SDNApps run-time state according to the specified implementation-independent
YANG data model (Section 6.4.3). The remainder of this section details these
components.

6.4.1 A data model for SDNApps
To avoid ServiceApps to be aware of each SDNApp internal data structures and

custom APIs, we define a high-level model-based API. This interface provides data

1In the remainder of this chapter, the expression “access the run-time state” will be used to
indicate both these operations.
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container interfaces {
container private {

advertise onchange;
leaf name { 

config false; 
type string

}
leaf address {...}
leaf netmask{...}

}
container public {...}

}

module nat {
leaf name {…}
leaf-list authors{…}
list nat-session {

key “uuid“;
config false;
advertise periodic;             
advertise-period 1;
advertise-unit s;
leaf uuid {...}
leaf protocol {...}
leaf src_ip {...}
leaf src_port {...}
leaf public_ip {...}
leaf public_port {...}

}

[…..]                       }

YANG path: /nat/interfaces/private

Instance node:
{

“name”: “if0”,
“address”: “192.168.1.254”,
“netmask”: “255.255.255.0”              

}

Figure 6.3: On the left, a YANG data model for the NAT application. On the right, an example
of YANG path (the one of the “private interface” container highlighted in the model) and an
instance node showing a possible run-time value.

through common syntax and modular structures defined by formal models written
using the YANG modeling language [23]. Through the data model abstraction, an
SDNApp maintainer can arbitrarily decide the portion of the internal state that has
to be exposed to external services, e.g. omitting critical data such as authentication
details. Each SDNApp is associated with its own data model, which is used to
describe: (i) which data is exposed by the SDNApp, (ii) how to access such data
with the desired granularity and (iii) how exposed data is structured. The way we
represent this information within the data model is defined below. An example of a
data model, associated with a NAT application, is shown on the left of Figure 6.3.

Each node of the data model (e.g., module, container, leaf) represents a re-
source, which is uniquely identified through a YANG path. The YANG path as-
sociated with each resource is generated from the data model using rules derived
from RESTCONF [22] and shown in Table 6.1. Particularly, rows #1 to #7 of the
table represent the basic rules, which can be combined as shown in row #8 to spec-
ify any element of the data model. As shown in the table, the YANG path is an
URI built as an ordered list of YANG labels, chaining the names of all the YANG
elements that enclose that resource, from the most external to the resource itself,
separated by the character “/”. For instance, in the data model provided in Fig-
ure 6.3, the container private is enclosed in the container interfaces, which is
in turn enclosed in the module nat; therefore, the resource “private” is identified
by the YANG path /nat/interface/private. YANG paths may enclose prede-
fined portions (e.g., /nat/nat-session) and parametric portions (e.g., /{uuid}).
In particular, resources within a collection are identified by YANG paths that in-
clude a parametric label (Table 6.1, rows #5 and #7); this label corresponds to
the value of the key leaf in the list node description. As an example, in Fig-
ure 6.3 each element of the nat-session list is identified by a YANG path in
the form /nat/nat-session/{uuid}; thus, to identify a specific element of the

84



6.4 – Architecture

Table 6.1: Deriving the YANG path from the YANG data-model.

# YANG element YANG path Example from Figure 6.3

1 Entire data-model /module-name /nat
2 Container [...]/container-name [...]/interfaces
3 Leaf(/Anydata) [...]/leaf-name [...]/name
4 Entire leaf-list [...]/leaf-list name [...]/authors
5 Element in a leaf-list [...]/leaf-list/{value} [...]/authors/Castellano
6 Entire list [...]/list-name [...]/nat-session
7 Element in a list [...]/list-name/{key-field} [...]/nat-session/0xa26

8 Generic element /element1/.../elementN

/nat/interfaces
/nat/interfaces/private
/nat/nat-session
/nat/nat-session/0x26
/nat/nat-session/0x26/dst_ip

nat-session, the parametric label {uuid} must be replaced by the instance value
of the uuid field of the desired element, e.g., 0x26 as in Table 6.1.

Each element is associated with a config statement that indicates whether a
resource is writable (config true) or read-only (config false). For instance, the
resource name in Figure 6.3, which in this case represents the name of a network
interface, cannot be modified by an external ServiceApp. Moreover, inspired by
recent works in IETF [45], we associate a resource with a new advertise state-
ment (defined as a YANG extension) indicating in which situations the SDNApp
advertises the current resource value to the outside world: onchange, advertised
any time the value changes; onthreshold, advertised just when the value exceeds
a specific threshold; periodic, advertised with a certain frequency, regardless of
whether it has changed or not (this is the case of the nat-session resource shown
in Figure 6.3); ondemand, which means it is never advertised, hence the value must
be explicitly requested by the ServiceApp.

High-level ServiceApps use YANG paths to subscribe/get access to SDNApps
resources. Figure 6.3 shows an example of a JSON structure derived from the data
model that a ServiceApp may use to modify the configuration of the NAT private
interface. In the remainder of this chapter, a JSON formatted according to (a
piece of) YANG data model is called instance node. It may contain either the new
configuration to be assigned to a resource, or its current value.

6.4.2 Communication infrastructure
To enable SDNApps to receive configurations from ServiceApps and to expose

their own run-time state in accordance with the data model, we define a logical
communication infrastructure that offers two types of connections: a direct (REST-
based) communication channel and a shared publisher/subscriber message bus.
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Command: publish (notify res. value)

Topic: /nat/nat-session

Content (instance node):

{

“nat-sessions” : [

{

“uuid”: “0xa26”,

“protocol”: “TCP”,

“src_ip”: “10.0.0.1”,

“src_port”: “2526”,

“public_ip”: “130.192.225.79”,

“public_port”: “5678”

},

…

]

}

Command: get (read resource value)

URL: base/nat/interfaces/private

Answer to get @ URL: 

base/nat/interfaces/private

Content (instance node):

{

“name”: “if-0”,

“ipv4-address”: “10.0.0.1”,

“netmask”: “255.255.255.0”

}

REST-based channel

SDNApp - NAT

Message Bus channel

Message Bus

Command: post (set resource value)

URL: base/nat/interfaces/private

Content (instance node):

{

“name”: “if-0”,

“ipv4-address”: “10.0.0.1”,

“netmask”: “255.255.255.0”

}

Answer to post @ URL:    

base/nat/interfaces/private

Content: OK

Request from ServiceApp

Response to ServiceApp

Service Applications

Command: subscribe

Topic: /nat/nat-session

Figure 6.4: Example of messages sent on the message bus (in the left) and on the REST-based
channel (in the right), defined according to the data model of Figure 6.3.

The first relies on a set of REST APIs, used by ServiceApps to send get() and
set() commands to the ToY Agents of SDNApps, in order to explicitly retrieve or
add/modify resources described in the associated data models.

This message bus channel is instead shared between entities that communi-
cate through the publish/subscribe paradigm. In our proposal, ServiceApps act
as subscribers, while the ToY Agents are the publishers. Particularly, they pub-
lish notifications on updates of resources marked as onchange, onthreshold or
periodically in the data model (e.g., notifications may enclose the new value,
the fact the resource has been deleted, and more). Subscriptions are handled hi-
erarchically, thus when a ServiceApp subscribes on a given resource, it will receive
updates on any nested resource.

As shown in Figure 6.4, in both channels the URI to be used by a ServiceApp
to access a specific resource is dynamically derived from the YANG path associated
with the resource of interest, becoming either a URL in the direct channel, or topic
in the shared message bus. Data exchanged in both channels are instance nodes
structured as defined within specific SDNApp YANG model.
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6.4.3 To-Yang Agent
The To-Yang (ToY) Agent is the core component of our architecture. It is im-

ported by each SDNApp as an external module, in order to (i) handle the mapping
of (high level) resources described in the YANG data model on (low level) run-time
application variables and (ii) manage the interaction between the SDNApp and the
communication infrastructure. Using the terminology introduced in Section 6.4.1,
the ToY Agent takes care of setting the configuration and fetching the run-time
state of the SDNApp, providing to the ServiceApps an interface based on YANG
paths and YANG-modeled instance nodes (as shown in Figure 6.4). We designed
the ToY Agent to be agnostic with regard to the different SDNApps, to operate
without introducing invasive modifications on them.

In the remainder of this section, we first describe structures and mechanisms
used by the ToY Agent to map run-time application state into YANG-modeled
data; then we present the architecture of the ToY Agent, hence detailing all the
components that implement the above mechanisms. Finally, we describe the steps
required to extend an existing SDNApp with our ToY Agent, also providing an
overview of the application bootstrap workflow.

Path Mapping Table and Mapping Mechanism

While the YANG data model (together with all the derived YANG resources)
provides a logical, implementation-independent view of the application, each SD-
NApp has its own internal data structure that may be only loosely related to the
logical view. Figure 6.5 shows a possible internal structure of a NAT application
that is modeled through the more generic YANG in Figure 6.3. By comparing the
two structures, we can easily notice, for instance, that some common fields have
a different name (e.g., the nat-session list becomes sessionList) or a different
“location” (e.g., the leaf public_ip is no longer a value inside the session list,
but is stored in the publicAddress variable). In general, there may be arbitrary
differences.

Then, since the ToY Agent communicates with ServiceApps through the high-
level YANG abstraction (i.e., YANG paths and instance nodes), it needs a mech-
anism to identify which variables in the SDNApp code should be accessed to ac-
complish a request or publish updates. For example, if a ServiceApp performs a
get() request on the YANG path /nat/nat-session/0x26/public_ip, the ToY
Agent needs to know that this value is stored in a certain variable, e.g., in the
publicAddress attribute of natData object (Figure 6.5). Instead, if the request
refers to the YANG path /nat/nat-session/0x26, it needs to know where all
needed nested values (protocol, src_ip, src_port, etc. in Figure 6.3) are stored
within the application code in order to reconstruct the instance node.

This information is different from case to case, hence it cannot be embedded
in the ToY Agent since we want this module to be agnostic with respect to both
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Object mainApp (root)
+--- Object natData

+--- String publicAddress
+--- List sessionList
|      +--- Object <list element> [+]
|             +--- String sessionId
|             +--- String privateAddr
|             +--- Integer privatePort
|             +--- Integer publicPort
+--- […]

+--- Object networking
+--- List ifs
|      +--- Object <list element> [+]
|             +--- String ifname
| +--- String mac
|             +--- Object ipv4
|                    +--- String address
| +--- […]
+--- […]

Generated object paths:

/
/natData
/natData/publicAddress
/natData/sessionList
/natData/sessionList /{sessionId}
/natData/sessionList /{sessionId}/sessionId
/natData/sessionList /{sessionId}/sessionId
/natData/sessionList /{sessionId}/sessionId
/natData/sessionList /{sessionId}/sessionId
[…]
/networking
/networking/ifs
/networking/ifs/{ifname}
/networking/ifs/{ifname}/ifname
/networking/ifs/{ifname}/mac
/networking/ifs/{ifname}/ipv4
/networking/ifs/{ifname}/ipv4/address
[…]

Class Session {

String sessionId;

String privateAddr;

Integer privatePort;

Integer publicPort;

[…]

}

Class Nat {

String publicAddress;

List<Session> sessionList;

[…]

}

Class Interface {…}

Class NetInfo {

List<Interface> ifs;

[…]

}

Class mainApp {

Nat natData = new Nat(…)

NetInfo networking = new […]

void run() {…}

}

Figure 6.5: From run-time variables (in the left) to object paths (in the right).

the SDNApp implementation and the data model. For this reason, we defined a
data structure called Path Mapping Table (PMT), that describes each association
between a YANG resource and the corresponding variable in the application source
code. The ToY Agent, once imported in a particular SDNApp, exploits this in-
formation to learn, at run-time, how variables of that SDNAppare structured and
how they are associated with the high-level YANG resources.

Particularly, as shown in Table 6.2, the PMT maps the YANG paths derived
from the data model to the proper object path within the application object tree.
We define object tree the structure of all the variables (i.e., all objects and their
attributes) in the application source code. For instance, the box in the center of
Figure 6.5 reports the object tree corresponding to the source code of the box on
the left. It is worth noting that, unlike the data model, which can be associated
with all the SDNApps implementing the same functionality (e.g., NAT), the object
tree is specific for a given implementation, since it depends on the source code of
the application itself. The first element of the object tree is called root object, and
corresponds to the most external object/variable that we have access to (e.g., the
object mainApp in Figure 6.5). Each element of the object tree (i.e., an applica-
tion variable) is identified by an object path that begins with the root (character
“/”), followed by an ordered list of attributes built as already described in Sec-
tion 6.4.1 in case of YANG path. The right side of Figure 6.5 shows the object
paths corresponding to the object tree depicted in the central box of the figure.

Since an SDNApp may feature a source code structure that is very different from
the high-level view presented in the YANG model, this originated the necessity of
supporting a complex syntax for the PMT records. In the following we present
some of the mapping cases we encountered in our work, using them to intuitively
describe how the PMT and its records are formatted.

The most common mapping case is for application variables that are associ-
ated with YANG resources having simply a different name (e.g., sessionList is
mapped to the nat-session resource). Another case is when application variables
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Table 6.2: Excerpt of PMT, referred to the data model of Figure 6.3 and to the object tree shown
in Figure 6.5.

# YANG path Object path

1 /nat /
2 /nat/nat-sessions /natData/sessionList
3 /nat/nat-sessions/{uuid} /natData/sessionList/{sessionId}
4 /nat/nat-sessions/{uuid}/src_ip /natData/sessionList/{sessionId}/srcAddr
5 /nat/nat-sessions/{uuid}/public_ip /natData/publicAddress
6 /nat/interfaces /networking/ifs
7 /nat/interfaces/{noresource} /networking/ifs/{ifname}
8 /nat/interfaces/private /networking/ifs/if0
9 /nat/interfaces/private/address /networking/ifs/if0/ipv4/address

do not have any mapping to a resource in the data model (e.g., variable mac in the
object tree show in Figure 6.5), in which case no entries are featured in the PMT
(Table 6.2). In some cases, resources that are inside the same parent element in the
data model may correspond to variables located in different objects in the object
tree, or vice versa. For example, the resources nat-session and interfaces (rows
#2 and #6 in Table 6.2) are children of the nat node in the data model of Figure 6.3,
while their corresponding objects, namely sessionList and ifs, are attributes of
two different objects in the object tree of Figure 6.5. All the previous cases lead to
the necessity of a record for any possible YANG path within the PMT.

A frequent mapping case is when items of a YANG list have a direct corre-
spondence with items of a collection object (e.g., an array, a list, a set or a map).
An instance of this mapping is realized with rows #3, #4 and #5 of Table 6.2. To
distinguish resources in /nat/nat-session, the parametric label {uuid} is used in
the YANG path, since the uuid leaf is the key for the items of the nat-session list
according with the YANG model of Figure 6.3. To map each resource in this list
with a specific object of sessionList in the object tree, the attribute sessionId
is used as a parametric label of the object path, since its value corresponds to the
YANG key field (although the application source code does not indicate in any way
that such a variable is a key in the list).

Finally, we encountered some occasional cases where a non-list resource in the
data model is mapped to a specific item of a collection (e.g., a list) in the object
tree, or vice versa (e.g., the private resource in the data model of Figure 6.3 cor-
responds to a specific element of the list ifs in the object tree of Figure 6.5). This
mapping is descried through rows #7 and #8 of Table 6.2. Particularly, in row #8
the parametric label in the object path is replaced with the specific value “if0”,
i.e., the value of the object that maps to the resource identified by the YANG path
/nat/interfaces/private. Moreover, row #7 maps a dummy resource (called
noresource in Table 6.2) within YANG data model, into a generic element (iden-
tified by the parametric label) of the collection in the object tree. This way, the
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ToY Agent knows that the parametric label of ifs is ifname and, e.g., if0 is the
instance value of the corresponding variable ifname in the application code.

To make the ToY Agent agnostic with respect to the data model and inde-
pendent from the particular SDNApp internal variables structure, the PMT must
be coupled with a set of Mapping Algorithms that exploit this data structure and
enable both read and write access to the configuration and run-time state start-
ing from its high-level representation. Particularly, given a PMT, a YANG data
model and the associated SDNApp, the mapping algorithms both retrieve and set
the SDNApp variables, converting YANG-modeled structures into application ob-
jects (and vice versa). As we do not want to introduce overhead on the SDNApps
code by implementing an ad-hoc mapping for each of them, those algorithms are
application-agnostic and operate just relying on the PMT and on the data model.
Our mapping algorithms, described in detail in Section 6.5, provide the following
elementary operations: (i) resolve the association between a YANG path and an
object path and vice versa, through a lookup on the PMT; (ii) fetch an object
starting from its object path; (iii) get the value of a given object and write it into
the corresponding instance node (e.g., JSON), according to the YANG data model
and the PMT (the YANG data model is used to derive the structure of the in-
stance node, while the PMT shows how to map application variables into YANG
resources); (iv) set the value of application objects starting from the corresponding
instance node (e.g., JSON), according to the PMT.

ToY Agent Architecture

Figure 6.6 details the architecture of the ToY Agent. This component is linked
to the original SDNApp and must be configured with both the data model and the
PMT associated with the SDNApp itself. The ToY Agent architecture has been
designed to work on top of any SDNApp implementation; it is described below
through a top-down approach.

The northbound interface of the ToY Agent consists of two modules that connect
to the communication infrastructure, namely the YANG Based Publisher and
the YANG based REST APIs, which implement respectively the shared message
bus publisher and the HTTP REST server described in Section 6.4.2.

The On-Demand Access Handler manages get() and set() commands
coming from the ServiceApps through the REST APIs, relying on the get_node and
set_node core primitives provided by the Mapping Library. Instead, the Object
Listener implements the monitoring procedure needed to recognize and notify
updates on the SDNApp state. It performs the following operations: (i) identify,
through the data model, the YANG path of resources that should be exported (and
when to export them); (ii) rely on the Mapping Library to convert these YANG
paths into objects (map_path and fetcho primitives); (iii) build the corresponding
instance node (using get_node primitive) and export it through the YANG Based
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Figure 6.6: Architecture of the ToY Agent.

Publisher on the message bus whenever the condition specified in the YANG data
model for that resource (onchange, onthreshold or periodically) occurs.

The Mapping Library is the core module of the ToY Agent, as it represents
the bridge between the high-level YANG interface and the low-level object-based
structure of application variables. It both accesses the PMT and the YANG data
model, and relies on a Reflective Library to implement the mapping procedures
introduced in 6.4.3, thus providing the following primitives: map_path, converts
a YANG path to an object path through the PMT; fetcho, returns an object
starting from its object path; get_node, returns the instance node (e.g., a JSON
structure) of the requested YANG resource, reading values from the application
variables; set_node, modifies the application variables based on the input YANG
resource instance. In Section 6.5 we formalize the algorithms that implement these
procedures.

The Reflective Library is the component that directly interacts with the orig-
inal application actually accessing its variables. Particularly, it allows to examine
and modify application variables at run-time through the use of reflection [106]
(a.k.a. introspection) 2. Through the run-time introspection of application objects,
the Reflective Library provides an interface built with the following primitives (also

2Reflection is required since the ToY Agent knows attribute names just during its execution,
e.g., when a particular request is performed, deriving them from the object path retrieved in
the PMT. As we validated our proposal through Java-based SDNApps, we exploited the JAVA
Reflection API to access and manipulate run-time objects.
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// Import the ‘‘ToY Agent’’ module into this application
import sdnapp.ToYAgent;

// This code should be added in the ‘‘bootstrap method’’ of the SDNApp
// Instantiate the ToY Agent, providing it a reference to the root object, the PMT and the model
public ToYAgent tya = new ToYAgent(this, pmt, yangModel);
// Start the ToYAgent and let’s forget about it
tya.start();

Figure 6.7: Steps required to include the ToY Agent in an existing application.

shown in Figure 6.6): get_attribute(), get_by_attribute(), set_attribute()
and append_new(). These are the only procedures that have direct access to the
original SDNApp execution environment (Figure 6.6). In Section 6.5 all reflective
functions are formally defined.

It is worth noting that, since the ToY Agent directly accesses to application
variables, race conditions may derive from possible situations in which the ToY
Agent sets a variable value on which the SDNApp itself is working on it (or even
read a temporarily inconsistent piece of state). To avoid this problem, we assume
that SDNApps are thread safe, i.e., that critical regions are properly protected so
that the ToY Agent is prevented from modifying variables during critical operations
or read inconsistent data.

Embedding Mechanism and Operating Workflow

Mapping mechanism used by the ToY Agent, as well as its architecture, have
been designed to keep it independent from the particular SDNAppṪhis way, we
reduce the overhead of the SDNApp developer, which must not write an ad hoc
ToY Agent for each new application, thus allowing the inclusion of any SDNApp
in our configuration framework almost without introducing any changes in the
application code.

Figure 6.7 shows the steps that an SDNApp developer is required to carry
out to make its software compatible with our framework: (i) include the ToY
Agent module in the SDNApp; (ii) initialize the ToY Agent at the application
bootstrapping, by providing it a reference to the root object (the most external
object that can be accessed from the outside), the Path Mapping Table and the
YANG data model; (iii) start the ToY Agent.

At the bootstrapping, the ToY Agent performs the following preliminary op-
erations: (i) notifies the SDNApp identifier and the YANG data model through
the message bus, so that external ServiceApps are enabled to exploit the new ap-
plication; (ii) analyzes the data model to identify when the value of each resource
should be exported (i.e., onchange, onthreshold, periodically or ondemand);
(iii) reads the PMT to understand how to map YANG resources into application
objects; (iv) starts an Object Listener (Figure 6.6) that monitors and exports ob-
jects associated with resources to be notified onchange, onthreshold, whenever
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the conditions defined in the data model are satisfied, and periodic, whenever the
appropriate timer expires; (v) enables the REST-based communication channel to
allow ServiceApps to explicitly access the SDNApp run-time state.

6.5 Mapping Algorithms
In this section, we formalize the algorithms used to map the object-oriented

internal state of an SDNApp into the high-level YANG-modeled state, and vice
versa. We identified four elementary operations, implemented by as many Mapping
Algorithms: map_path(), fetcho(), get_node() and set_node().

The operations implemented by the algorithms presented in this section con-
stitute the Mapping Library, the core module of the ToY Agent presented in Sec-
tion 6.4.3.

6.5.1 Structures and Function Notations
Table 6.3 presents formal notation for data structures that will be considered

during the description of the mapping algorithms. For the sake of clearness, be-
sides its formal description, every notation is accompanied with an example that
illustrates it within the NAT use case shown in Figure 6.3. Additionally, mapping
algorithms rely on the following functions.
Label Functions. Given a resource υ ∈ Y , the function labely returns the label
λy ∈ Ly of that resource, i.e., the name of the corresponding YANG node in the
model. Given an object o ∈ O, the function labelo returns the label λo ∈ Lo, i.e.,
the name of that variable/attribute in the run-time application environment.
Parametric Label Functions. Since, as described in Section 6.4.1, resources in
a list are identified by a YANG path that ends with a parametric label (namely,
the name of the key field in the model), we use function param_labely : Ln

y →
Ly to know the parametric label of a list resource. Analogously, we use func-
tion param_labelo : Ln

o → Lo for collection objects. For instance, in Figure 6.3,
param_labely(“/nat/nat-sessions”) = “hash”. Note that this function can be
easily implemented through an inspection of the PMT.
Instance Node Helpers. Given a key-value instance node ν ∈ Nkv and a label
λy ∈ Ly, we use (i) the function get_element(ν, λy) to get the node νi ∈ ν, and
(ii) the function put_element(ν, λy, x) to set νi to an input value x ∈ N , where
νi is the node nested in ν with key λy (in symbols key(νi) = λy). Given a list
instance node ν ∈ Nl, we use (iii) function append_element(ν, νi) to add the
instance node νi ∈ N to the list ν. For example, let ν be the instance node in
Figure 6.3; then, get_element(ν, “name”) = “if0”.
Reflective Library Functions. As described in Section 6.4.3, Mapping Library
relies on the Reflective Library. It provides some functions that, given an object
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Table 6.3: Formal notation for data structures used in the algorithms description.

Notation Description Example

Y = Yco ∪ Yli ∪ Yle ∪ Yll Set of all YANG nodes in the data model, i.e.,
modules and containers (Yco), lists (Yli), leafs
(Yle) and leaf-lists (Yll).

nat and interfaces (Figure 6.3)
belong to Yco, while nat-session
belongs to Yli.

υ ∈ Y YANG resource, i.e., each node of a YANG
model.

In the YANG of Figure 6.3, each
element in bold represents a re-
source.

υi ∈ υ Resource υi is a node directly nested in re-
source υ (child resource).

Container private is a child re-
source of container interfaces
(Figure 6.3).

υroot ∈ Y The root resource in Y . The nat module in Figure 6.3.
Ly Set of all YANG labels, i.e., the name of all

YANG nodes in Y .
For the YANG in Figure 6.3,
Ly={“nat”, “name”, “authors”,
...}.

ρy ∈ Ln
y YANG path of a given resource υ ∈ Y . The YANG path of the re-

source highlighted in Figure 6.3 is
/nat/interfaces/private.

O = Oe ∪ Ol ∪ Oo Set of all application variables, i.e., “ele-
mentary objects” (Oe), e.g., integers, strings,
booleans, “collection objects” (Ol), e.g., list,
maps, “ordinary objects” (Oo) e.g., instances
of custom classes.

In Figure 6.5, networking belongs
to Oo, ifs belongs to Ol and
ifname to Oe.

o ∈ O Application object, i.e., each vari-
able/attribute in the SDNApp execution
environment.

Every Java object in Figure 6.5.

oi ∈ o oi is an attribute of o (child object). In Figure 6.5 publicAddress is a
child of the object natData.

oroot ∈ O Root object in O. The root object of the object tree
in Figure 6.5 is mainApp.

Lo Set of all object labels, i.e., the name of all
run-time variables of an SDNApp.

For the example in Figure 6.5,
Lo = {natData, publicAddress,
sessionList, ...}.

ρo ∈ Lm
o Object path of a given object o ∈ O. The object path of the list “ifs” in

Figure 6.5 is /networking/ifs.

N = Ne ∪ Nl ∪ Nkv Domain of all the possible instances (e.g.,
JSON) of resources described by a data model.
They can be elementary nodes Ne (i.e., nodes
without nested nodes), list nodes Nl and key-
value nodes Nkv .

The instance of a container re-
source is a key-value node, while
the instance of leaf resource is an
elementary node.

ν ∈ N Instance node of a resource υ ∈ Y , i.e., a piece
of data that is structured as defined by the
portion of YANG model associated with the
resource υ.

An example of (key-value) in-
stance node is the JSON data in
Figure 6.3.

νi ∈ ν Node νi is directly nested in node ν (child
node).

In Figure 6.3, node “name” is di-
rectly nested in the example in-
stance node.

o ∈ O, allow reading and modifying the value of any oi ∈ o (i.e., any of its child
objects). On ordinary objects, i.e., o ∈ Oo, oi is an attribute of o; thus, the library
provides (i) function get_attribute(o, λoi

), that returns attribute named λoi
∈ Lo

of object o ∈ Oo, and (ii) function set_attribute(o, λoi
, x), that sets attribute

named λoi
∈ Lo of object o ∈ Oo to value x ∈ O. On collection objects, i.e.,

o ∈ Ol, oi is an item of the collection o; thus, the library provides (iii) function
get_by_attribute(o, λoi

, x), that returns the first item of collection object o ∈
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Ol whose attribute named λoi
∈ Lo is equal to value x ∈ O, and (iv) function

append_new(o, λoi
, x), that appends to collection object o ∈ Ol a new item, whose

attribute named λoi
∈ Lo is initialized to value x ∈ O. For example, let o be the

object natData of Figure 6.5; then a call to get_attribute(o, “public_Address”)
returns the value stored in natData.publicAddress.
Fetch Resource Function. Given a YANG path ρy ∈ Ln

o , to retrieve the corre-
sponding resource υ ∈ Y we use the function fetchy : Ln

o → Y . Note that fetchy

can be easily implemented through a simple lookup in the YANG model.

6.5.2 Algorithms Description
We are now ready to describe the algorithms that perform the bidirectional

map between run-time application variables and resources defined by the YANG
data model. They constitute the Mapping Library module of the ToY Agent
(Section 6.4.3). Since mapping algorithms exclusively rely on the content of the
PMT and the YANG model, they enable the ToY Agent to be agnostic regarding
the particular SDNApp implementation.
Map Path Algorithm. This algorithm establishes a link between YANG re-
sources and application objects, since it converts a YANG path ρy ∈ Ln

y to the
corresponding object path ρo ∈ Lm

o , according to the information stored into the
PMT. This path mapping is implemented by the function map_path : Lm

o → Ln
y ,

whose algorithm is omitted since it is a trivial key-value lookup in the PMT, that
retrieves the proper object path based on the input YANG path.
Fetch Object Algorithm. Algorithm 7 shows the fetcho procedure, which, given
an object path ρo, retrieves the reference to the corresponding object. To do this,
it performs iterative access to run-time variables in the object tree, fetching, at
each iteration, the object associated with the next label of the path ρo given as
input (Algorithm 7, line 2). For each label, the next object is fetched through
the function get_attribute, in case the previous object is not a collection (line
7), while get_by_attribute is used otherwise, passing the parametric label as
attribute (lines 4-5). Both these functions are provided by the Reflective Library
(as described in Section 6.5.1).3

Example: Referring to the object tree in Figure 6.5, lets consider object path
ρo = /networking/ifs/if0 as an input to the fetcho procedure. The algorithm
iterates over the three labels of ρo (i.e., “networking”, “ifs” and “if0”) to access,
each time, the next nested object until the reference to the last one (“if0”) is
finally fetched. At the first iteration, the attribute networking of the root object
is accessed (Algorithm 7, line 7), then, at the second iteration attribute ifs of

3In Algorithm 7, the helper function sub_path truncates a path to the position given as input
(position is considered from the root for positive inputs, from the last label for negative ones).
For instance, sub_path(“/natData/sessionList/0x26”, −1) = “/natData/sessionList”.
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Algorithm 7 fetcho for object path ρo

Input: ρo ∈ Ln
o

Output: o ∈ O

1: o = oroot

2: for all λi ∈ ρo do
3: if o ∈ Ol then
4: λp

i = param_labelo(sub_path(ρo, i))
5: o = get_by_attribute(o, λp

i , λi)
6: else
7: o = get_attribute(o, λi)
8: return o

Algorithm 8 get_node from a YANG path ρy

Input: ρy ∈ Ln
y

Output: ν ∈ N
1: o = fetcho(map_path(ρy))
2: υ = fetchy(ρy)
3: if υ ∈ Yco then
4: ν = dict_node()
5: for all υi ∈ υ do
6: νi = get_node(add_path(ρy, labely(υi)))
7: put_element(ν, labely(υi), νi)
8: else if υ ∈ Yli ∪ Yll then
9: ν = list_node()

10: for all oi ∈ o do
11: λp

i = param_labelo(map_path(ρy))
12: νi = get_node(add_path(pathy(ρy, λp

i )))
13: append_element(ν, νi)
14: else
15: ν = o
16: return ν

the object networking is accessed. Since ifs is a list, during the third and last
iteration the procedure performs a lookup on the PMT to discover its parametric
label λp

i , i.e., ifname (Table 6.2, row 7); the parametric label is then used to fetch
the correct object inside the list ifs, namely, the one whose attribute ifname is
equal to “if0” (Algorithm 7, lines 4-5). Since “if0” is the last label of the object
path, finally the fetcho procedure returns a reference to this object (Algorithm 7,
line 10).

The two main operations needed to map the SDNApp run-time variables (that
represent configuration and run-time state) into a high-level YANG-modeled struc-
ture (and vice versa) are described by the recursive algorithms get_node and
set_node.
Get Node Algorithm. Each time the ToY Agent receives, from a ServiceApp,
a get() command related to a given YANG path ρy, it uses procedure get_node
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to create and return the corresponding instance node (i.e., JSON data). It is
(i) structured according to the piece of data model associated with the resource
υ = fetchy(ρy) and (ii) filled with current values of application variables. To
fill the instance node with proper values, a series of recursive calls to get_node
are performed (for readability, recursive calls are marked with underscores in Al-
gorithm 8). At each recursion step, the algorithm relies on map_path and fetcho

procedures (line 1) to fetch the object o that, according with the PMT, is mapped
on the resource identified by the input YANG path ρy. The algorithm starts build-
ing the node instance of the resource identified by the input YANG path ρy. Then,
at each recursion step, this path is extended in order to build and fill all inner nodes
(Algorithm 8, lines 6 and 13); these inner nodes are then added to the parent node
(lines 7 and 14)4. Each recursion branch stops when a leaf resource is reached;
the corresponding (elementary) instance node is filled with the value of the object
fetched in that recursion (lines 16-17).

Example: We now provide an example of the get_node procedure, using as
reference the YANG in Figure 6.3 and supposing that a ServiceApp needs to re-
trieve the resource identified by the YANG path ρy = /nat/interfaces/private.
In Algorithm 8, line 1, the get_node procedure retrieves the object path ρo =
/networking/ifs/if0 through a lookup into the PMT (Table 6.2, row #8). Then,
in the same line, it gives this object path as input to the fetcho procedure, in
order to get the reference to the corresponding object o (as described in the pre-
vious example). After the object o has been fetched, the same is done for its
corresponding resource υ (line 2) through the YANG model, which is needed to
know how the instance node must be structured. Since in our example the resource
/nat/interfaces/private is a container, a key-value instance node is initialized
(Algorithm 8, line 4). Then, for each child resource, the algorithm is repeated recur-
sively and the instance node populated with all the child-nodes obtained this way
(lines 6-7). For instance, let’s consider the child resource with label “address”;
the path ρy is extended with this label (i.e., /nat/interfaces/private/address)
and get_node is called again. At this point, the object path obtained through
the lockup into the PMT is /networking/ifs/if0/ipv4/address. Thus, fetcho

accesses to the inner objects, i.e., first ipv4, then address, thus returning the last
one, whose value is the IP address of the private interface. Since the resource υ
(i.e., address) of the current recursion is a leaf, this value is directly used to fill
the node ν (line 17). The just filled instance node is then returned to the caller
(line 19) so that it can be appended to the parent node (lines 7 or 14) The same is
done for other children resources of /nat/interfaces/private, namely name and
netmask. At the end of all the recursion steps, the just built JSON node will be

4In Algorithm 8, the helper function add_path extends the YANG path with the label given
as input.
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Algorithm 9 set_node ν in object associated with ρy

Input: ρy ∈ Ln
y , ν ∈ N

1: ρo = map_path(ρy)
2: o = fetcho(ρo)
3: if ν ∈ Nkv then
4: for all νi ∈ ν do
5: set_node(add_path(ρy, key(νi), νi)
6: else if ν ∈ Nl then
7: for all νi ∈ ν do
8: idi = get_element(νi, param_labely(ρy))
9: append_new(o, param_labelo(ρo), idi)

10: set_node(νi, add_path(ρy, idi))
11: else if ν ∈ Ne then
12: oparent = fetcho(sub_path(ρo, −1))
13: set_attribute(oparent, labelo(o), value(ν))

equal to the one shown in Figure 6.3; at last, it can be returned by the ToY Agent
to the ServiceApp as response to the get() command.
Set Node Algorithm. The set_node procedure (Algorithm 9) is used by the
ToY Agent to modify the configuration of an SDNApp each time the ToY Agent
receives a set() command from a ServiceApp. It takes a YANG path ρy and
an instance node ν (e.g., JSON) as input, and configures the SDNApp modifying
its run-time variable according to the data in the instance node. To configure all
run-time variables with value stored in the instance node, a series of recursive calls
to set_node are performed (for readability, recursive calls are marked with under-
scores in Algorithm 9). Similarly to get_node, the algorithm starts by fetching
the object corresponding to the input YANG path ρy; this is configured through
functions append_new or set_attribute (lines 10, 14), provided by the Reflective
Library. At each recursion step, the base YANG path is extended with the label
of each child resource, in order to fetch and configure all inner objects. When a
list should be extended with a new object (lines 8-11), first its unique ID (at-
tribute corresponding to the parametric label) is initialized according to the value
of the instance node (the attribute initialization is implemented by the function
append_new of the Reflective Library); then, it is in turn configured through a re-
cursive call to set_node (line 11). Even in this case, each recursion branch stops
when a leaf node in the YANG data model is reached; its instance value is used to
configure the corresponding object (lines 14-15)5.

Example: Let us suppose that instance node ν of Figure 6.3 is used to con-
figure an application having the object tree in Figure 6.5. The YANG path ρy =

5Note that, to modify the value of a leaf object, Algorithm 9 needs to fetch the reference to
the parent object.
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/nat/interfaces/private is given as input to set_node, together with the in-
stance node ν. Algorithm 9 lines 1-2 fetch object o and resource υ. At this point,
since the instance node is a key-value structure (the condition in line 3 is veri-
fied), the YANG path is extended once for each inner node (lines 4-5), in order to
continue the recursion. For instance, for the inner node with key “address”, the
input YANG path /nat/interfaces/private is extended as /nat/interfaces/
private/address; this is used, together with its value “192.168.1.154”, to call
again the set_node procedure (line 5). With this new input, due to the map-
ping into the PMT (Table 6.2, row #9), object o returned by fetcho in line 2
is the string attribute privateAddress (Figure 6.5). Since ν is now an elemen-
tary node, object o is set to its value “192.168.1.154” (Algorithm 9, line 15).
In the same way, set_node is called recursively also for other child resources of
/nat/interfaces/private, namely name and netmask.

The performance of the algorithms presented above is analyzed and discussed
in the next section.

6.6 Experimental Results
We set up a testbed consisting of a Mininet virtual network, controlled by

an instance of the ONOS SDN controller6. Our evaluation focuses on two major
sets of results. We first measure the overhead introduced by the ToY Agent for
individual read and write operations, together with update notifications; to compare
performance, we also run tests on ad-hoc manipulated SDNAppsṪhen we analyze
the applicability of our approach to the use cases presented in Section 6.3.

6.6.1 ToY Agent Evaluation
To evaluate the delay introduced by the ToY Agent, we used an existing ap-

plication called “SSSA-analytic-tool”, which serves network orchestration functions
within SDN domains [112]. Since this application has been developed independently
from this work, it does not natively provide any interface to allow an external service
(e.g., network service orchestration) to access its state.

To integrate this SDNApp into our framework, we simply included the generic
ToY Agent module (the source code of our prototype is available at [4]) as described
in Section 6.4.3. Additionally, to evaluate the ToY Agent overhead against tradi-
tional ad-hoc approaches, we conducted our tests also on a second version of the
SSSA-analytic-tool, which has been modified by means of a REST interface that

6In our tests, we deployed ONOS, Mininet, and all modules of our architecture on a Linux
debian 4.14.13-1-amd64, on top of a physical machine with 16 GB of RAM running an Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz.
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Figure 6.8: (a) Partial times needed to (i) map YANG paths into Object paths and (ii) fetch an
object reference starting from its path, for different depth levels. (bc) get_node (b) and set_node
(c) total times for different depth levels; values are compared with direct ad-hoc access. Upper
and lower quartils are plotted along with errorbars.

enables direct access to run-time data. In this last case, the JSON representation
is strictly dependent on the application itself (it follows the same structure of the
SDNApp variables) and there is no higher level common abstraction.

Measurements have been taken considering the variation of the depth parame-
ter, i.e., the maximum length among the YANG node branches starting from the
node that has to be set/retrieved by the operation to perform. For instance, all
leafs have depth 0, the instance node of the private interface in Figure 6.3 has depth
1 (since it contains only elements with depth 0), and so on. The maximum depth of
an instance node of the YANG in Figure 6.3 is 3 (we then say that the depth of the
YANG model itself is 4). For validation purpose, a YANG model with depth 9 has
been used (≈1000 resources), together with a PMT to associate YANG resources
with the SDNApp variables.Higher levels of depth have not been considered since
rarely widespread data-models exceed a depth of 6.

Access Time

We performed some get()/set() operations varying the depth parameter, thus
testing the performance of each algorithm described in Section 6.5.2 and their
scalability. Results taken over one thousand samples for each depth level are shown
in Figures 6.8(a-c).

In particular, Figure 6.8a shows the partial times required by the map_path
and the fetcho procedures. As expected, the time taken to convert a YANG path
into the corresponding object is almost constant (about ten microseconds) with
the depth growing, since this operation corresponds to a lookup on the PMT. The
fetcho procedure time has the same order of magnitude, but its value slightly
increases with the increase of the depth (with slow linear growth).

Figure 6.8b depicts the total time needed by the ToY Agent to perform read
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Figure 6.9: (a) Time overhead introduced by the ToY Agent for read and write operations, at
different depth levels. (b) Additional lines of code needed to enable read and write access to
SDNApp variables for different depth levels. (c) ToY Agent CPU consumption and notification
delay for different polling periods (upper and lower quartiles are plotted along with error bars).

(get_node) operations. As the graph shows, even if the curve features an expo-
nential trend (as expected from the use of recursive algorithms), for depth levels
below 6 its growth is still almost linear. This is a significant result since widespread
data-models usually feature far smaller depths. Values are compared with those
of the ad-hoc manipulated application. For depth levels below 7, despite the ToY
Agent overhead, the total time still sticks below a couple of milliseconds, which is
reasonably low for read operations of a whole SDNApp state. Similar considera-
tions can be done for write (set_node) operations (Figure 6.8c), which in general
require slightly higher times.

Figure 6.9a depicts the proportionate delay overhead introduced by the ToY
Agent normalized on the baseline direct access to SDNApp variables. The graph
shows that, especially for write operations, there is no direct connection between the
proportionate overhead and the depth level of the accessed node, i.e, increasing the
depth level does not necessarily lead to a higher percentage of overhead compared
with direct access. This result suggests that the algorithm is more susceptible
to the particular nature of the data that each request has to manipulate (e.g.,
differences between the YANG and the internal representation, data structures
used to implement object collections, etc.).

Finally, please note that this overhead does not refer to any particular applica-
tion since it is based on measurements taken using a large data model that features
arbitrary data structures. The correlation between the overhead and the specific use
case, along with considerations about the involved data structures, will be analyzed
in Section 6.6.2.

Programming Overhead

The overhead in terms of additional line of codes that the two approaches in-
troduce to the original SDNApp is shown in Figure 6.9b. In Section 6.4.3 we have
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already shown that 3 lines of code are enough to import and run our ToY Agent
into an existing SDNApp. On the other hand, the “ad-hoc” application has been
extended with a minimal Jersey REST server that is integrated with ONOS. This
required a few extra classes with a considerable amount of additional code, as long
as some modification in the original SDNApp source code. Ad-hoc modifications
are detailed below.

For the REST interface, we needed two small classes plus the implementation of
a controller object, featuring two methods for every single object and variable to be
exported. In our implementation, we needed 9 lines of code on the REST controller
for a minimal get() operation and 15 lines for each set(). Of course, this grows
exponentially with the depth level (for our setup, we implemented just the methods
needed to measure the performance, i.e. two for each depth level). Since ONOS
manages the REST service through an inversion of control paradigm, no additional
code has been required to run it. However, getter/setter methods have been added
to the attributes of the root class, to allow the REST controller to access them
(4 attributes, for a total of 32 lines). Most importantly, all existing classes have
been extended with two custom methods to perform JSON parsing and serialization
(≈25 lines per class, depending on the number of attributes to be exposed). Totals
for each depth level are shown in Figure 6.9b. Since the code overhead in the
ToY Agent is extremely low and constant (3 lines of code), the graph also takes
into account the lines of the PMT, despite this not being an application invasive
modification. The figure clearly assesses that, from the application maintainer point
of view, the programming overhead to enable read and write access through our
approach is negligible compared with an ad-hoc manipulation of the SDNApp.

Notification Delay

As described in Section 6.4.2, ServiceApps may subscribe to desired resources
to be notified when something within them changes. Since variables are mon-
itored with a polling mechanism, we measured the notification delay together
with the CPU consumption of the system, on the variation of the polling fre-
quency.Figure 6.9c summarizes the results taken over one hundred samples. The
graph shows how, obviously, with a growing polling period, the time needed to
receive the notification increases, while the CPU consumption decreases (CPU con-
sumption values are shown in the vertical axis on the right side). Measured values
show that with a polling period of ≈0.8 s or greater, CPU consumption remains
almost constant (with a slow decrease from ≈0.2% to ≈0.1%), while the notification
latency starts to grow the trend is logarithmic, but the curve slope is significantly
high up to a polling period of 5 s). A good compromise, therefore, is a polling
period of 0.8 s, which provides low CPU consumption (≈0.2%) with a reasonable
average notification latency of ≈0.5 s.

102



6.6 – Experimental Results

IPS as ServiceApp

GET()

DATA (No Intrusion)

IDS as SDNApp Network Monitor
as SDNApp

Firewall as
SDNApp

               GET()

             DATA (No Intrusion)

GET()

DATA (Intrusion)

loop [for i<=7; i++;]

Intrusion
detected

SET(Firewall Rule Installation)

(a)

Migration Service
as ServiceApp

Notify(Performance Deterioration)

Migrated NAT as SDNApp

               GET(ask for the runtime state)

DATA (NAT Table)

Migration
decision

NAT as SDNApp

                                        SET(Copy all the NAT table)

                                        SET(Copy 10% of the NAT table)

                                        SET(Copy 1% of the NAT table)

Notify(NAT session)

Notify(NAT session)

(b)

NFVO as ServiceApp Network Infrastructure
Manager as SDNApp

Notify state information

Congestion
Detected

Network Monitoring
Tool as SDNApp

                                        GET()

                                        SET

               SET Threshold

loop

                                        SET

      DATA (Current Network Status)

(c)

Figure 6.10: Use case workflows for (a) IPS (b) Service Migration and (c) Service Orchestration
scenarios. The figures detail the list of operations that ServiceApps execute on SDNApps.

6.6.2 Use Cases Evaluation
In this subsection, we compare the performance of the ToY Agent against ad-hoc

direct access in some specific scenarios, to evaluate the applicability of different use
cases. For this purpose, we rely on the use cases already discussed in Section 6.3,
whose workflows are detailed in Figure 6.10.
IPS workflow. In Figure 6.10a we assume that the ServiceApp (IPS) periodically
performs read operations toward the IDS and the Network Monitor SDNApps to
collect, analyze and aggregate the network status. Once an intrusion is detected,
the IPS performs a write operation on the firewall SDNApp to install a new rule
to protect the network infrastructure.
Migration workflow. A migration service (Figure 6.10b) waits for threshold-
based notifications from the NAT SDNApp, which suggests a possible deterioration
in QoS that requires a migration. At that point, the ServiceApp first performs a
read operation to acquire the current run-time state of the existing NAT instance.
Then, it writes the whole state to a new SDNApp instance. We then assume
that other smaller write operations will be executed, e.g., to update additional
parameters that changed in the meanwhile.
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Orchestration workflow. In this scenario (Figure 6.10c), the orchestrator exe-
cutes some write operations to setup virtual links connecting VNFs of a network
service. The orchestrator may set some QoS threshold values according to negoti-
ated SLA (e.g., maximum bandwidth for virtual links). When an SLA is violated
(e.g., due to congestion in the network), the orchestrator receives a notification
from the network monitoring tool. Suddenly, it first fetches the current status of
the network and then, through a write operation, properly configures flow entries
for the virtual link that is suffering from the congestion, thus satisfying the SLA.

From the above descriptions, we conclude that each use case has different char-
acteristics in terms of interactions between the ServiceApps and SDNApps, and in
terms of exchanged data. For what concerns the IPS scenario, as stated in [161],
a tuned IDS produces an average of 3000 alerts per day, among which only 13.2%
report an intrusion. Based on these data, we can assume that, for each 7 read op-
erations, each performed every 30 seconds, 6 of them do not report any intrusion,
thus exchanging tens of bytes. Once an intrusion is detected, a slightly bigger read
that retrieves all the related information is performed, followed by the small write
operation that sets the firewall rule. These data are modeled with depth 1 instance
nodes. On the contrary, in the migration service scenario, a threshold-based notifi-
cation is immediately followed by the decision of migrating the SDNApp, to avoid
performance deterioration. At this point the ServiceApp and the SDNApp exchange
huge amount of data compared to the previous scenario, to migrate the application
state (the whole NAT table in a big network may consist of around 10K of entries).
The write operation which sets this amount of data modeled with a 3-depth in-
stance node requires hundreds of milliseconds if the incremental overhead of all the
table entries (depth 1) is also considered. The subsequent write operations regard
few entries of the table and then require less time (tens of milliseconds). Finally,
the service orchestration scenario mainly requires write operations that exchange
only a few bytes (value of the threshold, flow rules parameters) and which require
less than one millisecond. The number of write operations necessary to install the
Network Service depends on the particular scenario. In this numerical evaluation,
we have considered the scenario described in [67], where 5 virtual links are installed.

According to these assumptions, we evaluated, for each use case, the overall
time necessary to execute all the operations described above using both (i) the
ToY Agent and (ii) ad-hoc manipulated applications with direct access to run-time
state. Results are reported in Table 6.4. Moreover, to visualize the overhead that
the TOY Agent introduces in each use case, we normalized the overall delay to the
baseline value needed with direct access to application variables (Figure 6.11). A
particular high overhead has been registered for the IPS scenario compared to the
others. It appears that the high proportion of read operations that characterizes
this use case constitutes a penalty for using the ToY Agent. In fact, as discussed
in Section 6.6.1 (Figure 6.9a), mapping algorithms seem to suffer, on average, more
for read operations than for write ones, when compared to direct object access.
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Table 6.4: Delay introduced by the ToY Agent
for three different use cases compared with di-
rect ah-hoc access (average times taken over
thousand samples are shown).

Use Case Direct ToY Agent

IPS 0.86 ms 1.59 ms
Migration 1516.41 ms 2298.81 ms

Orchestration 0.81 ms 1.13 ms
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Figure 6.11: Overall percentage overhead in-
troduced by the ToY Agent for three different
use cases.

6.7 Discussion
Experimental validation demonstrates that our approach achieves its objectives

while guaranteeing minimum implementation effort and reasonable execution over-
head. More specifically, developers of SDNApps need to perform very few modifica-
tions to their source code to enable automatic state inspection (i.e., only 3 lines of
codes were added to the SSSA-analytic-tool application, as shown in Figure 6.7).
Furthermore, as shown in Section 6.6, the execution time of the above algorithms
is reasonably low (i.e., units of milliseconds for SET/GET operations). It is worth
noticing that the proposed approach is rather general, even if we limited our focus
on SDNAppsin this work. In fact, the creation of an abstract data model for each
application and the capability to provide automatic access to its internal data may
be useful in other contexts beyond SDN applications and controllers.

Our work pointed out several requirements for current SDNApps to be able
to exploit the capabilities of our state inspection library, to enable the seamless
adaptation of existing applications to the new service orchestration architecture.
First, it requires SDNApps to be thread safe, e.g., to avoid that the ToY Agent
modifies the value of a particular variable while the application is executing a critical
section. Second, SDNApps must be written in a language (e.g., Java, Python)
that supports reflection to access variables or a similar mechanism, such as Java
Reflective APIs [62].

Some limitations of this approach can be envisioned as well. First, the State
Agent must use polling cycles to discover any modification to relevant run-time
variables of the SDNApp. According to our tests, this may have a negligible impact
in terms of CPU cycles in case the update frequency is kept on the order of tens
of milliseconds (which looks reasonable for most of the applications), but it may
worsen in case higher frequencies are required.

Second, the language that has to be used to create the object path in the PMT is
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rather complex. This is due to the possible mismatching between the YANG data
model the internal structure of the application. However, in our experience, the
effort required to design a YANG-native interface and implement the required in-
teractions with the northbound API (e.g., in case the SDNApp has to be developed
from scratch) is much higher than the one guaranteed by our approach.

Third, our approach is not available as long as precompiled applications are
concerned, which may be rather common when VNFs are deployed in a cloud-
based data center. However, our experience shows that also the above applications
can be ported to the proposed architecture by using a mixture of bash scripting,
monitoring of in-kernel structures, and writing the equivalent of a wrapper ToY
agent that implements the required northbound interface. For instance, the firewall
used in Section 2.5 is an iptables-based VM integrated with a preliminary version
of the architecture presented in this chapter.

6.8 Conclusion
In this chapter, we presented an approach to make the internal state of SDN

applications available to external services, granting both read and write access to
run-time variables and also the possibility to receive notifications with state updates
any time something relevant changes. This gives service providers more flexibility
while exploiting infrastructure facilities to composing their final service workflows.

To model the arbitrary, possibly complex, run-time state of SDNApps into
high-level structures, we used the YANG modeling language. A set of algorithms
maps the low-level data structure of the SDNApps state into the high-level YANG
one. Such algorithms are independent of the particular structure and rely just
on information kept into the SDNApp specific YANG model and Path Mapping
Table. This allows applying such an approach to arbitrary SDNApps, without
introducing changes on the application code. Performance validation showed that
the delay introduced by the and mapping algorithms scales well even for unusually
big YANG models with high depths. By analyzing the applicability of this approach
on different use cases, it appears that the introduced access overhead is reasonable
for most scenarios. Moreover, numerical data show that the delay overhead is
widely compensated by the few programming requirements, in terms of additional
lines of code, compared with an ad-hoc manipulation of each application.

Although our validation has been carried out in the SDN context, this work can
easily accommodate other kinds of applications as well. This may allow high-level
services to exploit any kind of network service across heterogeneous infrastructures
(e.g., SDN-based networks, data centers, modern CPEs).
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Chapter 7

Service management on disrupted
infrastructures: Æther

In this chapter, we overview the applicability of new generation service facili-
ties in the particular case of Industry 4.0. Indeed, Internet of Things is bringing
flexibility for service management in an increasing number of industrial scenarios,
such as mining operations, building sites, smart agriculture, and more. In such
scenarios, the infrastructure is constituted by fleets of heavy-duty vehicles, which
communicate utilizing opportunistic connections that exploit their movements and
available transmission technologies, since a fixed network infrastructure is often not
available. Enabling service management in such kind of network introduces several
challenges: multiple communication technologies (and even protocol stacks) are
used to establish opportunistic connections; latency may or may not constitute a
constraint affecting routing; existing applications commonly adopt protocols that
rely on end-to-end connections (e.g., MQTT, HTTP); appropriate service discov-
ery strategies should be adopted. This chapter proposes Æther, a service-oriented
communication system that enables IoT services to transparently operate on a dis-
rupted network, by providing Service Discovery, Virtual Services, and service-based
routing optimization, with advantages over state-of-the-art algorithms. Æther also
provides a framework that enables both the development of new services, as well
as support to existing applications through transparent protocol gateways. We
tested our prototype both on physical devices and through larger-scale simulations,
assessing the advantages of Æther and its applicability in real scenarios.

Part of the work presented in this chapter has been first published in [39] and [38].
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7.1 Introduction
Industry 4.0 is gaining momentum by facilitating operations in many areas

through the flexibility of the Internet of Things (IoT). The availability of exploitable
services on board of devices on the field and industrial equipment enables a domain
of new possibilities for smart deployment and automation. However, guarantee-
ing stable communication between end devices is not trivial in many Industrial
IoT (IIoT) scenarios. Indeed, operations are often conducted in challenging envi-
ronments, e.g., remote mines, building sites, large fields in smart agriculture, and
more. In these scenarios, end devices may be fleets of heavy-duty vehicles, con-
struction equipment, tractors, or even smart agriculture sensors, which may not
always be connected to fixed and reliable network infrastructure.

In such environments, end devices may spend long periods (even their entire
operating cycle) in remote locations, without access to a WAN connectivity. As
shown in Figure 7.1, communication usually occurs over small-range wireless chan-
nels (Wireless Mesh Network) and the network infrastructure presents the charac-
teristics of a Delay/Disruption Tolerant Network (DTN). In DTNs, devices exploit
their movements to establish opportunistic connections, in order to exchange data
during occasional contacts. Messages are steered towards their destination through
intermediate relays by means of the store-carry-forward paradigm.

To enable deployment and consumption of heterogeneous IIoT services in such
kind of environment, several challenges must be solved. Diverse communication
technologies may be involved to establish opportunistic connections: some devices
may use IPv4, other IPv6, some not even features an L3 layer (e.g., Bluetooth).
Latency may or may not constitute a constraint: this is highly dependent on the
nature of the service to be consumed or of the operation to be performed and
may somehow affect the optimal routing decision. Existing IoT applications rarely
are suited to be used on disrupted networks, as they usually rely on the existence
of end-to-end connections (e.g., MQTT protocol). Finally, the heterogeneity and
dynamicity of services to be provisioned in such disrupted networks require to take
into account sophisticated service discovery paradigms.

To jointly address these challenges, we propose Æther, a service-oriented com-
munication system that provides automation and flexibility to services that operate
without the support of a fixed network infrastructure. Æther is transparent with
regard to the underlying communication technologies and provides service-oriented
facilities, such as Service Discovery, Virtual Services, and service-based routing opti-
mization, with advantages over state-of-the-art algorithms. The framework enables
the development of new services and transparent support for existing applications,
with particular focus on the MQTT and HTTP protocols, which are largely used
in IoT. We provide extensive experiments on our prototype, by both deploying on
physical devices and performing large scale simulations. Our Experiments assess
the applicability of Æther in real scenarios.
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Figure 7.1: Opportunistic connections in a disrupted environment.

The remainder of this chapter is organized as follows. The next section high-
lights our contribution compared to the existing work. Section 7.3 presents the
proposed communication architecture, providing details on its core modules. Sec-
tion 7.4 describes all the higher-level facilities that constitute the Æther Framework,
while our experiments are discussed in Section 7.5. Finally, we conclude in Sec-
tion 7.6.

7.2 Related Work
IoT and Opportunistic Networks

The state-of-the-art on IoT in industries is summarized in [47], where authors
describe key applications and identify the following as main technical challenges:
service discovery methods and object naming services [11, 110], scalability on the
number of connected things [110]; heterogeneity of underlying communication pro-
tocols [155]; lack of architectures for sensor networks communication, resilience to
physical network disruption, and node peering [14]. Works such as [12, 102] propose
to extend IoT connectivity over disrupted environments with the help of the DTN
approach. Particularly, [12] provides an implementation of the Constrained Appli-
cation Protocol (CoAP) over DTN to enable IoT devices based on CoAP to operate
on a disrupted environment, while [102] analyzes the behavior of MQTT for Sensor
Networks (MQTT-SN) over a DTN implementation. With Æther, we extend the

109



Service management on disrupted infrastructures: Æther

existing work by proposing a complete framework that operates over a disrupted en-
vironment, focusing transparency toward existing IIoT applications, heterogeneous
communication protocols, service dissemination and routing optimization.

Service Discovery

In IoT, numerous protocols exist implementing service discovery. For instance,
Zeroconf [153] provides automatic location of network facilities given an intercon-
nected set of devices, while Universal Plug and Play (UPnP) [80] is a standard
for pervasive peer-to-peer connection of services and devices. However, tools and
standards are mainly designed for residential networks and may not be suitable
for ad-hoc and disrupted networks. Indeed, the make large use of LAN-based
facilities, and rely on protocols such as HTTP, thus requiring end-to-end connec-
tivity. In the case of Mobile Ad-hoc Networks Service Discovery is a largely studied
problem [164]. Main challenges and possible approaches have been identified and
solutions proposed. Many existing approaches are based on directories, i.e., some
intermediate nodes store service information and facilitate the communication be-
tween clients and servers. [152] provides a centralized directories approach, where
one or more fixed nodes are used for the directory role, with limited flexibility.
Multiple approaches have been proposed to implement dynamic distributed direc-
tories: some create dynamic backbones [93, 63], whose each node will eventually
store up to date service information; others [90, 89, 138] implement distributed
directories by forming hierarchical clusters of service providers, each electing a di-
rectory that will synchronize with peers; some solutions are based on distributed
hash tables [141, 145], that is, service information matching a given hash key is
always stored in a directory node of a particular region based on that key, which
can be found by clients by using the same hash function.

On the other hand, directory-less approaches rely either on the broadcasting
of periodic advertisement [117, 29, 95] issued by service providers (proactively) or
on the broadcasting of service requests from clients (reactively) [114, 55]. Another
category of Service Discovery approaches proposed in literature operate cross-layer,
exploiting messages already exchanged by the routing protocol below to also em-
bed service information on them. This can significantly reduce the communication
overhead. [64] shows that an Ad-hoc On-demand Distance Vector routing protocol
extended with service discovery features produces up to 50% less message overhead
and up to 7 times lower discovery latencies. Benefits have also been measured
in [10], where messages of an existing service discovery protocol were embedded
in the routing messages. Noticeably, [72] proposes a novel routing protocol which
natively provides its own service discovery. Taking into account such existing work
on MANET, within our work we describe a Service Discovery protocol specifically
designed to work in Æther which operates on a Disrupted/Deelay Tolerant Net-
works and is oriented to industrial scenarios. We adopt an integrated approach
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where the service discovery and the routing module both benefit from interacting
with each other in a service-aware environment.

Routing

Diverse approaches have been proposed to address the problem of routing in
DTN [30]. Due to the particularly scattered nature of such networks, many al-
gorithms adopt message replication. Epidemic [162] implements an unbounded
replication of every carried message among nodes so that these eventually reach
the destination. This provides maximum delivery ratio, but also high resource
utilization. Spray and Wait [151] limits the overhead of Epidemic by allowing a
maximum number of replicas for each message. The vanilla version only allows
the first node to replicate, while others wait until the destination is met, while the
binary version implements a propagation tree that allows a multi-hop relay. Based
on the rationale that, in realistic scenarios, encounters between nodes are never
totally random, some approaches calculate utilities to limit the replication process
to convenient connections. This is the case of PRoPHET [98], which maintains a
set of probabilities of successful delivery toward known destinations, thus replicat-
ing only when the encountered device features a higher probability than the local
one. Another replica-based algorithm is MaxProp [28], which estimates the cost
to a destination through link probabilities and order output queues accordingly
(MaxProp is further discussed in Section 7.3.2). A different approach is taken by
forwarding-based algorithms. To drastically reduce the resource utilization, such
approaches attempt to route a single copy of the message towards the destination,
usually sacrificing the delivery ratio. The basic idea is to identify the best relay
before to forward the message, despite simpler implementations even select an arbi-
trary node. First Contact [81] always forwards to the first encountered node unless
this already carried the same message in the past. In Seek and Focus [151], the
message is forwarded at random in a first “seek” phase, which switches to a “focus”
phase when a node that encountered the destination more recently is in proximity.
Some forwarding-based approaches assume to operate over networks where nodes
have access to global information, such as Inter-Platenary Networks. Here the
most common approach is to compute shortest paths through Dijkstra taking into
account movements over time. Examples are Delay-Tolerant Link State Routing
(DTLSR) [49] and Contact Graph [9]. As part of this work, we propose a routing
optimization on existing algorithms based on additional knowledge coming from
the service layer. The rationale behind this approach is that Æther is a service-
oriented architecture by construction, thus the routing layer may benefit from SLA
information natively.
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Figure 7.2: Overview of the Æther disrupted communication scenario. Applications on board
of scattered devices can interact through the disrupted network environment using high-level
service-oriented facilities.

7.3 Æther Architecture
The main principles of the approach adopted by Æther are depicted in Fig-

ure 7.2. Heterogeneous communication technologies available on each device con-
stitute the Transmission Layer of the challenged network, on top of which commu-
nication is enabled by mean of a Delay/Disrupted Tolerant Network (DTN) Layer.
On a DTN, the flow of data from a source node toward the destination is imple-
mented exploiting the continuous movement of the operating machinery, and the
ad-hoc connections they may establish (store-carry-and-forward paradigm). Data
is delivered by the DTN protocol, which extends the existing network stack (e.g.
TCP/IP, Bluetooth, etc.) with the bundle protocol layer. This encapsulates appli-
cation messages, which are then delivered hop-by-hop to another DTN node, based
on tunable forwarding behaviors [175]. Each Æther Node runs a DTN Daemon
and is identified by an Endpoint Identifier (EID) (e.g., dtn://device1), while each
application is identified by extending the local node EID with an unique application
token (e.g., dtn://device1/app1).

On top of the DTN Layer, Æther implements a series of service-oriented fa-
cilities, that are, Service Discovery, Virtual Services, and service-aware Routing.
These components, along with the DTN Daemon, constitute the core of Æther.
Additionally, Æther provides a series of APIs that enable applications running on
the device to exploit such facilities. Figure 7.3 details the architecture of Æther at
the node level, highlighting its modules and their interactions. The remainder of
this section details each core component.
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Figure 7.3: Æther node architecture.

7.3.1 The DTN Daemon
On each Æther node, the Bundle Protocol is implemented by the DTN Daemon.

To deliver data from a source node to a destination one, this is first enclosed in
a bundle and sent to other peers through a small-range connection. The decision
to forward a bundle to a given neighbor (or even to a set of them) is based on
the adopted routing algorithm. The forwarding process is repeated by the second
node when it detects other opportunistic connections until the data carrier enters in
range of the destination node; hence the data bundle is delivered to the destination
(together with other bundles possibly collected in the meanwhile).

We build Æther on top of IBR-DTN [139], a project that implements the bundle
protocol together with some basic DTN features. In the following, we provide some
details on IBR-DTN, which are then followed by a description of some improvements
and extensions we made to the original system in the first place, to use it as the
base for our system.

The architecture of IBR-DTN is based on an event-oriented communication
paradigm. An Event Switch takes care of dispatching each event to the module
that should handle it. Supported events regard storage operations, changes in
the state of the neighborhood, incoming bundles, triggering of routing operations,
and more. The management of the neighborhood is demanded to the Discovery
Agent, which implements the Internet Protocol Neighbor Discovery (IPND) [54]
to identify nearby peers and perform the binding process, associating the network
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address of the peer node with its EID. The actual communication with a neighbor
node is instead managed by the Connection Manager, which handles sending and
receiving of bundles by exploiting different Convergence Layer Adapters (CLAs).
A CLA is responsible for the encapsulation of the bundle protocol on the higher
layer of a given network stack (e.g., TCP, TLS). IBR-DTN allows implementing
any additional CLA as a module of the Connection Manager. The store-carry-
and-forward paradigm is implemented through the primitives offered by a Bundle
Storage module. Finally, a Base Router takes care of the bundle routing task,
which is performed according to the decision of the routing algorithm provided
as a plugin. IBR-DTN already offers plugins supporting static, epidemic, and
PRoPHET routing algorithms.

To build our system on top of IBR-DTN, we made some modifications that
are now part of the main repository). Among the extensions, we enabled the
DTN daemon to run the IPND Neighbor Discovery protocol on top of IPv6, so
that device-to-device communication may occur without the necessity of an IPv4
address assignment procedure (e.g., DHCP). Additionally, we implemented a new
Convergence Layer Adapter for Bluetooth, hence increasing the range of devices on
which Æther can be transparently deployed.

7.3.2 Auspex Routing
As Æther features a given level of service awareness by construction, it is conve-

nient to optimize the DTN routing based on service-oriented consideration, rather
than merely rely on the statistics of the opportunistic connections. For this pur-
pose, Æther provides the Auspex Routing module, which extends existing routing
algorithms with service-oriented strategies and also provides useful data that can
be exploited by other Æther modules such as the service discovery.

To design Auspex, we first performed a preliminary evaluation where we studied
available protocols in DTN and compared their performances on different metrics.
We set up a simulated scenario using The ONE simulator [87], with 19 devices
moving within an area of 50×100 m2 at different speeds (between 0 and 5 Km/h).
Figure 7.4 shows that MaxProp outperforms other algorithms both on delivery
probability and on the average time needed to deliver a bundle. Moreover, excluding
First Contact, which is not a replica based algorithm (that is, it immediately delete
a bundle on the first relay), MaxProp also features the lowest “storage time”, i.e.,
the time that a bundle spends in the node storage. Similar results have been
obtained even varying the setup on (i) number of nodes, (ii) devices boundaries,
(iii) mobility patterns (more details can be found in [123]).
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Figure 7.4: Performance of main DTN routing algorithms compared.

MaxProp

Based on the above considerations, we decided to first implement the MaxProp
algorithm within the Base Router of the DTN Daemon. Then, we evaluated any
room for improvement and designed Auspex accordingly. MaxProp is a replica-
based routing algorithm, in that it replicates messages in the storage when a new
neighbor is encountered. The replication process is optimized by the adoption
of the following mechanisms. Each node estimates the probability to meet peers
by maintaining a vector v ∈ R of probabilities, where each value is initialized to
1/(n−1), where n is the number of known nodes. Whenever node j is encountered,
vj is incremented by 1, then all values are normalized so that their sum adds to 1.
Such probabilities are exchanged during each connection and used to estimate the
cost of a path p as ∑︁j∈p(1−vj). The cost to a destination is given by the path with
the smallest total cost. MaxProp keeps bundles ordered so that when a transmission
opportunity occurs, priority is given to those featuring a lower destination cost. An
exception is made for younger bundles, i.e., those with a hop count less than a given
threshold, which always obtain a higher priority. On the other hand, whenever
new bundles should be stored, if the storage limit has been reached, bundles with
the lowest priority are discarded. Once a bundle is delivered to its destination,
an acknowledgment mechanism allows nodes to stop replicating that bundle and
delete it from their storage.
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Constraints Enforcing

Auspex operates on top of the DTN Daemon Base Router, optimizing the cur-
rently adopted algorithm (e.g., MaxProp) by (i) affecting its decision to replicate
a bundle while in an opportunistic connection with a peer node, (ii) exchang-
ing additional information within the protocol messages, (iii) extending the bundle
header with any service-level constraint. Being the entire structure of Æther service-
oriented, it is possible to access additional information concerning the bundles in
the storage, such as the target service and the specific stream they belong to, as well
as any service-specific constraint they should satisfy while being routed toward the
destination. For instance, a given service on board of a sensor device may stream
periodic updates on a measured value, which features a given temporal validity.
Thus a given data becomes useless if delivered too late. By means of the Service
Discovery, any service-related constraint may be fetched directly from the service
description, without the need of a particular user interaction nor of a specific config-
uration of the service itself. Whenever an application generates a new bundle to be
conveyed into the DTN, Auspex matches the source and destination apps with en-
tries of the service discovery, searching for any constraint to be enforced. The bundle
header is then extended with the proper service constraints before being stored.

On each device, the Auspex module will then have access to this information,
which is used to enforce service constraints whenever a routing decision is taken. In
the case of MaxProp, Auspex affects the decision of replicating a bundle during an
opportunistic connection by skipping all bundles that would not be likely to satisfy
all their service constraints by being replicated to that particular node. This effec-
tively fixes the transmission priority so that nodes better exploit opportunistic con-
nections replicating the correct bundles and identifying the proper contacts to con-
vey particularly constrained streams. Section 7.5 provides implementation details
for the use case of end-to-end delay enforcement. In our evaluation, we show that
this approach effectively provides improvements over MaxProp in terms of net de-
livery, even if service-level constraints are enforced to only a subset of the messages.

7.3.3 Service Discovery
In Æther, devices can provide and/or consume any kind of service. A vehicle

moving on farmland can be equipped with a sensor device, which provides, for
instance, measurements on the humidity of the field. On the other hand, devices
acting as actuators (e.g., sprinklers) may need to rely on the humidity service men-
tioned above to decide which action to perform in a given moment. Additionally,
the sprinklers may expose an API to allow their activation from an external device
(e.g., an operator with a web interface or another IoT device with a sophisticated
algorithm onboard).

The above scenario requires that devices are aware of services available in their
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vicinity, as well as of additional information associated with the services them-
selves, such as network-related QoS (e.g., latency and consequent time validity of
data/actions), service-specific properties (e.g., the precision of measured data), lo-
cation, energy-based information (e.g., device autonomy), level of reliability (e.g.,
how often the device with a given service is reachable in the disrupted network?),
and more. In the following, we describe the Service Discovery (SD) system designed
to work within Æther, which provides an efficient way to model service information,
to exchange it among devices and to maintain a suitable set of such data on board
of each device, so that they can easily benefit from existing facilities. The Ser-
vice Discovery takes into account that the network is disrupted, then some services
may respond with a too high delay or not to be available anymore. Our protocol
should facilitate applications to specify preference on services to be selected, to
automatically discard those that can neither respond within a certain time bound
nor provide up-to-date data, to transparently replace services in case of failure, etc.

Service Description

We now detail the data model used to describe the details of a given service.
The proposal takes into account existing works [164, 73, 17] specializing them for
the Æther use case. Figure 7.5 depicts the complete Service Description Model
(SDM), while most relevant fields are described in the following.

Æther uses categories to cluster services by means of a hierarchical structure.
Due to the unpredictability of existing services, only a few general categories are
fixed and known by everyone (Figure 7.6). Each service may specify additional
subcategories extending the default tree. Since most likely a consumer would not
know the exact category to which desired services belong to (aside to the possibility
that equivalent services are registered to slightly different category paths), the SDM
allows specifying multiple categories. Service categories may also help to aggregate
information about existing services during advertisement propagation and state
maintenance.

Other than categories, the service description features a list of keywords, which
can help to match requests by providing alternative semantic descriptions of the
service. For instance, a sensor that provides temperature measurements may feature
the keywords “temperature”, “heat”, “thermal”, etc. The existence of keywords and
categories simplifies discovery in a highly heterogeneous and not a priori configured
environment.

An expire field specifies the temporal validity of the service description; if no
new information is received within the expiration time, Æther nodes should discard
the service entry.

The SDM also features information about the device running the service, such
as its battery, computational load, whether the device is moving or not, current
location and covered area (different shapes can be specified, options are not reported
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DATA | TYPE
--------------------------------------------|-------------
Service |
+-- name | string
+-- category* | string
+-- keyword* | string
+-- device |
| +-- node-id | string
| +-- energy |
| | +-- capacity | int
| | +-- residual | int
| | +-- load | int
| +-- geolocation |
| +-- moving | boolean
| +-- location |
| | +-- description | string
| | +-- point |
| | +-- lat | float
| | +-- long | float
| +-- area-coverage |
| +-- [...] |
+-- property* |

+-- name | string
+-- value | any
+-- unit | string
+-- operator | <, >, =

+-- function* |
+-- name | string
+-- description | string
+-- input* |
| +-- name | string
| +-- description | string
| +-- unit | string
+-- output* | list

+-- name | string
+-- description | string
+-- unit | string

Figure 7.5: Service Description Model (SDM).

in Figure 7.5 for the sake of readability).
Service should be specified with its properties, which are used by consumers

to understand if the service matches desired requirements (e.g., level of accuracy
over a certain threshold). Properties are specified in the SDM through the following
structure: (i) the name identifying the property, (ii) the actual value of the property
(string, boolean or numeric), (iii) its type through the field unit (if numeric, the
measure unit is given) and an operator, which provides an indication of how the
value should be intended (specific value, such as measurement accuracy, or bound

118



7.3 – Æther Architecture
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Figure 7.6: Default categories pre-defined in Æther service description. Other custom categories
can be defined.

Table 7.1: Mandatory properties for predefined categories.

Property Categories
Version all
Protocol all (one or more can be specified)
Capacity all software categories (network through-

put - MBps, storage - GB, computation -
CPU/Memory/GPU)

Physical Quantity sensor and actuator (string)
Refresh Rate sensor (seconds)
Precision sensor (same unit of functions output)
Delay actuator (seconds)

on a certain quantity that the service may provide, e.g., maximum temperature that
can be measured). Predefined categories also feature a set of mandatory properties
to be specified (see Table 7.1).

A service, in its general form, may provide different functional invocations. For
instance, a temperature sensor may allow to fetch just the last measured value, to
wait until the device moves to a particular location of where the measurement is
needed, or even to start streaming periodic temperature measurements. All these
possibilities are described through a list of functions, each one providing: (i) the
name identifying the function, (ii) an human-readable description of the function,
(iii) a list of input required to invoke the function (e.g., location of which the
temperature measurement is required), and (iv) a list of outputs, i.e., information
returned by invoking the function (e.g., the temperature value). Both inputs and
outputs are described through a name, a description, and a unit field, which specifies
the measuring unit, or merely its data type.

Discovery Approach

In Æther, nodes periodically exchange information about the list of all know
services, updating the local Service Storage. At the same time, entries of the local
storage are enriched with further information regarding the involved remote nodes,
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collected by interacting with the Auspex Routing Module. The Service Storage
enables customers to be aware of existing services when they need them (proac-
tive discovery), by querying the local Service Discovery Daemon, which maintains
information about known services available in the network. However, a node may
also be configured not to store any information about existing services, e.g., due to
constrained resources on board. In such a case, the interaction between a service
and a customer is mediated by the intermediate nodes (directories), which, upon
an explicit service request (reactive discovery), may have a fresh enough matching
entry in their service list. Services are advertised with a period that is tunable and
highly dependant on the mobility level of the particular network.

Upon a service query is received from an onboard application, the SD Daemon
may (i) find a match in the local list of known services or (ii) propagate a service
request in the network, acting in reactive mode. In the first case, all relevant fields
of the request are used to find matches on the list. At first, categories and keywords
are used to fetch services of the desired type; if a specific function is specified on
the query, the SD also filters out services not featuring it. Then, any additional
query parameter is searched among the properties of each service description, and
the proper comparison is performed (based on the operator field of the property
and the query specification). A separate check is performed if the query features a
maximum delay specification: in such a case, the SD Daemon interacts with Auspex
in order to identify nodes toward which the statistical latency exceeds the desired
one, and all services located on those nodes are filtered out.

Sometimes an SD query may be propagated as a request toward the network (re-
active mode). This may happen whether because the node is not storing exchanged
services information locally, or none of the known services matches the query. Since
such messages are forwarded in multicast across the DTN, it is important to limit
its propagation range to avoid excessive network overhead, particularly in scenarios
where a high number of nodes act as customers. To do so, bundles encapsulating
SD requests messages are configured with the proper number of maximum hops
propagation, which is dynamically calculated exploiting the Auspex routing mod-
ule. This is done by detecting the farthest destination that can be likely reached
still satisfying any delay requirements specified in the service, and the request range
is then set accordingly This process also considers the additional overhead intro-
duced by the SD. If the request features no delay requirement, the range is first set
to a small value (based on the particular network size) and iteratively incremented
whether a match is not found nearby.

Messages

Table 7.2 lists messages exchanged through the SD protocol. The Advertisement
message carries a list of services, each formatted as described in Section 7.3.3. It is
sent both when the periodic advertisement of all known services is performed (in
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Table 7.2: Service Discovery Messages.

Message Type Description When

Advertisement List of services, each as in 7.3.3. (i) periodically, all known services
(multicast); (ii) as response to a re-
quest, only matching services (unicast).

Request All fields are optional filters: name
of an already known service; cate-
gories and keywords; specifications
to be matched by the service prop-
erties; functions.

(i) with empty filters, used as solicita-
tion (unicast); (ii) whenever a needed
service cannot be solved locally.

Remove Identifier of the service and times-
tamp.

When a previously exposed service is
withdrawn.

multicast), and in response to a request message (in unicast). In this last case, the
advertisement message only contains the services matching the request.

The role of the Request message is twofold. When sent in unicast (and with all
fields unset), it solicits a neighbor node to send back all known information; this
is sent from new nodes joining the network for the first time in order to quickly
populate their local database. Instead, when sent in multicast it is used to search
for a particular set of services in the network, based on fields specified in the request
message. The field name is used when the goal is to locate a particular (already
known) service, as the results should match the above-specified string. Instead, by
specifying categories and keywords fields, provided results will have more flexibility.
Additionally, the field specifications is used to filter on services satisfying certain
properties, such as “protocol equals to MQTT”, “precision less than or equal to 1
°C”. A separate specification is the delay tolerance: this, when given, is handled by
interacting with the Auspex module, which checks the eligibility of a given service
based on available statistics on the communication between the two involved nodes.
Further available filters regard the possibility to search for services providing a
specific function.

When an application withdraws an exposed service, the local SD Daemon prop-
agates a Remove message, which features the name of the service (identifier), and
a timestamp. This explicitly instructs other nodes to discard the service entry,
without waiting for its expiration time.

Module Architecture

The architecture of the SD module is depicted in Figure 7.7 and described
in the following. A northbound interface enables local applications to perform
the following operations: (i) get the currently known information from the local
Service Storage, (ii) register a new service (that will then be advertised through
the SD protocol), (iii) update or withdraw a previously registered service, (iv)
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Figure 7.7: The Service Discovery module.

subscribe on events generated from the service discovery (e.g., listen for a particular
service to be updated), and (v) request for a service matching the specified query.
Such a northbound interface is then exported towards onboard applications by
the REST and the Socket-based APIs (see Section 7.4.2). Additionally, the SD
module interacts with the DTN Daemon in order to exchange protocol messages
through bundles and to implement the protocol exploiting the Event Switch, which
is used both to listen and generate events. Operations are triggered by an Event
Handler on three conditions, which are described in the following. A PERIODIC_SD
event, whose period is set based on the network characteristics, forces the local SD
Daemon to prune all expired services from the local database and to propagate an
advertisement of the currently known services. If the old advertisement message
is still in the bundle storage, it is removed. The INCOMING_BUNDLE event may
trigger different actions based on the received message: (i) if the message is an
Advertisement, the database is updated accordingly and SERVICE_DISCOVERED and
SERVICE_UPDATED events are triggered for any new/modified service in the message;
(ii) Remove messages trigger similar actions, with the SERVICE_DELETED event; (iii)
Request messages force the daemon to query the local storage by mean of a Match
Solver, then building an advertisement message with compatible services, which is
sent back to the request source. The SD daemon also listens for NODE_CONNECTION
event, which triggers the generation of an (empty) Request Message, used to solicit
the new neighbor to exchange its service database. The solicitation message is only
sent if the node proactively stores information on existing services.
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Figure 7.8: Workflow of a Virtual Service Request. The VS Handler first schedules the best
available option according to the request parameters, binding a VS Worker on the selected remote
service. Upon receiving an event that makes the currently bound service inadequate on the delay
requirements, the Handler repeats scheduling and binding, making the worker switch to a different
remote service (communication channel changes from (a) to (b)).

7.3.4 Virtual Services
Through the Æther SD system, an application is enabled to search the DTN for

existing services, filter on desired properties and potentially implementing a strat-
egy to dynamically select the one that best fits its demands and replace it in case
of failure. However, this requires many interactions with the SD Daemon, as well
as potentially complex scheduling algorithms to be implemented within the appli-
cation, not to mention the additional complexity at the application level. There-
fore, Æther features a Virtual Service module, which provides easy interaction with
available services, implementing scheduling, optimization, communication and fault
recovery in a way that is transparent from the consumer application perspective.

As shown in Figure 7.8, a Virtual Service Handler interacts with the Service
Discovery module and exposes an interface toward the local applications. This
component is in charge of (i) handling incoming requests from consumer applica-
tions, (ii) interacting with the SD to select the most appropriate service among
the available ones, according to the customer specifications, (iii) running the SD
Workers, each acting as a proxy between a customer and the actual service, and
(iv) listening for events that may trigger the rescheduling of already bound services.

Virtual Service requests are similar to queries performed toward the Service
Discovery northbound, except they (i) feature mandatory specification of the sup-
ported protocol and the description of the needed functions, and (ii) allow to specify
one or more optimization parameters, which are used to privilege certain services
over others (e.g., the closest one, the more accurate, etc.).

The Virtual Service Worker bridges the communication between a customer and
the remote service currently assigned to it, forwarding messages whose content is
compliant with the functions defined in the SDM. This way, the customer inter-
acts with a local proxy on a stable channel, without caring about the actual node
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hosting the service, and the disrupted communication. The worker also monitors
the status of the remote service: whenever the performance goes below certain tol-
erated margins, which are given within the virtual service request (e.g., maximum
tolerated communication latency), the VS Worker invokes the VS Handler for a
rescheduling. Additionally, the VS Handler listen on events raised by the Service
Discovery module: whenever a new service is discovered, or an old one updated,
if this is a better alternative to one of the already bound ones, the corresponding
VS Worker is updated so that it transparently switches to the new one. Similarly,
whenever one of the bound services is removed, or it is updated so that it does not
match the customer requirements anymore (as in the scenario shown in Figure 7.8),
the VS Handler interacts again with the SD to find the next best match and update
the VS Worker accordingly.

7.4 Æther Framework
Æther constitutes a framework for both the development and deployment of

new generation IoT-based applications on top of the disrupted and heterogeneous
infrastructure. The framework itself is service-centric, providing abstractions that
make the interactions between services transparent with respect to both the network
and the DTN architecture built on top of it. This section describes the abstractions,
tools, and APIs through which Æther allows applications deployed on top of it to
exploit the features provided by its core modules.

7.4.1 Protocol Gateways
Æther supports also traditional TCP/IP applications not compatible with the

bundle protocol, which communicate through the underlying network by mean of
a Protocol Gateway. Its purpose is to hide to the application the fact that its
communications occur over a DTN, i.e., that in a given moment, the destination of
messages at the application layer could not be reachable at all. In this way, provided
that the proper gateway for the protocol used by the application is available, this
can communicate over the disrupted network without any modification, as the
gateway will be in charge to transparently convey its messages in the DTN, and
deliver back the expected responses whenever they are available.

Æther provides gateways for both MQTT and HTTP, as these protocols consti-
tute the standard for communication at the application level in IoT. Besides, the
system features a more generic gateway able to propagate TCP datagrams.

MQTT Gateway

The MQTT Gateway collects messages generated on board of a device (e.g., a
sensor), which need to be routed toward the device running the MQTT Broker.
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Figure 7.9: MQTT gateway in (a) upstream and (b) downstream communication.

The MQTT Gateway architecture was first presented in our preliminary work [39].
Figure 7.9a details both the architecture of an end device that produces and

publishes data and the one of the node hosting the broker receiving such data. On
both the devices, the DTN Daemon extends the network stack with the support
for the bundle protocol and with a TCP Convergence Layer Adapter. On the
end device, an MQTT Publisher application generates data that is first routed
to the local MQTT Gateway. The role of the latter is twofold: it (i) emulates
a local MQTT Broker thus allowing the application to transparently connect and
publish data, apparently relying only on the MQTT protocol, and (ii) encapsulates
received messages into bundles with destination dtn://deviceX/broker, which
are sent to the DTN Daemon. Bundles are then pushed on the output queue,
thus making them ready to be forwarded to other Æther nodes. Similarly, the
MQTT Gateway located on the destination device acts as a bridge between the
DTN stack and the MQTT protocol: it (i) registers the application token, namely
“broker”, on the DTN Daemon in order to “extract” all bundles with destination
dtn://deviceX/broker from the DTN and (ii) sends data received in this way to
the broker application, by performing an MQTT publish that preserves the original
MQTT payload.

On the other hand, messages flowing from the Broker to an MQTT Subscriber
may have multiple destinations, as there may be more than one subscriber on the
same topic (e.g., firmware update on a specific device model, a fleet consuming a
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particular service, and more). In this case, some more information is needed to
travel toward the node hosting the Broker, as opposed to the normal data flow.
In particular, the broker-side MQTT Gateway needs to receive information about
existing MQTT connections and the details of any subscribe message that has been
generated. To collect such information, a mechanism similar to the one described
for the upstream communication is used, enabling the second MQTT Gateway to
know which topics have been subscribed by each device and to perform, for each
of them, the actual subscribe toward the local broker. Eventually, each publish
message that is forwarded by the broker is mapped by the local Gateway to the
correct destination EID and propagated into the DTN. This mechanism is detailed
in Figure 7.9b.

Note that in both cases, applications operate on an abstracted MQTT layer
that transparently allows them to send MQTT protocol messages regardless of the
presence of a network connection.

HTTP Gateway

This gateway encapsulates HTTP data within the bundle protocol, enabling
transparent communication between any couple of web client and server. This is
particularly useful as REST APIs are widely adopted by existing services, and,
additionally, deployed devices often feature web-based configuration dashboards,
whose access from any terminal connected to the DTN could be beneficial. The
HTTP Gateway features a Name Resolution module and the actual bridge that
conveys HTTP data within bundles. On the client-side, the gateway acts as a proxy,
intercepting every request whose URL follows the pattern <app>.<device>.dtn/
<resource>, from where the destination EID can be reconstructed. Such requests
are handled as follows: (i) a new bundle is initialized through the Æther socket-
based APIs (Section 7.4.2), with destination EID set to dtn://<device>.<app>;
(ii) all the headers are copied in the bundle, together with the URL and the request
body, if any; (iii) host is always set to “localhost”, as the original one will not have
any meaning from the server-side; (iv) the bundle is finally sent toward the DTN
network using the socket-based APIs.

Server-side, the Gateway is configured to manage a known list of web services,
which can be local or remote (in case a non-DTN connection is also available on
the device). The gateway listens for any bundle that features as destination an EID
associated with any of the web services on the list. This configuration list must
feature, for each EID, (i) the associated IP address, and (ii) the TCP port where
the service is listening. The gateway handles incoming bundle by reconstructing
the HTTP request based on the information kept in the relevant entry, thus for-
warding the requests to the correct service and interacting with the DTN Daemon
to initialize a new bundle, which is used to write back the HTTP response.

The implementation of the HTTP Gateway is based on Tinyproxy [160], which
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has been modified to interact with the Æther bundle interface and extended with the
support to HTTP/1.1. This was needed to enable persistent connections (with sup-
port to the Connection:Keep-Alive header), to send multiple requests in pipeline,
and to support the CONNECT method and WebSockets.

Generic TCP Gateway

In addition to application-protocol specific gateways, Æther also extends any
kind of application that communicates over the TCP protocol to operate over the
disrupted environment. The gateway keeps a port table that is feed with informa-
tion from the underlying Service Discovery. Whenever a service featuring the TCP
protocol is discovered, the Gateway looks for the tcp-port and ip-address properties,
and stores them in an entry with the corresponding EID from the service descrip-
tion. When the gateway intercepts the SYN segment from a local client featuring
a remote destination matching one of the entries of the table, it first handles the
TCP handshake locally, then starts encapsulating all data of the stream in bundles
that are conveyed to the DTN Daemon. The destination EID is set according to
the information available in the entry fed by the service discovery. On the des-
tination node, if the server is bundle-aware, this will directly receive the content
from the DTN Daemon. Otherwise, a server-side TCP gateway will demultiplex
received data to the correct server application, opening a local TCP connection
and forwarding the content of all the received bundle, as well as encapsulating all
responses in bundles that are sent back to the client-side gateway. Additionally,
the server-side TCP gateway is also in charge to register the local servers to the
Service Discovery module to be announced.

7.4.2 Framework APIs
Apart from the Gateway interfaces described above, mainly exploited by services

that are agnostic to the disrupted network below, applications running on the
device may also directly interact with Æther using bundle-aware APIs. These allow
exploiting all the facilities offered by the system, i.e., Service Discovery, Bundle
Protocol, Events, and more.

The IBR-DTN framework already features Socket-based APIs, which require
to open a TCP connection with the daemon. This is used by local applications to
exchange bundles with the network and subscribe to events. Building on top of IBR-
DTN, we extended such interface so that it also provides the possibility to interact
with all the additional Æther modules described in Section 7.3. The interface
exports all the commands available in the northbound of the Service Discovery
module, allowing to receive notifications when the SD generates an event (i.e.,
discovered a new service with given properties filter) and to interact with the Virtual
Service facilities.
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Given the recent trend in software development that privileges REST interfaces,
which provide more flexibility than textual-based sockets, our framework also pro-
vides such interface, with support to the use of WebSockets to register to events.
Finally, C++ libraries support the development of native applications.

7.5 Experimental Results
To evaluate Æther, we performed both experiments on our prototype imple-

mentation and larger-scale simulations. We set up multiple use cases, which are
described below, to evaluate different components of our architecture.

7.5.1 Prototype - on Physical Devices
We performed some tests deploying Æther on top of some physical end devices.

Such tests aim to measure the communication performance and any overhead in-
troduced by our system and, specifically, by its components to the baseline network
properties.

Device Connection

We measured the time needed by the devices to complete the connection binding
over WiFi and Bluetooth during an opportunistic connection between two devices.
The test-base consists of two Raspberry Pi B+ v1.2, equipped with a WiFi dongle
based on the Realtek RTL8188EU chipset, and Bluetooth 4.1. For what concerns
the connection through Bluetooth, already paired devices require between 362 and
378 ms to establish the RFCOMM connection, with 99% confidence. On the other
hand, unpaired devices take between 1602 and 1691 ms to establish the connection,
considering a Secure Simple Pairing 3.3 procedure based on passkeys exchange.
Connection over WiFi is performed using the Ad-Hoc mode, through the IBSS
merge procedure. In all our measurements, the communication channel was estab-
lished in less than 270 ms. In both cases, the additional time needed to complete
the DTN binding and start the actual communication highly depend on the time-
outs of the IPND protocol, which, in our setup, sends beacons every 1 second.
This suggests that our prototype may be suitable also in case of occasional pairing
connections that last a few seconds, which may be the case in some challenging
environments.

Bluetooth CLA Overhead

We measured the overhead introduced by our implementation of the CLA for
the Bluetooth communication medium. To measure throughput, we performed
some tests transferring a file of size 1 MB, varying the segment size. Results are
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summarized in Table 7.3. Instead, latency has been measured through the dtnping
tool (available in IBR-DTN), transmitting 1500 bundles with size 64 bytes. In this
case, we compared Bluetooth with the TCP/IP CLA over WiFi ad-hoc (Table 7.4).
Results show that performance is, overall, better on WiFi due to the higher link
speed, despite such configuration also features a higher dispersion. In general, the
experiments have shown acceptable results on Bluetooth, as they are proportionate
to the lower speed of the physical medium.

Table 7.3: Throughput on the Bluetooth CLA.

Segment Size (bytes) 512 1K 4K 10K 100k
Throughput (Mbit/s) 283 361 669 676 675

Table 7.4: RTT (ms) over the BT-CLA compared with TCP/IP over WiFi ad-hoc.

mean min max
Bluetooth via RFCOMM 52.98 23.08 87.52
TCP/IP over WiFi ad-hoc 32.52 12.32 248.74

HTTP Gateway

The HTTP Gateway has been tested on board of a GNSS (Global Naviga-
tion Satellite System) device named Topcon Net-G5, which is currently used for
on-the-field operations in smart agriculture scenarios. The Net-G5 features a 250
MHz processor and 256 MB of memory. The use case was to enable access to the
web-based dashboard of such a device, which provides both state monitoring and
configuration. When the communication delay can be tolerated, Æther may allow
any device belonging to the same DTN to access such a dashboard. We measured
on-device computation delays introduced by the HTTP Gateway while processing
the response content for the main page of the configuration dashboard, which fea-
tures any kind of resource among text, multimedia, and web socket connections,
for 20 different HTTP requests. Table 7.5 compares results of the various average
computation times on board of the Net-G5, with those obtained by running the
HTTP Gateway on a better-equipped desktop with Intel Core i5-2410M @2.30GHz
x4 and 8 GB of memory. Results show that the additional computation time in-
troduced by the gateway is compatible with the time needed by the DTN Daemon
below to process the bundles, introducing an overhead of ≈30%.

129



Service management on disrupted infrastructures: Æther

Table 7.5: Server-side computation required to process the content of the Net-G5 dashboard to
convey it into the DTN.

Gateway DTN Daemon
Net-G5 1.706 (± 0.118) s 5.396 (± 0.789) s
Desktop 0.226 (± 0.004) s 0.574 (± 0.031) s
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Figure 7.10: (a) Distribution over time of delivered bundles, for different connection time intervals.
(b) Bundle delivery ratio varying the probability of inter-device connections, comparing different
connection time intervals (1, 2, 4 and 6 seconds). All values refer only to bundles already expired
at the end of the run.

7.5.2 MQTT Gateway - on Virtualized Environment
Performance of the MQTT Gateway has been tested over a realistic teleme-

try use case, i.e., when a fleet of end devices exchange generated data through
opportunistic connections. We run our prototype of Æther in a virtualized environ-
ment, where end devices (sensors) have been implemented within Docker containers.
Communication occurs through a virtual switch whose connections are dynamically
reconfigured with new OpenFlow rules injected dynamically, thus mimicking vehi-
cle movements over time and their opportunistic connections. The communication
occurs over Open vSwitch v2.6.0, while containers are deployed on Docker v17 run-
ning on a VM with 16 CPU cores, 12GB of RAM and Linux kernel 4.4.0-96 (the
host machine features two octa-core Intel Xeon E5-2660 @ 2.2 GHz CPUs). These
experiments have been run using the Epidemic routing algorithm.

We performed runs of 30 minutes each, with 15 devices that perform random
connections over time. The duration of each opportunistic connection has been
varied among 1, 2, 4, and 6 seconds, while the probability of inter-device connections
among 10%, 25%, and 40%. The purpose of varying these parameters was to
identify the minimum requirements in terms of inter-device connections that our
system needs to work properly. All the devices act as sensor nodes, generating new
measurement data every 5 seconds to be delivered to a specific sink node, which
runs the MQTT broker.
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Delivery Rate and Time

Figure 7.10a shows the distribution of bundles successfully delivered to the des-
tination over time, for different connection duration (with a connection probability
set to 25%). The plot shows that, if connections last enough, more than one-third
of bundles are delivered in less than 30 s, while ≈95% of them reaches the desti-
nation within 3 minutes upon their generation. Shorter connections give a slightly
smaller percentage of bundles delivered in the earlier intervals; the case with con-
nections of just 1 second features a completely different trend, with visibly slower
delivery times. Similar results were obtained for a network featuring a connection
probability of 10% (graph not shown).

Figure 7.10b shows the percentage of bundles that, at the end of each run, have
successfully been delivered to the destination. Taking into account the previous
results from Figure 7.10a, The bundle lifetime has been set to 5 minutes. Results
show that, when the inter-device connections last only 1 second, a high probability
of meeting other peers leads to, counter-intuitively, worse performance. This is
because devices do not have enough time to exchange large data, hence more con-
nections just increase the number of duplicated bundles in the network and, thus,
queue saturation. In all the other cases, almost all bundles (more than 98%) have
been delivered successfully, with no significant improvements when increasing the
duration or the probability of inter-devices connections.

In general, results suggest that our approach is suitable in scenarios where inter-
devices opportunistic connections of at least 2 seconds can be established with a
probability of 10% (or higher) over time, and applications tolerate (i) a latency of,
at most, 3 minutes to receive the 95% of total data and (ii) a data loss up to 2%,
which is perfectly reasonable for a telemetry system.

Storage

Since on this set of tests we used an epidemic routing algorithm (namely, a
device sends a copy of every carried bundle each time an opportunistic connection
is established), we performed some measurements to evaluate the storage capacity
required on each device.

Figure 7.11a shows the average number of bundles stored on each node over time,
for different connection probabilities and a bundle lifetime set to 5 minutes. If end
devices establish connections with a probability of 10%, the number of bundles per
device stabilizes between ≈100 and ≈250 after the initial transient. As expected,
higher connection probabilities lead to a larger average amount of carried bundles,
due to the epidemic strategy. However, in all cases the amount of bundles does not
increase indefinitely over time; this behavior means that, on average, the network
can deliver bundles at the same rate they are generated, thus keeping the storage
occupation bounded.
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Figure 7.11: (c) Average number of bundles stored on each device during the simulation for
different probabilities of inter-device connections, with a bundle lifetime of 5 minutes. (d) Aver-
age storage overhead varying the probability of inter-device connections and comparing different
bundle lifetimes (1, 5 and 10 minutes).

We also compared the total number of bundles in the network over time with
the number of distinct ones. Figure 7.11b compares the average storage overhead
for different inter-device connection probabilities and different bundle lifetimes (1,
5, and 10 minutes). The graph shows that the ratio between total replicas and
distinct bundles increases with the connection probability. On the other hand, we
notice a significant difference in the number of bundles (both distinct and replicas)
when lifetime is increased from 1 to 5 minutes, while the same does not happen to
bring the lifetime to 10 minutes. Indeed, since on average only ≈55% of bundles
are delivered in less than 1 minute after their generation (as seen in Figure 7.10a),
such a short lifetime makes devices to discard a significant amount of still valid (i.e.,
not delivered) bundles. This is not the case with a lifetime of 5 and 10 minutes,
because, according to the results, almost all packets (≈95%) are delivered in less
than 3 minutes.

Results in Figures 7.11 confirm that the Epidemic approach is only suitable
when devices with proper capacity are involved and the average size of exchanged
messages is small enough, a requirement that is reasonably fulfilled in the teleme-
try use case here analyzed. In more generic situations, heuristics that reduce the
number of replicas are preferred (see results on routing in Section 7.5.4).

7.5.3 Service Discovery - on Virtualized Environment
The above mentioned virtualized environment was used to evaluate also the per-

formance of both Service Discovery and Virtual Service modules. In these tests, we
randomly deployed 5 different types of services on top of the available nodes, giving
each service a 10% of probability to be present on a given node. We performed
multiple experiment instances, varying (i) connection probability (between 5% and
70%), (ii) number of nodes (between 15 and 50) (iii) percentage of nodes that
stores service information locally (between 30% and 70%). Results are as follows.
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Figure 7.12: Time needed for a discovery request to get a response. (a) Normalized probability
mass for the case with 30 nodes, 20% of connection probability and 50% of directories. (bcd)
Comparisons in different network setup: (b) 15 nodes and 50% of directories varying connection
probability; (b) 20% of connection probability and 50% of directories varying number of nodes;
(b) 25 nodes and 20% of connection probability varying percentage of directories.

Discovery Delay

Figure 7.12a shows the normalized probability mass1 of the delay needed to get
a response for a service discovery request that has been propagated toward the
network. In particular, it refers to a setup featuring 30 nodes, 20% of connection
probability, and 50% of directory nodes (i.e., those that cache information of all
known service in the local storage). The normalized mass shows that, given this
setup, there is a probability between 70% and 80% to find the desired service in
less than 0.5 seconds. Figures 7.12b-d show how varying the scenario setup affects
service discovery delay. In particular, from Figure 7.12b it appears that varying the
connection probability reduces results sparsity, but has a low impact on the average
discovery delay. Figure 7.12c compares the discovery delay when increasing the
number of nodes in the network: since the connection probability does not change,
the network becomes sparser, with the consequent increase in the average number
of traversed hops required by a request to find the desired service. This leads to

1In statistics, the probability mass function gives the probability that a discrete random vari-
able is exactly equal to some value [154].
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Figure 7.13: (a) Virtual Service binding delay comparing different number of nodes. (b) Through-
put overhead of the virtual service in a connected topology.

a higher average delay and sparsity of the samples. Finally, Figure 7.12d shows
the impact of increasing the percentage of nodes that stores service information
locally: the average discovery delay slightly decreases, but the improvements are
not noticeable, even compared with the case with 30% of directory nodes.

Virtual Service

We tested the performance of the virtual service module measuring the binding
time and throughput. Figure 7.13a shows the cumulative distribution of the time
needed since a virtual service request is issued by the application, to the moment in
which the binding is completed. This is strictly dependent on the service discovery
response time and the network setup. The figure compares the results for different
numbers of nodes in the network, showing that the slowest binding times remain
in the order of a few seconds even for fleets of 40 nodes. Finally, we measured
the overhead introduced by the virtual service module in the baseline throughput,
being in between the customer and the actual remote service. These tests have
been conducted in the particular case of a connected topology since in a disrupted
scenario the processing time is not relevant compared to the network delay. Mea-
surements take into account the transfer of three files of different sizes, showing a
negligible overhead (Figure 7.13b).

7.5.4 Auspex Routing - on Emulated Environment
Experiments on the performance of the Auspex routing module have been re-

alized using LEPTON [97], an emulating platform supporting a large number of
nodes, each one running the desired software architecture without the necessity of
deploying virtual machines or containers. This setup allowed us to simulate actual
device movements and reproduce a more sophisticated scenario based on real case
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Figure 7.14: Routing experiments comparing Epidemic, MaxProp Vanilla, and Auspex over Max-
Prop, on two setups with a different number of nodes. Plots show delivery time (a-d, f) and
delivery ratio (e, g), distinguishing for destination area, and the overhead of Epidemic (h) on
both the setups (scale is logarithmic).

considerations. We compare the performance of our service-oriented routing strat-
egy with the original version of MaxProp [28], which is state-of-the-art in terms
of routing algorithms in disrupted networks. Additionally, we also show the per-
formance of the epidemic algorithm. These tests aim to assess the advantages of
influencing the original routing decisions with service-related information, such as
constraints specifying the tolerated end-to-end delay.
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Topology setup

We deployed from 24 to 44 emulated devices on a surface of 50×100 m2. Each
simulation features 4 stationary devices located at the edges of the surface. The
surface has been divided into six areas (partially overlapped), whose borders can
only be crossed by 30% of the total devices (cross-area devices). Among these,
33% moves with a speed between 1-2 m/s, the remaining at 0-2 m/s. Instead,
half of the area-bounded devices moves at 0.5-1 m/s, while the other half at 0-1
m/s. Additionally, roles have been assigned to devices as follows: 40% of the area-
bounded devices are sensors, 40% of them are actuators, and the remaining 20%
only act as transport devices, without receiving nor generating messages (devices
with no application running, e.g., onboard of vehicles with human workers). Cross-
area devices can be sensors, actuators, or only transport nodes with a uniform
probability. Sensor devices generate most of the messages, sending periodically
both to the assigned base station (the closest stationary device) and to at least two
other assigned nodes (with arbitrary distance). Additionally, sensors may generate
less frequent messages to (i) notify an over-threshold measurement to an actuator
device or (ii) respond to a received request. On the other hand, actuators generate
sporadic request messages for randomly selected sensors. Finally, each stationary
device may send sporadic messages (e.g., software updates or work plan changes)
to the assigned devices. The average number of generated messages per hour is
as in Table 7.6. We run multiple simulations of 8 hours each. In each simulation,
we test a different routing algorithm, while devices repeat the same movements,
following a Random Waypoint mobility pattern [83].

Table 7.6: Average number of messages generated in one hour, divided for destination area.

same area adjacent area far area cross-area total
353 856 170 197 1576

22.4% 54.3% 10.8% 12.5% /

Latency estimation

To perform these tests we implemented in Auspex a simple mechanism to esti-
mate the latency with peers, which is used to compute the expected latency of a
given path influencing the MaxProp decisions accordingly. Whenever a connection
with neighbor j is established, in addition to update the MaxProp probabilities as
described in Section 7.3.2, a value tj, estimating the period needed to meet again
such neighbor, is updated as follows:

tj = (1 − α) tj + α τj,
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where τj is the last measured sample, i.e., the period that was needed to meet
again neighbor j last time it disappeared, while α is a parameter empirically set to
0.375. For the aim of these experiments, latency to a neighbor j is simply estimated
as tj/2. The whole latency vector is exchanged together with the probability vector
at each opportunistic connection so that an estimated latency can be associated
with each path, other than the MaxProp cost.

Delivery time

To have an idea of the order of magnitude of the latencies involved in our setup,
we first measured the delivery times with the Epidemic algorithm. Figure 7.14a
shows the times distribution distinguishing between 4 categories of traffic: (i) bun-
dles with destination located within the same area of the source device, (ii) bundle
with destination in an adjacent area, (iii) bundles with destination in a far area,
(iv) bundles whose destination is a cross-area device.

Since Epidemic tries, at the same time, all the possible paths between the
source and the destination, it is reasonable to consider its delivery time and ratio
as near-optimal. However, such an approach is hard to adopt in real scenarios,
due to its high overhead on the device storage and transmission capacity. Hence,
we use Epidemic as a reference to compare performances of both MaxProp vanilla
(Figure 7.14b) that is the state-of-the-art routing algorithm in DTN, and of our
service-oriented extension using Auspex (Figure 7.14c).

Table 7.7 shows numerical details on the time needed to deliver 95% of bundles
after they are generated, comparing Epidemic and MaxProp and distinguishing for
destination areas. We used such values to properly dimension and set the latency
constraints of generated messages, i.e., (i) the percentage of messages affected by
these constraints, and (ii) the ranges within which the latency constraint is uni-
formly selected. This setup is summarized on Table 7.8.

Table 7.7: Time needed to deliver 95% of the bundles.

same area adj. area far area cross-area
Epidemic 4 m 4 m 4 m 5 m
MaxProp 18 m 24 m 16 m 12 m

Figure 7.14d summarizes delivery time distributions for the three different ap-
proaches, without area distinction. The graph shows that Auspex features a more
deferred delivery distribution since it intentionally delays bundles with larger la-
tency constraints. As shown in the remainder of this section, this compromise ef-
fectively increases the percentage of bundles that are delivered within their latency
constraints. A similar trend is observed for the case with 44 nodes (Figure 7.14f).
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Table 7.8: Latency constraint imposed on generated messages, based on the destination area. The
table shows the percentage of generated bundles that are affected by latency constraints and the
ranges within which the constraint values are uniformly selected.

same area adj. area far area cross-area
Affected 75% 75% 75% 100%
Latency 2-4 m 3-8 m 4-10 m 4-8 m

Delivery ratio

Figure 7.14e compares the percentage of bundles that have been delivered sat-
isfying the service constraints with the three different approaches, distinguishing
based on the location of the destination node. Epidemic features the best results,
as it sends each message towards all the possible paths. Most bundles having source
and destination within the same area are effectively delivered on time by both the
heuristics, with a slight degradation (less than 3%) on Auspex. On the other hand,
vanilla MaxProp performance significantly decreases when delivering to more dis-
tant destinations. Results show that Auspex effectively avoids queues saturation
and distributes traffic efficiently among the available paths, improving MaxProp
performances of circa 5% (on average) and up to 15% in the case of long-distance
communication.

In the simulation with 44 nodes (Figure 7.14g), Epidemic noticeably deteriorates
its performances, suggesting that the high number of bundle replicas starts saturat-
ing the DTN, affecting transmission capabilities. Noticeably, in this setup Auspex
brings the highest improvement on shorter-range communications, with up to 9%
bundles delivered on time between adjacent areas, while long-distance communi-
cations are only improved by less than 7%. This is due to the trivial algorithm
currently adopted in the Auspex prototype to estimate latency between nodes,
which deteriorate its accuracy as the number of nodes increases. A more sophisti-
cated estimation technique and fine-tuning would further improve the advantages
introduced by Auspex over MaxProp. However, the proposal of an effective latency
estimation algorithm between DTN nodes is out of scope for this work, as dedicated
works can be found in literature [20, 171, 169].

Finally, Figure 7.14h shows the overhead introduced by the usage of the Epi-
demic algorithm on the number of generated bundles (scale is logarithmic). The
plot highlights the impracticability of using such an algorithm on real scenarios
featuring a setup similar to the one reproduced in these simulations. Indeed, com-
pared with the average number of distinct bundles, Epidemic generates replicas up
to three orders of magnitude higher in the case of 24 nodes, and even four orders
of magnitude higher in the simulation featuring 44 nodes.
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7.6 Conclusion
In this chapter, we proposed Æther, a distributed communication system that

supports the delivery and consumption of scattered services in a disrupted infras-
tructure scenario. Core modules of Æther enable the management of the Bundle
Protocol through the store-carry-forward paradigm, a Service Discovery approach
that takes into account the disrupted nature of the network, and service-oriented
routing optimizations. Additionally, Æther provides virtual services that facilitate
clients to transparently consume services based on semantic rather than topology
considerations. Furthermore, we describe the overall framework that enables appli-
cations to operate on top of Æther, providing both APIs to directly exploit features
of all the core modules, and protocol gateways that act as bridges between tradi-
tional IoT applications and the disrupted network. We deployed our prototype
both on physical devices and on emulated environments. Experiments assess the
performance of each Æther module, assessing the applicability of this architecture
on real scenarios. Notably, results show that the service-oriented approach of Æther
improves routing decisions by effectively increase the percentage of messages that
are delivered satisfying service level constraints.
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Chapter 8

Conclusions

This dissertation addresses the problem of service management and orches-
tration on new-generation infrastructures, proposing novel solutions that enable
providers to benefit from the flexibility and possibilities introduced by new tech-
nologies and paradigms. Particular focus is given to the problems of distribution
and interoperability in Edge Computing, a paradigm that opens new possibilities for
service composition and enables new actors in the service provisioning ecosystem.

Challenges introduced by the new Edge paradigm are manifold. Scarce re-
sources and geographical distribution leads to the need for multiple providers to
inter-operate, coordinating service deployment. Each provider should be able to
exploit any capability of the heterogeneous infrastructure below to achieve enough
flexibility in service deployment. Due to the involvement of multiple providers,
coordination in the service deployment could not be demanded to a centralized
component. Additionally, different services may benefit from different strategies
that cannot be pursued with traditional one-size-fits-all approaches, as application
metrics are only known to the service provider of competence. Throughout this
work, we investigated novel paradigms for service management and orchestration
that could overcome these challenges.

We first focused on a single edge provider, proposing a capability-based orches-
tration approach that enables exploiting any facility offered by a multi-technological
infrastructure (Chapter 2). This increases flexibility and provides better optimiza-
tion possibilities in service deployment; for instance, in our tests (Section 2.5) we
experienced a 21% increased throughput and 45% less end-to-end latency for a ser-
vice chain delivery when all the capabilities of an SDN-enabled edge network are
exploited. However, being resources at edge scarce and geographically distributed,
multiple providers, even playing different roles, should be taken into account while
designing an edge orchestration model. Therefore, in Chapter 3 we identified the
new actors involved in service provisioning and their roles. The chapter also pro-
vides an insight into algorithms that providers may adopt in optimizing their mutual
interactions. Some of these interactions have been then deepened.
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In particular, Chapter 4 proposed a novel Service-Defined Orchestration ap-
proach that enables service providers to optimize on service-specific metrics even
when deploying applications on third parties platforms. This new paradigm has
been evaluated over some representative edge use cases, showing, for instance, how
a CDN provider may improve his miss rate distribution in a situation of high user
mobility, from a 20%-40% range to sub-10% values, compared to using a conven-
tional one-size-fits-all orchestrator (Section 4.5). We then addressed the problem
of coordinating multiple providers that orchestrate resources on a shared set of
edge clusters. With this respect, we proposed DRAGON, a Distributed Resource
AssiGnment and OrchestratioN algorithm that enables agreement on how to tem-
porarily partition resources among a set of actors, with guarantees on convergence
time and and a (1-1/e) optimal performance bound. DRAGON has been described
in Chapter 5. Large scale experiments have shown that the algorithm may oper-
ate coordinating 300 concurrent applications over 400 nodes achieving convergence
times in the order of 1.5 seconds (Section 5.6).

The last part of this thesis explores the interactions between services for work-
flow composition in the context of the highly modular and distributed edge infras-
tructure. In particular, Chapter 6 focuses on the challenges of service providers in
exploiting the plethora of new facilities populating the infrastructure while com-
posing their final service. We design a model-based configuration layer that enables
interoperability between existing actors and facilitates service composition through
monitoring and tuning of arbitrary components. The configuration layer introduces
a tolerable latency of ≈2 ms for both reading and writing a configuration three with
6 levels of depth (Section 6.6). Chapter 7 ultimately overviewed the applicability
of the new generation service facilities on highly scattered infrastructures. With
a focus on Industrial Internet of Things scenarios, we proposed Æther, a service-
oriented communication system that provides service management features and
service-oriented routing optimization, thus enabling IoT services to operate on a
disrupted infrastructure. As we shown in Section 7.5, the service discovery pro-
tocol proposed within Æther successfully binds ≈80% of the services in less than
1 second in scenarios with 30 sparse devices (featuring 20% of mutual-connection
probability). Additionally, the service-oriented routing optimization effectively im-
proves the state-of-the-art MaxProp algorithm in terms of on-time delivery ratio,
of ≈5% (on average) and up to ≈15% in the case of long distance communication.

This thesis covered multiple aspects of the problem of service management and
orchestration, providing novel solutions that may introduce benefits to the actor
involved in the service provisioning ecosystem. However, several challenges still
remain open, as we deepened only a subset of the existing interactions between the
involved providers. In this regard, the interaction between multiple infrastructure
providers deserves a particular mention. In the Edge Computing scenario, where
services are tied to the physical location of the resources, infrastructure providers
may encounter several opportunities in collaborating, such as being able to offer
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a larger infrastructure that may include also (part of) the resources available in
partnering IaaS domains. In this scenario, infrastructure providers may want to
introduce further optimization strategies in service deployment that take into ac-
count agreements stipulated with peers, other than service-level constraints. As in
this thesis we mainly focused on the problem from a service-oriented point of view,
this problem may represent a promising topic for future investigations.
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Author publications

Part of the research presented in this dissertation has been previously published
in the following papers:

• Bonafiglia, R., Castellano, G., Cerrato, I., & Risso, F., End-to-end service
orchestration across SDN and cloud computing domains. In International
Conference on Network Softwarization (NetSoft), 2017 IEEE Conference on
(pp. 1-6). IEEE.

• Castellano, G., Cerrato, I., Risso, F., Pezzolla, D., & Manzalini, A., Mim-
icking a compute domain orchestrator with the ONOS SDN controller. In
International Conference on Network Softwarization (NetSoft), 2017 IEEE
Conference on (pp. 1-3). IEEE.

• Castellano, G., Risso, F., & Loti, R., Fog Computing over Challenged Net-
works: a Real Case Evaluation. In International Conference on Cloud Net-
working (Cloudnet), 2018 IEEE Conference on (pp. 1-7). IEEE.

• Castellano, G., Risso, F., Enabling Fog Computing over Delay/Disruption-
Tolerant Networks. In 4th Italian Conference on ICT for Smart Cities And
Communities (ICities), 2018, (pp. 1-2).

• Castellano, G., Cerrato, I., Gharbaoui, M., Fichera, S., Martini, B., Risso,
F., & Castoldi, P., A model-based abstraction layer for heterogeneous SDN
applications. International Journal of Communication Systems 32.17 (2019),
e3989.

• Castellano, G., Esposito, F., & Risso, F., A Distributed Orchestration Al-
gorithm for Edge Computing Resources with Guarantees. In International
Conference on Computer Communications (INFOCOM), 2019 IEEE Confer-
ence on (pp. 2548-2556). IEEE.
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• Castellano, G., Esposito, F., & Risso, F., A Service-Defined Approach for
Orchestration of Heterogeneous Applications in Cloud/Edge Platforms. IEEE
Transactions on Network and Service Management 16.4 (2019), pp. 1404-
1418.

• Castellano, G., Manzalini, A., & Risso, F., A Disaggregated MEC Architec-
ture Enabling Open Services and Novel Business Models. In International
Conference on Network Softwarization (NetSoft), 2019 IEEE Conference on
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