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Abstract

Since the early history of Space Exploration, Mars conquest has been the most important target. After Apollo mission's 
Moon landing, several concepts and projects, concerning a mission on the Red Planet, were developed. One of the most 
important contributes was given by Buzz Aldrin, who theorized the use of particular kind of orbits, called cycler orbits, 
as baseline for an enduring Mars colonization.
A cycler orbit is a kind of orbit which repeats every integer multiple of synodic period and which encounters two bodies 
with a precise schedule. In the case, the bodies considered are Earth and Mars. It is possible to inject a space station in 
the cycler orbit which allows a continuous transfer of a crew from Low Earth Orbit to Mars Low Orbit and vice-versa. 
Small taxi vehicles are used to rendezvous the cycler station from the two bodies, significantly reducing the amount of 
propellant. 
In this paper a mission architecture based on this new concept was analysed, in order to develop an alternative mission 
profile compared to the actual architectures proposed for human missions. The work starts with an analysis of several 
classes of cycler. Through a trade-off analysis an unique class of cycler was identified as baseline for a further mission 
analysis. The mission analysis consists of an evaluation of orbital perturbation, the computation of ∆V required for 
injection and rendezvous manoeuvres and an identification of close approach windows of the cycler with the two 
planets, allowing an evaluation of mission duration. 
Eventually, the presented mission concept was compared with more classical concepts, focusing on a key figure to 
enable Mars colonization, sustainability. 
Finally the proposed architecture should be seen as a preliminary assessment of an alternative solution to the currently 
proposed enabling architectures for the Martian exploration.
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Nomenclature
: Semi-Major Axis𝑎
: Atmospheric Drag𝐷
: Eccentricity𝑒
: Thrust𝐹

: Specific Impulse𝐼𝑠𝑝
: Mass𝑚

: Radius𝑟
: Earth-Mars Synodic Period𝑆
: Time𝑡

: Standard Temperature𝑇0
: Normalized Temperature Coefficient𝑇𝑐

: Velocity𝑣
: Earth Circular Velocity𝑣𝐸𝑎𝑟𝑡ℎ

: Hyperbolic Excess of Speed𝑣∞
 Flight Path Angle𝛾:

: Turn Angle𝛿
: Efficiency𝜂
: Standard Efficiency𝜂0

: True Anomaly𝜈
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: Leftover AngleΨ
: Angular Velocity𝜔

Acronyms/Abbreviations
AOP: Argument Of Periapsis
AU: Astronomical Unit
DSM: Deep Space Manœuvre
DRA : Design Reference Architecture
ECLSS: Environment Control Life Support System
EML: Earth-Moon Lagrangian
LEO: Low Earth Orbit
LMO: Low Mars Orbit
RAAN: Right Ascension of the Ascending Node
RdV: Rendezvous
SLS: Space Launch System
SMA: Semi-Major Axis
SOI: Sphere Of Influence
TOF: Time Of Flight
WDV: Water Delivery Vehicle

1. Introduction

Actual vision for Human Mars Exploration are based on huge transportation architectures that ensure the provision of 
comfortable conditions and safety to the crew. Indeed, sustaining the human life in an harsh environment in during the 
Earth-Mars transfer and return is one of the most noticeable problem during this kind of missions. The consequence is 
the need of large system and consequently the need of enormous amount of propellant, leading to several heavy lift 
launchers (5 to 8) [7]. This can be accepted for a single mission but it is impracticable and not sustainable for an 
extensive and continuous Mars Exploration campaign.
A possible way out is the implementation of a complex architecture that allows utilization of several smaller systems, 
each one in charge of small portion of journey. The most important segment of this architecture will be a space station 
orbiting on a particular heliocentric orbit, called cycler orbit. This station allows the implementation of a recurrent 
channel to link Earth and Mars orbits that need to be injected in orbit just once at the beginning of its life. Once the 
vehicle is on the correct orbit, it can be used over and over again with very limited propellant mass for correction 
manoeuver. This is enabled by the intrinsic nature of the cycler orbits.
A cycler orbit is a special kind of trajectory which encounters two bodies on a regular schedule. In the case, Mars and 
Earth are the bodies involved. The cyclers repeat every whole number multiple of synodic period between the two 
planets. Nevertheless, external perturbation forces as solar pressure and gravitational perturbations cause the orbit 
degradation with consequential station keeping manoeuvres. Moreover, for some classes of cycler, a rotation of apses 
line is necessary in order to guarantee cycler repetition. If this manoeuvre is not required, the cycler is called ballistic.
Taking advantage from this theory, one or more vehicles will be equipped with all needs for a long transfer leg while 
smaller taxi vehicles could link Earth and Mars orbit to the cycler vehicle. The architecture will be completed with a 
staging post in Mars orbit to support and refuel the Mars Taxi. 
Given these considerations, the Earth-Mars cycler problem seems to be worthy of study and consideration.

1.1 Solar system model

For an initial estimation is necessary to give some hypotheses to proceed with an analytical calculation of orbital 
parameters, exploiting the resolution of Lambert’s problem. Indeed, a perpetual cycler exists only in a theoretical 
simplified solar system, which respects the following hypotheses:

• The Earth-Mars synodic period is years.2.143 
• Earth, Mars and cycler orbits lie in ecliptic plane.
• The cycler trajectory is conic and prograde.
• Only the Earth has sufficient mass to provide gravity assist manoeuvres.
• Gravity assist manoeuvres occur instantaneously.

At the initial time, a clockwise angle is chosen so that the spacecraft will encounter Mars after leaving Earth. After 
Mars encounter, the spacecraft may encounter the Earth again. If the Earth encounter happens with the same Earth-Mars 
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angle, the spacecraft may return to Mars using the same shape heliocentric orbit, hence it is a cycler trajectory. The orbit 
could be found as a solution of Lambert's problem.
Let now , an integer number of synodic period, be the time to repeat a cycler trajectory. It is also known the position 𝑇
of the spacecraft at the Earth encounters. Thus, the conditions for the trajectory are:

• 𝑇 = 𝑛𝑆
• 𝑟(𝑡 = 0) = [𝑎𝐸, 0]
• 𝑟(𝑡 = 𝑛𝑆) = [𝑎𝐸cos (2𝜋𝑛𝑆),𝑎𝐸sin (2𝜋𝑛𝑆)]

Where  is the SMA of Earth orbit,  the spacecraft radius from the Sun and  is an integer number. With 𝑎𝐸 = 1 𝐴𝑈 𝑟 𝑛
these conditions the trajectories could be found as a solution of Lambert’s problem.

1.2 Cycler characterization

Each cycler class, with a different number of synodic period may have multiple solutions. Every solution can be 
uniquely identified by specifying:

• n, time to repeat in integer synodic periods.
• If the solution is long-period, short-period or unique-period.
• r, the number of revolutions, rounded down to the nearer integer.

Then, we can denote a cycler with an acronym composed by three elements with the form 'nPr', where P is either 'L', 'S', 
'U', depending on the period of solution. For example, the Aldrin's cycler has the following acronym: 1L1.
A first consideration can be developed about the turn angle required to keep the shape and repetitiveness of cycler orbit. 
Since the Earth-Mars synodic period is not an integer multiple of Earth revolution period, when the spacecraft returns to 
Earth after n synodic periods, the Earth will accomplish a fraction of revolution ahead of where it was when the 
spacecraft left. For example, it is possible to consider the case n = 1, which means that, the trajectory taken, repeats 
every synodic period, equal to 2.143 years. In that time, the Earth orbits around the Sun in a not-integer number of 
years. This angle, called leftover angle, could be computed as follows: 

(1)∆𝑇 = 𝑚𝑜𝑑(𝑇, 2𝑛)

Where T is the TOF and n the number of synodic periods. Thus, knowing the Earth angular velocity and the time 
fraction, it is clear to compute the required leftover angle. Therefore, in order to keep the shape and repetitiveness of 
cycler orbit we have to rotate the line of apses. The rotation is achievable either with a fly-by with Earth or with a 
powered manoeuvre. The second case is necessary when the hyperbolic fly-by orbit perigee has and altitude smaller 
than 200 km from Earth surface. The cyclers which rotates the line of apses through a fly-by are called ballistic cycler.
When n is a multiple of seven, the Lambert's problem becomes degenerate and the cycler becomes a resonant transfer. 
In this case the line of apses does not need to be rotated, this is the case of VISIT 1 and VISIT 2 cyclers. 
A second consideration could be introduced discriminating inbound from outbound trajectories. Indeed, cycler orbit 
usually crosses Mars orbit in two points. Depending on launch date, Mars is encountered at the first or second crossing. 
An encounter at first crossing minimizes the TOF from Earth to Mars. A cycler used in this way is called 'outbound 
cycler' because it travels from Earth to Mars. Conversely, if the cycler is launched in a different date such that it will 
encounter Mars at second crossing, it will minimizes the TOF of travel from Mars to Earth. This trajectory is called 
'inbound cycler'. The difference between an inbound and outbound cycler is the launch date, not the shape of cycler 
trajectory.

2. Mission architecture overview

As introduced previously, the utilization of cycler orbits to reach the LMO requires the establishment of a complex 
architecture, which is made up by simpler systems in charge for a small part of the journey.
Of course, the most important system involved is the cycler station, a heavy architecture which has to support and 
guarantee the health and safety of the crew for a long travel in deep space with a large number of mission.
Other critical elements of the mission are the taxi vehicles which are going to link the LEO or LMO with the cycler 
station thanks to an hyperbolic orbit RdV. Designing the RdV manoeuvres is both a critical and challenging task. Since 
it is accomplished through a hyperbolic orbit, the main purpose is the design safe manoeuvres in order not to jeopardize 
the crew life in the case of failures. 
The last critical segment of transport system is the Mars ascent vehicle which can guarantee frequent links between 
Mars surface and LMO exploiting in situ resources.
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Therefore, up to six independent systems are involved in the mission architecture:

• Cycler Vehicle: one medium sized orbital habitable infrastructure linking LEO to LMO. The vehicle, 
supporting crew life during the legs, will be equipped with radiation shielding and high regenerative ECLSS. 
Once its final orbit is achieved, the cycler maintains it through electric propulsion to minimise propellant 
consumption. Depending on the selected cycler, more than one vehicle might be required. In order to satisfy its 
functionalities a first estimate of its mass is of the order of 100 t wet, 80 t dry.

• Earth taxi: an Orion-like vehicle which can host the crew from Earth surface to LEO and then perform RDV 
with the CTV. Clearly the Taxi must be equipped with a strong thermal protection system (e.g. a heat shield to 
sustain both the aero-capture and the entry manoeuvres will be necessary).

• Earth staging post (optional): a small infrastructure used as support to Earth taxis.
• Mars Taxi: equivalent to Earth taxi but different requirements and design features due to the different 

environment. The identification of a common design between the two would improve the sustainability.
• Mars staging post: an orbiting infrastructure with capabilities of on Mars orbit refuelling is required to limit 

the ascent mass of Mars taxi. About 40 t of propellant are needed for the RdV manoeuvre with the CTV starting 
from a parking LMO. The staging post would be of the same kind of the one proposed by Lockheed Martin 
Corporation in [15], which has already the same performance and capabilities. 

• Mars ascent vehicle: the most critical element of architecture, used as ascent module from Mars surface. The 
definition of this element is not threated in this paper and for reference similar capabilities can be found in the 
Lockheed Martin Corporation study cited in [15].

Both outbound and inbound scenarios are represented in the next figure.

Figure 1: Cycler based transportation scenario

3. Mission analysis

According to [1], there are nineteen classes of cyclers representing the most promising solutions, indeed, not all of them 
are suitable for dissertation purposes. For example, some classes of cycler, such as 1L2, 2L4, 3L6 and 4S8, are all 
equivalent to Earth orbit. Other cycler trajectories do not intersect the Mars orbit because they have aphelion radius 
shorter than mean Mars radius. However, if the aphelion radius is just slightly below the Mars one, taking into account 
Mars orbit eccentricity and some small correcting manoeuvres the two trajectories may intersect with each other; this is 
the case of cycler 6S9. 
The most famous and studied class is 1L1 (i.e. Aldrin’s cycler) and [3] presents a deep study on it. Therefore, the 
purpose of the section is to evaluate briefly each class of cycler in order to gather data for a following trade-off analysis: 
a single cycler will be chosen as baseline for the mission architecture. 
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3.1 Cycler identification

In general, an orbit is univocally determined by six parameters, usually by two vectors, position and velocity, referred to 
an inertial frame in three dimensions. Since the orbits are circular and they lie in a single plane and the orientation of the 
orbits in this plane is not an interesting problem, we neglect the AOP, the inclination and the RAAN .
Thanks to the resolution of Lambert’s problem, which is not a critical task, the orbital parameters are known. The 
algorithm were implemented by [1], [2], [3], [4], thus, only the main data are shown.
All the other orbital features, could be computed and found thanks to the algorithm provided by [6], they are neglected 
in the dissertation because they are not worth of interest.

Cycler Aphelion 
[AU]

V∞ Earth 
[km/s]

V∞ Mars 
[km/s]

Shortest 
transfer time 

[days]

Turn Angle 
Required 

[°]

Eccentricity

1L1 2,23 6,54 9,75 146,00 84,00 0,39

2L2 2,33 10,06 11,27 158,00 134,00 0,45

2L3 1,51 5,65 3,05 280,00 135,00 0,24

3L4 1,89 11,78 9,68 189,00 167,00 0,42

3L5 1,45 7,61 2,97 274,00 167,00 0,27

3S5 1,52 12,27 5,45 134,00 167,00 0,30

4S5 1,82 11,23 8,89 88,00 167,00 0,40

4S6 1,53 8,51 4,07 157,00 167,00 0,30

5S4 2,49 10,62 12,05 75,00 134,00 0,48

5S5 2,09 9,08 9,87 89,00 134,00 0,40

5S6 1,79 7,51 7,32 111,00 135,00 0,33

5S7 1,54 5,86 3,67 170,00 135,00 0,25

5S8 1,34 4,11 0,71 167,00 136,00 0,17

6S4 2,81 7,93 12,05 87,00 83,00 0,49

6S5 2,37 6,94 10,44 97,00 84,00 0,42

6S6 2,04 5,96 8,69 111,00 84,00 0,35

6S7 1,78 4,99 6,66 133,00 85,00 0,29

6S8 1,57 4,02 3,90 179,00 85,00 0,23

6S9 1,40 3,04 1,21 203,00 86,00 0,17

Table 1 Most promising cyclers features

3.2 Earth fly-by analysis

From the starting hypotheses, the Earth is the only planet with a sufficient mass to provide a gravity assist, modifying 
velocity vector of the cycler spacecraft. This operation is needed to rotate the line of apses of the required leftover 
angle, helping us to identify ballistic cyclers.
The approximation used is the patched conics one, in which the Solar System is treated with spheres of influence. 
Furthermore, Earth SOI is supposed negligible than its mean radius from Sun, thus, the spacecraft will encounter the 
Earth exactly at a distance equal to . This analysis does not take into account the gravitational effect on the Moon. 1 𝐴𝑈
The resolution of the hyperbolic trajectory during a planet fly-by is well described by [5]. Taking into account the work 
developed by [3], in which only Aldrin's cycler is deeply analysed, we carried on a similar study in order to gather data 
for a further RdV analysis with the taxi vehicles. 
Considering a bodies system lying on the same orbital plane, rotational matrixes are not required for a coordinate 
system change. Indeed it will be sufficient using Carnot's theorem to solve velocity triangles. Indeed, since the excess of 
speed is computed as follows:

 (2)𝑣∞ =  𝑣2 + 𝑣 2
𝐸𝑎𝑟𝑡ℎ ‒ 𝑣𝑣𝐸𝑎𝑟𝑡ℎ𝑐𝑜𝑠𝛾

The turn angle required is computed solving the fly-by  equation:∆𝑉
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 (3)∆𝑉 = 2𝑣𝑠𝑖𝑛𝛾 = 2𝑣∞𝑠𝑖𝑛𝛿

This analysis also allowed the identification of ballistic cyclers: only 6S8 and 6S9 are included in this group. The  ∆𝑉𝑠
provided by gravity assist are respectively  and .5.45 𝑘𝑚/𝑠 4.20 𝑘𝑚/𝑠

3.3 Trade-off

At this point, the main features of several cycler orbits are determined by the earlier analysis, thus it is possible to 
choose the best cycler orbit for our objectives. After the orbit selection, this will be deeply analysed and will be used in 
all the dissertation.
The trade-off process begins by selecting some features, between those previously found, which must describe each 
class of orbit in the most general way, for the purpose of trying to describe the cycler in an objective way. These 
features are called figures of merit.
In this case five figures of merit were identified, each with a relative weight ranging from 1 to 5 :

• Total ∆V RdV (relative weight of 5): this figure of merit represents the amount of propellant required to the 
taxis for rendezvous and docking operations: the lower the ∆V value the lower the fuel consumption will be. 
An high value of this feature leads to an over-sizing of taxi dimensions; considering that one of the study 
objective is the reduction of the total amount of propellant in this trade-off analysis the ∆V RdV is the heaviest 
figure;

• ∆V fly-by additional (relative weight of 4): this figure represents the powered manoeuvre necessary to rotate 
the line of apses of the cycler orbit. Only three cyclers are ballistic cycler, in fact the rotation resulting from 
fly-by manoeuvre is enough to guarantee the cycler repetition. The other ones require an additional ∆V. The 
weight of this figure is significant, because it will determine the amount of propellant required to the Cycler 
Vehicle; 

• Repeatability (relative weight of 3): the last figure substantially represents the ideal number of Cycler Vehicle 
required to have a mission every synodic period. This number is equal to 2n, so an high value of n require a 
large number of vehicle; therefore cycler with n=6 requires an ideal number of 12 Cycler Vehicle to guarantee 
a travel every synodic period. Clearly this is a scenario extremely expensive and complex, hence would be less 
sustainable. One way of reducing the costs is decreasing the number of Cycler Vehicles. For this reason this 
figure is quite meaningful and it has a medium weight in this analysis;

• Mechanical Energy (relative weight of 2): this parameter is considered in order to provide a univocal 
parameter which could describe the cycler orbit injection. Nevertheless, the orbital strategy for injection could 
be different from case to case, losing the objectivity required for this analysis. Therefore, a dissertation based 
on mechanical energy was preferred, because the energy is a univocal and common figure for each cycler. The 
weight assigned is not the lowest because it is directly linked to the amount of propellant needed for orbit 
injection;

• Shortest transfer time (relative weight of 1): this figure of merit represents the shortest transfer time between 
Earth and Mars, provided in 

• Table 1. Naturally due to the manned mission considered, the lower the value the better the result, because a 
greater number of travel day leads to less day on Mars. As can be seen, this figure of merit has the lowest 
weight; that is because the range between the various cases is not particularly significant and this features is 
less binding than the others.

Once we have identified and assigned a relative weight to each figures of merit, it is possible to execute the trade-off 
analysis. Traditional approach for the trade-off has been used; for each figure the assigned weight is multiplied by a 
score ranging from 1 to 10, which is proportional to the specific figure. Thus the total score for a certain kind of orbit 
may be expressed as follows:
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Figure 2 Trade off results

As it is possible to see, the highest score belongs to the “1L1” cycler, called Aldrin cycler. Also cyclers with n=5 and 
n=6 present high scores: the “5S8” is very affordable in terms of total ∆V RdV, the “6S9 ” is in addition a ballistic 
cycler; on the other hand, unfortunately, these cyclers are inconvenient in terms of repeatability (in view of the large n) 
and the high energy necessary to the cycler orbit injection. The second highest score belongs to the “2L3” cycler, 
characterized by excellent values repeatability and ∆V RdV, but likewise with an high energy.
The Aldrin cycler represents a good compromise between all the figures of merit, so it is chosen as baseline for further 
mission analysis. In the next chapter the selected solution will be described with more details by removing some 
simplifications and using optimizations in order to reduce the cost of the rendezvous manoeuvres which is the week 
point of 1L1.

4. RDV strategies

The cycler scenario requires that the taxi vehicle performs a rendezvous with the Cycler Vehicle while the cycler is in a 
hyperbolic orbit in the proximity of the planet.
While spacecraft rendezvous has been studied for some time, there are unique challenges involved in rendezvous with 
spacecraft in hyperbolic orbits. One risk is a delay in the scheduled burn time resulting in a lost rendezvous opportunity. 
Another risk is being marooned in deep space if the taxi spacecraft enters a hyperbolic transfer orbit and misses the 
rendezvous. There are proposed methods to manage these risks, however. If the taxi carries enough propellant, it can 
still perform the rendezvous in the off-nominal scenario that it must depart one or two orbits late. A large amount of 
fuel would also be able to re-circularize the taxi orbit in the event that it is already on a hyperbolic approach but cannot 
achieve the final docking.
Two different RdV approach are considered in this study, one more secure for the crew in the case of docking failure 
and one more advantageous in terms of fuel consumption: 

1. Elliptic rendezvous
2. Hyperbolic rendezvous

4.1 Elliptic rendezvous

This formulation assumes a two-impulse rendezvous for achieving a rendezvous between elliptic and hyperbolic orbits, 
in which the first impulse raising the transfer orbit apoapsis and the second nulling out the remaining relative velocity 
compared to the Cycler Vehicle at the hyperbola periapsis. This method look like an Hohmann.
The total ∆V required for the taxi RdV is composed by the two impulsive manoeuvres: in order to calculate the value of 
these ∆V, some assumption are used:

• Taxi vehicle starts in a 400 km circular orbit both Earth and Mars side;
• Taxi is optimally phased for the RdV manoeuvres at start;
• Taxi and Cycler Vehicle stay in a coplanar plane;
• Manoeuvres are impulsive and instantaneous.

The total ∆V required for the taxi RdV is the sum of this two manoeuvres. This method can be implemented by the use, 
for example, of three impulsive manoeuvres in a bi-elliptical transfer orbit, in order to reduce the total ∆V costs with, 
however, an increase in terms of time.
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Figure 3: Elliptic rendezvous manoeuvre

The main advantages of this method relies in the relative simple “backup” manoeuvres in case of RdV failure: since the 
transfer orbit for the rendezvous is an ellipse, it could be retraced using the same instantaneous burns, in order to return 
in the circular orbit around the planet.

4.1 Hyperbolic rendezvous

This manoeuver can be broken down into four phases [11], or simply in four burns, which are considered impulsive 
here too. 
Starting from the same low circular orbit as the previous case, the first manoeuvre achieves an high-energy orbit, but 
does not escape; this is useful in case of failure of the second burn, because this transit orbit is an ellipse and the taxi 
will return at the starting point after one complete revolution. The second burn is the “escape burn”, in which the taxi 
achieves the same V∞ as the Cycler Vehicle. The third manoeuvre cancels most of the relative velocity between the taxi 
and the cycler spacecraft and the final burn, that is not treated in this study, is the “docking burn”. 

Figure 4: Hyperbolic rendezvous manoeuvre

This method is less expensive than the previous one (for the outbound worst case, the required ΔV for a hyperbolic RdV 
is 4,77 km/s, compared to 6,22 km/s required by an elliptic RdV), but is more dangerous for the crew: in fact, if the 
docking phase fails, the taxi gets lost in space. In order to prevent this deadly possibility, redundant propulsion system 
and extra propellant could be considered.

5. Optimization
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Various studies about the attempt to improve the main Aldrin cycler criticality, which is the taxi RdV costs, are present 
in the Earth-Mars cycler literature. These studies propose trajectory optimizations by using some particular software: 
the reasoning behind these optimizations is the use of low-thrust in order to reduce the spacecraft approach velocity at 
planets sphere of influence, therefore decreasing the hyperbolic excess velocity (V∞) and changing the fly-by hyperbola 
characteristics in order to lower the ∆V necessary for the taxi RdV. All this is possible by carrying out more expensive 
deep space manoeuvres; so these manoeuvres made by the Cycler Vehicle will not be necessary only for guarantee the 
orbit repeatability, but also for optimizing the trajectory.
The literature optimizations taken into account for this study are: Rauwolf, et al. [8], that use the SAIC’s version of the 
Chebytop computer code to calculate the optimal trajectory solutions with normalized parametric mass performance 
data; Friedlander, et al. [9]; two different optimizations by Chen, et al. [10], that use Jet Propulsion Laboratory’s 
Mission Analysis Low-Thrust Optimization (MALTO) tool to construct the Aldrin cycler trajectories.

5.1 Optimization choice

Among the various optimizations considered, the most advantageous one in terms of taxi fuel consumption for the 
elliptic RDV has been selected, both for the Earth and Mars side.
After that, by comparing the relative worst case for the outbound and the inbound trajectories, it has been analysed in 
detail the mission schedule, the cost of Cycler Vehicle deep space manoeuvres and evaluating an initial estimate of the 
transportable mass.
In the following table the worst case of every optimization both outbound (for the Earth RdV) and inbound (Mars RdV) 
are depicted. Moreover, to evaluate possible future development, the values of this kind of manoeuvre in case of 
departure from Lagrangian point (L1) are shown.

Earth Mars

Cycler optimization LEO
[km/s]

L1
[km/s]

LMO
[km/s]

Rauwolf et al. 6,217 2,159 12,922

Friedlander et al. 7,031 2,522 12,304

Chen et al. (1) 10,320 6,404 11,346

Chen et al. (2) 9,394 4,685 5,520

Table 2. delta-V for Taxi RDV with different optimization

As can be seen in the table, the best outbound cycler trajectory is the Rauwolf et al. [8] optimization, and the best 
inbound is Chen et al.[10], so these optimizations will be considered in the rest of this work.

5.2 Mission schedule

Taking into consideration the chosen trajectories, it is possible to define exactly the launch date, the time of flight 
between the planets, the arrival date and the subsequent return date. Assuming that after seven synodic period (≈15 
years and seven Earth/Mars transit) Earth and Mars return exactly in the same initial conditions, a possible mission 
schedule is:

Earth 
departure date

Travel 
duration 

[d]

Mars arrival 
date

Mars 
operation 

[d]

Mars 
departure date

Travel 
duration 

[d]

Earth arrival 
date

Mission duration 
[days]

6-Dec-2028 151 6-May-2029 650 15-Feb-2031 166 31-Jul-2031 967

14-Jan-2031 142 5-Jun-2031 680 15-Apr-2033 206 7-Nov-2033 1028

5-Mar-2033 145 28-Jul-2033 723 21-Jul-2035 143 11-Dec-2035 1011

23-May-2035 160 30-Oct-2035 663 23-Aug-2037 153 23-Jan-2038 976

10-Aug-2037 155 12-Jan-2038 616 20-Sep-2039 176 14-Mar-2040 947

15-Sep-2039 169 2-Mar-2040 594 17-Oct-2041 186 21-Apr-2042 949

20-Oct-2041 163 1-Apr-2042 611 3-Dec-2043 213 3-Jul-2044 987
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25-Nov-2043 151 24-Apr-2044 642 26-Jan-2046 166 11-Jul-2046 959

2-Jan-2046 142 24-May-2046 672 26-Mar-2048 206 18-Oct-2048 1020

22-Feb-2048 145 16-Jul-2048 715 1-Jul-2050 143 21-Nov-2050 1003

10-May-2050 160 17-Oct-2050 687 3-Aug-2052 153 3-Jan-2053 1000

28.Jul.2052 155 30-Dec-2052 609 31-Aug-2054 176 23-Feb-2055 940

2-Sep-2054 169 18-Feb-2055 587 27-Sep-2056 186 1-Apr-2057 942

7-Oct-2056 163 19-Mar-2057 604 13-Nov-2058 213 14-Jun-2059 980

Table 3. Mission opportunities from June 2028 to February 2059

5.3 Cycler deep space manoeuvres

As previously mentioned, the Cycler Vehicle must perform deep space manoeuvres in order to maintain the cycler 
repeatability (by rotating the line of apses) and to have the ideal hyperbolic excess velocity at planets encounter. The 
values of the DSM for outbound and inbound cycler are shown in the following table; the outbound DSM are reported 
in [8], the inbound DSM are calculated from [10].

OUTBOUND INBOUND

Cycler optimization DSM [km/s] Date (Earth passage) Cycler optimization DSM [km/s] Date (Mars passage)

Rauwolf et al. 0 6-Dec-2028 Chen et al. 1,464 15-Feb-2031

Rauwolf et al. 0 14-Jan-2031 Chen et al. 1,597 15-Apr-2033

Rauwolf et al. 0,211 5-Mar-2033 Chen et al. 0,357 21-Jul-2035

Rauwolf et al. 0,679 23-May-2035 Chen et al. 3,766 23-Aug-2037

Rauwolf et al. 0,671 10-Aug-2037 Chen et al. 3,334 20-Sep-2039

Rauwolf et al. 0 15-Sep-2039 Chen et al. 1,711 17-Oct-2041

Rauwolf et al. 0 20-Oct-2041 Chen et al. 0,792 3-Dec-2043

Rauwolf et al. 0 25-Nov-2043 Chen et al. 1,464 26-Jan-2046

Rauwolf et al. 0 2-Jan-2046 Chen et al. 1,597 26-Mar-2048

Rauwolf et al. 0,211 22-Feb-2048 Chen et al. 0,357 1-Jul-2050

Rauwolf et al. 0,679 10-May-2050 Chen et al. 3,766 3-Aug-2052

Rauwolf et al. 0,671 28.Jul.2052 Chen et al. 3,334 31-Aug-2054

Rauwolf et al. 0 2-Sep-2054 Chen et al. 1,711 27-Sep-2056

Rauwolf et al. 0 7-Oct-2056 Chen et al. 0,792 13-Nov-2058

Table 4. Outbound and Inbound cyclers deep space manoeuvres [8] [10]

As can be seen in Table 4, the inbound DSM are more expensive. in order to cope with these manoeuvres budget Solar 
Electric Propulsion is selected. Assuming, for example, an ISP = 6000 s (Thrust = 4 N) and an initial Cycler Vehicle 
mass of 100 t, the inbound fuel consumption is of 40 t while the outbound fuel consumption is of 5 t without 
considering refuel operation during the approximately 30 years of operations. This leads to a refuelling scenario made 
of 3 Falcon Heavy for the inbound and 1 for the outbound. It is important to specify that the assumption of this high 
specific impulse is due to the fact that the study carried out is futuristic, where it is reasonable to think of electric 
propulsions much more advanced than the current ones.
5.4 Taxy RdV

Using the chosen optimizations, we consider the hyperbolic rendezvous to transfer the taxi from the circular low orbit to 
the Cycler Vehicle. The outbound worst case (1st November 2026 case) results in a total ∆V cost of 4,77 km/s for the 
Earth RdV, while the inbound worst case on Mars results in a ∆V of 4,1 km/s.
If we assume that the taxi is equipped with a cryogenic propulsion system with Isp = 450 s and the propulsion module 
has a structural coefficient ε of 0.1, we can use the Tsiolkowski rocket equation to determine the final mass that will 
dock with the Cycler Vehicle and thus that will arrive close to the target planet.
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Considering two different types of launchers, Falcon Heavy and SLS Block 2, that are capable of carrying in LEO 
respectively 55 t and 130 t and analysing separately the three manoeuvres ∆V1, ∆V2, ∆V3, the rocket equation brings to 
the following results:

• Falcon Heavy, payload on cycler: 15,79 t
• SLS Block 2, payload on cycler: 37,32 t

5.5 Descent Phase

When the Cycler Vehicle, with the taxi attached, arrives near to the target planet, the taxi leaves the cycler with the 
crew on board and carries out the descent phase. On Mars the final speed is too high to perform a direct entry, thus a 
preliminary aerocapture manoeuver must be implemented to slow down the spacecraft before performing the descent 
phase and allowing the landing on the surface. The aerocapture represents a critical phase for the crew survival, because 
the resultant accelerations must be maintained below a certain limit, sets in this case to 5 g.
Considering an hyperbolic approach, the trajectory with the greatest atmospheric entry speed at Mars (125 km) turns out 
to be of 12,5 km/s and is considerably less for some dates.
Assuming an entry FPA of about -10° in Mars atmosphere (125 from the surface) and a gradually decreasing the 
downward lift that is used to maintain constant altitude (50 km) during the aero-cruise phase [12], in order to exit with a 
the desired speed of 4.2 km/s, the limit of 5 g is exceeded in two cases (6th December 2028 and 14th January 2031 
Earth departures). For this reason, it is necessary to adopt a solution to reduce the acceleration peaks. These strategies 
include for example:

1. Use drag to reduce velocity before reaching aero-cruise altitude;

2. Entry in atmosphere with a steeper angle in order to bleed off more speed prior to aero-cruise;

3. Reduce entry speed with the propulsion system;

4. Use propulsive thrusting during the initial aero-cruise phase (0,358 km/s for the worst case [12]).

Setting the aerocapture phase in a way that the g-limit is respected and the exit speed from the Mars atmosphere is 
approximately 4,2 km/s, the taxi travels through an elliptic trajectory that goes up to 6000 km from Mars surface 
(crossing Phobos orbit) before re-entering into the atmosphere and finally landing to Mars surface. Considering this 
second atmospheric entry speed of 4,2 km/s, the propulsive ∆V necessary to perform the landing is 0,58 km/s [13].
On the Earth side the atmospheric entry speeds are close to Orion performances. Therefore a direct descent to Earth 
surface using the atmospheric drag is considered feasible without additional manoeuvers [14].

5. Sustainability

A useful figure of merit to underline the benefits coming from an architecture similar to the cycler one comes from a 
sustainability comparison between the Cycler and the NASA DRA 5.0 [7]. With the term “Sustainability” it is intended 
the costs related to the required launches and orbiting elements deployed to build up the missions for an extended 
exploration campaign covering 14 synodic periods. DRA 5.0. plan relies on 5 SLS Block II launches per mission for the 
in-space segment (thus not comprising the Mars Ascent Vehicle). The Cycler option would need 3 SLS Block II 
launches for each Cycler Vehicle injection on orbit in order to start the cycle (thus only the first time, due to the fact the 
Cycler Vehicle will be re-utilized for the subsequent journeys). Having a Cycler Vehicle in the outbound and another 
one in the inbound leg, a total amount of 6 SLS Block II launches would be required. Subsequently 1 SLS Block II 
launch the Earth Taxi that would be needed to transfer the crew to the Cycler Vehicle for each mission plus an Ariane64 
for the cargo delivery. The need of  logistic is based on preliminary estimation and shall be refined in future studies. 
Additionally the propellant for the Mars Taxi, that has to be refuelled in Mars orbit, can be provided by the same 
concept (called WDV) described [15], which has a performance of 40 t of LOX/LH2, compatible with the Mars Taxi 
needs. This can be launched with one SLS Block II once per synodic period. Finally there may be various strategy for 
the Cycler Vehicles refuelling: it could be used “light” launchers (with small amount of propellant) at each Earth-
passage of the Cycler Vehicles, or less frequently with bigger launchers such as Falcon Heavy. With this last  strategy 
the 3 launches are required for the inbound CTV (1 every 5 cycles) and 1 launch every 14 cycles for the outbound CTV. 
This approach is compatible with a 100 ton wet CTV.
Therefore, after 14 synodic periods, NASA DRA 5.0 approach would require 70 SLS launches while the Cycler 
architecture would require only 34 SLS, 14 Ariane64 (cargo) and 4 Falcon Heavy (refuel) cutting launch costs of about 
50%. Additionally the Cycler vehicle would be reused for 14 missions avoiding the construction of 14 transfer vehicles.
Moreover the travel performed in the firsts synodic periods could be used as an intermediate step between Cis-Lunar 
missions and the Martian surface exploration. The crew, after the RdV with the Cycler, can remain on board for a 2 
years mission in Deep Space, testing the harsh conditions before the Martian surface infrastructure will provide the 
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capability to land and to ascent safely. This approach would spread the financial efforts deploying the infrastructure in a 
stepwise manner increasing the sustainability of the Martian exploration.  

6. Conclusion

The use of Earth-Mars cycler as baseline for enduring mission towards Mars is an alternative concept which offers 
several advantages. In the long term the cycler based architecture offers a great saving of propellant and launches. It is 
clear that the mission concept allows frequent transfer between Earth and Mars with a deep re-utilization of the vehicle. 
The exploitation of Earth-Mars cycler is surely useful in the case of an enduring colonization of Mars but it can be 
compared with NASA DRA5.0 also in case of a single mission, deploying the transportation system gradually spreading 
the cost of the infrastructure across several years.
In the near term this study will focus on the functional analysis and a better definition of the involved system in order to 
validate the concept here proposed.
Eventually, this feasibility study is important because gives the bases to several further studies. We hope that the efforts 
will contribute to a future enduring Martian colonization, in order to fulfil another giant leap for mankind.
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