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ULRICH BUNDLES ON THE DEGREE SIX SEGRE FOURFOLD

F. MALASPINA

Abstract. We completely characterize the bigraded resolutions of Ulrich bundles
of arbitrary rank on the Segre fourfoldP2×P2. We characterize the Ulrich bundles
V of arbitrary rank onP2×P2 with h1(V⊗Ω�Ω) = 0 or with h1(V⊗Ω(−1)�Ω(−1)) =
0 or obtained as pullback from P2 and we construct more complicated examples.

1. Introduction

A locally free sheaf (or “bundle”) E on a projective varity X is aCM if it has
not intermediate cohomology or if the module E of global sections of E is a max-
imal Cohen-Macaulay module. There has been increasing interest on the classi-
fication of aCM bundles on various projective varieties, which is important in a
sense that the aCM bundles are considered to give a measurement of complexity
of the underlying space. Moreover the understanding of aCM bundles is crucial
for the study of any bundle on X as it is showed on [25]. A special type of aCM
sheaves, called the Ulrich sheaves, are the ones achieving the maximum possible
minimal number of generators. These bundles are characterized by the linearity
of the minimal graded free resolution over the polynomial ring of their module
of global section. Ulrich bundles, originally studied for computing Chow forms,
conjecturally exist over any variety (see [16]). But the conjecture has been checked
only for a few varieties, e.g. in case of surfaces, del Pezzo surfaces, rational normal
scrolls, rational aCM surfaces in P4, ruled surfaces and so on; see [11, 26, 27, 1].
The case of Veronese varieties has been studied in [16], [9] and [23] and the case
of Hirzebruch surfaces in [4]. Although there are some occasions where the classi-
fication problem of Ulrich bundles of special type is done as in [2, 10, 12, 13], the
completion of classification problem is difficult in usual.

In [14] and [26] it shown that Segre varieties and rational normal scroll (except
P1 ×P1 and cubic and quartic scroll, see [18] and [20]) are of Ulrich wild repre-
sentation type namely they support families of Ulrich bundles of arbitrary large.
The representation type is determined by considering a certain type of family of
Ulrich bundles. In [2] in given a classification of Ulrich vector bundles of arbi-
trary rank on rational normal scroll. A consequence of the main result is that the
moduli spaces of Ulrich bundles are zero-dimensional. The case P2 ×P1 has been
studied in more details in [19], where all the aCM bundles are classified. The first
biprojective space which is not a rational scroll is P2 ×P2. Here the families of
Ulrich bundles are much more complicated as can be deduced from the study of
the rank two case achieved in [8].
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2 F. MALASPINA

In this article we pay our attention to the case of arbitrary rank. In order to do
that we show that every Ulrich bundle V on P2 ×P2 is regular according to both
the two different notions of Castelnuovo-Mumford regularity given in [5] and [22].
Then we compute the cohomology of V tensored with OP2 �Ω,Ω�OP2 andΩ�Ω
with suitable twists. In particular we obtain that V is of natural cohomology (as in
[16] on Veronese varities) in a suitable range. More precisely we get that the only
nonzero cohomology for V (m,n) with |m−n| ≤ 1 may be given by

ai = h
i(V (−i − 1,−i)) and bi = hi(V (−i,−i − 1)).

At this point we choose suitable full exceptional collections in order to apply a
Beilinson type spectral sequence and to obtain the following resolution

0 −→OX(−1,0)⊕a2 ⊕OX(0,−1)⊕b2 −→OX(−1,1)⊕a1 ⊕O
⊕3a2+3b2
X ⊕OX(1,−1)⊕b1 −→

−→OX(1,0)⊕a0 ⊕OX(0,1)⊕b0 −→ V −→ 0.

Moreover we characterize the Ulrich bundles V of arbitrary rank on P2 ×P2 with
h1(V ⊗Ω�Ω) = 0 or with h1(V ⊗Ω(−1)�Ω(−1)) = 0 or obtained as pullback from
P2 and we construct more complicated examples. We believe that the study of this
variety will be the key step for the understanding of the families of Ulrich bundle
over all the biprojective spaces.

Here we summarize the structure of this article. In section 2 we introduce the
definition of Ulrich bundles and several notions in derived category of coherent
sheaves to understand the Beilinson spectral sequence. In section 3 we recall the
definition of Castelnuovo-Mumford given in [5] and [22] and we made the coho-
mological computations. In section 4 we study the examples of families of Ulrich
bundles and we prove the main results. In section 5 we discuss the case of the
hyperplane section of P2 ×P2: the flag variety F(0,1,2).

The author wants to thank M. Aprodu and P. Rao for helpful discussions on the
subject.

2. Preliminaries

Throughout the article our base field is the field of complex numbers C.

Definition 2.1. A coherent sheaf E on a projective variety X with a fixed ample
line bundle OX(1) is called arithmetically Cohen-Macaulay (for short, aCM) if it is
locally Cohen-Macaulay and H i(E(t)) = 0 for all t ∈Z and i = 1, . . . ,dim(X)− 1.

Definition 2.2. For an initialized coherent sheaf E on X, i.e. h0(E(−1)) = 0 but
h0(E) , 0, we say that E is an Ulrich sheaf if it is aCM and h0(E) = deg(X)rank(E).

Given a smooth projective variety X, let Db(X) be the the bounded derived
category of coherent sheaves on X. An object E ∈ Db(X) is called exceptional if
Ext•(E,E) = C. A set of exceptional objects ⟨E0, . . . ,En⟩ is called an exceptional
collection if Ext•(Ei ,Ej ) = 0 for i > j. An exceptional collection is said to be full
when Ext•(Ei ,A) = 0 for all i implies A = 0, or equivalently when Ext•(A,Ei) = 0
does the same.

Definition 2.3. Let E be an exceptional object in Db(X). Then there are functors
LE and RE fitting in distinguished triangles

LE(T ) −→ Ext•(E,T )⊗E −→ T −→ LE(T )[1]
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RE(T )[−1] −→ T −→ Ext•(T ,E)∗ ⊗E −→RE(T )

The functors LE and RE are called respectively the left and right mutation functor.

The collections given by

E∨i = LE0LE1 . . .LEn−i−1En−i ;
∨Ei =REnREn−1 . . .REn−i+1En−i ,

are again full and exceptional and are called the right and left dual collections. The
dual collections are characterized by the following property; see [21, Section 2.6].

(1) Extk(∨Ei ,Ej ) = Extk(Ei ,E
∨
j ) =

{
C if i + j = n and i = k
0 otherwise

Theorem 2.4 (Beilinson spectral sequence). Let X be a smooth projective variety and
with a full exceptional collection ⟨E0, . . . ,En⟩ of objects for Db(X). Then for any A in
Db(X) there is a spectral sequence with the E1-term

E
p,q
1 =

⊕
r+s=q

Extn+r (En−p,A)⊗Hs(E∨p )

which is functorial in A and converges to Hp+q(A).

The statement and proof of Theorem 2.4 can be found both in [29, Corollary
3.3.2], in [21, Section 2.7.3] and in [6, Theorem 2.1.14].

Let us assume next that the full exceptional collection ⟨E0, . . . ,En⟩ contains only
pure objects of type Ei = E∗i [−ki] with Ei a vector bundle for each i, and more-
over the right dual collection ⟨E∨0 , . . . ,E∨n ⟩ consists of coherent sheaves. Then the
Beilinson spectral sequence is much simpler since

E
p,q
1 = Extn+q(En−p,A)⊗E∨p =Hn+q+kn−p (En−p ⊗A)⊗E∨p .

Note however that the grading in this spectral sequence applied for the pro-
jective space is slightly different from the grading of the usual Beilison spectral
sequence, due to the existence of shifts by n in the index p,q. Indeed, the E1-terms
of the usual spectral sequence are Hq(A(p))⊗Ω−p(−p) which are zero for positive
p. To restore the order, one needs to change slightly the gradings of the spectral
sequence from Theorem 2.4. If we replace, in the expression

Eu,v1 = Extv(E−u ,A)⊗E∨n+u =Hv+k−u (E−u ⊗A)⊗F−u
u = −n+p and v = n+q so that the fourth quadrant is mapped to the second quad-
rant, we obtain the following version (see [2]) of the Beilinson spectral sequence:

Theorem 2.5. Let X be a smooth projective variety with a full exceptional collection
⟨E0, . . . ,En⟩ where Ei = E∗i [−ki] with each Ei a vector bundle and (k0, . . . , kn) ∈ Z⊕n+1

such that there exists a sequence ⟨Fn = Fn, . . . ,F0 = F0⟩ of vector bundles satisfying

(2) Extk(Ei ,Fj ) =H
k+ki (Ei ⊗Fj ) =

{
C if i = j = k
0 otherwise

i.e. the collection ⟨Fn, . . . ,F0⟩ labelled in the reverse order is the right dual collection
of ⟨E0, . . . ,En⟩. Then for any coherent sheaf A on X there is a spectral sequence in the
square −n ≤ p ≤ 0, 0 ≤ q ≤ n with the E1-term

E
p,q
1 = Extq(E−p,A)⊗F−p =Hq+k−p (E−p ⊗A)⊗F−p
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which is functorial in A and converges to

(3) E
p,q
∞ =

{
A if p+ q = 0
0 otherwise.

3. Cohomology of Ulrich bundles on P2 ×P2

Let X = P2 ×P2. We will often use the following exact sequences.

(4) 0 −→OX(0,−3) −→OX(0,−2)⊕3 −→OP2 �Ω −→ 0,

(5) 0 −→OP2 �Ω −→OX(0,−1)⊕3 −→OX −→ 0,

(6) 0 −→OX(−3,0) −→OX(−2,0)⊕3 −→Ω�OP2 −→ 0,

and

(7) 0 −→Ω�OP2 −→OX(−1,0)⊕3 −→OX −→ 0,

On X we have two different notions of Castelnuovo-Mumford regularity (see
[5] and [22]):

Definition 3.1. A coherent sheaf F on X is (BM)-regular if:

H1(F (−1,0)) =H1(F (0,−1)) =H2(F (−1,−1)) =H2(F (0,−2)) =H2(F (−2,0)) =

=H3(F (−1,−2)) =H3(F (−2,−1)) =H4(F (−2,−2)) = 0.

Definition 3.2. A coherent sheaf F on X is (HW )-regular if:

H1(F (−1,0)) =H1(F (−1,−1)) =H2(F (−2,−1)) =H2(F (−1,−2)) =

=H3(F (−3,−1)) =H3(F (−1,−3)) =H3(F (−2,−2)) =

=H4(F (−1,−4)) =H4(F (−4,−1)) =H4(F (−3,−2)) =H4(F (−2,−3)) = 0.

Remark 3.3. If F is a (BM)-regular coherent on X then it is globally generated
and F (p,p′) is (BM)-regular for p,p′ ≥ 0 by [5] Proposition 2.2.

If F is a (HW )-regular coherent on X then it is globally generated and F (p,p′)
is (HW )-regular for p,p′ ≥ 0 by [22] Proposition 2.7 and Proposition 2.8.

Lemma 3.4. Let V be an Ulrich bundle on X.

(i) H0(V (j1, j2)) = 0 for j1 ≤ −1, ȷ2 ≤ −1 andH4(V (j1, j2)) = 0 for j1 ≥ −4, ȷ2 ≥ −4.
(ii) V is (BM)-regular and (HW )-regular.
(iii) For i = 1,2,3, H i(V (j1, j2)) = 0 if j1 ≥ −i and ȷ2 ≥ −i or if j1 ≤ −i − 1 and

ȷ2 ≤ −i − 1.
(iV) For i = 1,2,3, H i(V ⊗Ω(j1 +2)�OP2(j2)) =H i(V ⊗OP2(j1)�Ω(j2 +2)) = 0 if

j1 ≥ −i and ȷ2 ≥ −i or if j1 ≤ −i − 1 and ȷ2 ≤ −i − 1.
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Proof. H i(V (j, j)) = 0 for any i and j = −1,−2,−3,−4. Since H0(V (−1,−1)) = 0, from
(4), (5), (6) and (7), we get H0(V (j1, j2)) = 0 for j1 ≤ −1, ȷ2 ≤ −1, H0(V ⊗Ω(j1 + 1)�
OP2(j2)) =H0(V ⊗OP2(j1)�Ω(j2 +1)) = 0 for j1 ≤ −1, ȷ2 ≤ −1.

Since H4(V (−4,−4)) = 0, from (4), (5), (6) and (7) we get H4(V (j1, j2)) = 0 for
j1 ≥ −4, ȷ2 ≥ −4, H4(V ⊗Ω(j1 + 2)�OP2(j2)) = H4(V ⊗OP2(j1)�Ω(j2 + 2)) = 0 for
j1 ≥ −4, ȷ2 ≥ −4. In particular we get (i).

Since H3(V (−3,−3)) = 0, from (5) tensored by V (−3,−2) and (7) tensored by
V (−2,−3) H3(V (−3,−2)) = H3(V (−2,−3)) = 0. From (5) tensored by V (−3,−1) and
(7) tensored by V (−1,−3) H3(V (−3,−1)) = H3(V (−1,−3)) = 0 Since H3(V (−2,−2)) =
0, from (5) tensored by V (−2,−1) and (7) tensored by V (−1,−2) H3(V (−2,−1)) =
H3(V (−1,−2)) = 0,

From (4) tensored by V (−3,−1) and (6) tensored by V (−1,−3) we get H3(V ⊗
Ω(−1)�OP2(−3)) =H3(V ⊗OP2(−3)�Ω(−1)) = 0

Since H3(V (−3,−2)) = H3(V (−2,−3)) = 0, from (4) tensored by V (−2,−1) and (6)
tensored by V (−1,−2) we getH3(V ⊗Ω(−1)�OP2(−2)) =H3(V ⊗OP2(−2)�Ω(−1)) =
0.

SinceH3(V (−2,−2)) = 0, from (4) tensored by V (−2,0) and (6) tensored by V (0,−2)
we get H3(V ⊗Ω�OP2(−2)) =H3(V ⊗OP2(−2)�Ω) = 0.

SinceH2(V (−2,−2)) = 0 andH3(V⊗Ω(−1)�OP2(−2)) =H3(V⊗OP2(−2)�Ω(−1)) =
0, from (5) tensored by V (−2,−1) and (7) tensored by V (−1,−2) H2(V (−2,−1)) =
H2(V (−1,−2)) = 0.

Since H2(V (−2,−1)) = H2(V (−2,−1)) = 0 and H3(V ⊗Ω � OP2(−2)) = H3(V ⊗
OP2(−2)�Ω) = 0, from (5) tensored by V (−2,0) and (7) tensored by V (0,−2)H2(V (−2,0)) =
H2(V (0,−2)) = 0.

Since H3(V (−3,−1)) = H3(V (−1,−3)) = H2(V (−2,−1)) = H2(V (−2,−1)) = 0, from
(4) tensored by V (−1,0) and (6) tensored by V (0,−1) we get H2(V ⊗Ω�OP2(−1)) =
H2(V ⊗OP2(−1)�Ω) = 0.

SinceH1(V (−1,−1)) = 0 andH2(V⊗Ω�OP2(−1)) =H2(V⊗OP2(−1)�Ω) = 0, from
(5) tensored by V (−1,0) and (7) tensored by V (0,−1) H1(V (−1,0)) = H1(V (0,−1)) =
0.

We have hence proved the (BM)-regularity and (HW )-regularity so (ii).

Since V (p,p′) is (BM)-regular and (HW )-regular for p,p′ ≥ 0, we obtainH i(V (j1, j2)) =
0 if j1 ≥ −i and ȷ2 ≥ −i for i > 0.

Now since V∨(2,2) is Ulrich we have H j (V∨(k1 + 2, k2 + 2)) = 0 if k1 ≥ −j and
k2 ≥ −j, so by Serre duality H4−j (V (−k1 − 5,−k2 − 5)) = 0 if k1 ≥ −j and k2 ≥ −j. Let
i = 4−j, j1 = −k1−5, j2 = −k2−5, we getH i(V (j1, j2)) = 0 if j1 ≤ −i−1 and j2 ≤ −i−1
for i = 1,2,3. So also (iii) is proved.

Now from

0 −→ V (j1, j2 − 1) −→ V (j1, j2)⊕3 −→ V ⊗OP2(j1)�Ω(j2 +2) −→ 0

we get H i(V ⊗OP2(j1)�Ω(j2 +2)) = 0 if j1 ≥ −i and ȷ2 ≥ −i.
From

0 −→ V ⊗OP2(j1)�Ω(j2 +1) −→ V (j1, j2)⊕3 −→ V (j1, j2 +1) −→ 0
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we get H i(V ⊗OP2(j1)�Ω(j2 +2)) = 0 if j1 ≤ −i − 1 and ȷ2 ≤ −i − 1 for i = 1,2,3,. In
the same way we obtain H i(V ⊗Ω(j1 + 2)�OP2(j2)) = 0 if j1 ≥ −i and ȷ2 ≥ −i or if
j1 ≤ −i − 1 and ȷ2 ≤ −i − 1 for i = 1,2,3, and proof of (iv) is completed. �

Remark 3.5. Let call for i = 0, . . .4

ai = h
i(V (−i − 1,−i)) and bi = hi(V (−i,−i − 1)).

An helpful tool for summarizing the part (iii) of the above Lemma are the follow-
ing pictures dealing with the subsets of the plane j1, j2 whose points correspond
to some intermediate cohomology group of the sheaf V (j1, j2).
In the following pictures we show the vanishing regions and the positions of ai ,bi
for h1(V (j1, j2)),h2(V (j1, j2)) and h3(V (j1, j2)):

-j1

6
j2

.a1 .b1

h1 = 0

h1 = 0

Figure 1

-j1

6
j2

.a2 .b2

h2 = 0

h2 = 0

Figure 2

-j1

6
j2

.a3 .b3

h3 = 0

h3 = 0

Figure 3

Lemma 3.6. Let V be an Ulrich bundle on X, then
(a) h1(V⊗Ω�OP2(−1)) = b0, h1(V⊗OP2(−1)�Ω)) = a0 and hi(V⊗Ω�OP2(−1)) =

hi(V ⊗OP2(−1)�Ω)) = 0 for any i except for i = 1.
(b) h1(V ⊗Ω�OP2(−2)) = b2, h1(V ⊗OP2(−2)�Ω) = a2 and hi(V ⊗Ω�OP2(−2)) =

hi(V ⊗OP2(−2)�Ω)) = 0 for any i except for i = 1.
(c) h1(V ⊗Ω�Ω) = 3a2 +3b2 and hi(V ⊗Ω�Ω) = 0 for any i except for i = 1.
(d) h2(V ⊗Ω(−1)�Ω(−1)) = 3a3+3b3 = 3a1+3b1 and hi(V ⊗Ω(−1)�Ω(−1)) = 0

for any i except for i = 2.

Proof. From (5) tensored by V (−1,0) and (7) tensored by V (0,−1) we get h1(V ⊗
OP2(−1)�Ω) = a0, h1(V ⊗Ω�OP2(−3)) = b0 and hi(V ⊗OP2(−1)�Ω)) = hi(V ⊗Ω�
OP2(−1)) = 0 for any i except for i = 1. We have proved (a).

From (4) tensored by V (−2,0) and (6) tensored by V (0,−2) we get h1(V ⊗Ω �
OP2(−2)) = b2, h1(V ⊗OP2(−2)�Ω) = a2 and hi(V ⊗Ω�OP2(−2)) = hi(V ⊗OP2(−2)�
Ω) = 0 for any i except for i = 1. We have proved (b).

From (4) tensored by V (−3,0) and (6) tensored by V (0,−3) we get h2(V⊗OP2(−3)�
Ω) = 3b2, h2(V⊗Ω�OP2(−3)) = 3a2 and hi(V⊗OP2(−3)�Ω)) = hi(V⊗Ω�OP2(−3)) =
0 for any i except for i = 2.

Now let us consider the sequence
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(8) 0 −→OP2(−3)�Ω −→OP2(−2)⊕3 �Ω −→Ω�Ω −→ 0,

tensored by V . Since we have computed the cohomology of V ⊗OP2(−3)�Ω and
V⊗OP2(−2)�Ω, we may deduce that h1(V⊗Ω�Ω) = 3a2+3b2 and hi(V⊗Ω�Ω) = 0
for any i except for i = 1. We have proved (c).

From (4) tensored by V (−4,−1) and (6) tensored by V (−1,−4) we get h3(V ⊗
OP2(−4)�Ω(−1)) = 3b3, h3(V⊗Ω(−1)�OP2(−4)) = 3a3 and hi(V⊗OP2(−4)�Ω(−1)) =
hi(V ⊗Ω(−1)�OP2(−4)) = 0 for any i except for i = 3.

From (4) tensored by V (−3,−1) and (6) tensored by V (−1,−3) we get h2(V ⊗
Ω(−1)�OP2(−3)) = b3, h2(V ⊗OP2(−3)�Ω(−1)) = a3 and hi(V ⊗Ω(−1)�OP2(−3)) =
hi(V ⊗OP2(−3)�Ω(−1)) = 0 for any i except for i = 2.

Now let us consider the sequence

(9) 0 −→OP2(−4)�Ω(−1) −→OP2(−3)⊕3 �Ω(−1) −→Ω(−1)�Ω(−1) −→ 0,

tensored by V . Since we have computed the cohomology of V ⊗OP2(−4)�Ω(−1)
and V ⊗OP2(−3)�Ω(−1), we may deduce that h2(V ⊗Ω�Ω) = 3a3+3b3 and hi(V ⊗
Ω(−1)�Ω(−1)) = 0 for any i except for i = 2.

From (5) and (7) tensored by V (−1,−1) we get h1(V ⊗ OP2(−1) �Ω(−1)) = 3b1,
h1(V⊗Ω(−1)�OP2(−1)) = 3a1 and hi(V⊗OP2(−1)�Ω(−1)) = hi(V⊗Ω(−1)�OP2(−1)) =
0 for any i except for i = 1.

From (5) tensored by V (−2,−1) and (7) tensored by V (−1,−2) we get h2(V ⊗
Ω(−1)�OP2(−2)) = a1, h2(V ⊗OP2(−2)�Ω(−1)) = b1 and hi(V ⊗Ω(−1)�OP2(−2)) =
hi(V ⊗OP2(−2)�Ω(−1)) = 0 for any i except for i = 2.

Now let us consider the sequence

(10) 0 −→Ω(−1)�Ω(−1) −→OP2(−2)⊕3 �Ω(−1) −→OP2(−1)�Ω(−1) −→ 0,

tensored by V . Since we have computed the cohomology of V ⊗OP2(−2)�Ω(−1)
and V ⊗OP2(−1)�Ω(−1), we may deduce that h2(V ⊗Ω�Ω) = 3a1+3b1 and hi(V ⊗
Ω(−1)�Ω(−1)) = 0 for any i except for i = 2. So also (d) is proved.

�

4. Families of Ulrich bundles on P2 ×P2

We start this section with examples of Ulrich bundles:

Remark 4.1. The only rank one Ulrich bundles on X are OX(2,0) and OX(0,2).

Example 4.2. Let a ≥ 1 and b ≥ a+2 then the set of elements

Φ : ObP2 −→OP2(1)a

such that H0(Φ(1)) are surjective forms a non-empty dense open subset (see [17]
Proposition 4.1). Using the vector bundles obtained as the kernel of these maps
when b = 2a and a > 1 in [14] Theorem 3.6. has been constructed families of Ulrich
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of even rank. The construction works also for odd rank. So for any r > 1 we have
families of rank r Ulrich bundles arising from the following exact sequences.

(11) 0 −→OX(−1,1)⊕r −→OX(0,1)⊕2r −→ V1 −→ 0,

or

(12) 0 −→OX(1,−1)⊕r −→OX(1,0)⊕2r −→ V2 −→ 0.

The same families may be obtained from the exact sequences

(13) 0 −→ V1 −→OX(1,0)⊕2r −→OX(2,0)⊕r −→ 0,

or

(14) 0 −→ V2 −→OX(0,1)⊕2r −→OX(0,2)⊕r −→ 0.

The same families may be given by the exact sequences

(15) 0 −→OX(1,0)⊕r −→OP2(1)�Ω(2)⊕r −→ V1 −→ 0,

or

(16) 0 −→OX(0,1)⊕r −→Ω(2)�OP2(1)⊕r −→ V2 −→ 0.

Lemma 4.3. Let a,b,c,d be integers. Let V1 and V1 be indecomposable coherent sheaves
on X arising from exact sequences

(17) 0 −→OX(−1,1)⊕d −→OX(0,1)⊕b −→ V1 −→ 0,

or

(18) 0 −→OX(1,−1)⊕c −→OX(1,0)⊕a −→ V2 −→ 0.

Then we have:
(1) Ext1(V1,V2) = Ext1(V2,V1) = 0.
(2) If V1 V2 are Ulrich bundles we must have a = 2c and b = 2d.

Proof. (1) If we apply the functor Hom(−,V2) to (17) we obtain Ext1(V1,V2) = 0 be-
causeHom(OX(−1,1),V2) =H0(V2(1,−1)) = 0 and Ext1(OX(0,1),V2) =H1(V2(0,−1)) =
0. Similarly we prove that Ext1(V2,V1) = 0.

(2) The rank of V1 is b−d so if V1 is Ulrich we must have h0(V1) = 6b−6d. From
(17) we get h0(V1) = 3b, hence 3b = 6b − 6d if and only if b = 2d.

�

Now we construct the full exceptional collections that we will use in the next
theorems: Let us consider on both copies of P2 the full exceptional collection
{OP2(−2),OP2(−1),OP2}. We may obtain (see [28]):

(19)

E8[k8] = OX(−2,−2)[−4] , E7[k7] = OX(−1,−2)[−4] , E6[k6] = OX(−2,−1)[−3],
E5[k5] = OX(0,−2)[−3] , E4[k4] = OX(−2,0)[−2] , E3[k3] = OX(−1,−1)[−1],
E2[k2] = OX(0,−1)[−1] , E1[k1] = OX(−1,0) , E0[k0] = OX .
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The associated full exceptional collection ⟨F8 = Fn, . . . ,F0 = F0⟩ of Theorem 2.5 is

(20)

F8 = OX(−1,−1) , F7 =Ω(1)�OP2(−1) , F6 = OP2(−1)�Ω(1),

F5 = OX(0,−1) , F4 = OX(−1,0) , F3 =Ω(1)�Ω(1),

F2 = OP2 �Ω(1) , F1 =Ω(1)�OP2 , F0 = OX .

From (19) with a few left mutations we obtain:

(21)
E8[k8] = OX(−2,−2)[−4] , E7[k7] = OP2(−2)�Ω[−4] , E6[k6] =Ω�OP2(−2)[−3],
E5[k5] = OX(−2,−1)[−3] , E4[k4] = OX(−1,−1)[−2] , E3[k3] = OX(−1,−1)[−1],
E2[k2] = OX(0,−1)[−1] , E1[k1] = OX(−1,0) , E0[k0] = OX .

The associated full exceptional collection ⟨F8 = Fn, . . . ,F0 = F0⟩ of Theorem 2.5 is

(22)

F8 = OX(−1,−1) , F7 =Ω(1)�OP2(−1) , F6 = OP2(−1)�Ω(1),

F5 = OX(0,−1) , F4 = OX(−1,0) , F3 =Ω(1)�Ω(1),

F2 = OP2 �Ω(1) , F1 =Ω(1)�OP2 , F0 = OX .

Let call G1 = OP2 �Ω(1) and G2 =Ω(1)�OP2 .

Theorem 4.4. Let V be an Ulrich bundle on X. Then V arises from an exact sequence
of the form:

(23) 0 −→OX(−1,0)⊕a2⊕OX(0,−1)⊕b2 −→OX(−1,1)⊕a1⊕O
⊕3a2+3b2
X ⊕OX(1,−1)⊕b1 −→

−→OX(1,0)⊕a0 ⊕OX(0,1)⊕b0 −→ V −→ 0.

or
(24)
0 −→ V −→OX(1,2)⊕b4 ⊕OX(2,1)⊕a4 −→OX(1,3)⊕a3 ⊕OX(2,2)⊕3a2+3b2 ⊕OX(3,1)⊕b3 −→

−→OX(2,3)⊕a2 ⊕OX(3,2)⊕b2 −→ 0.

Proof. We consider the Beilinson type spectral sequence associated toA := V (−1,−1)
and identify the members of the graded sheaf associated to the induced filtration
as the sheaves mentioned in the statement. We assume due to [16, Proposition 2.1]
that

H i(A(−j,−j)) = 0 for all i and 0 ≤ j ≤ 3

and consider the full exceptional collection E• given in (21) and collection F• given
in (22).

We construct a Beilinson complex, quasi-isomorphic toA, by calculatingH i+kj (A⊗
Fj )⊗Ej with i, j ∈ {0, . . . ,8} to get the following table. Here we use several vanishing
in the intermediate cohomology of A,A(−1,−1),A(−2,−2),A(−3,−3) together with
vanishing of Lemma 3.6:
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OX(−2,−2) OX(−1,−2) OX(−2,−1) OX(0,−2) OX(−2,0) OX(−1,−1) OX(0,−1) OX(−1,0) OX
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 b2 0 0 0 0 0 ∗ ∗
0 0 a2 b1 0 0 0 0 0
∗ ∗ 0 0 a1 0 0 0 0
∗ ∗ ∗ ∗ 0 3a2 +3b2 a0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 b0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

OX(−1,−1) G2(0,−1) G1(−1,0) OX(0,−1) OX(−1,0) G1 ⊗G2 G1 G2 OX

From this table, since Extk(Fi ,Fj ) = 0 for k > 0 and any i, j, we have that the full
exceptional collection (31) is strong. So we get the claimed resolution. �

Remark 4.5. From (23) we deduce that we must have a0 , 0 or b0 , 0. From (24)
we deduce that we must have a4 , 0 or b4 , 0.

Corollary 4.6. Let V be an Ulrich bundle on X withH1(V ⊗Ω�Ω) = 0. Then V arises
from an exact sequence of the form:

(25) 0 −→OX(−1,1)⊕a1 −→OX(0,1)⊕2a1 −→ V −→ 0,

or

(26) 0 −→OX(1,−1)⊕b1 −→OX(1,0)⊕2b1 −→ V −→ 0,

with a1,b1 > 1.

Proof. We consider the Beilinson type spectral sequence associated toA := V (−1,−1)
with the full exceptional collection E• and left dual collection F• as in the above
Theorem.

Since H1(V ⊗Ω�Ω) = 0 and H1(V ⊗Ω�Ω) = 3a2 +3b2 we get

a2 = b2 = 0,

so we obtain the following table:

OX(−2,−2) OX(−1,−2) OX(−2,−1) OX(0,−2) OX(−2,0) OX(−1,−1) OX(0,−1) OX(−1,0) OX
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 ∗ ∗
0 0 0 b1 0 0 0 0 0
∗ ∗ 0 0 a1 0 0 0 0
∗ ∗ ∗ ∗ 0 0 a0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 b0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

OX(−1,−1) G2(0,−1) G1(−1,0) OX(0,−1) OX(−1,0) G1 ⊗G2 G1 G2 OX
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We call α and β themaps arising from the table which are defined fromOX(−2,0)a1
to OX(−1,0)a0 and from OX(0,−2)b1 to OX(0,−1)b0 . So we get the following exact
sequence

0 −→ kerα −→OX(−2,0)a1 −→OX(−1,0)a0 −→ cokerα −→ 0

and

0 −→ kerβ −→OX(0,−2)b1 −→OX(0,−1)b0 −→ cokerβ −→ 0,

where kerα � B �OP2 and cokerβ � OP2 � C with B a vector bundle on P2 and C
a coherent sheaf on P2. Moreover kerβ = 0 since the spectral sequence converges
to an object in degree 0, so we obtain that h0(C) = 0, hence Hom(kerα,cokerβ) �
H0(B∨ � C) = 0. This implies that also kerα = 0 and A is given by an extension of
cokerα with cokerβ But, by Lemma4.3, Ext1(cokerβ,cokerα) = 0 and a0 = 2a1 and
b0 = 2b1. Then we have the claimed result. �

Theorem 4.7. Let V be an Ulrich bundle on S with H1(V ⊗Ω(−1)�Ω(−1)) = 0. Then
V � OX(2,0) or V � OX(0,2).

Proof. We consider the Beilinson type spectral sequence associated toA := V (−1,−1)
and identify the members of the graded sheaf associated to the induced filtration
as the sheaves mentioned in the statement. We assume due to [16, Proposition 2.1]
that

H i(A(−j,−j)) = 0 for all i and 0 ≤ j ≤ 3

and consider the full exceptional collection E• given in (21) and collection F• given
in (22).

We construct a Beilinson complex, quasi-isomorphic toA, by calculatingH i+kj (A⊗
Ej )⊗Fj with i, j ∈ {0, . . . ,8} to get the following table. Here we use several vanishing
in the intermediate cohomology of A,A(−1,−1),A(−2,−2),A(−3,−3) together with
vanishing of Lemma 3.6:

OX(−1,−1) OX(−1,0) OX(0,−1) OX(−1,1) OX(1,−1) G1 �G2 G1 G2 OX
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 a3 0 0 0 ∗ ∗ ∗ ∗
0 0 b3 a2 0 0 0 ∗ ∗
0 0 0 0 b2 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 b1 0 0
∗ ∗ ∗ ∗ ∗ 0 0 a1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

OX(−2,−2) G1(−2,−1) G2(−1,−2) OX(−2,−1) OX(−1,−1) OX(−1,−1) OX(0,−1) OX(−1,0) OX

Since h2(V ⊗Ω(−1)�Ω(−1)) = 3a3 +3b3 = 3a1 +3b1 = 0 we get

a3 = b3 = a1 = b1 = 0,

so we obtain the following table:
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OX(−1,−1) OX(−1,0) OX(0,−1) OX(−1,1) OX(1,−1) G1 �G2 G1 G2 OX
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 ∗ ∗ ∗ ∗
0 0 0 a2 0 0 0 ∗ ∗
0 0 0 0 b2 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0

OX(−2,−2) G1(−2,−1) G2(−1,−2) OX(−2,−1) OX(−1,−1) OX(−1,−1) OX(0,−1) OX(−1,0) OX

Finally, since Ext1(OX(−1,1),OX(1,−1)) = Ext1(OX(1,−1),OX(−1,1)) = 0 we get the
claimed result. �

Theorem 4.8. Let V be an Ulrich bundle on X, then
(1) if a0 = a4 = 0, then V �Ω(2)�Ω(3) or V � OX(0,2);
(2) if b0 = b4 = 0, then V �Ω(3)�Ω(2) or V � OX(2,0);
(3) if V is a twist of a pullback from P2 then V � OX(2,0), or V � OX(0,2) or V

arises from sequences (25), (26).

Proof. We prove only (2) and (3).
Since an Ulrich bundles V arising from

0 −→OX(1,−1)⊕b1 −→OX(1,0)⊕2b1 −→ V −→ 0,

or
0 −→OX(−1,1)⊕a1 −→OX(0,1)⊕2a1 −→ V −→ 0,

do not satisfy the condition b4 = 0 or b0 = 0 we may assume H1(V ⊗Ω �Ω) =
3a2 + 3b2 , 0 so a2 = h2(V∨(0,−1)) = h2(V (−3,−2)) , 0 or a2 = h2(V∨(0,−1)) =
h2(V (−3,−2)) , 0.

If a2 , 0, from the exact sequence

0 −→O(−3,−2) −→O(−2,−2)⊕3 −→Ω�O(−1)⊗3 −→Ω�Ω(1) −→ 0

tensored by V , since h2(V (−2,−2)) = 0 and h1(V ⊗Ω � O(−1)) = b0 = 0 we get a
surjection from H0(V ⊗Ω�Ω(1)) = H0(V ⊗ (Ω(2)�Ω(3))∨) to H2(V (−3,−2)) , 0.
Moreover from the exact sequence

0 −→O(0,−1) −→O⊕3 −→O(1)�Ω(2)⊗3 −→Ω(3)�Ω(2) −→ 0

tensored by V∨, since h2(V∨) = 0 and h1(V∨⊗O(1)�Ω(2)) = h3(V ⊗O(1)�Ω(−2)) =
b4 = 0 we get a surjection from H0(V∨ ⊗Ω(3)�Ω(2)) to H2(V∨(0,−1)) , 0.

So we may conclude that V �Ω(3)�Ω(2) by arguing as in [5].
If a2 = 0 then (23) becomes

0 −→OX(0,−1)⊕b2 −→OX(−1,1)⊕a1 ⊕O
⊕3b2
X ⊕OX(1,−1)⊕b1 −→OX(1,0)⊕a0 −→ V −→ 0,

and we deduce that a1 = 0.
Similarly (24) becomes

0 −→ V −→OX(2,1)⊕a4 −→OX(1,3)⊕a3 ⊕OX(2,2)⊕3b2 ⊕OX(3,1)⊕b3 −→OX(3,2)⊕b2 −→ 0

and we deduce that a3 = 0.



ULRICH BUNDLES ON THE DEGREE SIX SEGRE FOURFOLD 13

Finally let assume b2 , 0 and a1 = a3 = 0, from the exact sequence

0 −→O(−2,−3) −→O(−2,−2)⊕3 −→O(−2,−1)⊕3 −→O(−2,0) −→ 0

tensored by V , since h2(V (−2,−2)) = 0 and h1(V (−2,−1)) = a1 = 0we get a surjection
from H0(V (−2,0)) = H0(V ⊗ (O(2,0))∨) to H2(V (−2,−3)) , 0. Moreover from the
exact sequence

0 −→O(−1,0) −→O⊕3 −→O(1,0)⊕3 −→O(2,0) −→ 0

tensored by V∨, since h2(V∨) = 0 and h1(V∨(1,0)) = h3(V (−4,−3)) = a3 = 0 we get a
surjection from H0(V∨(2,0)) to H2(V∨(−1,0)) , 0.

So we may conclude that V � O(2,0) (see [5]) and (2) is proven.
In order to prove (3) let assume that V is a twist of a pullback from the second

copy of P2.
First let us consider the case V = OP2 � B where B is a vector bundle on P2.

Since hi(V (−3)) = hi(V (−4)) = 0 for any i but h2(OP2(−3)) , 0 and h2(OP2(−4)) , 0
we must have hi(B(−3)) = hi(B(−4)) = 0 for any i. So we may deduce that B(−2) is
Ulrich on P2 hence V = OX(0,2).

Now let us consider the case V = OP2(1)�B where B is a vector bundle on P2.
Since hi(V (−1)) = hi(V (−4)) = 0 for any i but h0(OP2 ) , 0 and h2(OP2(−3)) , 0 we
must have hi(B(−1)) = 0 and hi(B(−4)) = 0 for any i. In particular h2(B(t)) = 0 for
any t ≥ −4. We consider the Beilinson type spectral sequence associated to B(−1)
with E• = {OP2(−1),Ω(1),OP2} and F• = {OP2(−2),OP2(−1),OP2} given in (22).

We get the following table.

OP2(−2) OP2(−1) OP2

0 0 0
b a 0
0 0 0

OP2(−1) Ω(1) OP2

So we obtain
0 −→OP2(−2)⊕b −→OP2(−1)⊕a −→ B(−1) −→ 0,

hence
0 −→OX(1,−1)⊕b −→OX(1,0)⊕a −→ V2 −→ 0.

Then by Lemma 17 we get a = 2b and we obtain (26).
Finally let us consider the case V = OP2(t) � B where B is a vector bundle on

P2 and t ≥ 2. Since h0(V (−1)) = 0 we must have hi(B(−1)) = 0 and we may deduce
that b0 = 0. Since h2(OP2(t − 4)) = 0 we deduce that b4 = 0. So by (2) we obtain
V = OX(2,0).

�

Remark 4.9. We have just proved that the Ulrich bundles obtained as a pullback
from P2 are rigid or they are in the high dimensional families defined in [14]. For
instance the closure of the family of rank two bundlesM2 in the associatedmoduli
space is a generically smooth component of dimension 5 (see [14] Theorem 3.9.).

Ω(3) �Ω(2) and Ω(2) �Ω(3) are the only Ulrich bundles characterized so far
which are not pullbacks.
Another cohomological characterization of Ω(3) �Ω(2) and Ω(2) �Ω(3) can be
found in [24].
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So far we have seen and characterized families of Ulrich bundles with a0 = 0 or
b0 = 0. Now we construct three interesting families with both a0 , 0 and b0 , 0:

Example 4.10. Since Ext1(O(2,0),Ω(2) �Ω(3)) � H1(Ω �Ω(3)) � C8 we get a 7-
dimensional familiy of rank 5 Ulrich bundles arising from the following extension

(27) 0 −→Ω(2)�Ω(3) −→ V −→O(2,0) −→ 0.

We get a0 = h0(V (−1,0)) = 3 and b0 = h0(V (0,−1)) = 9.
Let us consider the dual of (27) tensored by V

0 −→ V (−2,0) −→ V∨ ⊗V −→Ω(1)�Ω⊗V −→ 0.

From sequence (27) tensored by O(−2,0) we get H0(V (−2,0)) = 0 if the extension
(27) is not trivial.
From sequence (27) tensored by Ω(1)�Ω we get

h0(Ω(1)�Ω⊗V ) = h0(Ω(2)�Ω(3)⊗Ω(1)�Ω) = 1.

So we obtain h0(V ⊗V∨) = 1, hence V is simple.
From these rank 5 simple Ulrich bundles we may obtain higher rank Ulrich

bundles by other extensions with O(2,0) or with Ω(2)�Ω(3).

Example 4.11. Since Ext1(Ω(3)�Ω(2),Ω(2)�Ω(3)) �H1(Ω⊗Ω(2)�Ω(3)⊗Ω(1)) �
C27 we get a 26-dimensional familiy of rank 8 Ulrich bundles arising from the
following extension

(28) 0 −→Ω(2)�Ω(3) −→ V −→Ω(3)�Ω(2) −→ 0.

We get a0 = h0(V (−1,0)) = 9 and b0 = h0(V (0,−1)) = 9
Let us consider the dual of (28) tensored by V

0 −→Ω�Ω(1)⊗V −→ V∨ ⊗V −→Ω(1)�Ω⊗V −→ 0.

From sequence (28) tensored by Ω�Ω(1) we get H0(Ω�Ω(1)⊗ V ) = 0 if the ex-
tension (28) is not trivial.
From sequence (28) tensored by Ω(1)�Ω we get

h0(Ω(1)�Ω⊗V ) = h0(Ω(2)�Ω(3)⊗Ω(1)�Ω) = 1.

So we obtain h0(V ⊗V∨) = 1, hence V is simple.
From these rank 8 simple Ulrich bundles we may obtain higher rank Ulrich

bundles by other extension with Ω(3)�Ω(2) or with Ω(2)�Ω(3).

Now we have a more complicated example arising from the following proposi-
tion:

Proposition 4.12. The generic elementψ ∈ Ext1(O�Ω(2),O(1)�Ω) gives an extension

(29) 0 −→O(1)�Ω −→ Eψ −→O �Ω(2) −→ 0

where Eψ(1) is a simple Ulrich bundle of rank 4 for which a0 , 0 and b0 , 0.

Proof. LetW = Ext1(Ω(2),Ω) � C3. Let us notice that any nonzero η ∈W gives an
exact sequence

0 −→Ω −→O⊕2
P2 ⊕OP2(1)⊕2 −→Ω(2) −→ 0

and the map in cohomology

δη :H
0(Ω(2)) −→H1(Ω)
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is nonzero.
OnP(W∨)×P2 we have Ext1(O�Ω(2),O(1)�Ω) �H1(O(1)�(Ω(2))∨) �H0(P2,O(1))⊗

H1(P2,Ω⊗(Ω(2))∨) �W∨×W . Now let us consider the identity element I ∈W∨×W
(I restricts to η on P(W∨)) and we obtain

0 −→O(1)�Ω −→ EI −→O �Ω(2) −→ 0.

In cohomology we get the map

H0(O �Ω(2))
δI−−→H1(O(1)�Ω)

where
H1(O(1)�Ω) �H0(P2,O(1))×H1(P2,Ω) =W∨ ×H1(P2,Ω)

and
H0(O �Ω(2)) �H0(P2,Ω(2)).

We may conclude that δI is equivalent to

φ :W −→H0(P2,Ω(2))∨ ×H1(P2,Ω).

Since φ(η) = δη , 0, φ must be an inclusion. But dim(H0(P2,Ω(2))∨×H1(P2,Ω)) =
dim(W ) = 3 so φ is an isomorphism.

Then we have showed that the generic element ψ ∈ Ext1(O �Ω(2),O(1) �Ω)
gives an extension (29) with

H0(O �Ω(2)) �H1(O(1)�Ω).

So we obtain H0(Eψ) =H1(Eψ) = 0. Moreover we compute

H i(Eψ) =H i(Eψ(−1)) =H i(Eψ(−2)) =H i(Eψ(−2)) = 0

for any i. Then Eψ(1) is Ulrich with both a0 , 0 and b0 , 0.
From the dual of (29) it is easy to check that h1(Eψ⊗E∨ψ ) = 1, hence Eψ is simple.

�

5. Ulrich bundles on the flag variety F(0,1,2)

Let F ⊆ P7 be the del Pezzo threefold of degree 6 and Picard number two. Let
us consider F as an hyperplane section of P2×P2 with the two natural projections
pi : F ⊂ P2 ×P2 −→ P2 and the following rank two vector bundles:

G1 = p∗1Ω
1
P2(h1) G2 = p∗2Ω

1
P2(h2),

We may consider the full exceptional collection

(30) {E5 = OF(−1,−1)[−2],E4 = G2(−1,−1)[−2],E3 = G1(−1,−1)[−1],

E2 = OF(−1,0)[−1],E1 = OF(0,−1),E0 = OF}
and

(31)
{F0 = OF ,F1 = G2(0,−1),F2 = G1(−1,0),F3 = OF(0,−1),F4 = OF(−1,0),F5 = OF(−1,−1)}

Theorem 5.1. Let V be an Ulrich bundle on F. Then V arises from an exact sequence
of the form:

(32) 0 −→OF(0,1)⊕c ⊕OF(1,0)⊕d −→ G1(1,1)⊕b ⊕G2(1,1)⊕a −→ V −→ 0.
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Proof. We consider the Beilinson type spectral sequence associated toA := V (−1,−1)
and identify the members of the graded sheaf associated to the induced filtration
as the sheaves mentioned in the statement. We consider the full exceptional col-
lection E• and left dual collection F• in (30) and (31).

We construct a Beilinson complex, quasi-isomorphic toA, by calculatingH i+kj (A⊗
Fj )⊗Ej with i, j ∈ {0, . . . ,6} to get the following table:

OF(−1,−1) OF(−1,0) OF(0,−1) G1 G2 OF
H3 H3 ∗ ∗ ∗ ∗
H2 H2 H3 H3 ∗ ∗
H1 H1 H2 H2 H3 H3

H0 H0 H1 H1 H2 H2

∗ ∗ H0 H0 H1 H1

∗ ∗ ∗ ∗ H0 H0

A(−1,−1) A⊗G2(−1,0) A⊗G1(0,−1) A(−1,0) A(0,−1) A

We assume due to [16, Proposition 2.1] that

H i(A(−j,−j)) = 0 for all i and 0 ≤ j ≤ 2.

From the exact sequence

0 −→A⊗G1(−2,−1) −→A(−1,−1)⊕3 −→A(0,−1) −→ 0,

since H3(A ⊗ G1(−2,−1)) = 0 we get H2(A(0,−1)) = 0. In a similar way we get
H2(A(−1,0)) = 0. So the table become

OF(−1,−1) OF(−1,0) OF(0,−1) G1 G2 OF
0 0 ∗ ∗ ∗ ∗
0 f 0 0 ∗ ∗
0 c e 0 0 0
0 0 d b 0 0
∗ ∗ 0 0 a 0
∗ ∗ ∗ ∗ 0 0

A(−1,−1) A⊗G2(−1,0) A⊗G1(0,−1) A(−1,0) A(0,−1) A

Since the spectral sequence converges to an object in degree 0 we get e = f = 0, so

OF(−1,−1) OF(−1,0) OF(0,−1) G1 G2 OF
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 c 0 0 0 0
0 0 d b 0 0
∗ ∗ 0 0 a 0
∗ ∗ ∗ ∗ 0 0

A(−1,−1) A⊗G2(−1,0) A⊗G1(0,−1) A(−1,0) A(0,−1) A

Finally since Exti(OF(−1,0),OF(0,−1)) = 0, Exti(OF(−1,0),G1) = 0, Exti(OF(−1,0),G2) =
0, Exti(OF(0,−1),G1) = 0, Exti(OF(0,−1),G2) = 0 and Exti(G1,G2) = 0 for any i > 0
we have that the full exceptional collection (31) is strong. So we get the claimed
resolution. �

Remark 5.2. Let V an indecomposable Ulrich bundle on F.



ULRICH BUNDLES ON THE DEGREE SIX SEGRE FOURFOLD 17

(1) If c = h1(V ⊗G2(0,1)) = 0 and b = h1(V (0,1)) = 0 then V is the restriction of
a bundle arising from sequence (15).
If d = h1(V ⊗G1(1,0)) = 0 and a = h1(V (1,0)) = 0 then V is the restriction of
a bundle arising from sequence (16).

(2) If d = b = 0 we obtain the exact sequence

0 −→OF(0,1) −→ G2(1,1) −→OF(2,0) −→ 0

so V � OF(2,0).
If c = a = 0 we obtain V � OF(0,2).
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[1] M. Aprodu, L. Costa and R. M. Miró-Roig, Ulrich bundles on ruled surfaces, J. Pure Appl. Alg. 222
issue 1 (2018) 131–138.

[2] M. Aprodu, S. Huh, F. Malaspina and J. Pons-Llopis, Ulrich bundles on smooth projective varieties of
minimal degree, Proc. AMS 147 (2019), 5117–5129.

[3] V. Ancona and G. Ottaviani, Some applications of Beilinson’s theorem to projective spaces and
quadrics, Forum Math. 3 (1991), 157–176.

[4] V. Antonelli, Characterization of Ulrich bundles on Hirzebruch surfaces, arXiv:1806.10380 to appear
on Rev. Mat. Complutense.

[5] E. Ballico, F. Malaspina, Regularity and Cohomological Splitting Conditions for Vector Bundles on
Multiprojectives Spaces, J. of Algebra 345, 137-149 (2011).
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[12] L. Costa and R. M. Miró-Roig, GL(V )-invariant Ulrich bundles on Grassmannian, Math. Ann. 361

(2014), no. 1–2, 443–457.
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[14] L. Costa, R.M. Miró–Roig, J. Pons–Llopis: The representation type of Segre varieties. Adv. Math. 230

(2012), 1995–2013.
[15] D. Eisenbud, J. Harris, On varieties of minimal degree (a centennial account). Algebraic geome-

try, Bowdoin, 1985 (Brunswick, Maine, 1985). Proceedings of Symposia in Pure Mathematics 46
(1987), no. 1, 3–13

[16] D. Eisenbud, F.- O. Schreyer, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc.
16 (2003), no. 3, 537–579.

[17] P. Ellia, A. Hirschoviwitz, Generation de certain fibres sur les espaces projectifs et application, J. Alge-
braic Geometry. 1 (1992), no. 3, 531–547.

[18] D. Faenzi and F. Malaspina, Surfaces of minimal degree of tame representation type and mutations of
Cohen-Macaulay modules, Adv. Math. 310 (2017), 663–695.

[19] D. Faenzi, F. Malaspina and G. Sanna, Non-Ulrich Representation type, arXiv:1907.02694, preprint.
[20] D. Faenzi and J. Pons-Llopis, The Cohen-Macaulay representation type of arithmetically Cohen-

Macaulay varieties, arXiv:1504.03819, preprint.
[21] A. Gorodentsev and S. A. Kuleshov, Helix theory, Mosc. Math. J. 4(2) (2004), 377–440.
[22] J. W. Hoffman and H. H. Wang, Castelnuovo-Mumford regularity in biprojective spaces, Adv. Geom.

4 (2004), no. 4, 513-536.
[23] Z. Lin, Ulrich bundles on projective spaces, arXiv:1703.06424 [math.AG], 2017. Preprint
[24] F. Malaspina and P. Rao, Cohomological property of vector bundles on biprojective spaces, Alg. Num-

ber Theory 9 (4) (2016), 981–1003.



18 F. MALASPINA

[25] F. Malaspina and C. Miyazaki, Cohomological property of vector bundles on biprojective spaces, Ric.
Mat. 67 (2018), 963–968.
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