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Abstract

This paper presents a novel methodology to assess the accuracy of shell finite elements
via neural networks. The proposed framework exploits the synergies among three
well-established methods, namely, the Carrera Unified Formulation (CUF), the Finite
Element Method (FE), and neural networks (NN). CUF generates the governing
equations for any-order shell theories based on polynomial expansions over the
thickness. FE provides numerical results feeding the NN for training. Multilayer NN have
the generalized displacement variables, and the thickness ratio as inputs, and the target
is the maximum transverse displacement. This work investigates the minimum
requirements for the NN concerning the number of neurons and hidden layers, and the
size of the training set. The results look promising as the NN requires a fraction of FE
analyses for training, can evaluate the accuracy of any-order model, and can
incorporate physical features, e.g., the thickness ratio, that drive the complexity of the
mathematical model. In other words, NN can trigger fast informed decision-making on
the structural model to use and the influence of design parameters without the need of
modifying, rebuild, or rerun an FE model.

Keywords: Shell, Composites, Finite elements Neural networks, Best Theory Diagram

Introduction
Shell finite elements (FE) are standard options to model two-dimensional (2D) curved
structures. In commercial codes, shell FE have the assumptions of the classical theories
[1–3] leading to up to six degrees of freedom (DOF) per node. Such assumptions may be
too restrictive in the case of composite structures in which the high transverse deforma-
bility and the transverse anisotropy require the proper modeling of shear and normal
transverse stresses, and variations of the displacement field at the interface between two
layers with different mechanical properties, i.e., the Zig-Zag effect [4]. 3D FE can incor-
porate such effects but can lead to prohibitive computational costs due to severe aspect
ratio constraints. 2D FE remain computationally more efficient and attractive and, over
the years, many strategies emerged to extend their capabilities via, for instance, the use
of higher-order polynomial thickness expansions leading to increasing DOF per node
[5]. This paper presents a new methodology to assess shell FE for linear static analyses
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of composites, and the following literature survey focuses on this specific area. More
comprehensive reviews are in [6–9].
Concerning the solution schemes, analytical and FE strategies are among themost used.

Analytical models received a great deal of interest as they provide very useful exact solu-
tions to, for instance, verify FE modelings. Such exact solutions can take into account the
shear deformability [10–16] or directly provide 3D solutions [17–23]. Research on refined
shell FE focused on higher-order models [24–26], the inclusion of transverse stretching
and continuity [27–29], and the development of solid-shell elements [30–37]. Regardless
of the solution scheme, the most important strategies to enhance the capabilities of shell
models are either asymptotic or axiomatic. The former exploit asymptotic expansions of
most relevant parameter, e.g., the thickness ratio, to build models with a priori known
accuracy as compared to 3D models [38–41]. The latter, on the other hand, build models
based on assumptions and, usually, less assumptions lead to more cumbersome models.
The axiomatic way has various directories starting from the improvement of classical
models [42–49]. As mentioned above, the proper modeling of the transverse behavior
of composites is decisive as proved by the efforts of many researchers over the past few
years. The focus is on improved modelings of the interlaminar stresses and through-
the-thickness continuity [50–55], shear correction factors [56], Zig-Zag models [57–61],
Layer-Wise (LW) models [62–65], and mixed formulations [66–68] allowing for the a
priori modeling of transverse stresses.
Another powerful approach is the Proper Generalized Decomposition (PGD) method

[69,70] in which the construction of the refined model and the solution of the problem
take place simultaneously.
From the structural standpoint, the methodology in this paper adopts the Carrera

Unified Formulation (CUF) allowing to obtain any-order shell theory without formal
changes in the problem matrices [4,71,72]. One of the capabilities of CUF is the
axiomatic/asymptotic method (AAM) [73,74] to analyze the relevance of any general-
ized displacement variable. The systematic use of AAM leads to the definition of the Best
Theory Diagram (BTD), i.e., a 2D plot to localize shell models with minimum DOF and
maximum accuracies [75,76]. One of the aims of this paper is to reduce the computational
costs to obtain BTD via neural networks (NN). Such networks are mathematical mod-
els inspired by biological nervous systems and composed of simple computational units
interlinked by a system of connections [77] to learn through training via samples. In this
paper, CUF FE provides the samples for the supervised learning of multilayer perceptrons
to evaluate the accuracy of refined shell models avoiding FE matrices and analyses. The
use of NN in structural andmaterial simulation is increasing due to the superior computa-
tional efficiency [78–80]. Recent applications for composites concern the prediction of the
elastic properties [81], buckling load [82,83], failure strength [84,85], natural frequencies
[86–88], and geometry optimization [89].
In this paper, “Finite element formulation” section provides a brief theoretical descrip-

tion of CUF and its FE formulation. “Best TheoryDiagram” section introduces the concept
of BTD. “Neural networks and coding” section describes the use of NN to evaluate the
accuracy of a shell model. Results and conclusions are in “Results” and “Conclusions”
sections, respectively.
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Fig. 1 Shell geometry

Finite element formulation
The CUF displacement field for a 2D model is

u(α,β , z) = Fτ (z)uτ (α,β) τ = 1, . . . ,M (1)

The Einstein notation acts on τ . u is the displacement vector, (ux uy uz)T . Fτ are the
thickness expansion functions.uτ is the vector of the generalized unknowndisplacements.
M is the number of expansion terms. A fourth-order model, referred to as N = 4, is

ux = ux1 + z ux2 + z2 ux3 + z3 ux4 + z4 ux5
uy = uy1 + z uy2 + z2 uy3 + z3 uy4 + z4 uy5
uz = uz1 + z uz2 + z2 uz3 + z3 uz4 + z4 uz5

(2)

and has 15 nodal DOF. The order and type of expansion is a free parameter; thus, the
theory of structure is an input of the analysis. The metric coefficients Hk

α , Hk
β and Hk

z of
the kth layer are

Hk
α = Ak (1 + zk/Rk

α), Hk
β = Bk (1 + zk/Rk

β ), Hk
z = 1 (3)

Rk
α and Rk

β are the principal radii of the middle surface of the kth layer, Ak and Bk the
coefficients of the first fundamental form of �k , see Fig. 1. This paper focused only on
shells with constant radii of curvature with Ak = Bk = 1. The geometrical relations are

εkp =
{
εkαα , εkββ , ε

k
αβ

}T = (Dk
p + Ak

p)uk

εkn =
{
εkαz, εkβz, εkzz

}T = (Dk
n� + Dk

nz − Ak
n)uk

(4)
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where

Dk
p =

⎡
⎢⎢⎢⎣

∂α

Hk
α

0 0

0 ∂β

Hk
β

0
∂β

Hk
β

∂α

Hk
α

0

⎤
⎥⎥⎥⎦ Dk

n� =

⎡
⎢⎢⎣
0 0 ∂α

Hk
α

0 0 ∂β

Hk
β

0 0 0

⎤
⎥⎥⎦ Dk

nz =
⎡
⎢⎣
∂z 0 0
0 ∂z 0
0 0 ∂z

⎤
⎥⎦ (5)

Ak
p =

⎡
⎢⎢⎣
0 0 1

Hk
αRkα

0 0 1
Hk

βR
k
β

0 0 0

⎤
⎥⎥⎦ Ak

n =

⎡
⎢⎢⎣

1
Hk

αRkα
0 0

0 1
Hk

βR
k
β

0

0 0 0

⎤
⎥⎥⎦ (6)

The stress–strain relations are

σk
p =

{
σ k

αα , σ k
ββ , σ

k
αβ

}T = Ck
ppε

k
p + Ck

pnε
k
n

σk
n =

{
σ k

αz, σ k
βz , σ k

zz

}T = Ck
npε

k
p + Ck

nnε
k
n

(7)

where

Ck
pp =

⎡
⎢⎣
Ck
11 Ck

12 Ck
16

Ck
12 Ck

22 Ck
26

Ck
16 Ck

26 Ck
66

⎤
⎥⎦ Ck

pn =
⎡
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0 0 Ck

13
0 0 Ck

23
0 0 Ck

36

⎤
⎥⎦

Ck
np =

⎡
⎢⎣

0 0 0
0 0 0
Ck
13 Ck

23 Ck
36

⎤
⎥⎦ Ck

nn =
⎡
⎢⎣
Ck
55 Ck

45 0
Ck
45 Ck

44 0
0 0 Ck

33

⎤
⎥⎦

(8)

The FE formulation uses a nine-node shell element based on the Mixed Interpolation
of Tensorial Component (MITC) method [90]. The displacement vector becomes

δus = Njδusj , uτ = Niuτ i i, j = 1, · · · , 9 (9)

uτ i and δusj are the nodal displacement vector and its virtual variation, respectively. The
strain expression becomes

εp = Fτ (Dp + Ap)Niuτ i

εn = Fτ (Dn� − An)Niuτ i + Fτ,zNiuτ i
(10)

MITC contrasts the membrane and shear locking via a specific interpolation strategy
for the strain components on the nine-node shell element, as follows:

εp =
⎡
⎢⎣

εαα

εββ

εαβ

⎤
⎥⎦ =

⎡
⎢⎣
Nm1 0 0
0 Nm2 0
0 0 Nm3

⎤
⎥⎦

⎡
⎢⎣

εααm1

εββm2

εαβm3

⎤
⎥⎦

εn =
⎡
⎢⎣

εαz
εβz
εzz

⎤
⎥⎦ =

⎡
⎢⎣
Nm1 0 0
0 Nm2 0
0 0 1

⎤
⎥⎦

⎡
⎢⎣

εαzm1

εβzm2

εzzm3

⎤
⎥⎦

(11)

Strains εααm1 , εββm2 , εαβm3 , εαzm1 , and εβzm2 stem from 10 and

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]

Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]

Nm3 = [NP,NQ,NR, NS]

(12)

Subscripts m1, m2 and m3 indicate the point groups (A1,B1,C1,D1,E1,F1), (A2,B2,C2,
D2,E2,F2), and (P,Q,R,S), respectively, see Fig. 2. Via Principle of Virtual Displacements
(PVD) for the static analysis, the equilibrium equation reads

kkτ sijuk
τ i = pksj (13)
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Fig. 2 MITC9 tying points

Fig. 3 Best Theory Diagram

The 3 × 3 matrix kkτ sij is the fundamental mechanical nucleus whose expression is
independent of the order of the expansion. pksj is the load vector. More details regarding
the finite element formulation are in [72].

Best Theory Diagram
One of the CUF capabilities is the axiomatic/asymptotic method (AAM) to evaluate the
relevance of generalized variables and the accuracy of structural theories [73,74]. The
fourth-order, equivalent single layer shell model, is the reference model of this paper and
all the theories evaluated stem from the combinations of the full fourth-order expansion,
i.e., 215 models. TheCUFgenerates the governing equations for the theories considered. In
particular, the CUF generates reduced models having combinations of the starting terms
as generalized unknowns. Two parameters can identify a theory, namely, the number
of active terms and the error or accuracy provided. The Best Theory Diagram (BTD) is
the curve composed of all models providing the minimum error with the least number
of variables, see Fig. 3. Given the accuracy, models with fewer variables than those on
the BTD do not exist. Given the number of variables, models with better accuracy than
those on the BTD do not exist. In this paper, the error refers to the maximum transverse
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Table 1 Examples of shell models assessed

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

N = 4 15 � � � � � � � � � � � � � � �
TSDT 9 � � � � � � � � � � � � � � �
PTD 7 � � � � � � � � � � � � � � �
FSDT 5 � � � � � � � � � � � � � � �

displacement,

Error = 100 × |uz − uN=4
z |

|uN=4
z | (14)

The combined use of CUF and AAM allows the evaluation of the accuracy of any
finite element, as shown in Table 1. Black and white triangles indicate active and inactive
generalized displacement variables, respectively, andDOF the nodal degrees of freedomof
the element. N = 4 is the full expansion of fourth-order. Other three models, well-known
from literature, have incomplete expansions, namely,

• The First-Order Shear Deformation Theory (FSDT) with five DOF,

ux = ux1 + z ux2
uy = uy1 + z uy2
uz = uz1

(15)

• A seven DOF model with parabolic transverse displacement, referred to as PTD,

ux = ux1 + z ux2
uy = uy1 + z uy2
uz = uz1 + z uz2 + z2 uz3

(16)

• A nine DOF model with third-order in-plane displacements referred to as TSDT,

ux = ux1 + z ux2 + z2 ux3 + z3 ux4
uy = uy1 + z uy2 + z2 uy3 + z3 uy4
uz = uz1

(17)

Neural networks and coding
CUF FE analyses generate inputs to train NN. In this paper, the inputs are the structural
theories and the thickness ratio, and outputs are the maximum transverse displacements.
Figure 4 shows the two ways adopted in this paper to build the BTD, i.e.,

• CUF generates the governing FE equations for all the shell theories stemming from
subsets of the fourth-order expansions.Given that the expansionhas 15 terms, overall,
215 FE shell models are available. For instance, FSDT is one of these models in which
five terms are active—ux1, uy1, uz1, ux2, and uy2—and ten inactive.

• The FE way runs 215 static FE analyses and reports the error and number of active
terms of each case in a 2D plot.

• The NN way runs one-tenth of the FE analyses and uses them for training. Then, the
2D plot stems from querying the trained NN with all 215 shell models.
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Fig. 4 CUF and NN framework

• If a/h is a training variable, and, e.g., three a/h values are available, the overall number
of analyses is 3 × 215, and the query of the NN includes the shell model and the
thickness ratio.

The aim is to build the BTD with less than 215 analyses and avoid new FE analyses as
the thickness ratio changes. In Fig. 4, the NN training set has 10% of all analyses as this is
a typical value used in this paper. Also, the figure shows only one hidden layer, although
more layers could be useful.
The NN configuration is a multilayer feed-forward with early stopping and mean

squared error as the objective function. Each layer has ten neurons. This paper adopts
Levenberg–Marquardt training functions [91]. The input coding is a vector with 16 ele-
ments, that is, all the fourth-order expansion generalized displacement variables and the
thickness ratio. Each generalized variable is either ‘1’ or ‘0’ to indicate its active or inactive
status. Each input has an associated output composed by a vector containing the error,
Eq. 14. As an example, the following equation shows the coded input of a generic shell
model with h/a = 0.1:

ux = ux1 + z ux2 + z4 ux5
uy = uy1 + z uy2 + z3 uy4 => [1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0.1]
uz = uz1 + z uz2 + z2 uz3

(18)

Table 2 presents the computational costs of the various processes involved in this paper.
The cost normalization used the most expensive process as the reference. The number of
layers was chosen via a convergence analysis as the adoption of more than one layer led to
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Table 2 Overciew of computational costs

Process Analyses Cost

BTD via FE 32768 linear static analyses 1

Data training generation 3277 linear static analyses 0.1

Training of NN 1–3 layers with ten neurons 0.01

BTD via NN 215 queries to NN 0.001

Table 3 Comparison between NN and FE

Structural theory and a/h ux = ux1 + zux2 + z4ux5
uy = uy1 + zuy2 + z3uy4
uz = uz1 + zuz2 + z2uz3
a/h = 10

Analysis NN: net([1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 0.1])

FE: KU = F

Output uz

Table 4 0/90/0, uz (z = 0) = 100uz ET h
3/(pz a

4)

Model R/a = 5

3D [94] – 0.7325

LD4 [93] 0.1036 0.7325

N = 4 0.1036 0.6975

a/h 100 10

Table 5 0/90/0, a/h = 100, 10% training sets, one layer, influence of the number of
neurons on some particular cases from Figs. 5, 6 and 7

Neurons Training set FSDT PTD TSDT

FE N/A N/A 0.424 0.060 0.365

NN 5 10% 0.413 0.071 0.376

NN 10 5% 0.460 0.096 0.416

NN 10 10% 0.434 0.100 0.372

negligible increments of the computational cost. For the type of NN adopted here, the use
of 1–3 layers is a standard choice [91]. The data training generation used a random selec-
tion of the structural theories, and no significant variations in the results were observed
between different set of randomly chosen training sets.
Table 3 shows an overview of the analyses employed to obtain the BTD. In all cases,

the input is the structural theory. The capability of setting the theory as an input is a
feature provided byCUF.Asmentioned in previous sections, CUF allows one to handle the
kinematicswithno restrictions concerning the order and typeof expansions adopted. Such
a capability is decisive to obtain the BTD as a tool to verify the accuracy of any structural
theory. In other words, via the BTD, the effect of the addition of a new generalized variable
can be estimated. As the structural theory to be verified is set, the FE option requires the
computation of the stiffness matrix and the solution of the linear static analysis. On the
other hand, the trained NN can provide the output by encoding the structural model.
The use of NN has the aim to overcome two current limitations of BTD. First, the

computational cost required can be very high as thousands of analyses are needed, and the
complexity of the problem increases. Then, the evaluation of the BTD becomes evenmore
challenging as various problem characteristics vary, e.g., boundary conditions or material
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a

b

Fig. 5 FE and NN results for 0/90/0, a/h = 100, 10% training sets, one layer, influence of the number of
neurons

properties, and multiple outputs are considered, e.g., displacements and stresses. The use
of NNmay be a solution to both issues. This paper aims to address the first limitation and
partially handling the second one. To address the second issue comprehensively, otherNN
architectures are needed, e.g., convolutional NN as they can manage high-dimensional
input features with high efficiency [92].

Results
The numerical results focus on cases from [93]. The shell has a = b, Rα = Rβ = R and R/a
= 5. The load is bi-sinusoidal and applied on the top surface, pz = p̂z sin(πα/a) sin(πβ/b).
Thematerial properties are E1/E2 = 25, G12/E2 = G13/E2 = 0.5, G13/E2 = 0.2, ν = 0.25.
The finite element model of a quarter of shell has a 4 × 4 mesh as this discretization
provides sufficiently accurate results [93]. In all cases, the BTD vertical axis ranges from
five to fifteen since models with four or less DOF provide very high errors and are not of
practical interest. The numerical results stemmed from two methodologies as follows:
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b

a

Fig. 6 FE and NN results for 0/90/0, a/h = 100, one layer, influence of the number of the training set size

Table6 0/90/0, influence of a/h on some particular cases from Figs. 8 and 9

a/h FSDT PTD TSDT

FE 50 1.192 0.495 0.695

NN 50 1.199 0.504 0.689

FE 10 12.12 11.50 0.571

NN 10 12.13 11.50 0.579

• The finite element method, FE, required 212 static analyses to build the BTD, i.e., one
static analysis per each shell theory having a combination of 12 generalized variables.
To lessen the computational cost, the three zeroth-order terms of the expansion are
always active as, usually, their influence is very high.

• NN required 10% of 212 to train, i.e., some 400 static analyses. Depending on the
cases, the architecture of the network had one or three layers and ten neurons per
layer.
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a

b

Fig. 7 FE and NN results for 0/90/0, a/h = 100, one layer with ten neurons

0/90/0

The first numerical case refers to a simply-supported shell with symmetric lamination.
Table 4 shows the reference values of transverse displacements adopted to build the BTD.
The current N = 4 model provides good accuracy, although, for thicker shells, the match
with 3D solutions is not perfect. However, for the scope of the paper, its accuracy is
sufficient.
First, the analysis concerned the choice of the network parameters. Figures 5 and 6 show

the BTD fromNN via 5 and 10 neurons and using 5% and 10% of the 212 cases for training.
Table 5 presents some particular cases focused on structural theories from the literature.
The FE BTD serves as a benchmark. The results show that the use of 10 neurons and 10%
of cases provides very good matches. The remaining analyses made use of such network
architecture and focused on the effect of the thickness ratio on the BTD, given that, as
seen in previous papers like [76], this is the most relevant parameter to determine the
sets of most important generalized variables. Figure 7 shows the results for a/h = 100 in
which (a) reports the accuracy of all 212 shell models as provided by the FE and by the
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b

a

Fig. 8 FE and NN results for 0/90/0, a/h = 50, one layer with ten neurons

Table 7 BTDmodels, 0/90/0, a/h = 100

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.88 RF2 = 0.52 RF3 = 0.48 RF4 = 0.45
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a

b

Fig. 9 FE and NN results for 0/90/0, a/h = 10, one layer with ten neurons

Table 8 BTDmodels, 0/90/0, a/h = 50

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.91 RF2 = 0.55 RF3 = 0.42 RF4 = 0.46
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Table 9 BTDmodels, 0/90/0, a/h = 10

OFD ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.70 RF2 = 0.55 RF3 = 0.61 RF4 = 0.49

Table 10 0/90/0/90, uz (z = 0) = 100uz ET h
3/(pz a

4)

Model R/a = 5

3D [94] – 0.7408

LD4 [93] 0.1067 0.7408

N = 4 0.1067 0.7055

a/h 100 10

Table11 0/90/0/90, influence of a/h on some particular cases from Figs. 13, 14 and 15

a/h FSDT PTD TSDT

FE 100 0.387 0.035 0.361

NN 100 0.390 0.063 0.363

FE 50 1.533 1.412 1.207

NN 50 1.554 1.424 1.226

FE 10 10.43 9.833 3.374

NN 10 10.37 10.49 3.560

Table 12 BTDmodels, 0/90/0/90, a/h = 100

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.88 RF2 = 0.52 RF3 = 0.49 RF4 = 0.46
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Table 13 BTDmodels, 0/90/0/90, a/h = 50

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.73 RF2 = 0.64 RF3 = 0.55 RF4 = 0.42

Table 14 BTDmodels, 0/90/0/90, a/h = 10

OFD ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.70 RF2 = 0.49 RF3 = 0.64 RF4 = 0.52

trained NN. On the other hand, (b) shows the BTD from FE and NN together with the
accuracy of models from the literature. For instance, ‘FSDT FE’, indicates the accuracy
of the first-order shear deformation theory as obtained via the FE model, whereas ‘FSDT
NN’ refers to the output of the trained NN. Figures 8 and 9 report the results of a/h =
50 and 10, respectively, and Table 6 presents the numerical values related to the models
from literature. The BTD models from NN are in Tables 7, 8 and 9. For instance, the six
DOF best model for a/h = 10 is the following:

ux = ux1 + z ux2 + z3 ux4
uy = uy1 + z uy2
uz = uz1

(19)

The last row of each table reports the relevance factor of the expansion orders (RF). The
RF is the ratio between the number of active instances and the total number of cases. For
instance, RF0 = 1 indicates that the zeroth-order terms are always present in the BTD.
The combined information stemming from the previous figures and tables is in Figure 10
for a/h = 10 with the explicit indication of the seven, six, and five DOF best displacement
fields. The results suggest that

• The proposed NN framework can detect the FE results with satisfactory accuracy.
Two capabilities are relevant, namely, the possibility of using the NN to evaluate



Petrolo and Carrera Adv. Model. and Simul. in Eng. Sci.           (2020) 7:31 Page 16 of 28

Table15 Influence of a/h and lamination on some particular cases from Figs. 17 and 18

a/h Lamination FSDT PTD TSDT

FE 75 0/90/0 0.642 0.150 0.492

NN 75 0/90/0 0.575 0.101 0.441

FE 25 0/90/0 3.533 2.630 0.914

NN 25 0/90/0 10.93 9.232 1.233

FE 75 0/90/0/90 0.523 0.143 0.457

NN 75 0/90/0/90 0.520 0.135 0.468

FE 25 0/90/0/90 2.821 1.823 1.518

NN 25 0/90/0/90 3.872 2.688 2.072

Table 16 BTDmodels, 0/90/0, a/h = 75

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.91 RF2 = 0.46 RF3 = 0.49 RF4 = 0.49

theories from the literature and the ability to cover the discontinuous error range
entirely.

• The discontinuity in the error range, i.e., the presence of accuracy bands indicates
that there may not exist structural theories satisfying a given error requirement. As
shown in [76], such gaps widen as the thickness ratio increases. For thin shells, the
lower-order terms, i.e., the FSDT variables, play a decisive role, and their absence
causes high errors. As the shell is thicker, higher-order terms gain relevance leading
to more homogeneous error distributions.

• There are no relevant differences in the BTD for a/h = 100 and 50 except that the
latter has a broader error range as the five DOF model, coinciding with the FSDT,
yields a 2% error. The models from the literature, although not always on the BTD
curve, provide satisfactory accuracies.

• For a/h = 10, at least six DOF are necessary to have errors smaller than 1% and the
variables required to meet such a requirement are the cubic in-plane ones.

• The analysis of the RF shows that, as well-known, for thin shells, zeroth- and first-
order variables are the most relevant. As the thickness increases, the third-order
terms gain importance with smaller relevance for first-order ones. The NN detected
very similar RF as compared to FE from [76], meaning that the prosed framework
can detect the accuracy of a given structural model and determine the models on the
BTD curve reliably.

Further analyses concerned the comparison of NN with linear regression (LR). LR is
computationally cheaper thanNNand canprovide explicitweights related to each training
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Table 17 BTDmodels, 0/90/0, a/h = 25

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.91 RF2 = 0.49 RF3 = 0.70 RF4 = 0.24

feature. Figures 11 and 12 show the results for two training sets; namely, 10 and 100%.
The accuracy of LR is acceptable just in the second case but lower than NN.

0/90/0/90

The second numerical case investigated the effect of an asymmetric lamination on the
BTD. All other parameters remained as those of the previous case. Table 10 presents the
transverse displacement valueswith comparisonswith othermodels from literature, when
available. Figures 13, 14 and 15 show the BTD from FE and NN, and Table 11 presents
the numerical values of the models from literature. For a/h = 50 and 10, the NN had three
layers of ten neurons as one layer was not enough to fit the BTD curve that, in these
cases, presents a more irregular shape than for a/h = 100. Tables 12, 13 and 14 show the
BTD models and relevance factors. Figure 16 shows the BTD curve for a/h = 10 and the
displacement field retrieved from Table 14. The results show that

• As mentioned, a more complex NN architecture was necessary, and the match
between FE and NN BTD is not perfect. Some differences are visible for higher DOF
models. However, such differences are still acceptable, given that, in the worst case,
remain within the 1% error range. The BTD curve presents various portions having
different shapes leading to a more difficult curve fitting.

• As in the previous case, a/h = 100 and 50 have similar BTD, and seven DOF are
enough to have very low errors with the FSDT providing accurate results.

• For a/h = 10, 11 DOF are necessary to have an error lower than 1% with full fourth-
order expansions for the in-plane terms. Besides linear terms, the third-order terms
are decisive for their absence leading to errors around 10%.

• The considered models from the literature provide high accuracy for thin shells. On
the other hand, for a/h = 10, only the TSDT can provide acceptable accuracy.

a/h as a training variable

This section concerns the use of the thickness ratio as an additional training variable. The
aim is to show the possibility of using NN to test structural theories and obtain results as
the typical parameters of the structure change without the need of creating and running a
newFE analysis. In this section, the training inputs are 13, i.e., 12 generalized displacement
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Fig. 10 BTD for 0/90/0, a/h = 10 with seven, six and five DOF models indicated

a

b

Fig. 11 0/90/0, a/h = 10, comparison between FE and linear regression (LR), 10% training set
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Table 18 BTDmodels, 0/90/0/90, a/h = 75

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.70 RF2 = 0.67 RF3 = 0.55 RF4 = 0.42

Fig. 12 0/90/0, a/h = 10, comparison between FE and linear regression (LR), 100% training set
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a

b

Fig. 13 FE and NN results for 0/90/0/90, a/h = 100, one layer with ten neurons

variables and the thickness ratio. The NN had three layers with ten neurons each. The
results refer to the two lamination schemes of the previous sections and a/h = 100, 50 and
10 were the training sets, i.e., the training set size was 10% of 3 × 212. a/h = 25 and 75 are
the thickness ratios evaluated via the trained NN. The BTD curves are in Figs. 17 and 18,
values from selectedmodels are in Table 15, whereas the BTDmodels in Tables 16, 17, 18,
and 19. The results suggest that

• There is a goodmatchbetween theFEandNNresults. Somedifferences areobservable
for a/h = 25 but within the 1% error range at worst.

• a/h = 25 tends to have similar curves and BTDmodels of a/h = 10 with the increasing
relevance of third-order terms. Such a tendency may explain the better match of FE
and NN for thin shells given that the training used a/h = 100, 50, and 10. As seen
in the previous sections, the latter case tends to have BTD curves quite different as
compared to the first two cases.
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a

b

Fig. 14 FE and NN results for 0/90/0/90, a/h = 50, three layers with ten neurons

• The trained NN provides outputs concerning models from the literature with good
accuracy except for the PTD in the moderately thick, symmetric lamination case.

Conclusions
This paper presented a new approach to evaluating the accuracy of shell models for com-
posites via the use of neural networks (NN). The NN training used results from shell finite
elements (FE) stemming from the Carrera Unified Formulation (CUF) and adopting a 15
DOF, fourth-order polynomial expansion along the thickness as the reference solution.
The first set of training inputs considered one-tenth of the combinations of active and
inactive terms, i.e., keeping the constant terms always active, one-tenth of 212 shell theo-
ries. The second set of inputs added the thickness ratio as a further variable. In all cases,
the target was the maximum transverse displacement of a square, simply-supported shell
under bi-sinusoidal transverse load. TheNN architecture ranged from one to three layers,
with ten neurons each. The result verification exploited the FE results of all 212 cases. The
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a

b

Fig. 15 FE and NN results for 0/90/0/90, a/h = 10, three layers with ten neurons

Fig. 16 BTD for 0/90/0/90, a/h = 10 with eleven, nine, seven and five DOF models indicated
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a

b

Fig. 17 FE and NN results for 0/90/0, a/h = 25 and 75, three layers with ten neurons

Table 19 BTDmodels, 0/90/0/90, a/h = 25

DOF ux1 uy1 uz1 ux2 uy2 uz2 ux3 uy3 uz3 ux4 uy4 uz4 ux5 uy5 uz5

15 � � � � � � � � � � � � � � �
14 � � � � � � � � � � � � � � �
13 � � � � � � � � � � � � � � �
12 � � � � � � � � � � � � � � �
11 � � � � � � � � � � � � � � �
10 � � � � � � � � � � � � � � �
9 � � � � � � � � � � � � � � �
8 � � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �

RF0 = 1.00 RF1 = 0.70 RF2 = 0.67 RF3 = 0.58 RF4 = 0.40



Petrolo and Carrera Adv. Model. and Simul. in Eng. Sci.           (2020) 7:31 Page 24 of 28

a

b

Fig. 18 FE and NN results for 0/90/0/90, a/h = 25 and 75, three layers with ten neurons

NN provided the Best Theory Diagram (BTD), i.e., a curve giving the computationally
cheapest model for a given accuracy. The BTD permits to evaluate the accuracy of any
structural model and provides guidelines on the relevance of each generalized displace-
ment variable. The main findings of this paper are the following:

• The use of NN proved to be valid as matched very well the FE solutions. The main
convenience of NN is in the use of some 10% of FE analyses for training to obtain the
BTD and evaluate the accuracy of a structural model without the need for further FE
analyses.

• The NN training can incorporate physical features of the problems such as the thick-
ness ratio allowing to obtain results without the need of new FE analyses and prepro-
cessing.

• Potential critical aspects of this approach emerged as the training considered simul-
taneously thin and thick shells. Such a scenario required the use ofmore hidden layers
and needs further investigations.
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• The BTD stemming from the NN matched very well those obtained via FE and
presented in [76]. Aswell-known, the third-order in-plane terms are themost relevant
variables to include to refine classical theories.

• Most of the models from literature provides good accuracy, although increments in
thickness or asymmetric laminations can make such models inaccurate.

The combined use of CUF and NN is promising given that the former can provide
thousands of data sets inminutes andbenchmarking for the rigorous assessment of results,
the latter can boost the computational efficiency and widen the applicability of virtual
modeling. Future investigations should focus on the use of NN for multiple targets, e.g.,
multi-point stress values, and inverse problems to establish the best model by inputting
the accuracy requirement.
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