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Coupling 3D peridynamics and high order 1D finite
elements for the linear static analysis of solid beams and

thin-walled reinforced structures

A. Pagani*, E. Carrera

Mul 2 Team
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: Peridynamics is a non-local theory which has been successfully applied to solid
mechanics and crack propagation problems over the last decade. This methodology, however,
may bring to large computational calculations which can soon become unhandleable for many
problems of practical interest. In this context, a technique to couple –in a global/local sense–
3D peridynamics with 1D high order finite elements is proposed. The refined finite elements
employed in this work are based on the well-established Carrera Unified Formulation (CUF),
which the previous literature has demonstrated to provide structural formulations with un-
precedented accuracy and optimized computational efficiency. The coupling is realized by using
Lagrange multipliers, that guarantee versatility and physical consistency as demonstrated by
the numerical results, including the linear static analyses of solid and thin-walled beams as
well as of a reinforced panel of aeronautic interest.

Keywords: Carrera unified formulation, Higher-order beam theories; Peridynamics.

1 Introduction

The peridynamic (PD) theory is a continuum version of molecular dynamics and is due to the
seminar work of Silling [1]. It assumes that a solid body is composed by material particles
and each pair of those interacts if their distance is less than a prescribed material horizon of
radius δ. In other words, peridynamics is a non-local theory and does not necessarily imply
differentiability of the primary unknowns (i.e., displacements in the case under consideration)
along the spatial coordinates. Based on integro-differential equations, PD allows -naturally-
the description of discontinuous displacement fields. Mainly for this reason, this theory has
acquired the interest of many researchers working on fracture mechanics, see [2].

Over the past two decades, peridynamics has been demonstrated to provide reliable results
for many problems, including crack initiation and propagation in brittle materials [3, 4],
fatigue and fracture of composites [5], as well as impact [6]. Nevertheless, it should be
underlined that, if compared to classical elasticity and related well-established computational
methods, e.g. the finite element method (FEM), peridynamic models may be affected by large
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computational demand, especially if fully 3D problems are considered and the assumptions
for plain-stress or plain-strain do not hold. The reason is that PD is a non-local theory and,
thus, results into numerical methodologies that make use of sparse, large, and generally not
banded arrays. From a practical point of view and for problems of engineering interest, PD
may be unfeasible.

In this context, current research is intended to provide coupled models in which FEM and
PD domains coexist. In this manner, one may combine the advantages of the two technologies
and possibly use PD in small regions of the structure where crack is likely to develop. Gal-
vanetto et al. [7] showed that coupling FEM to PD is not as simple as sharing nodes between
meshes with dissimilar discretization. In fact, in PD domains, prescribed displacements or
loads must be applied through a finite volume rather than on a surface. Thus, the coupling
must be done over a region that spans some length (typically the horizon) from the external
surface. To solve this issue, the authors proposed a coupling technique in which PD bonds
act only on peridynamic particles, whereas finite elements apply forces only on FE nodes.

Interestingly, Kilic and Madenci [8] developed a coupling method using an overlapping
region in which both the peridynamic and the finite element equations are used to achieve
an appropriate coupling between the two zones. Liu and Hong [9], in contrast, coupled PD
and FEM sub-regions by using interface elements. In the papers of Seleson and co-workers,
see for example [10], a strong coupling making use of blending functions was proposed. To
avoid any arbitrary choice of artificial coupling parameters, Zaccariotto et al. [11] proposed
an innovative coupling algorithm able to adaptively transform FEM nodes into PD particles.
This method was demonstrated to be reliable for 1D, 2D, and 3D structures as well as for
static and dynamic problems, including crack propagation.

Note that most of the methods available in the literature couple FEM and PD domains
of consistent dimensionality. In other words, 1D FEM is coupled with a 1D PD grid, 2D
plate finite elements are coupled with 2D plain-stress or plane-strains PD, and so on. In
practice, many problems may require the use of a 3D peridynamic discretization in local
regions of the structural domain, e.g. in the case of material inclusions or transverse crack
in thick panels. In this case, the use of 3D FE-3D PD models is potentially prohibitive.
In the present work, we propose the use of high order 1D finite elements to be coupled
with 3D PD sub-regions. The 1D models employed are implemented in the framework of
the Carrera Unified Formulation (CUF), according to which the displacement components
are approximated with an arbitrary expansion of the generalized unknowns and through
the use of opportune cross-sectional functions. The main advantage of CUF, is that the
governing equations and consequently the finite element arrays of generally refined 1D models
are expressed in terms of fundamental nuclei, which are invariant of the theory approximation
order. Previous literature has demonstrated that 1D CUF can be applied indistinctly to
many problems, including composite mechanics [12], progressive failure analysis [13], large
displacements analysis [14], rotor-dynamics [15], and multi-field problems [16], among the
others.

Coupled 3D PD-1D refined FE models are realized by considering two distinct domains.
PD and FE sub-regions do not alter the stiffness of each other. Consistently, continuity among
the interface is guaranteed by the use of Lagrange multipliers [17]. As a consequence, the
coupled models have global-local capabilities, i.e. 3D PD can be literally embedded into the
FE domain and only in the zones of interest. Moreover, thanks to CUF, which allows for
the formulation of low to high order finite elements, the proposed algorithm is general and
can be also applied to classical FEM models. However, when refined 1D elements are used,
the coupled approach can provide a full 3D solution, both in terms of displacements and
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Figure 1: Particle x interacts by means of peridynamic forces with all particles within a cir-
cular (spherical) neighbourhood of radius δ (horizon). Every material particle x′ is associated
to a volume Vx′ and exerts a force (per unit of volume squared) T (η, ξ) on the particle x.

stress/strain fields.
The paper is organized as follows: Section 2 briefly introduces bond-based peridynamics

along with an opportune meshless discretization of the problem equations; then, CUF-based
1D finite elements are discussed; the proposed coupling approach, making use of Lagrange
multipliers, is detailed in Section 4; Next, some representative numerical results, including
solid and thin-walled beams as well as a reinforced panel of aeronautic interest, are summa-
rized; Finally, Section 6 outlines important conclusions.

2 Bond-based peridynamics

Figure 1 shows two connected particles x and x′ in a solid region. In the following discussion,
we denote the relative position of these two particles in the reference configuration by ξ:

ξ = x′ − x (1)

Assume that the two particles are displaced respectively by u and u′, the relative displacement
vector is given by η:

η = u′ − u (2)

Note that η + ξ represents the current relative position vector between the particles.
The physical interaction between the particles at x and x′ is called a bond, which extends

over a finite distance. Bonded particle x′ exerts a force T (η, ξ) on particle x. T is a pairwise
force (per unit volume squared) function; is symmetric, i.e. T (η, ξ) = T (−η,−ξ); and
vanishes for |ξ| > δ.

According to the seminar work of Silling [1], the static equilibrium equation of particle x
takes the following integral form:∫

Hx

T (η, ξ) dVx′ + b(x) = 0 (3)

whereHx is a neighbourhood of x and b is a prescribed body force density field. For simplicity,
it is usually assumed that the bond force T depends only on the bond stretch, defined by the
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following scalar variable:

s =
|η + ξ| − |ξ|

|ξ|
(4)

In the prototype micro elastic brittle material (PMB) proposed by Silling [1], the stretch s
and the pairwise force function T are related by:

T = c s
η + ξ

|η + ξ|
∼= c s

ξ

|ξ|
(5)

where c is the bond stiffness and the stretch direction n = η+ξ
|η+ξ| has been simplified as ξ

|ξ| ,
which is valid in case of small displacements.

Considerations about the elastic deformation energy allow the definition of the bond stiff-
ness c in terms of the Young modulus E and the horizon radius δ. In the case of 3D elastic
bodies, as in this work, one has [18]

c =
12E

πδ4
(6)

Because of the hypotheses made, the Poisson ratio is constrained to ν = 1/4 in the case of 3D
bond-based peridynamics. This limitation has been removed in the state-based peridynamics
[19].

2.1 Discretization

The elastic body is discretized into a grid of nodes, each with a known volume. After dis-
cretization, the static equilibrium integral equation (Eq. (3)) of the current node xi can be
given in a form of summation:

NHi∑
j=1

Tij Vj + bi = 0 (7)

where NHi
is the number of family nodes of xi and Vj is the volume of particle xj. Note

that this method is proposed as a meshfree scheme by Silling and Askari [2] in the sense that
there are no elements or other geometrical connections between the nodes. In the proposed
work, Vj = ∆x3, where ∆x is the grid spacing, which is assumed to be constant. However, in
order to consider the volume reduction of a node which has an intersection with the horizon
boundary, a volume reduction scheme is introduced as in [20].

After linearization (Eq. (5)) and in the case of homogeneous media, Eq. (7) reads

NHi∑
j=1

C(xj − xi) (uj − ui)Vj + bi = 0 (8)

where C is the material’s micromodulus function, whose value is a second-order tensor given
by

C(ξ) =
∂T

∂η
(0, ξ) = c

ξξT

|ξ|3
(9)

Observe that multiplying Eq. (8) by Vi leads to an equilibrium equation identical in form to
that of finite element analysis [21]

NHi∑
j=1

C(xj − xi) (uj − ui)ViVj + biVi = 0 (10)

or
KPDUPD = F PD (11)
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3 High order 1D theories based on classical elasticity

The stiffness matrix of Eq. (11) is sparse, generally not banded. Moreover, due to the
nonlocal nature of peridynamics, and depending on the horizon radius, the computational
costs may result prohibitive, especially if structures with dimensions of engineering interest
are analysed. To overcome this issue, researchers are actively working to couple peridynamics
with finite elements based on classical elasticity. In this context, 3D peridynamics is coupled
with 1D finite elements based on the Carrera Unified Formulation (CUF), which is a well-
known methodology to generate higher order theories with enhanced accuracy [22].

In the domain of CUF, the 3D displacement field of a solid beam with main dimension
along the y-axis, can be expressed as a generic expansion of the generalized displacements
uτ (y):

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (12)

where Fτ represent functions of the coordinates x and z on the cross-section, M stands for the
number of the terms used in the expansion, and the repeated subscript τ indicates summation.
The choice of Fτ determines the class of the 1D CUF model.

In the case of Taylor Expansion (TE) models, as an example, the generalized displacements
are expanded around the beam axis by means of a Maclaurin polynomial of truncated order
N , see [23]. In other words, Fτ functions are polynomials of the type xizj in the case of
TE CUF models. For reasons of completeness, the full 3D displacement field of a quadratic
(N = 2) TE beam model (TE2) is given in the following:

ux(x, y, z) = ux1(y) + x ux2(y) + z ux3(y) + x2 ux4(y) + xz ux5(y) + z2 ux6(y)
uy(x, y, z) = uy1(y) + x uy2(y) + z uy3(y) + x2 uy4(y) + xz uy5(y) + z2 uy6(y)
uz(x, y, z) = uz1(y) + x uz2(y) + z uz3(y) + x2 uz4(y) + xz uz5(y) + z2 uz6(y)

(13)

Note that: (1) TE models are hierarchical; (2) In the case of a TE model of order N , the
number of expansion terms is M = (N + 1)(N + 2)/2; (3) The classical beam theories (Euler
Bernoulli and Timoshenko theories) are particular cases of the linear CUF TE model (TE1).
This class of CUF models has been widely employed in the recent literature and in different
engineering disciplines, see [24, 15]

TE CUF-based models have been demonstrated to be very efficient and effective for a
wide range of problems. Nevertheless, they may be affected by inaccuracies when very short
beams are considered (the TE expansion become inaccurate for cross-sectional points laying
far from the beam axis) or when complex structural assemblies are considered, e.g. in the case
of reinforced thin-walled structures, see [25]. For this class of structures, Lagrange Expansion
(LE) models can be employed. LE beam theories, in fact, are based on the use Lagrange-type
polynomials to expand the generalized displacements on the beam section domain, Fτ . The
cross-section physical surface is discretize into a number of expansion sub-domains, whose
polynomial degree depends on the type of Lagrange expansion employed. Three-node linear
L3, four-node bilinear L4, nine-node quadratic L9, and sixteen-node cubic L16 beam models
have been developed in the framework of CUF. For the sake of brevity, their explicit kinematics
is not included here, but they can be found in Carrera and Petrolo [26]. For instance, the 3D
displacement field of the quadratic L9 beam model reads:

ux(x, y, z) = F1(x, z) ux1(y) + F2(x, z) ux2(y) + F3(x, z) ux3(y) + ...+ F9(x, z) ux9(y)
uy(x, y, z) = F1(x, z) uy1(y) + F2(x, z) uy2(y) + F3(x, z) uy3(y) + ...+ F9(x, z) uy9(y)
uz(x, y, z) = F1(x, z) uz1(y) + F2(x, z) uz2(y) + F3(x, z) uz3(y) + ...+ F9(x, z) uz9(y)

(14)
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where F1,...,F9 form a usual quadratic Lagrange polynomial set. The main feature of LE
models is that they make use of local expansions of pure displacement variables, being these
arbitrary placed over the cross-section surface. This characteristic enables to capture complex
3D-like solutions at a global-local scale and to increase the accuracy of the solution in partic-
ular zones of interest. Recently, LE beam models have been employed for the component-wise
analysis of composite laminates at various scales [27, 13], aerospace structures [28], and civil
constructions [29].

3.1 Finite element approximation

Independently of the nature of the refined 1D theory adopted, the generalized displacements
can be approximated along the beam axis by discretizing the 1D support with finite elements
(FEs) to have:

uτ (y) = Ni(y) uτi, i = 1, 2, ..., p+ 1 (15)

In Eq. (15), i stands for summation and the generalized displacements are described as a
function of the unknown nodal vector, uτi, and the 1D shape functions, Ni. In the case of
classical Lagrangian shape functions, p is the polynomial order of the approximation of the
single finite element and p+ 1 is the number of nodes per elements.

The main advantage of using a compact notation as in Eqs. (12) and (15) is that the
governing equations and the FE arrays can be formulated in a unified and hierarchical manner,
which is affected neither by the choice of the theory of structure, represented by Fτ , nor by
the FE shape functions Ni. For instance, in the case of linear elastic, static problems, the
governing equations can be obtained from the principle of virtual work, which states that:

δLint = δLext (16)

where δ is the virtual variation, Lint is the work of the internal strain energy, and Lext is the
work of the external forces. Now, the internal work reads:

δLint =

∫
l

∫
Ω

δεTσ dΩ dy (17)

where l is the length of the beam and Ω represents the surface of cross-section domain. In
Eq. (17), σ and ε are the vectors of the 3D stresses and strain components. By substituting
the constitutive and geometric equations along with Eqs. (12) and (15), the expression of the
internal work can be rewritten in a compact manner as follows:

δLint = δuTτiK
τsijusj (18)

where Kτsij represents the 3 × 3 fundamental nucleus of the element stiffness matrix of the
arbitrarily refined 1D beam theory. In the case of homogeneous isotropic material, the com-
ponents of Kτsij are

K τ sij
αα = (λ + 2G)

∫
l

NiNj dy

∫
Ω

Fτ,xFs,x dΩ + G

∫
l

NiNj dy

∫
Ω

Fτ,zFs,z dΩ +

+G

∫
l

Ni,yNj,y dy

∫
Ω

FτFs dΩ

K τ sij
αβ = λ

∫
l

NiNj,y dy

∫
Ω

FτFs,x dΩ + G

∫
l

Ni,yNj dy

∫
Ω

Fτ,xFs dΩ

(19)
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3D PD
Higher order
1D FEs

Higher order
1D FEs

k = 1
k = 2...

k = N  

...

Interface
zone,

Figure 2: High order 1D finite elements are coupled with a 3D peridynamic region by using
Lagrange multipliers. Given the interface zone I, the Lagrangian Πk of each particle k ∈ I
is added to the FE-PD coupled (singular) system to satisfy the displacement continuity.

where λ and G are the two Lamé parameters. Moreover, α, β = x, y, z; it is intended that
all the nine components of the stiffness nucleus can be obtained by permutations from Eq.
(19). Note that any refined beam model can be automatically formulated by expanding the
fundamental nucleus within the stiffness matrix on τ , s, i, and j. Thus, once the stiffness
matrix is expanded depending on the theory approximation order and assembled over the
entire FE domain, Eq. (16) can be expressed as:

KFEUFE = F FE (20)

where UFE is the vector of the FE nodal unknowns and F FE is the vector of external forces
coming from the manipulation of δLext.

This section is not intended to be comprehensive, but gives essential notions useful for
the derivation of a coupled high order 1D - 3D peridynamic model to be used in elastostatic
problems. Readers interested in the FE derivation of CUF-based models are referred to
Carrera et al. [30].

4 Coupling

Figure 2 shows a rectangular cross-section solid beam in a Cartesian reference system. A por-
tion of the solid body is modelled by 3D peridynamics (peridynamic particles are denoted by
red dots), whereas the rest of the domain is discretized by high order 1D elements. Neglecting
for a moment any interface relation, the peridynamic region and the FEs can be modelled
indipendently; Eqs. (11) and (20) are assembled in a weak sense to give the following system
of linear algebraic equations:

KU = F , i.e.

[
KPD 0
0 KFE

]{
UPD

UFE

}
=

{
F PD

F FE

}
(21)

Note that the global stiffness matrix K of Eq. (21) is singular. Given an interface (contact)
zone, denoted by I in the figure, between the peridynamic domain and the 1D FEs, Lagrange
multipliers are used in this work to satisfy the congruence conditions on I and eliminate the
singularity of K.
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For doing so, consider one single peridynamic particle k of the NI particles laying on I.
The functional (Lagrangian) that has to be added to the original problem of Eq. (21) is:

Πk = λTk
(
uPDk − uFE(xk, yk, zk)

)
(22)

where uPDk is the displacement vector of PD particle k and uFE(xk, yk, zk) is the displace-
ment field of the FE counterpart. λk is the three-component vector containing the Lagrange
multipliers; they represent the forces to be applied to the system in order to satisfy continuity
between the peridynamic particle and the FE approximation at k. After subtituting Eqs. (12)
and (15) into Eq. (22), one has

Πk = λTk
(
uPDk − uFEτi Fτ (xk, zk)Ni(zk)

)
, τ = 1, ...,M, i = 1, ..., p+ 1 (23)

Equation (23) is, thus, expanded over τ and i to give, in a matrix form, the following expres-
sion:

Πk = λTkBkU (24)

where Bk is the coupling matrix of particle k and its fundamental nucleus reads as:

B τ i
k = (δk − Fτ (xk, zk)Ni(zk)) I (25)

where I is the 3× 3 identity matrix and δk is 1 for PD particle k and null otherwise.
After the Lagrangian of each particle k ∈ I is found and the total functional Π =

∑NI
k=1 Πk

is calculated, the solution of the coupled problem is given by finding U and λ (Lagrange
multipliers’ vector of 3×NI components) from the following linear system:

KU +
∂Π

U
= F

∂Π

λ
= 0

(26)

or, equivalently, [
K BT

B 0

]{
U
λ

}
=

{
F
0

}
(27)

where B is the final coupling matrix coming from the assembly of Bk’s.
For further readings about the use of Lagrange multipliers for coupling structural models

with inconsistent kinematics, interested readers are referred to [17, 31]. Note that the pro-
posed methodology is valid for any 1D finite elements, including classical Euler-Bernoulli and
Timoshenko models available in any finite element packages of commercial relevance. The
main advantage of the proposed methodology is that FE and PD non-conforming grids can
be coupled with ease. In other words, the grid spacing of the peridynamic domain does not
play any role in the choice of the FE mesh size in the coupled problem. Furthermore, if 1D
high order finite elements are used in conjunction with PD, one has the capability to describe
the entire computational domain with 3D accuracy, although the computational costs are low
if compared to a full 3D PD analysis. In this sense, the peridynamic region can be limited in
those zones of the structure were it is strictly needed.

As it will be clear in the discussion of the numerical results, the only disadvantage of the
method proposed in this research is that the interface zone I may be affected by softening
issues, especially when 3D PD is coupled with high order FEs which take into account the
cross-section deformability. However, this is a well-known problem of PD and coupled PD-
FEM methods and can be partially overcome by using overlapping regions. This will be the
subject of future studies although.
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Overlapping regions

Figure 3: Overlapping regions between the peridynamic and finite element domain can be
used to attenuate the softening issue at the interface I.

40 mm

40 mm

20 mm
10 mm

uy = 10 mm

uy = 0

TEN LE4 LE9 LE16

2-node (B2) FE

Figure 4: Square cross-section bar subjected to uniaxial tension. The peridynamic zone is
discretized with a grid spacing ∆x = 1 mm. The FE domains, instead, are modelled each
with one single two-node (B2) linear element. The theory approximation of the FEs is varied
from classical to high order LE.

5 Numerical results

5.1 Bar under uniaxial tension

In the first analysis case, we consider a 3D bar under uniaxial tension. Figure 4 shows
geometry, boundary conditions and main modelling features. The bar has a square cross-
section with side and length equal to 10 and 100 mm, respectively. The entire structure is
made of a homogeneous isotropic material with Young modulus E = 10 GPa and ν = 0.25.
Peridynamics is used to model a small portion of the entire domain and a grid spacing of
∆x = 1 mm is employed. In contrast, the horizon δ is varied. The remaining parts of the bar
are modelled each with one single two-node (linear) 1D finite element, see Fig. 4. Thus, by
using CUF, the kinematics (the theory of structure) associated with the FEs is varied from
classical beam models (which are particular cases of TE1) to high order LE.

As a first result, Fig. 5 shows the deformed state of the bar under consideration. The
model shown makes use of a bilinear L4 beam model (see Section 3) in the FE region, whereas

9



Figure 5: Deformed state of the square cross-section bar subjected to uniaxial tension. In
this analysis case, the two 1D finite elements make use of a bilinear (L4) kinematics. The
peridynamic zone has a horizon δ = 3 mm.

Table 1: Value of the Poisson ratio calculated at the peridynamic zone of the bar under
uniaxial traction. When using classical FE beam elements (TE1), the results are affected by
errors because the FE cross-section is rigid and the displacements gradients in the PD zone
are higher. The effect of the horizon is negligible.

Model FE dof’s PD dof’s ν % error
δ = 2 mm

TE1-PD 36 7623 0.223 −10.8
L4-PD 48 7623 0.243 −2.8
L9-PD 108 7623 0.244 −2.4

δ = 3 mm
TE1-PD 36 7623 0.261 4.4
L4-PD 48 7623 0.250 0.0
L9-PD 108 7623 0.251 0.4
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Figure 6: Axial displacement of the bar subjected to traction. FE-peridynamic interface may
be subjected to distortions. In this analysis case, setting the PD horizon equal to twice the
grid spacing or using overlapping zones helped to solve the issue.

a horizon δ = 3 mm is used in the PD zone. To demonstrate the effect of the choice of the
beam model and the horizon on the effectiveness of the present coupled approach, Table 1 is
proposed. This table shows, for low to high order TE and LE beam models and different PD
horizons, the value of the measured Poisson ratio ν and error with respect to expected value
(0.25). It can be observed that, if classical and lower-order beam FE models are used (TE1
in Table 1), the Poisson ratio is misestimated. The reason is that the beam cross-section
remains rigid in the entire FE domain in this case. In contrast, if high order FE elements
are employed (e.g., L4 or L9), the 3D solution can be successfully recovered. Moreover, note
from Table 1 that, for the case under consideration, the size of the FE problem is negligible
with respect to the PD counterpart.

Figure 6 investigates the consistency of the solution at the interface boundary between
the FE and PD zones. In detail, the figure shows the axial displacement uy in the middle of
the cross-section and along the entire length of the bar. It is demonstrated that the solution
is not affected by the choice of the FE model utilized. On the other hand, it can be observed
that some distortion is visible in correspondence of the transition zone. This is due to the
well-known softening issues exhibited by peridynamics at the boundary regions and to the
fact that PD and classical elasticity converge to different solutions. Nevertheless, from the
analysis conducted, it is shown that this distortion at the contact interface can be attenuated
by using a different value for the horizon radius. As an alternative, an overlapping zone can be
used between the PD and FE zone. In this case, for example, the PD domain was considered
to compenetrate the FE domain of a length along y equal to δ. Note that for all the numerical
cases considered, these transition effects were scarcely visible and never affected the validity
of the results. As a consequence, no artificial drawbacks have been employed hereinafter to
better discuss the effectiveness of the method proposed.
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4-node (B4) FE

400 mm
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x
x

A
B

Figure 7: Cantilever I-section beam subjected to point load. The peridynamic zone, which
has a grid spacing ∆x = 1 mm and δ = 3∆x, coexists with the FE domain. This latter
is modelled with 10 four-node beam elements (B4). Note that the FE cross-section has a
disconnected domain wherever PD lays.

5.2 I-section beam under bending and torsion

In the next numerical simulation we want to further highlight the 3D nature of the proposed
approach. For this purpose, a cantilever I-section beam under bending and torsion is consid-
ered, see Fig. 7. The same problem was considered in previous works by Carrera and Pagani
[32, 33], where geometrical characteristics, material properties and boundary conditions were
also given along with reference solutions. In this section, we propose a coupled model in
which peridynamics is used to discretize limited regions of the beam’s aim and cap as shown
in the figure. As in the previous case, the PD domain has a grid spacing of ∆x = 1 mm
and a horizon δ = 3 mm. Note that the PD region is embedded into the FE domain itself,
which is discretized with 10 four-node cubic (B4) 1D elements. For doing so, the cross-section
of the 1D FEs vary along y; it is represented by a disconnected domain wherever PD lays,
i.e. 400 ≤ y ≤ 600 mm (see Fig. 7). Nevertheless, the CUF-based FEs make use of low-
order to high-order TE and LE kinematics and the cross-section continuity and congruence
is indistinctly satisfied by the use of Lagrange multipliers in the PD-FE zone I.

Table 3 demonstrates the validity of the proposed methodology and compares the trans-
verse displacements at points A and B from coupled PD-FE models with those from the
previous literature. The reference solutions were obtained by using a commercial FE software
tools (both a 2D-plate and a full 3D models are given) and CUF-based TE refined models
based on a pure FE discretization. The reason of giving the displacements in two distinct
points of the free end is that one can appreciate the ability of the refined CUF models of
catching both bending and torsional behaviour of the beam under consideration. As a matter
of fact, note that the PD-CUF models using high order TE and LE kinematics for the FEs
are able to provide accurate results and all the coupled models proposed are coherent with
the expected solutions. Furthermore, as 1D elements are used for the discretization of the FE
zone, it can be observed that the number of degrees of freedom of the FE model is negligible
with respect to those associated with PD. This is not the case when combining PD with 3D
FEs. Finally, for completeness reason, we must underline that the TE reference solutions
provided in Table 3 were obtained by discretizing the FE domain with 100 B2 finite elements.
In this section instead, the same discretization is done with 10 B4 elements. This play a
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Table 2: Vertical displacement components at the center of the free-end I-section and at the
loading point. The results from the present PD-FE coupled method are compared with those
from the literature. It is shown that refined beam FEs are needed to catch the bending-
torsional behaviour. Nevertheless, for all the cases the coupled models are coherent with the
expected solution.

Model FE dof’s PD dof’s −uz [mm] @ Point A −uz [mm] @ Point B
Reference solutions [32, 33]

TE1 909∗ - 0.964 0.964
TE4 4545 - 0.991 1.257
TE8 13635 - 0.997 1.649
TE14 36360 - 1.001 2.418
Nastran 2D 61000 - 1.006 2.437
Nastran 3D 355800 - 0.956 2.316

Present coupled PD-CUF models
TE1-PD 279∗∗ 222507 0.967 0.981
TE4-PD 1395 222507 0.994 1.290
TE8-PD 4185 222507 1.002 1.846
TE14-PD 11160 222507 1.000 2.256
L9-PD 7911 222507 1.005 2.356
∗100 B2 elements (101 FE nodes) are used in the TE ref. models.
∗∗Present PD-CUF models employ 10 B4 elements instead (31 FE nodes).

role in the computation of the final number of dof’s, but does not affect the validity of the
analysis.

To further highlight the 3D nature of the coupled models proposed (3D in essence but
not in the form), Fig. 8 shows the deformed shape of the I-section beam under consideration
resulting from the low-order TE1-PD and high-order L9-PD models. It is clear that high
accuracy can be reached if sufficiently rich kinematics is used for the 1D CUF-based FEs.
Independently of the beam theories utilized in the FE zone, the 3D PD region is perfectly
consistent with the formulation as demonstrated by Fig. 9, which shows a close detail on the
deformed configuration.

Figure 10 shows the distribution of important stress components across the PD-FE in-
terface plane at y = 400 mm. In fact, as demonstrated in the previous literature, given

(a) TE1-PD (b) L9-PD

Figure 8: Deformed state of the I-section beam according to PD and low to high order FEs
coupled models.
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Figure 9: Detailed view of the deformed PD zone of the I-section beam according to coupled
L9-PD model.

(a) (b)

(c) (d)

Figure 10: Distribution of axial stress (σyy, a-c) and transverse shear stress (σyz, b-d) across
the FE-PD interface zone at y = 400 mm according to L9-PD model. The stress state is not
affected by the PD interface.
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Figure 11: Reinforced panel subjected to point load. The panel and the stringers are modelled
independently with six equally spaced 4-node beam elements (B4). Two different peridynamic
zones are embedded in the model and they have a grid spacing ∆x = 1 mm and δ = 3∆x.

the displacements unknowns from Eq. (20), expanding with CUF (Eq. (12)) and using the
3D geometrical and constitutive relations, the 3D stress field can be recovered if sufficiently
high kinematics is used although 1D FEs are employed, see [34, 13]. However, the important
aspect here is that the stress state is not affected by PD and remains congruent also at the
interface zone I. This aspect may bring to important outcomes in fracture mechanics by
coupled PD-CUF models.

5.3 Reinforced panel

As a final example, a reinforced panel of aerospace relevance is analysed to underline the
possibility of the present method to study simple to complex geometries. Figure 11 shows
the main geometric characteristics, the boundary conditions and the important modelling
features. The entire stiffened panel is made of the same material of the first numerical
example. The structure is composed by three main components (i.e. two stringers and one
panel), each of which is modelled with higher-order 4-node beam elements, in a component-
wise sense [25]. Two independent peridynamic regions are integrated into the FE model; i.e.
a portion of the stringer and a small area of the panel as shown in Fig. 11. As in the previous
cases, the PD zone is discretized in a meshless manner with a grid spacing of ∆x = 1 mm
and a horizon δ = 3 mm.

Figure 12 demonstrates the deformed consideration of the structure under consideration
and according to the proposed PD-CUF coupled approach. Furthermore, for completeness
and validation purposes, Table 3 gives the vertical displacement values at two characteristics
points (i.e., points A and B, see Fig. 11) and the maximum axial stress σyy at point C obtained
via the present approach and reference solutions coming from a full FE analysis. Both the
proposed results and the references make use of low to high-order CUF approximations in
the FE domain, again to highlight the possibility to couple 3D peridynamics with any-order
beam models.

The transverse displacement at point B and all along the panel span is given in a graphical
form also in Fig. 13. In the figure, the solid line represent the reference, high-order L9 solution
which make use of full FE discretization. Consistently, the present L9-PD perfectly matches
the reference solution along the entire domain and also across the peridynamic stringer in-
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(a) (b)

Figure 12: Deformed state of the stiffened panel according to coupled L9-PD model.

Table 3: Vertical displacement components and maximum axial stress at different points of
the reinforced panel. The results from the present PD-FE coupled method are compared with
those from full FE approximations. For all the CUF theory approximation order, the coupled
models are coherent with the expected solution.

Model FE dof’s PD dof’s −uz [mm] @ Point A −uz [mm] @ Point B σyy [MPa] @ Point C
Reference solutions

TE1 171 - 29.532 29.368 71.274
TE3 570 - 29.998 27.587 86.1674
TE5 1197 - 36.365 22.519 106.354
L9 9519 - 44.942 14.153 126.916

Present coupled PD-CUF models
TE1-PD 171 312504 29.676 29.499 71.289
TE3-PD 570 312504 30.444 27.381 86.2379
TE5-PD 1197 312504 37.522 21.599 107.646
L9-PD 9261 312504 44.992 14.296 126.958
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Figure 13: Transverse displacement of the stiffened panel at point B and all along the struc-
ture’s span. Coupled L9-PD model is compared with a full FE model based on a high order
L9 CUF beam theory. The coherence of the proposed method is demonstrated both in the
FE and the PD domains.

(a) L9 (b) L9-PD

Figure 14: Distribution of axial stress (σyy) according to the reference full FE L9 model and
the present coupled L9-PD model.
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terface. Finally, Fig. 14, which shows the 3D contour plot of the axial stress component
σyy, demonstrates that multiple coupled PD-FE regions do not alter the consistency of the
solution, even in terms of stress state.

6 Conclusions

This paper has discussed a novel technique to couple 3D peridynamics with high order 1D
finite elements based on the Carrara Unified Formulation (CUF). The coupling technique is
general and consistent, because it is based on the use of Lagrange multipliers, which have a
clear physical meaning. Moreover, thanks to CUF, which provides any structural theory in a
unified manner, 3D peridynamics can be coupled with 1D finite elements of arbitrary order,
from classical to high order kinematics. Although, when refined finite elements are used, it
is possible to obtain enhanced solutions with full 3D capabilities in which peridynamics is
used in small zones of interest, in a global/local sense. The resulting coupled models have low
computational efforts if compared to other 3D approaches and have been demonstrated to be
effective for a wide range of structures, including solid beams and thin-walled constructions
of aerospace relevance. The methodology will be extended to deal with localized progressive
failure problems in future works.
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