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Feasibility of cardiovascular risk assessment
through non-invasive measurements

Pasquale Arpaia1, Renato Cuocolo2, Francesco Donnarumma3, Dario D’Andrea1,
Antonio Esposito4, Nicola Moccaldi1, Angela Natalizio1, and Roberto Prevete1

Abstract—The present work is a first step in building a
wearable system to monitor the heart functionality of a patient
and assess the cardiovascular risk by means of non-invasive
measurements, such as electrocardiogram (ECG), heart rate,
blood oxygenation, and body temperature. Also clinic data
obtained by means of a patient interview are taken into account.
In this feasibility study, measures from a pre-existing dataset are
exploited. They are processed with a machine learning algorithm.
Features are first extracted from the measures collected with the
wearable sensors. Then, these features are employed together
with clinic data to classify the patients health status. A Random
Forest classifier was employed and the algorithm was charac-
terized considering different setups. The best accuracy resulted
equal to 78.6% in distinguishing three classes of patients, namely
healthy, unhealthy non-critical, and unhealthy critical patients.

I. INTRODUCTION

With the increase of elderly people, the need of medical
assistance has grown more and more. Continuous medical
support in a clinic or hospital is often not feasible in aging pop-
ulations; yet, collecting medical data is required to maintain
a high-quality of life. With the advance of modern machine
learning techniques, the analysis of these data could lead to
new discoveries and to the possibility of a better patients
monitoring and follow-up.

In the framework of a technological development that aims
to increase the health and wellness of the population, the
Italian project “Indago” has been conceived to develop a
wearable system to collect bio-signals from patients directly
at their home. It is foreseen a two-fold advantage, (i) avoiding
crowded hospitals, which limit the capability of the physicians
in patients caring, and (ii) avoiding the psychological stress of
the hospital for the patients. Nonetheless, telemonitoring helps
in following-up at-risk patients and, when needed, address
them to a physician. In order to achieve that, a predictive
algorithm for an early diagnosis is foreseen, which analyzes
the patient data at the platform input and derives the patient
cardiovascular (CV) status. The early diagnosis algorithm aims
to assess the CV risk of the monitored patient, relying on
bio-signals acquired continuously though a wearable system
and clinical data. The latter are obtained through patient
interview and clinical examinations. The calculated risk helps
in addressing the patient to further examination or it helps the
physician in deciding a therapy.

Several contributions are reported in scientific literature with
regard to algorithms based on artificial intelligence for the
cardiovascular risk assessment. In particular, machine learning
techniques are employed to help the physician in formulating
a diagnosis or to assess the cardiovascular risk itself. However,

these techniques are usually employed to process images,
which are results of medical examinations such as a computed
axial tomography (CAT). Indeed, fewer contributions are re-
lated to the employment of wearable monitoring systems for
the cardiovascular state monitoring. In 2010, a smartphone-
based platform for the real-time assessment of cardiovascular
risk through an electrocardiogram (ECG) has been proposed
[1]. The acquired data were also considered for offline elab-
oration for an Holter-like system. The authors underline the
need of a continuous monitoring of at-risk patients because
of the mortality related to cardiovascular diseases. Employing
an ECG analysis by means of machine learning algorithms,
they detect four different kinds of arrhythmia and declare a
classification accuracy greater than 90% for three types of
arrhythmia, and equal about to the 81% for the fourth type,
while the ECG signal is classified as "normal" in 99% of cases.
In 2013, a detector of atrial fibrillation has been proposed.
It exploits signals related to cardiac vibration, namely a
ballistocardiogram (BCG), which is complementary to an ECG
analysis [2]. The system is integrated in the patient’s bed for
the telemonitoring of a cardiovascular disease, and signals are
analyzed by means of machine learning. However, the authors
themselves underline that the BCG cannot replace an ECG,
but it can only add complementary information. The algorithm
performance has been reported through the sensibility and
specificity, equal to 93.8% and 98.2% respectively. In 2015, re-
searchers from the Turkish University of Inonu have proposed
the employment of a “knowledge discovery process” algorithm
for stroke prediction. They underlined the importance of this
processing for a correct interpretation of available measures, in
order to extract synthetic features. The algorithm was based on
Artificial Neural Network or Support Vector Machine. The two
techniques were compared concluding that the prediction ac-
curacies are 81.82% and 80.38% respectively [3]. The authors
foresee the employment of their technique to big datasets in
order to enhance the prediction and treatment of stroke, and in
their study they considered data from 297 patients. In 2018, a
new methodology for the classification of heart health state has
been proposed relying on ECG and on evolutionary-genetic
algorithms. The “MIH-BIH Arrhythmia database” was taken
into account, and the classification discriminates 17 classes of
cardiac diseases. The best classifier resulted a Support Vector
Machine. The author reports an accuracy equal to 90.20%
[4]. In the same year, a wearable system has been proposed
for the short-time cardiovascular risk assessment exploiting
also the patient’s emotional state. A multivariate data analysis
is exploited, comprising ECG, heart rate, body temperature,



blood oxygen, and also the “galvanic skin response” (GSR)
for the emotional state assessment [5]. The proposed system
resulted very similar to the foreseen system architecture within
the Indago project. Furthermore, the dataset produced along
this study was made publicly available.

In this paper, the feasibility study, based on the classifier
Random Forest cited above, and exploiting the available
dataset of a machine learning-based algorithm is proposed
for the classification of the cardiovascular risk. In particular,
Section II discusses the requirements of the Indago system
and conceptual design of the algorithm implemented to study
the feasibility of the cardiovascular risk assessment procedure,
while Section III reports some details about the algorithm
implementation and the obtained results. Future steps of the
project are finally addressed in the conclusions

II. METHOD

The proposal of this paper is the implementation of an
algorithm for the cardiovascular risk assessment. Data consists
of non-invasive measures contained in a pre-existing dataset
and in clinic data reported in a related sheet. This aims to
demonstrate the feasibility in building a wearable system for
the monitoring of cardiovascular diseases. The requirements
of the algorithm are thus first reported. They arise from the
needs of the project and the foreseen functionalities of the
final system under construction. The algorithm for assessing
cardiovascular risk receives, as input, data from a continuous
monitoring of the patient. The monitoring data are collected
from wearable sensors. Instead, another kind of data is also
available, namely the above-mentioned clinic data. Clinic data
are collected interviewing the patient or recording the results
of clinical exams that the patient undertook. Part of these data
is collected before the monitoring starts, while another part
can be added or updated during the monitoring period.

The data analysis aims to provide a long term risk assess-
ment. The predicting capability of the algorithm involves the
possibility to foresee a cardiovascular risk from the patient
data, acquired through the telemonitoring system. If an in-
crease of the cardiovascular risk is foreseen, the patient is
addressed to a physician for further analysis and/or for the
prescription of a therapy. Nonetheless, if the risk remains
unchanged or it decreases, the patient is suggested to undertake
classical routine exams. The main output of the system,
namely of the predictive algorithm, is an estimation of patient
long term cardiovascular risk. In accordance to the most recent
European guidelines [6], this value should be expressed as a
categorical class: low-risk, moderate-risk, high-risk and very-
high risk. Fig. 1 reports some details about these four risk
categories according to the mentioned guidelines.

Thanks to the detection of eventual anomalies in the moni-
tored data, patient current status can also be reported. More-
over, when the algorithm predicts an increase of cardiovascular
risk, the physician may receive an alert. Finally, in case of an
unforeseen cardiovascular event, the recorded bio-signals can
help in obtaining a prompt diagnosis. All this information,
in turn, could help improve the clinical management of the

Figure 1: Risk categories. ACS: acute coronary syndrome;
AMI: acute myocardial infarction; BP: blood pressure; CKD:
chronic kidney disease; DM: diabetes mellitus; GFR: glomeru-
lar filtration rate; PAD: peripheral artery disease; SCORE:
systematic coronary risk estimation; TIA: transient ischemic
attack

subjects. Details about the algorithm implemented in this first
study are reported in the following subsection.

A. Algorithm implementation

Two main steps can be identified in the algorithm: features
extraction and classification. For features extraction, data from
wearable sensors is taken into account, together with data
resulting from a patient interview (clinic data). Non-invasive
measures from the wearable sensors are processed to obtain
the features as better described below, while clinic data is
employed as is. Then, subjects data are separated to train the
classifier and then validate it. The algorithm architecture is
shown in Fig. 2.

Several features can be considered for each patient, also
depending of the availability of a type of feature for all
patients. Considering data from wearable sensors first, ECG
signals are processed with the Pan-Tompkins algorithm [7]
to obtain the distances between consecutive R-peaks. This
information is exploited to calculate 12 features: heart rate,
maximum, minimum and average RR distance, standard devi-
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Figure 2: Architecture of the proposed algorithm for the cardiovascular risk assessment. Part of data is processed to extract
features, while the remaining part of data is considered as features themselves. Then the Random Forest classifier is trained
and tested properly splitting the data.

ation of RR distances (SDNN), the square root of the mean
squared differences of consecutive RR (rMSSD), consecutive
NN intervals differences which is higher than 50 ms (NN50),
NN50 by the total number of NN intervals (pNN50), HRV
triangular index (HRVI), the imaginary ellipse axis SD1 and
SD2 of the Poincaré plot, and their ratio SD1/SD2. These
features can be calculated from an ECG signal during a resting
phase, during a 6-minute walking test, and when the patient
was watching a video (2 videos maximum are available). Other
features arise from the remaining measures, available for each
kind of trial, namely body temperature, blood oxygenation
(SpO2), and heart rate. The synthetic features taken into
account are the mean body temperature, and the mean and
standard deviation of SpO2 and heart rate, yielding a total of
10 more features. Finally, 24 features are the clinic data listed
here for clarity: age, number of stents, presence of bypass,
smoking status, metabolic syndrome status, diabetes status,
angina or heart attack in a 1st degree relative, chronic kidney
disease (stage 3. 4 or 5), atrial fibrillation, on blood pressure
treatment, migraines, rheumatoid arthritis, SLE, illness, atyp-
ical anti-psychotic medication, regular steroid tablets, erectile
disfunction, height, weight, 3 measures of systolic blood
pressure, diastolic pressure. The features matrix is thus built
considering the features on columns and the patients on rows.
This is the input of the classifier. The matrix was obtained
with Matlab by processing data from wearable sensors and
concatenating clinic data. The output file is a ’.csv’ file.

The classifier that was implemented is a multi-class Random
Forest, which is a classical machine learning technique [8].
The Random Forest has been considered as the optimal
classifier, as suggested by the literature, among different
types of classifiers that were studied, such as decision forest,
logistic regression, decision jungle, and neural networks.This
classifier was developed in Python, and it receives as input the
previously generated ’.csv’ file. The Python script simply loads
the features matrix and then it adopts as classification methods,
relying on the Random Forest technique the hold-out method.
It consists in splitting randomly the dataset in 50% for training
the model and 50% for testing it and obtaining a classification
accuracy value. The array of label was uploaded too, and it

was exploited for both training and testing of the Random
Forest classifier. The results of the methods application are
reported in the following section.

III. EXPERIMENTAL RESULTS

The algorithm discussed in the previous section was im-
plemented and the dataset received from the authors of [5]
was employed for testing. The dataset is described in the
following subsection, while the results and their discussion are
reported in a further subsection considering different training
and testing data choices.

A. Dataset description

The employed dataset contains data from 30 patients. For
each patient, the clinic data listed before is reported in a
resume sheet, while recorded data from wearable sensors is
furnished in separated files. Each file contains the ECG signal,
GSR, pulse, body temperature, blood oxygenation (SpO2), and
a time-stamp. The signals were sampled at 290 Sa/s during
acquisition. The Galvanic Skin Response (GSR) has been
ignored in this first implementation, as well as the time-stamp,
which resulted useless for our needs. The different files are
related to 4 different states during acquisition: 10 minutes
resting state, 6-minute walking test (6MWT), watching two
6 minutes videos. The videos were mostly meant for the
emotional response. However, our study also took into account
the data from wearable sensors acquired when watching a
video. The 6MWT was then discarded because all unhealthy
patients refused to undertook it. The effectively considered
patients depend on some choices related to the need to balance
the different classes of patients for training and test, hence this
is better discussed in the results subsection.

The label associated to each patient distinguishes healthy
patients from unhealthy ones, and then again critical and
non-critical unhealthy patients. Health status was assessed by
a cardiac physicians after some examination. These labels
are employed for both classification and evaluation phases
of the classifier. The dataset taken into account contains 16
healthy patients, 10 unhealthy non-critical patients, and only
4 unhealthy critical patients.



B. Results and discussion

The execution of the algorithm yields different accuracy
values according to the choice of the data for training and
testing. The different setups are hence reported along with the
achieved accuracies. First, aiming to balance the dataset, the
considered patients were 8 healthy, 8 unhealthy non-critical
and 4 unhealthy critical patients. Unfortunately, the number
of unhealthy critical patients is strongly limited. However,
considering less patients for the remaining classes would have
meant to limit the number of data for training and testing,
which is already small. Hence, it was not possible to consider
a perfectly balanced sub-dataset. The classification conducted
in this first setup yields an accuracy equal to 70% when the
ECG, body temperature, blood oxygenation (SpO2) and pulse
are considered in resting state. The accuracy is still 70% if
clinic data is added in the features matrix. Instead, if only
clinic data is employed in this setup, the resulting accuracy
drops to 60%. Hence, this indicates that clinic data adds no
relevant information to the classification of patients in this
configuration.

The second choice regarded the possibility to employ as
much data as possible while considering also measurements
during video watching. Hence, 28 patients were considered,
while 2 patients had to be discarded because data during video
watching was not present for them. In this case, the considered
patients were 16 healthy patients, 9 unhealthy non-critical
patients, and 3 unhealthy critical ones. The accuracy resulted
equal to 78.6% in two conditions, with only clinic data, or
with clinic data and all measures during resting state and video
watching. Instead, if only the resting state is considered, and
no clinic data is employed, the accuracy drops to 71.4%. The
same value is obtained when only data acquired during video
watching is considered.

Finally, all patients were considered, accepting to discard
data acquired during video watching. These data were not
present for the 2 patients that were previously discarded. In this
setup, considering only the resting state, the yielded accuracy
is 66.7%. This value remains unchanged if clinic data are
added as features. Instead, if only clinic data are taken into
account, the accuracy results equal to 73.3%.

All results are resumed in Tab. I. They depict a situation
of clinic data leading to the best accuracy value, when the
classes of patients taken into account are not balanced, and
in particular there are mostly healthy patients. Instead, when
aiming to balance the classes, the best result is achieved thanks
to the data from wearable sensors acquired during resting state.
Finally, the results seem to suggest that resting state and video
watching are equivalent conditions. This is reasonable because
the galvanic skin response (GSR) was not considered in our
study. Instead, the GSR could give further information about
the emotional state of the patient, which would eventually lead
to a classification improvement, as the author of [5] report.
This investigation is addressed to a next work.

Setup Data Accuracy

1st resting state 70%

1st resting state,
clinic data 70%

1st clinic data 60%
2nd resting state 71.4%
2nd video watching 71.4%
2nd clinic data 78.6%

2nd
resting state,

video watching,
clinic data

78.6%

3rd resting state 66.7%

3rd resting state,
clinic data 66.7%

3rd clinic data 73.3%

Table I: Classification accuracy results for the different setups
discussed within the manuscript and for different data consid-
ered as features.

IV. CONCLUSIONS

In this paper, an algorithm based on Random Forest classi-
fication for the cardiovascular risk assessment was proposed.
The input consists of data recorded from sensors that the
patient can wear and on clinic data obtained interviewing
the patient. After features extraction, the patient are classified
through a Random Forest algorithm. The best result in terms
of accuracy is obtained exploiting an unbalanced dataset
with mostly healthy patients, yielding a 78.6% accuracy in
distinguishing 3 different classes. This is explained with the
fact that the number of patients is too small to properly train
and test the classifier, hence the best results is obtained when
the whole dataset is employed. However, this also means that
over-fitting problems could be present, and the classifier could
poorly classify incoming data from new patients.

This feasibility study is a first step in building a smart
wearable system for the monitoring of the cardiovascular
condition of patients.
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