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Abstract 

This study demonstrates how a time domain data based non-linear approach known as Stochastic 
Resonance (SR) can be effectively used for fault detection in spur gearboxes. SR has just been used recently 
for fault diagnosis in mechanical systems with a focus on faulty systems. This paper examines the behaviour 
of SR when it is applied to healthy systems, in particular a healthy gearbox and explores approaches like 
residual signal and filtered signal computations to aid in the containment of false alarms while improving 
overall results. Although SR is a time domain procedure, its results also extend to the frequency domain. 

 
Keywords: Stochastic Resonance, false alarms, residual signals, filtered signals 

 
1. INTRODUCTION  
 

Maintenance activities are periodically 
performed on machineries as part of cost saving and 
safety measures. There is no doubt that vibration 
based condition monitoring plays a key part in 
maintenance which is why numerous techniques for 
performing vibration based condition monitoring 
exist, some of which are quite new. 

Stochastic Resonance (SR) has only been used 
recently for fault detection in mechanical systems. 
SR is a phenomenon that occurs in non-linear 
systems whereby hidden information such as a 
weak signal is amplified and made more obvious 
using noise. Generally, a periodic input, inherent 
noise and system threshold are required for SR to 
occur. These features cause a resonance like 
behaviour response of the non-linear system as a 
function of the noise, thus the name Stochastic 
Resonance [4]. The uniqueness of SR lies in its 
ability to capitalize on the noise that is inherent in a 
system [17]. Moreover it has a simple equation that 
is quite easy to apply. However, the downside to 
using SR is that there is no clear theory for the 
selection of SR parameters although there are 
different methods currently in use. Additionally, SR 
computing time takes a while especially for large 
samples of vibration signal. Nevertheless, 
researches that have been conducted so far on the 
application of SR to mechanical systems have 
shown promising results [8, 10-12] and thus, the 
application of SR remains an area of significant 
interest. Marchesiello et al. [11] used SR to enhance 
fault detection in bearings and also presented a 
method for the selection of SR parameters. By 
using numerical simulations, Mba et al. [12] 
showed that SR can be used for fault detection in 
spur gears. Leng et al. [10] used SR for the 

diagnosis of electromotor faults and metal cutting 
process. Lei et al. [8] applied SR to fault 
identification in a planetary gearbox by using an ant 
colony algorithm to optimize the parameters of SR. 
Li et al. [9] combined SR with sliding windows for 
identifying impulse signals of a gearbox. While all 
the researches mentioned present interesting results, 
there is still limited research on how well SR works 
when applied to healthy mechanical systems. 
Majority of available studies only focus on faulty 
systems. 

This paper addresses the issues of SR behaviour 
when it is applied to vibration signals from a 
healthy gearbox.  In addition, it validates the 
numerical simulation results in [12] and also 
attempts to establish the suitability of SR as a 
diagnostic tool. Also, a short assessment of the 
most common diagnostic tools for gearbox 
condition monitoring is done with their results 
compared. The idea is to show that SR has the 
potential to act as an amplifier not only for kurtosis, 
but also for some of the other gearbox diagnostic 
tools. Furthermore, the effect of SR is shown in 
both time and frequency domain for numerical 
simulations and experimental data.  

 
2. STOCHASTIC RESONANCE  

 
SR is a non-linear time domain approach that 

was first used within the framework of the earth’s 
climate [1]; however its application has been 
extended to other fields such as physics, chemistry, 
finance, biology and engineering [13]. Going by its 
broad definition, SR describes a situation where the 
existence of noise in a non-linear system is used to 
strengthen the system’s output in terms of its Signal 
to Noise Ratio (SNR). In other words, rather than 
degradation in system performance because of 
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noise, SR works with noise and uses noise to its 
advantage. It is governed by the non-linear dynamic 
equation: 
  

)()()( tnts
dx

xdU
dt
dx

++−=
 

(1) 

 
where )(xU  is the potential function, )(ts  is 

the input signal and εDtn 2)( = is the input 
noise with D  being the noise intensity and ε  the 
Gaussian noise. )(xU  which is a reflection-
symmetric quartic potential [4] is given as 
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Where  a  and b  are the non-linear system 

parameters. Accordingly, Eq. (1) can be rewritten 
as 

 

)()(3 tntsbxax
dt
dx

++−=  (3) 

 
In order to illustrate how this phenomenon 

works, let’s consider figure 1. 
 

 
 
Fig. 1. Bistable system showing Brownian particle 
motion in the presence of a periodic input signal 

and noise [11] 
 
The figure shows a double well symmetric 

potential with four different states a, b, c and d. 
Let’s consider a ball in one of the wells of each 
potential. When a periodic input signal is applied to 
the potential in a, both the left side and the right 
side wells modulate but this modulation does not 
cause the ball to move to the next well. When a 
certain amount of noise is properly combined with 
the periodic input signal and applied to the 
potential, the addition of noise gives the particle 
enough energy to move between wells. This is what 
happens in b, c and d. In the absence of both the 
periodic input signal and noise, the behaviour of the 
particle depends on initial conditions [4]. Assuming 

that “a” in figure 1 is the original state of a non-
linear system, the parameters  a  and b  in equation 
3 can be tuned in such a way that the particle jumps 
to the height of the barrier between the wells 
without getting into the right side well but rather 
returns to left side well. This event produces a spike 
that can be quantified by a performance indicator 
such as kurtosis and can be used to detect tiny or 
hidden impulses in a noisy signal. Figure 2 
demonstrates such a scenario. 

 

 
Fig. 2. Example showing results that can be 

obtained when  a  and b  are well-tuned [11]. 
Note that in the bottom figure, the green horizontal 
line represents the left side of the well in figure 1 

and the red horizontal line represents the right side 
of the well in the same figure. 

 
The top of figure 2 shows an Impulse Response 

Function (IRF) submerged in noise which 
represents )()( tnts + in equation 3. The SR output 
which is given by x  in equation 3 and shown at the 
bottom of figure 2 is obtained when equation 3 is 
solved numerically with parameters a  and b  well-
tuned. The green horizontal line represents the left 
side of the well in figure 1 which is defined as 

b

a
−  while the red horizontal line represents the 

right side of the well in the same figure and it is 

defined as 
b

a
. The vertical distance from either 

the green line or the red line to zero at the bottom of 
figure 2 represents the height of the barrier or 
threshold. In this particular scenario, the parameters 
a  and b  are tuned in such a way that the SR 
output gets to the edge of getting into the right side 
well (horizontal red line) after crossing the 
threshold but does not, instead it returns to the left 
side well (horizontal green line). This results in a 
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clear amplification of the impulse as can be seen at 
the bottom of figure 2.  

Eq. 3 is quite suitable for small parameter 
systems, i.e. amplitude and frequency of the input 
signal <<1 and noise intensity D<<1. But realistic 
systems are usually large parameter systems, i.e 
amplitude and frequency of the input signal >>1 
and noise intensity D>>1. Because of this, large 
parameter systems are subjected to pre-processing 
techniques like scale normalization, modulation, re-
scaling frequency, etc. [8]  in order to make them 
meet the requirements of small parameter systems. 
Like the previous work in [12], re-scaling 
frequency is used in this paper to ensure that the 
gearbox system meets the requirements needed for 
the functionality of SR. Furthermore, queries come 
up when it comes to the issue of how best to tune 
the parameters a  and b . Although there are 
researches both present and ongoing that show how 
best to go about this matter [2, 8, 11, 16], what has 
been shown to be quite effective and simple to 
apply is normalizing the input signal with a 
standard deviation of 0.07 before defining a fixed 
range for ]1,1.0[∈a  with an interval of 0.1 and 

]11,1[∈b  with an interval of 1. Then a search is 
performed within the defined ranges to find the 
maximum kurtosis. Finally, the combination of a  
and b  that gives the maximum kurtosis within the 
defined range is selected and used to find the 
corresponding SR output. 

 
2.1. Numerical Simulations and Analyses 

The dynamic response of a single stage 
reduction spur gearbox is simulated by using the 
equations of motion described in [5]. In [5], it is 
shown that friction has negligible influence on the 
simulated dynamic response so it is ignored here 
just like in the previous work in [12]. The 
simulation takes varying meshing stiffness into 
account which changes in value as the load bearing 
capacity of the meshing gears changes during 
rotation. The load bearing capacity reduces in the 
presence of a fault and the amount by which it is 
reduced depends on the severity of the fault. 
Different severities of fault are included in the 
simulation by using different time histories of the 
varying meshing stiffness. A simple transmission 
part between the source of vibration and the 
transducer is also taken into account with its natural 
frequency selected as 176 Hz based on its method 
of support [3] and a damping ratio of 0.05. 

The top of figure 3a shows a generated 
acceleration data submerged in Gaussian noise with 
a certain amount of fault. The data is for the steady 
part of the generated acceleration signal and is 
obtained for 5 revolutions of both the pinion and 
gear. Again in the bottom of figure 3, the green line 
in the SR output plot represents the negative side of 
the potential shown in figure 1 while the red line 

represents the right side of the potential. The purple 
line, which shows where the fault is supposed to 
appear, is generated from the varying meshing 
stiffness time histories. 

 

 
Fig. 3a. Comparison of SR input and SR output 

with reference fault. 
 

 

 
Fig. 3b. Comparison of SR input and SR 

output with fault severity reduced by 50%. The 
bottom plot is obtained after “rectification” of the 

middle plot 
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Fig. 3c. Comparison of SR input and SR output 

with fault severity reduced by 90%. 
 

As can be seen from figure 3a, SR raises the 
impulses present in the SR input as quantified by 
the kurtosis. This goes on even as fault severity is 
reduced in figure 3b. In this figure, “rectification” is 
applied to the first SR output plot to obtain the 
second SR output plot. “Rectification” was recently 
investigated by the authors [11, 12] and basically, it 
helps to keep the SR output bounded between the 
negative well of the potential and zero. This helps 
to prevent biased results like the one in the first SR 
output plot of figure 3b, and in majority of cases, it 
enhances SR output. When the fault severity is 
greatly reduced as shown in the SR input plot of 
figure 3c, SR still remains effective as can be seen 
in the SR output plot of the same figure. In all these 
cases, kurtosis has been used as a performance 
indicator. 

With a view to showing the effect of SR as a 
possible amplifier for other performance indicators, 
figure 4 shows the changes that statistical features 
for gearbox condition undergo for both SR and non-
SR signals as the fault severity progresses from 1 – 
4 on the x axis with 1 being the healthy case, 2 
being a small fault case, 3 being a medium fault 
case and 4 being a large fault case. Figure 4a shows 
the changes that occur when the statistical 
indicators are applied directly to either the raw 
signal, its Time Synchronous Average (TSA), 
residual or difference signal and figure 4b shows 
the changes that occur when the statistical 
indicators are applied to the output of the SR 
system after the raw signal is passed through the SR 
system. As can be seen with some of the indicators, 
SR tends to amplify the absolute changes that occur 
in all or some stages of fault growth. This is 
particularly true for the kurtosis, crest factor, FM0, 
FM4, M6A, NB4, M8A, ENA4 and energy operator 
[7,14,15]. In general, the kurtosis and FM0 provide 
the clearest indication of these changes; however, 
the overall amplification is greater in the kurtosis 
than in any of the other indicators. This either 
shows that kurtosis might be the most fitting 
indicator for SR in the time domain, or could be as 
a result of basing the selection of the parameters a  

and b  on kurtosis maximization. Further research 
will need to be done to verify this.  
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Fig. 4 Comparison of the changes in the most 

common gearbox fault diagnosis statistical 
features. On the x axis, 1 = healthy case, 2 = small 

fault case, 3= medium fault case and 4 = large 
fault case (a) non-SR Signal (b) SR Signal 

 
The numerical simulation is extended with the 

addition of a pulse generator. The reason for this is 
to be able to generate a signal that is equivalent to 
the tachometer signal generated in real life 
scenarios which is very useful for computation of 
the TSA signal. Other factors like the transmission 
part and Gaussian noise are still taken into account. 
We note here that the addition of Gaussian noise to 
the acceleration signal leads to different realizations 
of a “modified acceleration signal.” From here 
onward in this paper, the same realization of 
modified acceleration signal is used for all analyses 
conducted. Moreover, more focus is on the 
frequency domain results which reveal more 
information than the time domain results. 

Figure 5 shows the obtained results when the 
frequency spectra is computed for the time domain 
results with and without SR with a driving shaft 
speed of 1248 revolutions per minute (rpm), and 
tooth meshing frequency of 478 Hz. The magenta 
lines in the figures show where the sidebands are 
supposed to be theoretically. As expected, the 
sideband amplitudes of the non-SR signal reduce as 
the fault severity reduces. 

In the healthy case of figure 5 (a), there is no 
amplification of sidebands in the SR signal. 
However, a few more spikes can be seen in the SR 
signal when compared to the non-SR signal. In 
figures 5 (b) & (c), the effect of SR on the modified 
acceleration signal is not very obvious in the  
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Fig. 5. Vibration spectrum of  a single stage 

reduction 1248-rpm gearbox (a) healthy case (b) 
fault reduced by 90% (c) fault reduced by 50% (d) 

reference fault 

frequency domain unlike the time domain results in 
[12]. The effect of SR is quite evident in figure 5 
(d) as there are clear indications of amplification of 
the sidebands in the SR signal especially after the 

meshing frequency. The sideband amplitudes are 
more distinct in the non-SR signals than the SR 
signals, which appear noisy at best. In the figures, it 
seems easier to differentiate the healthy gear from 
the faulty gear by looking at the non-SR signal 
which could bring one to the conclusion that the 
effect of SR on gear data is not very pronounced in 
the frequency domain. 

 
2.2. Experimental Results and Analyses 
 

 
Fig. 6 Schematic diagram of a double stage 

reduction gearbox [6] 
 
The experimental data used for validating the 

numerical results is obtained from PHM dataset 
2009 [6] where a double stage reduction gearbox 
with different fault severities is run at different 
speeds with both high and low loads. The schematic 
of the gearbox is shown in figure 6. There is a 
completely healthy case, another case where there 
is a chipped gear tooth and another case where 
there is a broken gear tooth. In addition, the runs 
are repeated twice for each load and speed. Here, 
our analysis focuses on the first-run data with an 
input shaft speed of 30 Hz and high load as well as 
data from channel 2 and the spur gear setup. 
Furthermore, SR is applied to the healthy case, 
chipped tooth case and the broken tooth case with 
the results given below. 

Figures 7 – 9 show the vibration spectra 
obtained for the spur gearbox with the 
corresponding SR signals on the bottom side (i.e. 
third and fourth rows) of each figure and non-SR 
signals on the top (i.e. first and second rows) of 
each plot. Each plot in the figures has an upper 
section corresponding to the spectrum for the lower 
meshing frequency range and a lower section 
corresponding to the spectrum for the upper 
meshing frequency range.  The red and magenta 
lines represent the theoretical position of the 
sidebands around their corresponding fundamental 
frequencies. 
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Fig. 7 Non-SR and SR vibration spectrum of a 

1800 rpm double stage reduction spur gearbox – 
healthy tooth case (a) lower meshing frequency 

range (b) upper meshing frequency range 
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Fig. 8 Non-SR and SR vibration spectrum of a 

1800 rpm double stage reduction spur gearbox – 
chipped tooth case (a) lower meshing frequency 

range (b) upper meshing frequency range 
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Fig. 9 Non-SR and SR vibration spectrum of a 1800 

rpm double stage reduction spur gearbox – broken tooth 
case (a) lower meshing frequency range (b) upper 

meshing frequency range 
 
In the healthy case of figure 7, there is not a lot 

of difference between the non-SR and SR signal in 
the lower meshing frequency range, nevertheless, 
there is a huge amplification of sidebands in the 
higher meshing frequency range. In figure 8, the SR 
signal appears noisy in the lower meshing 
frequency range while there is an amplification of 
eccentric gear sidebands in the higher meshing 
frequency range. Comparing the non-SR signal and 
SR signal of figure 9, there is no obvious difference 
between them, both in the lower and higher 
meshing frequency range. 

In an overall sense, there almost always seems 
to be amplification in the SR signals with the 
amplifications in the higher meshing frequency 
range looking more noticeable and noisy. This also 
applies to the healthy signals, which could be 
because of all the frequencies contained in the raw 
signal. The amplification of sidebands in the 
healthy signals appears to be more apparent in the 
experimental case than the numerical case. It is a 
well-known fact that experimental data have more 
noise, vibration and complexity and as a result, they 
could be more difficult to analyse properly. This 
implies that it might be imperative to pre-process or 
“simplify” experimental data signals before 
applying SR in order to obtain the best results. Pre-
processing could involve residual signal or high-
pass filtered signal computation as illustrated in the 
following sections, or any other technique deemed 
suitable. 
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3. APPLYING STOCHASTIC RESONANCE 
TO RESIDUAL SIGNALS 

 
The residual signal is obtained by removing the 

meshing frequencies and the shaft frequencies 
along with their harmonics from the original Time 
Synchronous Averaged (TSA) signal [7, 14, 15].  

 
)()( txtxr r−=       (5) 

 
where r  is the residual signal, )(tx  is the 

original TSA and )(txr  is the signal containing the 
meshing frequencies, shaft frequencies and their 
harmonics. When the first order sidebands are 
removed from the residual signal, a difference 
signal is formed.  

 
)( ω±−= mfrd                    (6) 

 
where d  is the difference signal, mf  is the 

signal meshing frequency and ω is the shaft 
frequency. Both the residual and difference signal 
were proposed in order to better observe the 
changes that occur in a vibration signal [14]. 

In our computation, the frequencies mentioned 
are removed from the TSA of the exact realization 
of non-SR modified acceleration signals that are 
shown in figure 5 to obtain the non-SR signals 
shown in figures 10. Clearly, the sidebands are 
more evident in the signals and it is easier to 
understand them.  

All the amplitudes in figure 10 are displayed in 
dB scale for more clarity. The SR and non-SR 
signals of figure 10 (a) are almost the same, which 
means that false alarms are almost non-existent in 
this scenario. In figure 10 (b), the sidebands in the 
SR signal are amplified randomly while in figure 10 
(c), the amplification is done after 400 Hz. In figure 
10 (d), the amplitude of the sidebands relative to 
that of the fundamental frequency is higher in the 
SR signal than in the non-SR signal. 

When the same procedure is applied to the 
experimental data of the spur gear setup, the results 
obtained agree well with the numerical results as 
seen in figures 11 – 13. In the healthy case, both the 
SR and non-SR signals are similar just like the 
numerical simulation result. The frequency spikes 
are evident in the SR signal of figure 12 especially 
in the higher meshing frequency range. The spikes 
that are present in the lower meshing frequency 
range are most likely due to the eccentric gear 
which are not as conspicuous as the spikes in the 
higher meshing frequency range which are most 
likely due to the chipped gear. In figure 13 where 
there is an eccentric gear and a gear with broken 
tooth, the frequency spikes are very evident in both  
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Fig. 10 Residual signal vibration spectrum of a 

single stage reduction 1248-rpm gearbox (a) 
healthy case (b) fault reduced by 90% (c) fault 

reduced by 50% (d) reference fault 
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Fig. 11 Non-SR and SR residual signal vibration 
spectrum of a 1800 rpm double stage reduction 

spur gearbox – healthy tooth case (a) lower 
meshing frequency range (b) upper meshing 
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Fig. 12. Non-SR and SR residual signal vibration 
spectrum of a 1800 rpm double stage reduction 

spur gearbox – chipped tooth case (a) lower 
meshing frequency range (b) upper meshing 

frequency range 
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Fig. 13 Non-SR and SR residual signal vibration 
spectrum of a 1800 rpm double stage reduction 

spur gearbox – broken tooth case (a) lower 
meshing frequency range (b) upper meshing 

frequency range 
 

the lower and upper meshing frequency range. The 
frequency spikes in the lower meshing frequency 
range are due to the eccentric and broken tooth 
gears while the spikes in the upper meshing 
frequency range are most likely as a result of the 
harmonics of the spikes in the lower meshing 
frequency range. It should be noted that the 
frequency spacing of the non-SR signal is not 
regular while that of the SR signals is regular and 
spaced at 6 Hz corresponding to the speed of the 
output shaft. This is because the TSA was 
computed only for the output shaft before 
computing the residual signal. 

 
 

4. APPLYING STOCHASTIC RESONANCE 
TO HIGH-PASS FILTERED SIGNALS 

 
In the time domain, the SR output of the 

experimental data of the healthy gears gives a high 
kurtosis. This is not the case for the numerical 
simulations, which gives a low kurtosis when SR is 
applied to the healthy gear signal. As indicated 
earlier, the most reasonable explanation for this 
phenomenon is that experimental data has more 
vibration, noise and complexity that make it 
difficult to properly examine it. In this section, a 
high-pass Butterworth filter with a proper cut-off 
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frequency is used to make the data to be analysed 
“less complex.” The cut-off frequency of the filter 
is selected in such a way that the kurtosis of the 
filtered signal is slightly less than the kurtosis of the 
original signal using the healthy case as reference. 
This is depicted schematically in figure 14. 

 

 
Fig. 14 Schematic diagram showing a possible way 

of choosing the high-pass filter cut-off frequency 
 
The raw signal in figure 14 is a healthy signal, 

which was used as a reference because SR tends to 
always amplify the numerical value of the kurtosis 
and we are trying to keep the initial kurtosis as low 
as possible.

h
k  is the kurtosis of the healthy signal 

and 
f

k  is the kurtosis of the filtered signal. The 

value of the cut-off frequency of the filter that 
coincides with 

f
k about 90% of 

h
k  is selected in 

this case. It should be noted that the primary goal 
here is to contain false alarms in the time domain.   

Using this procedure, 0.216 is selected as the 
normalized cut-off frequency of the high-pass 
Butterworth filter. The top plot of figures 15 – 17 
displays the raw signals, the middle plot displays 
the SR output without filtering and the bottom plot 
displays the SR output after filtering. As always, 
the green line in the second and third plots of each 
figure corresponds to the negative well of the 
symmetric double well potential of the SR dynamic 
system while the red line in the plots corresponds to 
the positive well of the symmetric double well 
potential of the SR dynamic system. In figure 15, 
the kurtosis of the SR output in the bottom plot (c) 
is much lower than the kurtosis of the SR output in 
the middle plot (b). In the bottom plot (c) of figures 
16 and 17, the kurtosis of the SR output is more 
amplified when compared with the middle plot (b) 
of the same figures. These results not only 
demonstrate that false alarms in the time domain 
can be contained in SR output when the raw signal 
is filtered before passing it through the SR dynamic 
system, but also that SR output can be enhanced as 
seen in figures 16(c) and 17(c). 
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Fig 15. Experimental results for the spur gear setup 

– healthy case (a) raw signal (b) SR signal (c) 
filtered SR signal. 
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Fig. 16. Experimental results for the spur gear 

setup – chipped tooth case(a) raw signal (b) SR 
signal (c) filtered SR signal. 
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Fig. 17. Experimental results for the spur gear 
setup – broken tooth case(a) raw signal (b) SR 

signal (c) filtered SR signal. 
 

4. CONCLUSIONS 
 
There are many vibration-based condition-

monitoring techniques amongst which, SR stands 
out in the sense that it can exploit system noise 
positively. In addition to amplifying the kurtosis for 
faulty gears in the time domain, it also acts as an 
amplifier for other fault detecting statistical 
features. Although few researches have been done 
on applying SR to mechanical problems, much of 
the already done research focuses on faulty cases. 
In this paper, more attention is given to the effect of 
SR on data from healthy gearboxes. Analyses 
conducted in the frequency domain tend to imply 
that the effect of SR on gearbox acceleration signals 
is neither clear nor well pronounced. In the time 
domain on the other hand, while there are no 
problems when SR is applied directly to data from 
numerical simulations, misleading results can be 
obtained when SR is applied directly to 
experimental data. Based on the complexity of 
realistic data, which seems to affect SR results, a 
plausible solution would be to pre-treat data in 
order to reduce its complexity before applying SR. 
Two strategies are taken to solve this problem in 
this work. The first tactic involves computation of 
the residual signal by removing some defined 
frequencies from the TSA of the original signal. 
The second approach involves applying a high-pass 
filter with a proper cut-off frequency to the original 
signal. The results obtained when SR is applied to 
the residual signal and filtered signal, rather than 
the raw signal look promising as can be seen in the 
latter part of this paper. A suitable area of future 

research will be to apply the strategies developed 
here to other real life datasets. 
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