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Abstract: The ever increasing adoption of electrical power as secondary form of on-board power is
leading to an increase in the usage of electromechanical actuators (EMAs). Thus, in order to maintain
an acceptable level of safety and reliability, innovative prognostics and diagnostics methodologies
are needed to prevent performance degradation and/or faults propagation. Furthermore, the use
of effective prognostics methodologies carries several benefits, including improved maintenance
schedule capability and relative cost decrease, better knowledge of systems health status and
performance estimation. In this work, a novel, real-time approach to EMAs prognostics is proposed.
The reconstructed back electromotive force (back-EMF), determined using a virtual sensor approach,
is sampled and then used to train an artificial neural network (ANN) in order to evaluate the current
system status and to detect possible coils partial shorts and rotor imbalances.

Keywords: prognostics; back-EMF coefficient; virtual sensor; artificial neural network;
electromechanical actuators

1. Introduction

In the last decade there has been increased shift from traditional, hydraulic actuators to electric
actuators, due to the progressive adoption of the more electric [1] and all electric design philosophies.
In these design approaches electrical energy is the privileged form of secondary power used to drive
subsystems and utilities. The natural interface with mechanical systems is the electromechanical
actuator (EMA), that, in its simplest form, is an electric motor connected via one or more reduction
stages to the element that needs to be actuated. In civil liners, the shift has been limited to secondary
flight controls (e.g., flaps, slats, airbrakes), while safety-critical systems such as primary flight controls
and landing gears actuators still use traditional hydraulic-based devices in the form of hydromechanical
or electrohydrostatic actuators as in the Airbus A400 series [2].

The choice has two main reasons: hydraulic-based actuators are still more compact and lighter
than the electric counterpart; at the same time, failure modes of hydraulic actuators are well studied
given the extensive adoption for primary flight controls, while EMAs have seen little operative service
as primary actuation devices, despite the widespread adoption in other sectors (e.g., manufacture
and industrial automation); consequently, failure modes of EMAs are relatively well understood,
as reported in [3]. Nevertheless, the lack of an extensive failures data set in operating conditions is a
major setback for their adoption, given the potential severity and criticality of some failure modes [4].
Furthermore, the data obtained for secondary controls actuation is not directly translatable to primary
controls application, given the very different command and actuation schemes for the two roles [2].
To allow the use of EMAs as primary flight controls actuators and for other safety-critical operations,
a proper prognostic and health management (PHM) methodology needs to be implemented, besides a
rapid and effective Fault Detection and Identification.
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A definition is given in [5] as “prognostics and health management” (PHM) refers specifically to
the phase involved with predicting future behavior, including remaining useful life (RUL), in terms
of current operating state and the scheduling of required maintenance actions to maintain system
health"; effective PHM can be achieved using three different approaches, i.e., data-driven prognostics,
model-based prognostics and hybrid approaches.

Data-driven prognostics leverages pattern recognition and machine learning tools such as neural
networks and neural fuzzy networks [6]. The scope is to detect alteration in the system state and to
link such changes to some kind of fault (classification), or even estimate the magnitude of the defects
(regression); in general, classification problems are easier to tackle and thus most of the analyses
focuses on classification rather than regression, as reported in [7] in regards to wind turbines condition
monitoring. The advantage of the approach is the ample scope of the analysis, since there is no need
to accurately model the system in examination; however, a large data set and powerful hardware is
necessary to obtain accurate data in a reasonable time frame.

On the other hand, model-based prognostics is based on a mathematical representation of the
component or system studied using a set of differential equation describing the temporal evolution
of the system, as in [8,9]. The advantage of the approach is the ability to precisely describe the
behavior of an element allowing for a very precise fault detection. Furthermore, the fault propagation
is generally embedded in the model, enabling the estimation of how such fault will propagate
under given operating conditions. However, creating detailed and precise models for complex
systems like aeronautical systems is time consuming and usually requires the simplified modeling of
hard-to-simulate phenomena, e.g., aerodynamics, usually resulting in a degraded simulation accuracy.

Finally, hybrid approaches try to merge the strength of both methods, i.e., speed and accuracy,
respectively, using machine learning tools applied to mathematical models representing the analyzed
system or component. Two categories of hybrid approaches exist: pre-estimate fusion and post-estimate
fusion. Further details can be found in [10–13].

Regarding practical PHM implementation in aeronautical systems, several solutions are being
studied, as in [14], where permanent magnet synchronous motors interturn failures have been
estimated using residual analysis; in [15] various optimization techniques, based on genetic algorithms,
are presented in order to estimate and identify degradation levels in EMAs, extending the work
presented in [16]; more examples of manufacture-based PHM works include [17,18].

Another important aspect of effective prognostics is the estimation of the Remaining Useful
Life (RUL), that is an indicator of the time left before the component or system will not comply
to the imposed requirements. Many works have focused on RUL estimation, generally leveraging
machine learning techniques such as Artificial Neural Networks (ANNs) in various forms, such as
deep convolution networks in [19], semi-supervised deep architectures as in [20], recurrent neural
networks in [21], long short-term memory (LSTM) networks in [22], deep LSTM in [23], bidirectional
handshaking LSTM as in [24], multimodal and hybrid networks as in [25] or even a fusion of neural
networks and Kalman filters as in [26,27]; statistical methods are also effectively adopted as in [28]
where discrete-time Markov chains are used to estimate RUL for components with time-varying
operational conditions or in [29] where Bayesian inference is applied to estimate air conditioning
units health state. One of the problem that arises in RUL estimation is the intrinsic uncertainty of
the degradation dynamics; this phenomenon can be mitigated by using particle filters, as presented
in [30]; another development, presented in [31], suggest a more complex approach which includes the
modeling of the degradation trend.

In this work, a novel methodology for EMAs prognostics will be presented. Using a detailed
MATLAB Simulink model of an EMA actuating a flaperon, taken from [32], the reconstructed back
electromotive force (back-EMF), calculated as in [33], is firstly sampled and then used to evaluate the
status of the system in order to identify two different kinds of faults, i.e., partial coils shorts and rotor
static eccentricity, leveraging feedforward neural networks.
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2. Materials and Methods

2.1. Scope of The Work

The aim of the work is to present a novel prognostic methodology, based on the reconstruction of
the back-EMF coefficient curve, for electromechanical actuators. The novelty is in the use of a mapping
signal, which in this case is the back-EMF coefficient, in order to create a separation between signals
time series, widely used in current prognostic methods, and the neural network. Mapping signals must
express two characteristics: strong correlation with faults of interest and low sensitivity to operating
and environmental conditions. In this case, the back-EMF coefficient is a good candidate regarding
phase partial shorts and static eccentricity faults, since these faults strongly affect the signal while
command inputs and external loads do not, as demonstrated in [33].

After the mapping signal has been reconstructed, it is opportunely sampled and machine learning
(i.e., ANNs) is then used to perform a regression and thus evaluate system faults levels. A graphical
form of the algorithm is presented in Figure 1.

The algorithm does not operate in a continuous manner; the faults data returned as outputs
represent system degradation at that particular epoch. Nonetheless, the algorithm can be run whenever
an estimation of system health is necessary. Furthermore, the faults data can be used to estimate the
RUL of the system (e.g., using regression), even tough this particular aspect is not covered in this paper.

Start

Time series acquisition

Mapping signal construction

Mapping signal sampling

Artificial Neural Network

Faults data

End

Figure 1. Prognostics algorithm schematization.

Traditional fault detection approaches for servosystems are only applicable if the actuation time
history is repeatable. The advantage of the method proposed in this work is the applicability to
systems where an inherent uncertainty on external load or actuation command is present, such as
aerospace actuators.

Since the core of the methodology is based on the construction of a mapping signal, it can be
easily adapted to other types of servosystems; the problem is now shifted on the determination of an
appropriate mapping signal that respects the two characteristics previously described; the rest of the
algorithm remains then unchanged.

2.2. Model Overview

In this work, an aerospace EMA model has been chosen as test case application for the algorithm;
as previously stated, an apt signal for this type of actuators is the back electromotive force (back-EMF)
coefficient, as reported in [33]. It has to be noted the model is not directly part of the prognostics
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method; in fact, the main function of the model is to simply verify the application of the algorithm in a
reasonably realistic application.

The Simulink model used to generate the data set is taken from [32], so only a brief description
will be presented in this paper. The top level view (Figure 2) shows two subsystems, i.e., the trapezoidal
EMA assembly on the left and the simplified F16 longitudinal dynamics on the right. A feedback loop
is present between the two subsystems, that is the load acting on the aerodynamic surface. The leftmost
element, the Com block, is used to impose a particular position command (e.g., step, ramp, sinusoidal
etc.) to the surface.

The relevant logged signals are motor angular position, θm, motor angular speed, ˙θm and the
single-phase equivalent instantaneous current, I3,eq; the relevant aerodynamic parameters are angle of
attack, α, pitch angle θ, angular rate q, surface deflection δ and aircraft speed V.

Figure 2. Model overview [33].

2.3. Trapezoidal EMA

The expanded trapezoidal EMA is shown in Figure 3 and will be shortly described.
The leftmost subsystem was a control electronics subsystem, i.e., a Proportional Integral Derivative

(PID) controller receiving as inputs the commanded position, the user position and angular speed;
the output, i.e., the reference current Ire f was needed to achieve the required position.

The following subsystem modeled the Hall sensors present in a Brushless Direct Current (BLDC)
motor that were of fundamental importance to the operation since they were necessary to determine
the rotor angular position and thus activate the commutation scheme using three different signals, i.e.,
H1, H2 and H3 by using a commutation table based on rotor angular position.

The inverter model used Simscape components to model a classical DC-AC inverter using a
PWM controller. It received the reference current elaborated by the controller, the three commutation
signals evaluated by the Hall sensors block and three phases currents (IA, IB and IC) as feedback loops.
The outputs, A1, A2 and A3 were Simscape physical connections to the EM model.

The BLDC electromagnetic model once again used Simscape electrical elements, particularly RL
(Resistor, R and Inductor, L) branches, to model the three phases of the BLDC motor itself. The inputs
were the three aforementioned electrical connections with the inverter and motor position and speed
in order to evaluate viscous effects. The outputs were the three phases currents IA, IB and IC and the
motor torque, Tm.

Finally, the motor-transmission dynamical models represented the mechanical linkage between
the motor and the surface; in particular, a single stage reduction gear was modeled. The inputs were
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the motor torque and external load, while the outputs were motor position and speed, θm and ˙θm

respectively and user angular position, θu. Further details can be found in [32].
The signal acquisition block was used to save the three phases currents data (i.e., IA, IB and IC) as

a single-phase equivalent current to MATLAB workspace.

Figure 3. Trapezoidal EMA subsystem [33].

2.4. F16 Longitudinal Dynamics Model

The longitudinal dynamics model (Figure 4) of the aircraft is a simple state-space linearization,
taken from [34]. The inputs to the state-space model were delta_e, that is the elevator deflection angle,
while the constant block -C- contained the initial conditions. The block F16.x0(5) represented the
trim angle.

Model outputs were speed V, angle of attack α, pitch angle θ, pitch rate q, elevator deflection
delta_e and hinge moment.

Figure 4. F16 longitudinal dynamics model [34].
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2.5. Faults Generation

An extensive data set was obtained using the faults generation scheme presented in [33]. Basically,
the approach used an exponentially scaled, 5-dimensional Latin hypercube method to obtain an
exponentially spaced fault vector.

Each fault vector had the following form:

f = [Na, Nb, Nc, ξ, φ] (1)

where Na, Nb, and Nc represent a percentage coil short for each phase, so their value is bounded to the
interval [0, 1], where 0 means no damage and 1 represents a total phase short.

The ξ parameter is used to define static eccentricity as ξ = x0/g0 where x0 is the axis offset from
center and g0 is the nominal air gap. Finally, φ represents the angular phase of the static eccentricity.

Furthermore, two limits were set in order to simulate only realistic prognostics (and not diagnostic)
conditions, i.e., conditions where the system could still achieve the imposed requirements albeit with
degraded performance, by using the following two equations:√

N2
a + N2

b + N2
c ≤ 0.5 (2)

ξ ≤ 0.5 (3)

The values chosen for the previous equations are arbitrary, even tough they hold a physical
significance. As previously stated, such boundaries are used to limit simulation cases to prognostic
conditions, and not to analyze diagnostic conditions where other safety systems would act. Precise
values for the previous equations can be empirically evaluated using a real system, setting a
cut-off point for prognostics when the system does not comply anymore to imposed requirements
(e.g., frequency response). In any case, the exact numerical values did not affect the operation of the
prognostic algorithm.

2.6. Back-EMF Reconstruction

The back-EMF reconstruction procedure was the one presented in [33], so it will be described
briefly. Having logged the relevant signals, i.e., three phase currents, three phase voltages,
motor angular position and speed, the following electrical equation describes the system:

Vj − Ej = Vj − kbem f ,j ˙θm = Rmij + Lm
dij

dt
(4)

where Ej is the counter electromotive force for each motor phase. Considering that Ej = kbem f ,j ˙θm,
solving for the back-EMF coefficient yields:

kbem f ,j(t) =
Vj(t)− Rmij(t)− Lm

dij(t)
dt

˙θm
(5)

where j represents one of the three phases and Rm and Lm are motor nominal phase resistance and
inductance, respectively.

Having obtained the back-EMF as function of the timestep, it is then resampled and correlated
with motor angular position using the following equation:

kbem f ,j(θm,k) =
1
n

n

∑
l=1

kcem f ,j · ((θm,k − ε) ≤ θm ≤ (θm,k + ε)) (6)

where ε is the semi-amplitude of a tolerance band centered on θm,k.
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Finally, the equivalent single-phase back-EMF coefficient is obtained by

kbem f = ∑
j= 1, 2, 3

|kbem f ,j| (7)

The equivalent back-EMF coefficient signal, now a function of the rotor angle, is ready to
be sampled.

2.7. Curves Sampling

The reconstructed back-EMF coefficient curve had a certain regularity given by the periodicity of
the commutation events taking place every 30◦ electrical, as clearly visible in Figure 5. This regular
behavior could be exploited to implement several sampling techniques. Three different methodologies
were analyzed, differing in the number of sample points extrapolated for each period between two
successive commutations (intracommutation period).

Figure 5. Normalized reconstructed back electromotive force (back-EMF) coefficient in nominal and
faulty condition.

The first sampling mode extrapolated the center point value of each intracommutation period,
for a total of six points per each kbem f curve, i.e., per single faults combination; the central point was
sampled assuming that the commutations were instantaneous and only spanned a single timestep.

The second sampling mode instead sampled two different points for each intracommutation
period, for a total of 12 points per back-EMF coefficient curve. In this case, there was a need to
take into account the noise present in the signal, even tough the reconstructed signal used filtered
signals. By using a linear interpolation, in the form y = mx + q per each intracommutation phase,
the maximum angular range where the the curve could be approximated as linear before commutation
effects manifested was determined. In particular, in Figure 6, the zone where there was no variation
in the angular coefficient of the interpolating line as function of the considered interval amplitude is
shown. This was a necessary step since the kbem f value could greatly differ if the values were sampled
in proximity of a commutation and, on the other side, a too small interval could be affected by local
noise. Thus an angular amplitude of 20◦ electrical was chosen (i.e., ±10◦ electrical in respect to the
midpoint of the intracommutation period), considering a total angular range of 60◦ electrical between
two successive commutations.
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Figure 6. Variation of m for two different intra-commutations periods considering 5 randomly seeded
back-EMF coefficient curves.

Finally, the third sampling mode was a fusion of the previous two methods, i.e., a combination of
center point and two additional points per intracommutation period, for a total of 18 points per each
curve. In Figure 7 the relevant points (commutations, center points and additional points) are shown
for five randomly seeded kbem f curves.

Figure 7. Discretization of five randomly seeded reconstructed back-EMF coefficient curves.

2.8. Neural Networks Description

Artificial neural networks (ANNs) are a powerful machine learning tool. The name is a
reflection on the principle of operation, resembling biological neural networks; the system ’learns’ to
perform different tasks based on examples, generally without specific programming rules. The scope
of a neural network is to fit data that would be impractical to elaborate using other methods
(e.g., many-dimensional data set fitting, image classification, speech recognition, etc.).

Network structure is based on a series of fundamental elements, neurons, opportunely connected
to others, in similarity to biological synapses; the individual combination of neurons and connections
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uniquely defines the topology. Each connection has an associated weight, representing its relative
importance; weights values are modified during training in order to minimize the error function
defined for the task using a training function, generally leveraging a back-propagation method.
Several learning paradigms exist, such as supervised, unsupervised and reinforcement learning, where
each is more performing for a particular task (e.g., supervised learning for pattern recognition).

Another important characteristics defining the network is the propagation function, used to
evaluate neuron inputs based on connected predecessor neurons outputs as a weighted sum; optionally,
a bias term can be included as an additional parameter to each neuron, increasing network complexity
and capabilities.

In this work, networks were implemented using MATLAB Machine Learning Toolbox.
The architecture for all networks was either a single layer or two layer perceptron (Figure 8), i.e., having
either one or two hidden layers. Networks inputs were the previously sampled values as described in
Section 2.7, while the outputs were always five for every network configuration, representing the target
fault vector. In each case, the number of neurons in each hidden layer was varied in size between the
number of inputs (18, 12 or 6 depending on the sampling mode) and the number of outputs (always 5).

Figure 8. Example of single hidden layer perceptron.

For every topology, two different learning functions were tested, i.e., trainlm implementing
the Levenberg–Marquardt back-propagation algorithm ([35]) applied to neural networks as in [36],
and trainbr, implementing Bayesian regularization as in [37].

The performance function for every run was MSE—Mean Square Error, widely used for regression
problems, with a target accuracy of 10−6.

The main dataset was randomly subdivided into three subsets, used for training, validation and
testing with the ratio 70%, 15%, 15% of the main dataset, respectively.

Finally, the transfer function used for all topologies was the symmetric saturated linear function as
represented in Figure 9; the function output was linear in the [−1, 1] region, while it assumed constant
values outside the interval (−1 for x < −1 and 1 for x > 1).

Figure 9. Saturated linear symmetric transfer function.
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3. Results

In this section the results of the analysis will be presented per each network configuration as
function of the sampling mode, training function and number of neurons.

3.1. Sampling Mode 1

This is the simplest network architecture based on the first sampling mode, having six inputs and
a single hidden layer of size 5 or 6 (Figure 10).

There was a significant boost in performance just by adding a single neuron, even though the
performance score was still high (i.e., low accuracy). The Bayesian regression achieved significantly
better performance with five neurons, while the difference was negligible considering six neurons.

Figure 10. Single hidden layer networks performance as function of neurons and training function,
sampling mode 1.

3.2. Sampling Mode 2

In this case, the number of inputs was increased to two per commutation, that is, 12 in total.
The neural networks now had increased complexity but also achieved, globally, a better performance
score. For this condition, 6, 9 and 11 neurons networks were considered.

As expected, the performance score (lower is better) decreased with the increase of neurons to
value less than 10−5 in the case of 9 or 11 neurons as visible in Figure 11, thus making much more
accurate predictions compared to the first sampling mode.

The difference between the two training algorithms was marginal; considering six neurons,
Bayesian regression was superior, while the opposite was true when considering nine neurons.
The difference was basically negligible in the 11 neurons case.

3.3. Sampling Mode 3, Single Hidden Layer

This is the most complex of the configuration analyzed thus far, having now three samples per
commutation, thus 18 total inputs. The number of neurons was set to 8, 10, 12, 14 and 16 neurons.

Continuing the established trend, an increase in neuron numbers implies a decrease in
performance score, meaning better and more accurate predictions. In this case, the best score achieved
was almost as close as the target score, 10−6, as visible in Figure 12. In contrast to the previous cases,
the Levenberg–Marquardt algorithm performed better with fewer neurons, while the contrary was
true for higher complexity networks.
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Figure 11. Single hidden layer networks performance as function of neurons and training function,
sampling mode 2.

Figure 12. Single hidden layer networks performance as function of neurons and training function,
sampling mode 3.

In Figure 13, correlation between targets (i.e., expected outputs) and actual network outputs for
sampling mode 3, 18 neurons and trainlm algorithm was reported. It has to be noted that the relatively
high number of outliers in both scatter plot can be traced down to an artifact of the representation of
eccentricity and relative phase in polar coordinates. As highlighted in Section 2.5, the rotor eccentricity
fault was represented in polar coordinates by two fault parameters, encoding the amplitude and phase
of eccentricity respectively. As polar coordinates had a singularity in the origin, the phase could not be
defined when amplitude was null; additionally, if amplitude was small, the phase was ill-conditioned
and large errors in fault detection would appear. However, this behavior was considered acceptable
since the information about phase of eccentricity was not relevant for very small fault amplitudes.
In any case, the network coefficient of determination (R2) was 0.9846 for the training dataset, 0.9836
for the validation dataset, 0.9841 for the testing datasets and 0.9844 for the complete dataset.

In Figure 14, mean absolute error (MAE) boxplots have been reported for the case of single hidden
layer, three input networks using a new custom verification set made of 10 different fault vectors.
The general trend was a reduction of the MAE as the number of neurons increased, even though
values dispersion did not seem to be affected by the increase in network complexity; this was
particularly visible in regards to the phase fault (Figure 14c). Furthermore, no marked difference
was observable switching training algorithm from simple Levenberg–Marquardt backpropagation to
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Bayesian regularization. Anyway, the mean network errors were in the order of 10−3, thus generally
granting relatively accurate predictions.

Figure 13. Correlation between targets (i.e., expected outputs) and actual outputs of the network for
sampling mode 3, 18 neurons and trainlm algorithm, for training and validation datasets

(a) (b)

(c)
Figure 14. Distribution of the mean absolute error (MAE) on the identification of the considered
fault modes, for increasing number of neurons in the layer. Errors were determined for a custom
identification set, randomly sampled in the acceptable range defined by Equations (2) and (3). (a) Short
circuits. (b) Eccentricity. (c) Phase.
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3.4. Sampling Mode 3, Double Hidden Layer

This configuration was different from the other one analyzed since it was a double-layer
perceptron, having two hidden layers in feedforward configuration.

The achieved score was not always better compared to the previous analysis; this implies that an
increase in the number of layers was not always associated with an increase in network performance.
It has to be noted that the increased complexity of the network, both in terms of neurons and connection
increase, resulted in much longer training time, about a three-fold increase when compared to the most
complex single layer configuration.

The only configuration capable of achieving a score better than the shallow configuration was
the 16-8 network using Bayesian regularization algorithm for training, as visible in Figure 15. In this
case, the performance score was less than the set 10−6, thus achieving the best score of all the
considered configurations.

Figure 15. Double hidden layer networks performance as function of neurons and training function,
sampling mode 3.

4. Discussion

In this work, the application of artificial neural networks for prognostic purposes of
electromechanical actuators for aerospace applications has been investigated, leveraging a detailed
MATLAB Simulink model. The work focused only on particular motor progressive faults, i.e.,
partial electrical short-circuit and static eccentricity faults.

The process used to evaluate the performance of ANNs has then been described and can be
summarized as such: initially, an algorithm generating a vector of faults has been used to create a
matrix describing 3000 faults combination between arbitrarily chosen thresholds.

After that, every faults vector has been fed to the Simulink model in order to simulate the real
system and important variables such as currents, voltages, mechanical position and angular speed
have been logged.

These data have then been used to reconstruct the counter electromotive force coefficient in
function of the angular position of the motor. The reconstructed back-EMF has then been sampled
using an algorithm to provide data inputs for various ANNs architectures.

Different ANNs architecture have been used as prognostic tools, showing very good performance
score, even for very basic architectures. Various sampling strategies have been adopted, generally
improving the predictive accuracy of the network increasing the number of inputs of the network
itself, i.e., using a higher number of samples for each intracommutation period.
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The study has proved that ANNs can be effectively used as prognostics tools for aerospace EMAs.
The next step would be a parametric analysis in function of the many different variables defining
a neural network, e.g., network architecture, performance function, training function, etc. and an
experimental campaign to evaluate the sensitivity to uncertainties in the training model.

After such analysis, a development in lower level language, e.g., C++ can be used to speed up the
computation and possibly to allow a field testing campaign in order to evaluate the real-world behavior
and performance and the possible implementation on On-Board Computers (OBCs) in prevision of a
full-scale, commercial implementation.
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