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PowTrAn: an R Package for Power Trace Analysis

Luca Ardito, Marco Torchiano, Riccardo Coppolaa, Giulio Antoniolb

aControl and Computer Engineering Dept., Politecnico di Torino, Italy
bSoccer Lab, Polytechnique Montreal, Canada

Abstract

Energy efficiency is an increasingly important non-functional property of software, especially when it runs on mobile
or IoT devices. An engineering approach demands a reliable measurement of energy consumption of software while
performing computational tasks. In this paper, we describe PowTrAn, an R package supporting the analysis of the
power traces of a device executing software tasks. The tool analyzes traces with embedded markers, a non-invasive
technique that enables gauging software efficiency based on the energy consumed by the whole device. The package
effectively handles large power traces, detects work units, and computes correct energy measures, even in noisy conditions,
such as those caused by multiple processes working simultaneously. PowTrAn was validated on applications in realistic
conditions and multiple hardware configurations. PowTrAn also provides data visualization that helps the user to assess
the measurement consistency, and it also helps to highlight possible energy outliers.

Keywords: Energy Consumption; Power Trace Analysis; R language.

1. Motivation and Significance1

A software program consists of a sequence of instructions2

that are run on an underlying hardware [1]. A device3

consumes energy due to the software it executes. Energy4

consumption can be considered as a non-functional require-5

ment during software inception phase or as a property to be6

measured and monitored in production phase. For portable7

devices, such as laptops, tablets, and smartphones, energy8

consumption impacts battery life, resulting in a possible9

degradation of user experience [2], thus some users may pre-10

fer energy frugal application over a power-hungry one. In11

other domains, such as data centers or computing-intensive12

devices (e.g., those implemented by Bitcoin miners [3]), en-13

ergy consumption increases electricity costs, which leads to14

a negative environmental impact. Challenges with measur-15

ing and reducing energy consumption are often addressed16

in an ad-hoc manner, as exemplified in Mochocki et al. [4].17

While energy consumption can be estimated, through a18

battery discharge or CPU load data, an accurate evalu-19

ation must be based on physical measurements that can20

be linked to the software in real-time or offline. We de-21

veloped a software package called PowTrAn (i.e., POWer22

TRace ANalyzer) that utilizes an offline approach for the23

collection of task-related data in power traces registered24

by a power meter. The data collected is used by different25

measurement devices, such as the HOBO UX120-018 Plug26

Email addresses: first.last@polito.it (Luca Ardito, Marco
Torchiano, Riccardo Coppola), giulio.antoniol@gmail.com
(Giulio Antoniol)

Load Data Logger1 or RAPL2.27

When performing a physical power measurement on a de-28

vice, discriminating the consumption due to the software29

under examination from other processes simultaneously30

running on that device is crucial. In practice, to gauge31

the energy consumption of an application while performing32

a specific task, it is necessary to identify the proportion33

of the power attributable to the task, which entails the34

following approach:35

1. collecting energy data (i.e., energy traces),36

2. identifying the relevant regions in the trace, (i.e., when37

the application or task was running),38

3. estimate the application or task consumption, by sep-39

arating it from the background contributions from the40

operating system and other applications.41

This procedure requires a precise methodology to reconcile42

the physical power measures with the task execution timing.43

The approach supported by the software described in this44

paper consists of generating distinctive features in the45

power traces to markup the task execution. Although other46

approaches are possible, such as time synchronization, the47

use of markups is straightforward, precise, and does not48

require additional instrumentation.49

This paper has four main goals: (i) describe the PowTrAn50

software and how it leverages offline power trace analysis,51

(ii) compare PowTrAn to other existing frameworks for52

1https://www.powermeterstore.com/product/hobo-data-loggers-
ux120-018-plug-load-data-logger Last Visited: 14/04/2020

2https://01.org/rapl-power-meter Last Visited: 14/04/2020
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Figure 1: The energy study workflow as adapted from [5].

power analysis and how they solve several known problems53

in power trace analysis, (iii) describe how the software54

integrates into an analysis workflow within the R ecosystem,55

and (iv) provide examples of utilization of the software with56

real-world algorithms.57

2. Background and Related Work58

To better illustrate the role of PowTrAn, we first provide59

context in terms of a power assessment reference workflow,60

adapted from [5]. As shown in Figure 1, it encompasses61

four phases: (i) Goal, a definition of the research questions62

and context, (ii) How, a definition of the procedure, mea-63

surement method, and analysis method, (iii) Do, the setup64

of the devices and execution of the measurement, and (iv)65

Analyze, the analysis of the data. The latter phase includes66

three main activities:67

• Pre-processing and data reduction: the power traces68

need to be pre-processed and reduced in size before69

being analyzed.70

• Statistical analysis: the software uses reduced and71

pre-processed data to perform conventional statistical72

analysis.73

• Present and package the results: after the results from74

the statistical analysis are available, they must be75

presented as diagrams and tables and packaged into a76

technical report.77

PowTrAn was designed to fit in the energy assessment78

workflow and support the pre-processing activities. In79

particular, it takes care of several tasks:80

• Reconciliation: the power trace must be combined81

with the information about the task timings,82

• Task identification: the portion of the reconciled power83

trace that corresponds to the task executions must be84

identified;85

• Reference identification: a reference value for the back-86

ground tasks must be identified to offset the task con-87

sumption,88

• Reduction: the size of the collected data is reduced for89

subsequent analyses because a single energy assessment90

experiment can obtain millions of samples.91

For a non-invasive power measurement, the power con-92

sumption trace must be reconciled to the intervals when93

the tasks under consideration are performed. The reconcil-94

iation process can utilize two approaches:95

1. synchronize the system clocks of the device running96

the measured software with the measurement device97

that collects the trace samples, and98

2. instrument the code to add distinctive patterns to99

mark each task execution.100

The clock synchronization requires accurate time synchro-101

nization between the device under test and the measure-102

ment device so that only the consumption related to the103

relevant tasks is recorded. This synchronization can be104

achieved using NTP (network time protocol) [6], and while105

this solution can be simple, it requires both devices to106

be connected at least to a LAN to reach the NTP server.107

Moreover, the precision of the synchronization might not108

be enough for power measurement purposes, especially for109

short-running tasks, as NTP has been observed to allows110

errors of up to 100ms, mainly due to network congestion [7].111

The second approach enables the association of the con-112

sumption to a Software Under Test (SWUT) without clock113

synchronization, but simply adding markers in the SWUT114

as described, in Section 3.1.115

We developed PowTrAn to address this specific use case116

by following these guidelines:117

• Open-source: the software must be made available to118

the research community and researchers,119

• Non-invasive: the software must require neither heavy120

instrumentation of the software under measurement121

nor presence of additional processes on the hardware122

device executing the software,123

• Real measurement: the software must analyze actual124

physical measures of power consumption instead of125

estimates,126

• Integration: the software must be part of statistical127

or computing environment and easily integrated into128

a robust statistical environment to enable researchers129

to perform further analysis and produce suitable visu-130

alizations.131

The development intention is for PowTrAn to be the first132

step in an integrated analysis workflow.133

PowTrAn is developed in R, a software environment for134

data analysis, manipulation, and visualization. R provides135

many packages for handling data of varied characteristics136

and sources [8]. To the best of our knowledge, PowTrAn137

constitutes the first effort in developing a power trace138
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analyzer that leverages the R language and addresses non-139

invasive marker-based pre-processing. The choice of R is140

due to its popularity as an environment among scientists141

for performing data analysis. R is also widely used for big142

data, as it is easy to parallelize and interacts well with143

many other languages. Moreover, R provides excellent144

graphical capabilities that can be harnessed to produce145

control charts and assess the overall quality of the collected146

measures.147

Many techniques to estimate and optimize the power con-148

sumption of applications and devices are described in the149

literature, and cover multiple levels of abstraction, from the150

electrical to functional levels. Lower-level techniques, even151

if more precise, require specific equipment and knowledge.152

While the related software packages do present some of the153

detailed characteristics, none featured them all. Table 1154

compares the available software packages with PowTrAn.155

Pycoolr [10] is a monitoring and controlling software ca-156

pable of sampling per-CPU core temperatures and CPU/-157

DRAM consumption. Based on the Intel RAPL interface to158

take measurements, it outputs results in the JSON format159

for later analysis. The integration of Pycoolr in Python160

allows the usage of statistical libraries, like Panda or Mlpy161

to review the results. MuMMi [11] is an infrastructure162

for systematic measurements, built upon three existing163

frameworks of Prophesy (for performance modeling and164

prediction), PAPI (for hardware performance monitoring),165

and PowerPack (for power measurement and profiling).166

Eprof [12] is one of the first fine-grained off-device energy167

profiling software packages for Windows and Android mo-168

bile applications. Banerjee et al. [13] described a software169

that profiles the energy footprint of Android apps for find-170

ing energy anomalies. Atitallah et al. [9] provided a power171

trace analyzer to estimate power consumption and aid172

embedded software design, built on IP-XACT hardware173

descriptions. Naumann et al. [20] described a conceptual174

reference model for sustainable software, named GREEN-175

SOFT, that supports stakeholders involved in software176

development (e.g., developers, administrators, and users)177

in creating, maintaining, and using the software from a178

green perspective. The model covers, for each stakeholder,179

a model of the life cycle, power metrics, procedure models,180

recommendations, and software.181

The “self-metering" approach presented in [21], [22],182

and [23] builds individualized online power models of smart-183

phones. This action is possible if the device can read the184

online voltage and current values from its built-in bat-185

tery interface. The primary limitation of the approach is186

the impossibility of incorporating current sensing to many187

smartphones.188

Joulemeter [14], [15] models the energy consumption of189

memory, CPU, disk, and other components of a device,190

based on resource utilization. SES [16] is an energy moni-191

toring software that collects energy consumption data with192

a cycle-by-cycle resolution, mapping each to the program193

structure. SES requires an extra module composed of mea-194

surement circuits, a profile controller, and an acquisition195

memory. Therefore, only certain embedded systems can196

use SES.197

An example of a dynamic power management technique198

is Power-Sleuth [17] that fully describes the behavior of a199

software. In this work, the authors, instead of correlating200

power with events, developed a model that investigates201

the source of power consumption directly. Power-Sleuth202

locates program phases by using the ScarPhase library [24]203

to detect and classify each software phase.204

Finally, DOME [19] is an evolution of PSAT [18], an open205

source Matlab and GNU/Octave-based software package206

for analysis and design of small- to medium-sized electric207

power systems. DOME is written in Python, and can parse208

data files to perform power flow analysis. The software is209

not open source.210

All these related software collect and analyze power con-211

sumption data at various levels. PowTrAn is an open source212

library that addresses a specific use case (marker-based213

reconciliation); it can be included in any software-chain214

that collects and analyzes energy data.215

3. Software Description216

The PowTrAn R package3 consists of roughly 800 lines of217

R code and can be installed through the commands shown218

in Listing 1.219

Listing 1: The code to install the PowTrAn package.
install.packages("devtools")
library(devtools)
install_github("SoftengPoliTo/powtran")

Through the PowTrAn package, the procedure to analyze220

a power trace consists of the following steps:221

• process the power trace with the extract.power222

function,223

• perform a visual assessment using the control chart,224

• analyze the energy values to assess the task under225

observation.226

3.1. Trace markers227

The technique adopted for identifying the task trace con-228

sists of generating one marker before and after the task.229

3Code available on GitHub: https://github.com/SoftengPoliTo/
powtran. So far, the package is not available on CRAN.

3
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Software Open source Non-invasive Physical meas. Integrated

Atitallah et al. [9] No Yes No No
Pycoolr [10] Yes No Yes Yes
MuMMi [11] No No No No
Eprof [12] No No No No
Banerjee et al. [13] No Yes Yes No
Joulemeter [14][15] Yes Yes No No
SES [16] No No Yes No
Power-Sleuth [17] Yes Yes No No
PSAT [18] Yes Yes Yes No
DOME [19] No Yes Yes No

PowTrAn Yes Yes Yes Yes

Table 1: A Comparison of power consumption analysis approaches

This marker is a square impulse generated through a se-230

quence of sleep, busy, and sleep. The busy phase is pro-231

duced by generating a 100% utilization of the core. The232

two sleep phases are obtained by injecting a sleep period233

to keep the core idle, thus causing a minimum power con-234

sumption. The tailing energy can substantially impact the235

measurement, and, as suggested in [25], the final sleep,236

before running the task, can be long, such as a couple of237

minutes. For this reason, the sleep time could be longer238

than the busy time. However, in our examples, we assume239

that 1 second is sufficient for allowing the tail energy to240

disperse.241

The marker is generated using the fragment of Java code242

shown in Listing 2, which is designed to work on multi-core243

architectures. The code generates one busy thread for244

each CPU and lets each CPU work for the given marker245

duration.246

As mentioned above, markers are placed before and after247

each execution of the observed task, so in practice, a marker248

separates two tasks.249

3.2. Extract.power function250

The starting point of the analysis process is a power trace251

(e.g., a vector data comprised of numeric values). The252

primary function of the package, extract.power pro-253

cesses the power trace, and produces the results with its254

prototype shown in Listing 3), .255

This function requires the following arguments:256

• data: the power trace collected using any power mon-257

itor,258

• t.sampling: the sampling period used to collect the259

trace,260

• N: the number of task repetitions in the trace,261

• marker.length: the expected width of the marker262

pulse,263

• baseline: the method used to compute the baseline264

power, i.e. the background power not linked to the265

software under test.266

The output of the function includes a table with the energy267

consumed by each task repetition, that can be plotted to268

produce a control chart or visualized via other PowTrAn269

functionalities.270

Specifically, the output contains the work units that have271

been identified within the power trace. The work unit272

is defined as an atomic time window during which the273

execution of the analyzed software is subdivided. For each274

work unit, the following information is reported:275

• start and end sample index of the work unit,276

• duration in seconds,277

• real power levels: for the work unit (P.real) and for278

the two idle phases preceding and following the work279

unit (P.idle.left and P.idle.right),280

• effective power (P) and energy (E).281

A control chart can be generated starting from the analysis282

result to visually assess the results of the analysis using283

the standard plot() function provided by the package.284

The function performs four steps of pre-processing, includ-285

ing reconciliation through marker detection (Section 3.5),286

task identification of task data (Section 3.4), reference287

identification, and size reduction (Section 3.5).288

3.3. Marker detection289

The first step to enable processing of the power traces290

requires reconciling them to the timings of software tasks291

by detecting the markers inserted into the power trace.292

Two factors are affect the detection of the markers:293

• noise makes the detection of the markers edges difficult,294

and the measurement of the power level imprecise,295

• size increases the complexity of the processing phase,4296

and the appropriate algorithms must be selected care-297

fully. Also, graphical representations must use a down-298

sampled version to make the trace discernible and299

4for an experiment that is lasting 1 minute, at a sampling rate of
10kHz, we get 600k samples.
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Listing 2: The code excerpt for marker generation written in the Java language.
final static int N_THREADS = Runtime.getRuntime().availableProcessors();
private static void generateMarker(long markerLength)

throws InterruptedException {
//SLEEP
Thread.sleep(markerLength);
// BUSY
final long endBusy = System.currentTimeMillis() + markerLength;
final Thread[] ts = new Thread[N_THREADS];
Runnable busy = ()->{ // Busy code

while(endBusy>System.currentTimeMillis()){
for(int i=0; i<markerLength;++i){ }

}};
Arrays.setAll(ts, t -> new Thread(busy,"PowTrAn"+t));
for(Thread t : ts) t.start(); // start busy threads
for(Thread t : ts) t.join(); // wait for all busy threads
// SLEEP
Thread.sleep(markerLength);

}

Listing 3: The extract.power function prototype.
library(powtran)
res <- extract.power(data, # samples

t.sampling, # sampling period
N, # num.

repetitions (30)
marker.length, # marker step

duration
baseline # method for

baseline computation
)

avoid severe performance issues when using vector300

formats like PDF.301

The procedure to analyze the data is comprised of five302

steps, detailed in the following subsections.303

3.3.1. Step detection304

A preliminary phase of the marker detection consists of305

identifying the rising edges of the marker pulses. Any noise306

present in the signal produces spurious edges that must be307

discarded to detect the markers correctly.308

These spurious edges can be removed with a low-pass filter309

that eliminates high-frequency noise. However, the typical310

implementation of a low-pass filter uses an FFT, that pro-311

vides poor performance on large-signals, and marker steps312

can also result in the Gibbs phenomena [26]. A similar313

result can be achieved by considering a moving average314

that is computationally faster.315

The power signal with the embedded markers (see Figure316

2) can be considered similar to a piecewise constant (PWC)317

signal [27], which can be analyzed by piecewise constant318

smoothing, or as a level-set recovery. The power trace dur-319

ing the experimental task is not guaranteed to be constant,320

so the signal is not precisely PWC.321

Instead, we adopt a level-set recovery approach based on322

kernel density estimation using the following procedure:323

• estimate the kernel density,324

• identify the primary peaks in the density function,325

• determine the thresholds between the power level clus-326

ters,327

• represent the signal as a sequence of level runs.328

3.3.2. Identification of markers329

Markers can be identified based on three key characteristics:330

• any individual marker pulse begins with a rising edge,331

• markers must match a repeating pattern, with a set332

number of cycles,333

• an individual marker pulse has a predefined width334

that should be recognizable within a specified level of335

tolerance.336

The period of the repeating pattern is identified by finding337

the maximum of the auto-correlation function [28]. The338

offset of the first marker pulse with respect to the beginning339

of the power trace is identified by finding the maximum of340

the cross-correlation function applied to the trace and an341

ideal pulse train with the previously determined period.342

Once the periodicity and phase of the trace are determined,343

the edges that most likely initiate the marker pulses are344

identified by means of a cross-correlation of a periodical345

function with the edges, as shown with the relative plot in346

Figure 3, defined as:347

(
1 + cos

(
(x− first) · n · 2π

last− first

))2
(1)
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Figure 3: A plot of the adopted periodic function.

3.4. Identification of work units348

This task consists of detecting the beginning and end of349

the work units within the power trace, by observing the350

rising edges of the marker pulses as a reference:351

• the beginning of the work unit is estimated to be k352

marker pulse widths after the previous edge, where353

k = 1 + sleeptime
busytime ,354

• the end of the work unit is estimated to be one width355

before the next edge.356

This design decision offers the double advantage of being357

easy to implement and avoiding the issue of spurious edges358

that would have otherwise hampered solutions based only359

on edge detection. A work unit attributable to the task360

under consideration is illustrated in Figure 4.361

3.5. Effective power and baseline estimation362

After identifying the work units, the power consumed by363

the system to conduct the task can be computed and is364

subject to two main decisions described in the following.365

(1) What is the amount of power ascribed to the program366

under test? A first approximation might be that the pro-367

gram consumes the power recorded during the work unit368

(or its average). However, such a value also includes the369

power consumed by the idle system. A difference exists370

between real and effective power, where the former is a371
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Figure 4: A work attributable to the task under consideration.

measured value, and the latter is the portion specifically372

used for performing a computational task.373

The measured power must be compared to a baseline value374

that is not directly used for the computational tasks under375

consideration. Such a baseline power is typically a result of376

the idle system or other processes executed concurrently.377

As shown in Figure 4, the baseline power is estimated378

based on the power measured during the sleep phases of379

the markers, and this can be performed by following several380

strategies. In general, local and global estimations can be381

distinguished by the following:382

• Local: only the sleep phases immediately before and af-383

ter the task under consideration are considered, which384

offers the advantage of offsetting possibly non-constant385

background processes,386

• Global: all sleep phases enclosing the tasks are con-387

sidered, which offers the advantage of filtering local388

noises by averaging the levels.389

The selection of the specific sleep period to consider depends390

on the behavior of the system. For example, an energy-391

demanding task could trigger a frequency scaling [29] that392

alters the baseline on the local scale.393

In addition to these two strategies, PowTrAn allows using394

a zero baseline, i.e., all power consumption is attributed to395

the software under test. This option can be applied when396

a ranking among the alternatives is the objective of the397

6



Table 2: Alternate strategies for energy computation.

Scope Pros/Cons

Local Discards background processes that are not uniform during
the experiment’s execution time, especially erratic processes
that occur unevenly.

Global Filters measurement noise occurring during the experiment.

Zero Applies the total system power without discerning between
the process under consideration and other background
processes, but is not a precise measurement.

measurement: as the precise amount of power consumed398

by a software to perform a task is not relevant, and the399

goal is to understand which software is consuming more.400

(2) What level of detail must be considered? One option is401

to consider all the individual power values recorded in the402

trace, while the other is to calculate an average. Because403

the goal is to compute the energy (i.e., the integral of404

power over time), the basic average is equivalent in terms405

of the final results and more efficient in terms of memory406

resources.407

To perform a size reduction on the data, each work unit408

has the energy consumed by the task under evaluation409

computed by:410

E = t · (P − Pbaseline). (2)

where t is the task time, P is the average power measured411

during the task execution, and Pbaseline is the baseline412

power corresponding to the power consumption not directly413

attributable to the task execution.414

4. Illustrative Examples and Validation415

Validation of power analysis software should address the416

following aspects:417

• ability to synthesize the power trace to reduce the418

data size,419

• processing performance,420

• potential to assess the quality of the collected data.421

To illustrate the issues regarding the analysis of power422

traces, we consider two case studies on the two platforms423

of a Raspberry Pi 1A and an LG Nexus 4. Both devices424

use a CPU-based on ARM architecture. The Raspberry425

Pi 1A device adopts a single-core 32-bit CPU running at426

700MHz, and the Nexus 4 utilizes a quad-core 64-bit CPU,427

running at 1.5 GHz.428

Table 3 lists the complete details about these case studies,429

which are distinct in many respects, so the resulting energy430

data cannot be directly compared. However, these two431

examples allow for assessment of how the software behaves432

in different conditions.433

For both case studies, the task consisted of sorting an array434

of integer type elements. Each case applies different435

algorithms to perform this computation, specifically a quick436

sort for the Nexus 4 and bubble sort for the Raspberry437

Pi. In each experiment, we repeated the task 30 times, as438

several repetitions were required to average measurement439

errors.440

4.1. Synthesis441

The results from the analysis of the first case study are442

reported in Table 4.443

Starting from 7.1 · 105 samples, the PowTrAn analysis444

produced a table with the information concerning each of445

the 30 repetitions of the measured task, with the first ten446

are sampled in Table 4.447

Every line in the table reports the data synthesized from a448

repetition, and includes the following information:449

• the start and end index of the specific sample in the450

sequence,451

• the task duration, and based on this case with 8146452

samples (from 18136 to 26282) and a frequency of 10453

kHz, resulting in a value of 0.816 s,454

• the real power, i.e., is the average power consumption455

measured during the execution of the task,456

• the baseline power computed for this case has been457

computed using a local scope, so a slight difference is458

observed in each record,459

• the effective power computed as the difference between460

the above two values,461

• the energy consumed to perform the task.462

4.2. Performance463

PowTrAn demonstrated the processing of one million sam-464

ples per second, producing the aggregate data described465

above. In practice through our tests, we processed 2.5466

minutes of power traces per second.467

4.3. Quality assessment468

Figures 5 and 6 present the control charts generated by469

the package for assessment of the quality of the collected470

power trace. Each control chart is divided into two areas:471

• the top portion reports a miniature view of the an-472

alyzed trace, where the work units and markers are473

identified;474

• the bottom portion includes four diagrams that report475

the results of the analysis, including:476
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Table 3: The details about the case studies.

Device Algorithm Array Size Time [ms] Samples

Raspberry Pi 1A Bubble Sort 10k 817 712698
LG Nexus 4 Quick Sort 50k 86 3703

Table 4: The results from the analysis (an excerpt of the complete data)

Sample index Power
start end t P real P baseline P effective E

18136 26282 0.815 2.653 2.417 0.236 0.192
41276 49454 0.818 2.653 2.416 0.236 0.193
64446 72604 0.816 2.654 2.418 0.237 0.194
87596 95759 0.816 2.654 2.418 0.237 0.194

110756 118931 0.818 2.656 2.418 0.239 0.196
133926 142092 0.817 2.654 2.418 0.238 0.194
157086 165255 0.817 2.655 2.418 0.239 0.195
180246 188410 0.816 2.654 2.418 0.238 0.194
203406 211563 0.816 2.654 2.418 0.237 0.194
226556 234721 0.817 2.654 2.418 0.237 0.194

...

– the top right chart shows the distribution of the477

average power detected in the work units, repre-478

sented in details with a strip chart and summa-479

rized with a box plot;480

– the bottom right chart shows the distribution of481

the work units durations, using the same visual-482

ization as the previous,483

– the bottom left chart shows the distribution of484

the energy consumed by each work unit,485

– the top right diagram shows power vs. duration,486

and also reports the iso-energy curves, which pro-487

vides an opportunity to diagnose possible outliers488

in the results.489

This last chart described is also useful consider possible490

trade-offs between speed and power. As modern processors491

scale the operating frequency automatically to adapt to492

varying workloads, the same task executed at a low fre-493

quency could last longer and consume lower power, while494

the opposite occurs at higher frequencies. We expect two495

such runs to consume a similar amount of energy, i.e., to496

appear approximately on the same iso-energy line. Thus,497

these reference lines enable a diagnosis of executions that498

consume similar energy for alternate duration vs. power499

configurations.500

By comparing the two control charts, we observe the fol-501

lowing:502

• the trace for the Raspberry Pi is more regular com-503

pared to the one recorded with the Nexus,504

• the distribution of power is narrow and symmetrical505

for the Raspberry Pi while it is more dispersed and506

skewed for the Nexus,507

• the two duration distributions appear similar,508

• reviewing the power vs. duration chart, two behaviors509

are observed. For the Raspberry Pi, a cloud of data510

points that follows the iso-energy lines where, in most511

cases, a longer duration corresponds to lower power,512

thus resulting in approximately similar energy. For the513

Nexus 4, a different pattern is observed with a tight514

cluster of data points and a set of points scattered515

around with varying levels of duration and energy,516

• the Raspberry shows a clean symmetric shape in the517

energy, while the Nexus energy is highly skewed.518

The analysis of the summary control plot represents a519

crucial step for evaluating the quality of the power trace520

and guiding the following additional analysis.521

For example, based on the two plots described above, the522

energy consumption values for the program running on the523

Raspberry Pi are accurate. On the other hand, the values524

collected on the Android device are less accurate, so before525

proceeding with the analysis of the data, an outlier removal526

phase must be considered. While this process of removing527

outliers is not included in PowTrAn, the software provides528

sufficient information about which data might be reviewed529

as potential outliers.530

5. Impact and Conclusions531

We presented PowTrAn, an R-based power trace analyzer532

that constitutes the first step of an analysis workflow inte-533

grated into the R ecosystem.534

PowTrAn represents a novel software package for processing535

physical power consumption measurements with offline536
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Figure 5: A summary control plot for the Raspberry Pi.

reconciliation that utilize markups. This paper provided537

a comprehensive description of the R package, and the538

software has already been applied in previous research,539

including:540

• an analysis of various sorting algorithms, including541

bubble, counting, merge and quick sort, that were542

implemented in three programming languages (Java,543

ARM, and C) [30],544

• a comparison of different image encoding and decoding545

algorithms run on mobile devices [31],546

• the creation of a CPU power model for a Single Board547

Computer [32].548

These works demonstrate the applicability of the PowTrAn549

package to a variety of application domains. We previously550

refined the initial ideas concerning the insertion of the551

markers as well as the analysis approach during earlier552

studies [30] [31].553

We also tested PowTrAn in multiple conditions spanning554

operating systems, environments, and applications, and555

we demonstrated it could produce accurate results even in556

noisy systems.557
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