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A 3D layer-wise model for the correct imposition of

transverse shear/normal load conditions in FGM shells

Salvatore Brischetto∗

Abstract A general elasticity 3D layer-wise shell model is proposed for the static investigation plates
and shells including functionally graded material (FGM) layers. A closed-form solution is used consid-
ering simply-supported sides and harmonic forms for displacements and loads. The partial differential
equations obtained from the 3D equilibrium relations developed in curvilinear orthogonal coordinates are
solved using the exponential matrix methodology. These equations have constant coefficients because an
opportune number of mathematical layers has been introduced in order to calculate the parametric coeffi-
cients including the radii of curvature for the shells and the elastic coefficients that are variable through
the thickness direction in the case of functionally graded materials. The main aim of the present work
is to fill the gap found in the literature where the 3D elasticity theories always give solutions for FGM
plates or shells in the only case of a transverse normal load positioned at the top or at the bottom sur-
faces. The present work proposes an exhaustive static analysis where the load boundary conditions have
been appropriately rewritten in order to allow the use of several transverse normal and transverse shear
loads separately or simultaneously positioned at top and/or bottom surfaces. One-layered and sandwich
FGM plates, cylinders, cylindrical shells and spherical shells are analyzed changing the material laws
and properties, the applied loads and the thickness ratios. The importance of the zigzag features, the
interlaminar continuity in terms of compatibility and equilibrium requirements, the boundary load re-
quirements, the considerations about the symmetry, the thickness ratio effect and the three-dimensional
behavior have been opportunely discussed. Advantages connected with the use of FGM layers have also
been analyzed. These new 3D exact results will allow the validation of recent advanced 2D shell models
in the literature for the static investigation of FGM structures subjected to different load conditions.
The proposed 3D model is general for several geometries (plates and shells) and materials (classical
ones, composites and FGMs) and it allows a unique 3D exact solution for a large variety of structures.

Keywords: general 3D shell model, functionally graded materials, plates and shells, transverse shear
and transverse normal loads, layer-wise method, exponential matrix solution.

1 Introduction

Functionally graded materials (FGMs) are recent advanced materials designed for specific performances
and functions in the engineering field. The spatial gradation in structure and/or composition allows
tailored properties. FGMs have a specific spatial distribution of the constituent phases (such as metals,
ceramics and polymers) with a continuous variation in composition. The major advantages of FGMs in
comparison with other composites are physical and mechanical gradients in specific directions in order
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to achieve tailored morphologies [1]. Advanced aerospace structures require multi-function materials.
FGMs possess this feature because several contrasting functions are incorporated into a single material
(e.g., toughness of the polymeric materials or important mechanical properties of metallic materials
combined with the temperature capability of the ceramics). FGMs here considered have continuous
change in composition and microstructure across the thickness direction. In the case of sandwiches, the
two external surfaces have in general the pure composition of the two components of the FGM [2]. The
monotonous change of the volume fraction of the constituent phases has the advantage of eliminating
the physical interfaces which are typical of conventional multilayered structures. In this way, the stress
discontinuity is eliminated and delamination-related problems are suppressed [3]. FGMs are extensively
employed in aerospace, automotive, marine and biomedical fields because of high thermal properties
and fracture toughness, and reduced stress intensity factors and residual stress distributions [4], [5].

In engineering applications, structures embedding FGM layers are correctly designed after an ac-
curate evaluation of strains, stresses, displacements, vibrations and modes. In order to perform satis-
factory analyses, 3D, 2D and 1D models can be applied. In the literature, a large amount of 3D, 2D
and 1D models have been extended to FGM structures in analytical or numerical form. 3D analytical
models are in general employed to produce assessment results for the validation of 3D numerical or
refined 2D numerical/analytical models. 3D numerical models are used for the analysis of structures
with particular geometrical, thickness and material properties that make impossible their investigation
by means of 2D or 1D models. 3D models found in the literature can be analytical, numerical or
semi-analytical. They have been extended to FGM structures for free vibration, dynamic and static
analyses (also including mechanical, thermal and electrical loads). The 3D exact model by Hosseini-
Hashemi et al. [6] was used for the free vibration analysis of plates including FGM layers. In this
case, the elasticity modulus and mass density of the functionally graded coating were assumed to vary
exponentially through the thickness of the layer. Vel and Batra [7] proposed free and forced vibration
investigation of simply-supported plates embedding FGM layers by means of an exact 3D plate the-
ory. Results were proposed for two-constituent metal-ceramic functionally graded rectangular plates
that had a through-the-thickness power-law for the volume fractions of the constituents. The 3D plate
model by Dong [8] was developed, using the Chebyshev-Ritz method, to investigate the free vibrations
of annular FGM plates. Two through-the-thickness variation types for material properties were ana-
lyzed. The Chebyshev-Ritz method was also employed by Li et al. [9] to analyze the free frequency
response of sandwich plates including FGM layers. Two possibilities were investigated, FGM skins and
homogeneous core or homogeneous skins and FGM core. The differential quadrature method (DQM)
was employed by Malekzadeh [10] for a free frequency plate solution for the analysis of functionally
graded structures based on elastic foundation with two parameters. The material properties continu-
ously change through the thickness direction (power law, exponentially law or any other formulation).
Alibeigloo et al. [11] developed an analytical 3D shell solution for the free frequency analysis of simply-
supported functionally graded piezoelectric cylindrical panels and a semi-analytical 3D shell solution
for the free frequency investigation of cylindrical panels embedding piezoelectric functionally graded
layers. Material properties vary along the thickness direction by means of an exponential law with con-
stant Poisson ratio. Zahedinejad et al. [12] solved governing equations using trigonometric functions.
This proposed 3D numerical shell model was based on the 3D elasticity theory and the differential
quadrature method. The model was used for the free vibration investigation of thick shells including
FGM layers. Panels had two opposite simply supported edges and arbitrary boundary conditions for
the other two edges. Chen et al. [13] investigated the free vibrations of functionally graded shells,
including fluid and with variable thickness, by means of a laminated approach suitable for an arbitrary
variation of material constants along the radial direction. Vel [14] analyzed free and forced frequencies
of functionally graded cylindrical shells using a three-dimensional elasticity model. The investigated
shells had simply supported edges and arbitrary material gradation in the radial direction. Sladek et
al. [15]- [17] developed a meshless numerical model for the 3D elasticity investigation of functionally
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graded bodies. The method was based on the local Petrov-Galerkin theory. The bending analysis
of FGM plates was proposed by Xu and Zhou [18] using a 3D theory based on a generalization for
displacements and stresses. Young modulus was functionally graded through the thickness direction in
accordance with the exponential-law and Poisson ratio was considered as constant. Functionally graded
piezoelectric structures was analyzed by Zhong and Shang [19] by means on an exact 3D plate model
based on the state space method. Both mechanical and electric properties had the same exponent-law
through the thickness direction. Kashtalyan [20] elaborated a three-dimensional plate theory for the
static analysis of one-layered FGM structures. The Young modulus varied exponentially through the
thickness, and the Poisson ratio was assumed to be constant. This model was extended to the 3D
static analysis of sandwich plates embedding FGM layers by Kashtalyan and Menshykova [21]. In order
to increase the resistance of sandwich plates to delamination, the concept of a functionally graded
material (FGM) core was employed. The static analysis of viscoelastic cylindrical FGM panels was
proposed in [22] where a 3D elasticity theory was combined with the state space method and Fourier
expansion for simply supported sides. The state space differential quadrature solution was employed
for other different boundary conditions. Effects of relaxation time constant, boundary conditions, mid-
radius to thickness ratio and power law index on bending behavior of viscoelastic cylindrical panels
were investigated. Yang et al. [23] investigated the axisymmetric bending of novel functionally graded
polymer nanocomposite circular and annular plates reinforced with graphene nanoplatelets (GPL). The
three-dimensional elasticity theory and the general Mian and Spencer methodology were employed. A
parametric study was conducted to examine the effects of GPL weight fraction, distribution pattern,
plate thickness to radius ratio and boundary conditions. Alibeigloo [24] used the generalized coupled
thermoelasticity for the time dependent response of sandwich plates with functionally graded mate-
rial core. Governing partial differential thermoelasticity equations were reduced to ordinary differential
equations by applying Fourier series state space technique and then were analytically solved via Laplace
transformation. A 3D analytical solution was elaborated for a longitudinally functionally graded plate
in the case of to Levy-type boundary conditions in [25]. The material compliances linearly varied along
the x in-plane direction in each single layer. Further interesting works about functionally graded struc-
tures, in particular cylindrical shells, can be found in [26]- [28] where new applications and methods
were discussed.

The 3D analytical and numerical models for FGM structures proposed in the investigated literature
have the main limitation of investigating only defined geometries that are plate or shell geometries
in a separated formulation. The present model for FGM structures is a general formulation valid for
simply supported spherical shells. It considers plates, cylinders and cylindrical shells as particular
cases. In this way, a general and unique tool has been developed for different geometries. The static
analysis proposed in the present work considers transverse normal/shear loads that can be applied
simultaneously or separately at both top and/or bottom external surfaces in harmonic form. For all
these reasons, the developed 3D exact shell model for FGM structures can be considered as one of
the most general and complete theories in the literature. The author proposed in [29] the 3D exact
static analysis of multilayered composite and sandwich plates and shells when transverse normal loads
were positioned at the external surfaces. This model was extended to the static analysis of functionally
graded plates and shells in [30]. Paper [31] modified the boundary loading conditions in order to
introduce combinations of transverse normal and transverse shear loads at the external surfaces for the
cases analyzed in [29]. The present new work introduces these new boundary load conditions in the
static analysis of functionally graded plates and shells in order to apply transverse shear/normal loads
in the FGM benchmarks already proposed in [30]. The present model is a layer-wise 3D exact theory
based on the differential equations of equilibrium written in general orthogonal curvilinear coordinates.
These equations are valid for spherical and cylindrical shells, cylinders and plates. The system of partial
differential equations are solved using of the exponential matrix solution [32]- [35]. This method was
used by Messina [36] for the 3D free vibration analysis of composite plates using equilibrium equations
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written in orthogonal rectilinear coordinates. Soldatos and Ye [37] employed the exponential matrix
method to solve the three-dimensional equilibrium relations developed in cylindrical coordinates for
the free vibration investigation of multilayered composite cylinders. The three-dimensional model by
Fan and Zhang [38] allows free frequency and bending investigation of composite spherical panels.
The exponential matrix methodology was used for the solution of 3D equilibrium relations. Deep
spherical and shallow spherical shells were analyzed. Plates were considered as very shallow spherical
shells. In [38], cylindrical shell, cylinder and plate cases were not investigated. Fan and Zhang [38]
developed a theory where the displacements and the transverse stresses are the six main variables of the
model. The Cayley-Hamilton procedure was applied. The new model of the present author considers
displacements and their derivatives in z as the six main variables of the model. The different approach
here employed allows a large number of mathematical layers that permits the analysis of very thick
shells and the extension to functionally graded plates and shells. The model here proposed was also used
in the past by the author for the free vibration analysis of one-layered [39] and multilayered composite
and sandwich [40] structures and for mode analysis of functionally graded plates and shells [41]. The
convergence analysis of the method in terms of order of expansion for the exponential matrix and
number of mathematical layers was already proposed in [42] and [43].

The layer-wise 3D shell model is presented in Section 2. Section 3 shows the main results. The
first part of this section is devoted to the preliminary assessments in order to validate the model; the
second part proposes the new benchmarks for the new load conditions. Finally, Section 4 gives the
main conclusions and considerations.

2 Layer-wise 3D shell model

The compact form of constitutive relations for a generic functionally graded material (FGM) layer k is:

σ
k = C

k(z)ǫk , (1)

where the stress components are included in σk = {σk
αα σ

k
ββ σ

k
zz σ

k
βz σ

k
αz σ

k
αβ}

T and the strain components

are in ǫk = {ǫkαα ǫ
k
ββ ǫ

k
zz γ

k
βz γ

k
αz γ

k
αβ}

T . T means the transpose of a vector. The 6 × 6 elastic coefficient

matrix C
k(z) considered for the k isotropic functionally graded material layer is:

C
k(z) =

















Ck
11(z) Ck

12(z) Ck
13(z) 0 0 0

Ck
12(z) Ck

22(z) Ck
23(z) 0 0 0

Ck
13(z) Ck

23(z) Ck
33(z) 0 0 0

0 0 0 Ck
44(z) 0 0

0 0 0 0 Ck
55(z) 0

0 0 0 0 0 Ck
66(z)

















, (2)

the elastic coefficients Ck
rs(z) are constant in the case of classical material layers.

The compact formulation of geometrical relations for spherical shells with constant radii of curvature
is:

ǫ
k = ∆(z)uk , (3)

where the displacement vector is uk = {uk vk wk}T . The 6× 3 matrix ∆(z) has the following compo-
nents:

∆(z) =





















1
Hα(z)

∂
∂α 0 1

Hα(z)Rα

0 1
Hβ(z)

∂
∂β

1
Hβ(z)Rβ

0 0 ∂
∂z

0 ∂
∂z − 1

Hβ(z)Rβ

1
Hβ(z)

∂
∂β

∂
∂z −

1
Hα(z)Rα

0 1
Hα(z)

∂
∂α

1
Hβ(z)

∂
∂β

1
Hα(z)

∂
∂α 0





















, (4)
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symbol ∂ is used for the partial derivatives performed with respect to the coordinate system (α, β, z).
Radii of curvature are Rα and Rβ, they are defined at the reference surface Ω0 in the middle of the
thickness. Parametric coefficients Hα(z) and Hβ(z) are defined as:

Hα(z) = (1 +
z

Rα
) = (1 +

z̃ − h/2

Rα
) , Hβ(z) = (1 +

z

Rβ
) = (1 +

z̃ − h/2

Rβ
) , Hz = 1 , (5)

Hα and Hβ can depend on z (that varies from −h/2 to +h/2 and it is referred to Ω0 surface) or on z̃
coordinate (that varies from 0 to h and it is referred to the bottom surface) [44].

The developed three-dimensional shell theory employs the general three-dimensional differential
equilibrium relations developed in the general orthogonal curvilinear system (α, β, z) for multilayered
spherical panels. Mean radii of curvature Rα and Rβ are constant because they are evaluated at the
reference surface:

Hβ(z)
∂σk

αα

∂α
+Hα(z)

∂σk
αβ

∂β
+Hα(z)Hβ(z)

∂σk
αz

∂z
+ (

2Hβ(z)

Rα
+

Hα(z)

Rβ
)σk

αz = 0 , (6)

Hβ(z)
∂σk

αβ

∂α
+Hα(z)

∂σk
ββ

∂β
+Hα(z)Hβ(z)

∂σk
βz

∂z
+ (

2Hα(z)

Rβ
+

Hβ(z)

Rα
)σk

βz = 0 , (7)

Hβ(z)
∂σk

αz

∂α
+Hα(z)

∂σk
βz

∂β
+Hα(z)Hβ(z)

∂σk
zz

∂z
−

Hβ(z)

Rα
σk
αα −

Hα(z)

Rβ
σk
ββ + (

Hβ(z)

Rα
+

Hα(z)

Rβ
)σk

zz = 0 ,

(8)

the most general form of these equations for shells with variable radii of curvature are indicated in [45]
and [46]. Eqs.(3)-(8) are defined for the spherical panel case and they easily degenerate in equations
for cylindrical panels and for plates considering one or two radii of curvature as infinite (this feature
gives one or two parametric coefficients equal 1). The employed index k in Eqs.(1)-(8) varies from 1
to NL where NL is the total number of physical layers. Constant elastic coefficients in Eqs.(1)-(2) and
constant parametric coefficients through the thickness (see Eqs.(3)-(8)) are obtained if each physical k
layer and the entire coordinate z are divided in an appropriate number of mathematical layers. As a
consequence, the global number of mathematical and physical layers is M and the new index j varies
from 1 to M . The new index j is employed in the above Eqs.(1)-(8) and in all the new equations that
will be developed in the next part in order to obtain constant coefficients for shells and FGM layers.

The proposed general three-dimensional shell theory can be developed in closed form if simply
supported sides and harmonic forms for displacements, loads and stresses are employed:

{uj , pjα, σ
j
αz}(α, β, z) = {U j , P j

α,Σ
j
αz}(z)cos(ᾱα)sin(β̄β) , (9)

{vj , pjβ, σ
j
βz}(α, β, z) = {V j , P j

β ,Σ
j
βz}(z)sin(ᾱα)cos(β̄β) , (10)

{wj , pjz, σ
j
αα, σ

j
ββ , σ

j
zz}(α, β, z) = {W j , P j

z ,Σ
j
αα,Σ

j
ββ,Σ

j
zz}(z)sin(ᾱα)sin(β̄β) , (11)

σj
αβ(α, β, z) = Σj

αβ(z)cos(ᾱα)cos(β̄β) . (12)

The index j is used for the indication of mathematical layers. The system (α, β, z) is constituted by
general orthogonal curvilinear coordinates. U j, V j and W j are the three displacement amplitudes in
directions α, β and z, respectively. P j

α, P
j
β and P j

z are the three load amplitudes in directions α, β

and z, respectively. Σj
αα, Σ

j
ββ, Σ

j
zz, Σ

j
βz, Σ

j
αz and Σj

αβ are the stress amplitudes. Terms ᾱ = mπ
a and

β̄ = nπ
b are calculated using half-wave numbers m and n and the shell dimensions a and b in α and β

directions. These last quantities are evaluated at the reference surface Ω0 of the structure. The mid
surface Ω0 of a 3D shell is equidistant from the external surfaces. The distance between the external
surfaces evaluated along the direction perpendicular to the mid-surface Ω0 is the global thickness h of
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the shell [47], [48]. Mean radii of curvature Rα and Rβ are defined in α and β directions at the reference
mid-surface Ω0.

Proposed structures are simply supported along the edges:

w = v = 0, σαα = 0 for α = 0, a , (13)

w = u = 0, σββ = 0 for β = 0, b , (14)

conditions given by Eqs.(13) and (14) are automatically satisfied thanks the harmonic forms written in
Eqs.(9)-(12) for displacements and stresses. The load conditions at the external surfaces in the three
directions z, α and β are imposed as:

σzz = pz , σαz = pα , σβz = pβ for z = −h/2,+h/2 or z̃ = 0, h , (15)

loads pz, pα and pβ are imposed as transverse normal and transverse shear stresses at the top and at
the bottom of the entire multilayered plate or shell.

The substitution of Eqs.(1)-(4) and (9)-(12) in the 3D equilibrium Eqs.(6)-(8) gives the relative
closed form:

(

−
Cj
55H

j
β

Hj
αR2

α

−
Cj
55

RαRβ
− ᾱ2

Cj
11H

j
β

Hj
α

− β̄2C
j
66H

j
α

Hj
β

)

U j +
(

− ᾱβ̄Cj
12 − ᾱβ̄Cj

66

)

V j+

(

ᾱ
Cj
11H

j
β

Hj
αRα

+ ᾱ
Cj
12

Rβ
+ ᾱ

Cj
55H

j
β

Hj
αRα

+ ᾱ
Cj
55

Rβ

)

W j +
(Cj

55H
j
β

Rα
+

Cj
55H

j
α

Rβ

)

U j
,z +

(

ᾱCj
13H

j
β+ (16)

ᾱCj
55H

j
β

)

W j
,z +

(

Cj
55H

j
αH

j
β

)

U j
,zz = 0 ,

(

− ᾱβ̄Cj
66 − ᾱβ̄Cj

12

)

U j +
(

−
Cj
44H

j
α

Hj
βR

2
β

−
Cj
44

RαRβ
− ᾱ2

Cj
66H

j
β

Hj
α

− β̄2C
j
22H

j
α

Hj
β

)

V j+

(

β̄
Cj
44H

j
α

Hj
βRβ

+ β̄
Cj
44

Rα
+ β̄

Cj
22H

j
α

Hj
βRβ

+ β̄
Cj
12

Rα

)

W j +
(Cj

44H
j
α

Rβ
+

Cj
44H

j
β

Rα

)

V j
,z +

(

β̄Cj
44H

j
α+ (17)

β̄Cj
23H

j
α

)

W j
,z +

(

Cj
44H

j
αH

j
β

)

V j
,zz = 0 ,

(

ᾱ
Cj
55H

j
β

Hj
αRα

− ᾱ
Cj
13

Rβ
+ ᾱ

Cj
11H

j
β

Hj
αRα

+ ᾱ
Cj
12

Rβ

)

U j +
(

β̄
Cj
44H

j
α

Hj
βRβ

− β̄
Cj
23

Rα
+ β̄

Cj
22H

j
α

Hj
βRβ

+ β̄
Cj
12

Rα

)

V j+

( Cj
13

RαRβ
+

Cj
23

RαRβ
−

Cj
11H

j
β

Hj
αR2

α

−
2Cj

12

RαRβ
−

Cj
22H

j
α

Hj
βR

2
β

− ᾱ2
Cj
55H

j
β

Hj
α

− β̄2C
j
44H

j
α

Hj
β

)

W j+ (18)

(

− ᾱCj
55H

j
β − ᾱCj

13H
j
β

)

U j
,z +

(

− β̄Cj
44H

j
α − β̄Cj

23H
j
α

)

V j
,z +

(Cj
33H

j
β

Rα
+

Cj
33H

j
α

Rβ

)

W j
,z+

(

Cj
33H

j
αH

j
β

)

W j
,zz = 0 .

The above system composed by Eqs.(16)-(18) is a system of three second order partial differential
equations in z. It gives a general three-dimensional shell model where the relations are written for
spherical panels and they automatically degenerate in those for cylindrical shells and plates simply
considering one radius of curvature or both radii of curvature as infinite. The compact system has
already been presented in [29] and [30]. The coefficients are always constant, even if shell structures
and FGM layers are investigated, because of the introduction of the j mathematical layers. The compact
system of Eqs.(16)-(18) is reduced in a system of first order differential equations in z simply doubling
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the number of variables as demonstrated in [32]- [35]. This final compact form for a j generical layer
is:

D
j ∂U

j

∂z̃
= A

j
U

j , (19)

the meaning of vectors in Eq.(19) is ∂U j

∂z̃ = U
j ′ and U

j = [U j V j W j U j ′ V j ′ W j ′]. The employed
thickness coordinate z̃ varies from 0 at the bottom to h at the top. The present work considers different
load boundary conditions with respect to papers [29] and [30] in order to analyze new benchmarks
subjected to different load combinations. The omitted steps are detailed in past author’s works where
the static analysis was performed when only a transverse normal load is applied [29], [30]. The compact
system of Eq.(19) is solved using the exponential matrix method as proposed in [32]- [35]. System in
Eq.(19) can be rearranged as:

D
j
U

j ′ = A
j
U

j , (20)

U
j ′ = D

j−1
A

j
U

j , (21)

U
j ′ = A

j∗
U

j , (22)

where A
j∗ = D

j−1
A

j . Coefficients in matrices D
j, Aj and A

j∗ are not variable in z because of the
introduction of j mathematical layers to consider the shell geometry and the functionally graded laws
for the materials. Constant coefficients, thanks the index j, allow to write the solution of Eq.(22) as
done in [33] and [34]:

U
j(z̃j) = exp(Aj∗z̃j)U j(0) with z̃j ǫ [0, hj ] , (23)

the coordinate z̃j is defined for each j layer (it varies from 0 at the bottom to hj at the top). The
exponential matrix is expanded by means of z̃j = hj for each mathematical j layer:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
+ . . .+

A
j∗N

N !
hj

N
, (24)

the identity matrix I has dimension 6×6. The layer-wise method is based on the interlaminar continuity
of displacements (compatibility conditions):

ujb = uj−1
t , vjb = vj−1

t , wj
b = wj−1

t , (25)

and of transverse normal/shear stresses (equilibrium conditions):

σj
zzb = σj−1

zzt , σj
αzb = σj−1

αzt , σj
βzb = σj−1

βzt , (26)

displacements and transverse stresses at the top (t) of the j-1 layer must be equal to relative displace-
ments and transverse stresses at the bottom (b) of the j layer.

The introduction in the solution of the compatibility conditions proposed in Eq.(25), the equilibrium
conditions proposed in Eq.(26) and the appropriate expansion for the exponential matrix shown in
Eq.(24) gives the following final system:

[

B
M (hM ) Hm

B
1(0)

]

U
1(0) = P , (27)

where the matrix E has dimension 6× 6:

E =

[

B
M (hM ) Hm

B
1(0)

]

, (28)
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the vector U
1(0) of unknowns calculated at the bottom of the first layer and vector P of loads have

dimension 6× 1:

U
1(0) =



















U1(0)
V 1(0)
W 1(0)

U1′(0)

V 1′(0)

W 1′(0)



















, P =

















PM
zt

PM
βt

PM
αt

P 1
zb

P 1
βb

P 1
αb

















. (29)

M and 1 indicate last layer and first layer, respectively. Subscripts t and b indicate the top and the
bottom of the specified layer, respectively. Matrices B

M (hM ) and B
1(0) include information about

geometry and material properties of the proposed plate or shell considering the top of the last layer and
the bottom of the first layer, respectively. Matrix Hm has been developed to consider the compatibility
and equilibrium conditions at each mathematical and physical interface. From the Eq.(29), it is clear
how considered loads can be applied at the top of the last layer M and at the bottom of the first layer
1 in z, β and α directions.

The following compact, linear and algebraic system must be solved:

E U
1(0) = P . (30)

The vector P includes the possible load amplitudes considered at the external surfaces. The method is
based on a layer-wise approach but the 6× 6 matrix E has always the same dimension for any number
M of employed mathematical layers and order of expansion N for the exponential matrix. This 3D
exact shell solution has been implemented in the 3DES code developed by the author in the Matlab
environment as an in-house academic software. Spherical shell relations have been used in 3DES code,
and cylindrical shell and plate benchmarks are analyzed as particular cases. The vector P of loads
in Eq.(29) can include several components depending on the boundary load conditions imposed in
Eqs.(15). The possibilities to be analyzed can be σzz and/or σαz and/or σβz equal 0 or equal the
appropriate load amplitude considered at the top and/or at the bottom of the entire plate or shell.
These possibilities allow several benchmarks as will be seen in Section 3 about results.

The vector U
1(0) containing the unknowns is obtained from the solution of the system indicated

in Eq.(30). This vector includes the three displacements calculated at the bottom of the plate or
shell and the relative derivatives peformed with respect to the z coordinate. From these six unknowns
calculated at the bottom is possible to obtain the 6 × 1 vector U at each thickness position z using
the compatibility and equilibrium conditions as shown in Eqs.(25) and (26). Strain and stress vectors
are obtained at each thickness z coordinate using Eqs.(1)-(4). The proposed 3D shell method is very
accurate in the calculation of displacements because of the layer-wise method. The strain vector is
accurate because in Eqs.(3) and (4) the derivatives of displacements performed with respect to α and
β coordinates are exactly calculated using the harmonic forms, and the derivatives of displacements
performed with respect to z are directly calculated from the solution of the system indicated in Eq.(30).
The proposed method has the same accuracy and potentiality of mixed methods because the derivatives
of displacements made with respect to z have not been evaluated by means of any numerical procedure.
As consequence, exact strain values in the z direction in Eqs.(3) and (4) allow correct stress values
along z direction by using Eqs.(1) and (2).

3 Results

This section about results is organized in two main parts. The first part shows the validation of this
3D exact shell model by means of a literature overview where the proposed model has been compared
with several 3D plate and shell models developed by other authors. The second part gives the new
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benchmarks where for the first time the proposed general exact 3D shell model has been extended to
the static analysis of functionally graded structures in the case of transverse normal and/or transverse
shear loads simultaneously or separately applied at top and/or bottom external surfaces.

3.1 Validation of the model

The present general three-dimensional exact shell theory has been used for the free vibration investi-
gation of single- and multi-layered plates and shells embedding isotropic, orthotropic, composite and
functionally graded layers in [39]- [43] and for the free frequency investigation of single- and double-
walled carbon nanotubes in [49] and [50], respectively. Then, the proposed 3D exact general model has
been extended to the static analysis of plates and shells. 3D static analysis of one-layered and multilay-
ered sandwich and composite structures subjected to transverse normal loads has been proposed in [29].
This type of analysis has been extended to functionally graded plates and shells in [30]. The extension
to transverse shear and transverse normal loads applied to composite and sandwich plates and shells
has been proposed in [31]. The present new work extends the static analysis in the case of several load
combinations (see [31]) to functionally graded structures. The cases discussed in [39]- [43], [49]- [50]
and [29]- [31] also proposed a lot of comparisons with different 3D analytical and numerical solutions
presented in the literature. These assessments are sufficient to validate the model for the new bench-
marks of the next section and to demonstrate how an order N=3 for the expansion of the exponential
matrix andM=300 mathematical layers are always sufficient for the satisfactory analysis of all the cases
proposed in the next part. In particular, a detailed convergence analysis was performed by the author
in [42] for composite and sandwich plates and shells and in [43] for functionally graded plates and shells.
This convergence investigation has been performed for different geometries, materials, thickness ratios
and laminations sequences. From the results proposed in [42] and [43], it is clear how the order N=3 for
the expansion of the exponential matrix and M=300 mathematical layers always guarantee the correct
results. In details, in past author’s works [39]- [43], [49] and [50] the present 3D shell model was success-
fully compared with the three-dimensional theories by Vel and Batra [7] and Srinivas et al. [51] for the
free frequency analysis of isotropic square plates, with the 3D model by Armenakas et al. [52] for the
vibration analysis of isotropic cylinders, with the 3D plate model by Messina [36] developed for mode
analysis of composite laminated plates, with the 3D shell theory by Huang [53] for frequency analysis
of laminated composite spherical and cylindrical shells, with the 3D plate model by Li et al. [9] for free
vibrations of sandwich plates embedding an FGM core comprised between two external classical layers,
with the 3D shell model by Zahedinejad et al. [12] for vibrations of cylindrical shell panels embedding
a single FGM layer. Other validations were proposed in [29]- [31] for the static analysis of plates or
shells subjected to transverse normal loads using the 3D plate solution by Pagano [54] for the bending
of laminated composite and sandwich plates, the 3D method by Ren [55] for the static analysis of
multilayered composite cylindrical shells, the 3D theory by Varadan and Bhaskar [56] for multilayered
cylinders embedding composite layers, the 3D shell solution by Fan and Zhang [38] for multilayered
spherical shells embedding composite layers, the 3D model by Kashtalyan [20] for single-layered FGM
plates and the 3D model by Kashtalyan and Menshykova [21] for sandwich plates embedding a func-
tionally graded material core. Table 1, extracted from the work [30], proposes the comparison between
the present 3D shell model (when N=3 and M=300) and the 3D plate solution by Kashtalyan [20]. A
square simply supported functionally graded plate is investigated when an harmonic transverse normal
load is applied at the top surface (amplitude Pz = 1Pa and half-wave numbers m = n = 1). The
only FGM layer has a shear modulus changing through the thickness direction (−h/2 ≤ z ≤ +h/2)
in accordance with the law G(z) = G0e

γ(z/h−0.5). The isotropic material has Poisson ratio ν0 = 0.3.
The in-plane dimensions are a = b = 3m and the thickness value is h = 1m (very thick plate). The
no-dimensional transverse displacements w̄ = −G0w

Pzh
are evaluated at the middle of the plate when the

parameter γ selected in the exponential law changes. The two 3D solutions are always coincident for
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all γ parameters even if the plate is very thick.
The benchmarks proposed in this work analyze functionally graded plates and shells subjected to

several combinations of transverse normal/shear loads at the external surfaces. This new formulation is
obtained from past papers [29] and [30] about multilayered and FGM plates and shells simply modifying
the load boundary conditions in order to change the load vector. These boundary load conditions in
terms of stresses σαz, σβz and σzz are appropriately modified to consider the new load applications.
However, the three-dimensional equilibrium relations and the solution procedure are the same seen for
the models developed in [29] and [30] for transverse normal loads positioned at the top or at the bottom
of the plates and shells. For these reasons, the use of values N=3 and M=300 is still here sufficient.

3.2 New benchmarks

The four new benchmarks are shown in Figures 1-4 where details about geometry, lamination, material
law and applied loads are given. All the proposed structures are simply supported and the applied
loads are in harmonic form.

Figure 1 proposes the first benchmark (B1) about the one-layered FGM square plate. The two plate
dimensions are a = b = 1m and thickness ratios a/h are 10 and 50. The Young modulus E(z) in the
FGM layer changes through the thickness direction as:

E(z) = Em + (Ec − Em)Vc , (31)

where the Young modulus for the metallic phase is Em = 73GPa, the Poisson ratio for the metallic
phase is νm = 0.3, the Young modulus of the ceramic phase is Ec = 380GPa and the Poisson ratio of
the ceramic phase is νc = 0.3. The volume fraction Vc of the ceramic phase in Eq.(31) is:

Vc =
(2z + h

2h

)p
, (32)

where −h/2 ≤ z ≤ +h/2 (h is the total thickness) and the exponential for the FGM law is p =
0.5, 1.0, 2.0. The transverse normal load has amplitude P t

z = −1Pa at the top and amplitude P b
z =

+1Pa at the bottom considering half-wave numbers m = n = 1. Results for displacements and stresses
are calculated in no-dimensional form:

{ū, v̄, w̄} =
104Em{u, v, w}

P b
zh(a/h)

4
, {σ̄αα, σ̄ββ , σ̄αβ} =

{σαα, σββ , σαβ}

P b
z (a/h)

2
, (33)

{σ̄αz , σ̄βz} =
102{σαz, σβz}

P b
z (a/h)

, σ̄zz = σzz .

Figure 5 shows the three displacement amplitudes through the thickness direction when the thickness
ratio is a/h = 10 and the exponent for the FGM law is p = 0.5. The plate is thick and functionally
graded. For these reasons, constant displacements through the thickness are not possible. Compatibility
conditions have been correctly imposed at each mathematical interface. Figure 6 proposes the six
stress amplitudes through the thickness direction for the same thickness ratio and exponent p already
considered for the displacement evaluation of Figure 5. The only functionally graded layer does not
give any discontinuity in the evaluation of in-plane normal and in-plane shear stresses. Transverse shear
and transverse normal stresses are continuous because only one FGM layer is embedded. Moreover,
the equilibrium conditions have been correctly imposed in the proposed three-dimensional shell theory
for each j mathematical layer. Transverse normal stress σ̄zz at the top and at the bottom is equal to
the applied transverse normal loads at the external surfaces (P t

z = −1Pa and P b
z = +1Pa). Transverse

shear stresses σ̄αz and σ̄βz are zero at the external surfaces because no Pα and Pβ loads have been
applied at the top and/or bottom. The maximum values of transverse shear stresses through the
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thickness direction are not at the middle surface because both high thickness values of the plate and
functionally graded laws for the materials do not give any symmetry in z. Table 2 proposes the six
stress amplitudes and the three displacement amplitudes at the top, middle and bottom of the plate
for moderately thick (a/h = 10) and moderately thin (a/h = 50) plates when the exponential p for the
FGM law is 0.5, 1.0 and 2.0. The same considerations discussed in Figures 5 and 6 are here extended to
further thickness ratios and values of the exponent p. These quantitative values can be used to assess
new numerical and analytical 3D or 2D models developed for functionally graded plates.

Figure 2 shows the second benchmark (B2) about the one-layered FGM cylinder. The structure
has circumferential dimension a = 2πRα and longitudinal dimension b = 20m, and radii of curvature
Rα = 10m and Rβ = ∞. The investigated thickness ratios Rα/h are 10 and 100. The Young modulus
E(z) in the FGM layer changes through the thickness direction with the same law already indicated
in Eqs.(31) and (32). The data about the Young modulii, Poisson ratios, thickness coordinates and
exponential for the FGM law do not change with respect to the benchmark 1 (B1). The applied
transverse shear load has amplitude P t

β = +1Pa at the top and amplitude P b
β = −1Pa at the bottom

using half-wave numbers m = n = 2. Results for displacements and stresses are calculated in no-
dimensional form:

{ū, v̄, w̄} =
104Em{u, v, w}

P t
βh(Rα/h)4

, {σ̄αα, σ̄ββ , σ̄αβ} =
102{σαα, σββ, σαβ}

P t
β(Rα/h)2

, (34)

{σ̄αz , σ̄zz} =
102{σαz , σzz}

P t
β(Rα/h)

, σ̄βz = σβz .

Figure 7 proposes the three displacement amplitudes through the thickness direction when the thickness
ratio is Rα/h = 10 and the exponent for the FGM law is p = 1.0. The cylinder is thick and functionally
graded. The variation of displacements through the thickness is evident and it is not linear because of
the presence of the radius of curvature. Figure 8 gives the six stress amplitudes through the thickness
direction for the same thickness ratio and exponent p considered for the displacement visualization. The
only functionally graded layer does not give any discontinuity in the evaluation of in-plane normal and
in-plane shear stresses. Transverse shear and transverse normal stresses are continuous because only
one FGM layer is included. The equilibrium and compatibility conditions have been correctly imposed
in the developed three-dimensional shell theory for all the mathematical interfaces. Transverse shear
stress σ̄βz at the top and at the bottom is equal to the positioned transverse shear loads at the external
surfaces (P t

β = +1Pa and P b
β = −1Pa). Transverse shear stress σ̄αz is zero at the external surfaces

because no Pα loads are applied at the top and at the bottom. Transverse normal stress σ̄zz is zero
at the external surfaces because no Pz loads have been applied at the top and at the bottom. The
maximum values of σ̄αz and σ̄zz through the thickness direction are not at the middle surface because
of the high thickness value of the cylinder. Moreover, the functionally graded law for the material does
not give any symmetry in z. Table 3 proposes the six stress amplitudes and the three displacement
amplitudes at the top, middle and bottom of the cylinder for moderately thick (Rα/h = 10) and
moderately thin (Rα/h = 100) cylinders when the exponential p for the FGM law is 0.5, 1.0 and 2.0.
The same considerations discussed in Figures 7 and 8 are here confirmed for additional thickness ratios
and values of the exponent p. These quantitative values can be used to assess new numerical and
analytical 3D or 2D models developed for functionally graded cylinders.

The third benchmark (B3) is summarized in Figure 3. It considers a sandwich cylindrical shell
including a FGM core. The shell has dimensions a = π

3Rα and b = 20m, and radii of curvature
Rα = 10m and Rβ = ∞. The investigated thickness ratios Rα/h are 10 and 100. h is the global
thickness. The bottom skin is completely metallic with Young modulus Em = 73GPa, Poisson ratio
νm = 0.3 and thickness value h1 = 0.15h. The top skin is completely ceramic with Young modulus
Ec = 200GPa, Poisson ratio νc = 0.3 and thickness value h3 = 0.15h. The internal functionally graded
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core has thickness h2 = 0.7h and the elastic properties vary with continuity from those of the bottom
skin to those of the top skin using Eqs.(31) and (32) where −0.7h/2 ≤ z ≤ +0.7h/2 (0.7h is the core
thickness). The exponential for the FGM law is p = 0.5, 1.0, 2.0. In Eq.(32), the thickness h must be
replaced by the thickness 0.7h of the core. The applied transverse shear load has amplitude P t

β = +1Pa

at the top and amplitude P b
β = 0Pa at the bottom with half-wave numbers m = n = 1. Displacements

and stresses have the same no-dimensional forms already seen in Eqs.(34) for the benchmark 2 (B2).
Figure 9 proposes the three displacement amplitudes through the thickness direction when the thickness
ratio is Rα/h = 10 and the exponent for the FGM law is p = 2.0. The cylindrical shell is a sandwich
configuration but the typical zigzag form of displacements is not clearly shown in the figure because
the FGM core properties change with continuity from those of the full ceramic skin to those of the full
metallic skin. Figure 10 shows the six stress components along the thickness direction for the same
thickness ratio and exponent p considered for the displacement visualization of Figure 9. In-plane
shear and in-plane normal stresses are continuous through the thickness direction even if a sandwich
configuration is analyzed because of the use of the FGM core. However, the change in slope for skins
and core is evident. Transverse shear and transverse normal stresses are continuous because of the use
of the FGM core and because the equilibrium conditions for transverse stresses have been correctly
introduced in the shell model. Transverse normal stress σ̄zz at the top and at the bottom is equal
zero because no external transverse normal loads Pz have been applied. Transverse shear stress σ̄αz is
zero at the external surfaces because no transverse shear loads Pα have been applied at the top and at
the bottom of the shell. Transverse shear stress σ̄βz is zero at the bottom and equals one at the top
because the load conditions are P b

β = 0Pa at the bottom and P t
β = +1Pa at the top, respectively. The

maximum values of σ̄αz and σ̄zz through the thickness direction is not at the middle surface because
of the high thickness value of the cylindrical shell, the functionally graded law for the core and the
different material for the two external skins. All these features do not give any symmetry in z. Table
4 proposes the three displacement components and the six stress components at the top, middle and
bottom of the cylinder for moderately thick (Rα/h = 10) and moderately thin (Rα/h = 100) cylindrical
shells when the exponential p for the FGM law is 0.5, 1.0 and 2.0. The same considerations discussed
in Figures 9 and 10 are here confirmed for these additional thickness ratios and values of the exponent
p. These quantitative values can be used to assess new numerical and analytical 3D or 2D models
developed for sandwich cylindrical shells embedding an FGM core.

The last benchmark (B4) of Figure 4 considers a sandwich spherical shell embedding a FGM core.
The dimensions of the structure are a = b = π

3Rα = π
3Rβ, where radii of curvature are Rα = Rβ = 10m

and thickness ratios Rα/h can be 10 or 100 (where h is the total thickness). The applied transverse
shear load has amplitude P t

α = +1Pa at the top and amplitude P b
α = −1Pa at the bottom considering

half-wave numbers m = n = 1. As clearly shown in Figures 3 and 4, cylindrical shell and spherical
shell have the same lamination scheme and the same material properties. Therefore, the thickness of
skins and core, elastic properties of skins and core and the FGM law do not change with respect to
the benchmark 3 (B3). The no-dimensional forms of displacements and stresses are similar to those
already proposed in Eqs.(34) for benchmarks 2 and 3. The only differences are the use of the load
P t
α in place of the load P t

β , and the exchange of σβz and σ̄βz for σαz and σ̄αz, respectively. Figure
11 proposes the three displacement amplitudes through the thickness direction when the thickness
ratio is Rα/h = 10 and the exponent for the FGM law is p = 2.0. The spherical shell is a sandwich
configuration but the classical zigzag form of displacements is not shown because the core is in FGM.
Compatibility conditions have been correctly imposed in the theory at each mathematical interface.
Figure 12 gives the six stress amplitudes through the thickness direction for the same thickness ratio
and exponent p already considered for the displacement visualization in Figure 11. In-plane shear and
in-plane normal stresses are continuous through the thickness direction even if a sandwich configuration
is analyzed because of the use of the FGM core. However, the change in slope for skins and core is
clear. This feature is more evident with respect to the benchmark 3 about the cylindrical shell because
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the presence of two radii of curvature in the spherical shell geometry gives a complete coupling between
the three displacement components. Transverse shear and transverse normal stresses are continuous
because of the use of the FGM core and because the equilibrium conditions for transverse stresses
have been correctly introduced in the shell theory. Transverse normal stress σ̄zz at the top and at the
bottom is equal zero because no external transverse normal loads Pz have been applied. Transverse
shear stress σ̄βz is zero at the external surfaces because no transverse shear load Pβ has been applied
at the top and at the bottom of the shell. Transverse shear stress σ̄αz at the external surfaces is equal
to the imposed values of transverse normal load Pα (+1Pa at the top and −1Pa at the bottom). The
maximum values of σ̄βz and σ̄zz through the thickness direction is not at the middle surface because of
the high thickness value of the spherical shell, the functionally graded law for the core and the different
material for the two external skins. These features do not give any symmetry in z. Table 5 proposes
the three displacement components and the six stress components at the top, middle and bottom of the
spherical shell for moderately thick (Rα/h = 10) and moderately thin (Rα/h = 100) structures when
the exponential p for the FGM law is 0.5, 1.0 and 2.0. The same considerations discussed in Figures
11 and 12 are here confirmed for these additional thickness ratios and values of the exponent p. These
quantitative values can be used to assess new numerical and analytical 3D or 2D models developed for
sandwich spherical shells embedding an FGM core.

4 Conclusions

The present paper proposes an exact general 3D shell model in layer-wise form for the static analysis
of functionally graded structures. The investigated geometries are plates, cylinders, cylindrical shells
and spherical shells. The first two geometries are considered as one-layered embedding a functionally
graded material with different thickness laws. The last two geometries show a sandwich configuration
where the FGM core is comprised between two classical external layers (complete ceramic at the top
and complete metallic at the bottom). The novelty of the work, with respect the present state of the
art, is the possibility of different load applications at the external surfaces of the considered structures.
In particular, transverse shear and transverse normal loads can be simultaneously or separately applied
at bottom and/or top external surfaces. The proposed general model gives correct 3D exact results for
each geometry, thickness ratio, lamination scheme, functionally graded material and load combination.
In each case the continuity of displacements and transverse stresses has been correctly introduced in the
theory. Moreover, the external load boundary conditions are always satisfied. The advantages connected
with the use of FGM layers or FGM cores in sandwich configurations have been further analyzed by
demonstrating that the use of FGM cores allows the continuity of in-plane stresses at the interfaces
between the core and the skins. This feature is not possible in classical sandwich configurations that
do not make use of the FGM core. The advantage of the proposed 3D exact shell solution is the
development of a unique tool for the layer wise analysis of different geometries (plates, cylinders,
cylindrical and spherical panels) embedding isotropic, orthotropic, composite and functionally graded
materials. Exact 3D solutions in the literature are usually less general than the model here proposed.
A future development of the present work will be a possible extension to the finite element analysis in
order to include boundary conditions different from the simply supported ones, loads different form the
harmonic ones and lamination schemes different from the classical cross-ply configurations.
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γ 3D [20] Present 3D

10−1 -1.4146 -1.4146
10−2 -1.3496 -1.3496
10−3 -1.3433 -1.3433
10−4 -1.3426 -1.3426
10−5 -1.3426 -1.3426
10−6 -1.3426 -1.3426
−10−1 -1.2740 -1.2740
−10−2 -1.3355 -1.3355
−10−3 -1.3419 -1.3418
−10−4 -1.3425 -1.3425
−10−5 -1.3425 -1.3425
−10−6 -1.3425 -1.3425

Table 1: Preliminary assessment, one-layered FGM plate. No-dimensional transverse displacement
w̄ = −G0w

Pzh
calculated at z = 0. Present 3D solution (with N=3 and M=300) compared with the 3D

solution proposed by Kashtalyan [20].

ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz

(α,β) (0, b
2
) ( a

2
, 0) ( a

2
, b
2
) ( a

2
, b
2
) ( a

2
, b
2
) (0, 0) ( a

2
, b
2
) (0, b

2
) ( a

2
, 0)

p = 0.5

a/h=10
z = −h/2 -29.616 -29.616 -169.96 0.1600 0.1600 -0.0839 1.0000 0.0000 0.0000
z = 0 -3.7973 -3.7973 -172.10 0.0682 0.0682 -0.0364 0.1368 -48.643 -48.643
z = h/2 22.136 22.136 -170.92 -0.5211 -0.5211 0.2783 -1.0000 0.0000 0.0000

a/h=50
z = −h/2 -5.9491 -5.9491 -165.26 0.1566 0.1566 -0.0842 1.0000 0.0000 0.0000
z = 0 -0.7642 -0.7642 -165.35 0.0681 0.0681 -0.0366 0.1367 -48.725 -48.725
z = h/2 4.4216 4.4216 -165.30 -0.5163 -0.5163 0.2779 -1.0000 0.0000 0.0000

p = 1.0

a/h=10
z = −h/2 -40.756 -40.756 -218.86 0.1885 0.1885 -0.0992 1.0000 0.0000 0.0000
z = 0 -7.5347 -7.5347 -221.94 0.1055 0.1055 -0.0564 0.2006 -47.657 -47.657
z = h/2 26.012 26.012 -220.75 -0.6112 -0.6112 0.3268 -1.0000 0.0000 0.0000

a/h=50
z = −h/2 -8.2125 -8.2125 -213.52 0.1857 0.1857 -0.0999 1.0000 0.0000 0.0000
z = 0 -1.5136 -1.5136 -213.66 0.1052 0.1052 -0.0566 0.2001 -47.743 -47.743
z = h/2 5.1881 5.1881 -213.61 -0.6054 -0.6054 0.3259 -1.0000 0.0000 0.0000

p = 2.0

a/h=10
z = −h/2 -54.404 -54.404 -278.87 0.2484 0.2484 -0.1315 1.0000 0.0000 0.0000
z = 0 -12.432 -12.432 -283.12 0.1150 0.1150 -0.0614 0.2191 -45.215 -45.215
z = h/2 30.341 30.341 -281.99 -0.7112 -0.7112 0.3807 -1.0000 0.0000 0.0000

a/h=50
z = −h/2 -10.992 -10.992 -271.28 0.2468 0.2468 -0.1328 1.0000 0.0000 0.0000
z = 0 -2.4844 -2.4844 -271.46 0.1140 0.1140 -0.0614 0.2171 -45.315 -45.315
z = h/2 6.0302 6.0302 -271.41 -0.7027 -0.7027 0.3783 -1.0000 0.0000 0.0000

Table 2: Benchmark 1, 3D exact displacements and stresses for the one-layered FGM square plate.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz

(α,β) (0, b
2
) ( a

2
, 0) ( a

2
, b
2
) ( a

2
, b
2
) ( a

2
, b
2
) (0, 0) ( a

2
, b
2
) (0, b

2
) ( a

2
, 0)

p = 0.5

Rα/h=10
z = −h/2 -1.2297 6.2824 3.7386 -0.0890 -2.3392 0.1239 0.0000 0.0000 -1.0000
z = 0 -1.4920 5.3603 4.0047 0.1548 -6.6643 0.1027 -0.9147 0.2668 -0.1169
z = h/2 -1.7666 4.8295 4.2211 0.6579 -7.6952 -0.1902 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.0164 0.0540 0.0344 0.0196×10−2 -0.1986 0.1281×10−2 0.0000 0.0000 -1.0000
z = 0 -0.0166 0.0534 0.0346 0.4092×10−2 -0.6644 0.1819×10−2 -0.9265×10−2 0.2426×10−2 -0.2072
z = h/2 -0.0169 0.0528 0.0349 0.9716×10−2 -0.8607 -0.0829×10−2 0.0000 0.0000 1.0000

p = 1.0

Rα/h=10
z = −h/2 -1.2567 8.0859 5.4533 -0.0617 -2.5766 0.1767 0.0000 0.0000 -1.0000
z = 0 -1.6095 6.6903 5.7796 0.3276 -6.4372 0.1945 -0.9576 0.2817 -0.2285
z = h/2 -1.9779 5.8590 6.0329 1.2039 -9.2074 -0.1268 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.0198 0.0663 0.0431 0.0894×10−2 -0.2093 0.1682×10−2 0.0000 0.0000 -1.0000
z = 0 -0.0201 0.0655 0.0434 0.6111×10−2 -0.6355 0.1715×10−2 -0.9720×10−2 1.2293×10−2 -0.3303
z = h/2 -0.0204 0.0648 0.0437 1.5699×10−2 -1.0543 0.0559×10−2 0.0000 0.0000 1.0000

p = 2.0

Rα/h=10
z = −h/2 -1.3605 11.811 7.9478 -0.0430 -3.4093 0.2733 0.0000 0.0000 -1.0000
z = 0 -1.8461 8.7936 8.3712 0.3918 -5.5594 0.2354 -0.9722 0.2999 -0.3168
z = h/2 -2.3540 7.5206 8.6868 1.9551 -11.679 -0.0465 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.0253 0.0857 0.0567 0.1888×10−2 -0.2687 0.2515×10−2 0.0000 0.0000 -1.0000
z = 0 -0.0257 0.0847 0.0571 0.6772×10−2 -0.5422 0.3017×10−2 -0.9929×10−2 0.2247×10−2 -0.4291
z = h/2 -0.0262 0.0838 0.0575 2.4346×10−2 -1.3601 0.2430×10−2 0.0000 0.0000 1.0000

Table 3: Benchmark 2, 3D exact displacements and stresses for the one-layered FGM cylinder.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz

(α,β) (0, b
2
) ( a

2
, 0) ( a

2
, b
2
) ( a

2
, b
2
) ( a

2
, b
2
) (0, 0) ( a

2
, b
2
) (0, b

2
) ( a

2
, 0)

p = 0.5

Rα/h=10
z = −h/2 -34.275 10.357 -64.686 3.8755 -0.4643 -0.8128 0.0000 0.0000 0.0000
z = 0 -26.060 15.457 -64.802 1.5422 -4.9097 0.4655 1.1740 -4.8336 0.1288
z = h/2 -17.865 20.770 -64.212 -5.9907 -10.736 3.2962 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.4077 0.1913 -1.0812 0.0577 -0.2832 -0.0244 0.0000 0.0000 0.0000
z = 0 -0.3935 0.1998 -1.0808 0.0135 -0.6950 -0.0159 0.0222 -0.0829 0.3361
z = h/2 -0.3792 0.2083 -1.0803 -0.1235 -0.9337 0.0276 0.0000 0.0000 1.0000

p = 1.0

Rα/h=10
z = −h/2 -37.066 11.294 -69.277 4.2642 -0.4948 -0.8676 0.0000 0.0000 0.0000
z = 0 -28.319 16.753 -69.417 1.6151 -4.3917 0.4145 1.1142 -4.6519 0.1064
z = h/2 -19.560 22.423 -68.805 -6.0842 -11.475 3.5133 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.4511 0.2114 -1.1946 0.0658 -0.3124 -0.0273 0.0000 0.0000 0.0000
z = 0 -0.4354 0.2208 -1.1942 0.0162 -0.6423 -0.0153 0.0222 -0.0825 0.3052
z = h/2 -0.4196 0.2302 -1.1936 -0.1310 -1.0302 0.0296 0.0000 0.0000 1.0000

p = 2.0

Rα/h=10
z = −h/2 -39.884 12.515 -73.908 4.6435 -0.5728 -0.8896 0.0000 0.0000 0.0000
z = 0 -30.617 18.342 -74.062 1.4841 -3.6450 0.3816 1.0759 -4.5411 0.0929
z = h/2 -21.309 24.376 -73.419 -6.1798 -12.344 3.8117 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.5050 0.2366 -1.3358 0.0752 -0.3490 -0.0307 0.0000 0.0000 0.0000
z = 0 -0.4874 0.2471 -1.3354 0.0163 -0.5503 -0.0134 0.0230 -0.0848 0.2855
z = h/2 -0.4698 0.2576 -1.3347 -0.1419 -1.1511 0.0326 0.0000 0.0000 1.0000

Table 4: Benchmark 3, 3D exact displacements and stresses for the sandwich cylindrical shell embedding
a FGM core.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz

(α,β) (0, b
2
) ( a

2
, 0) ( a

2
, b
2
) ( a

2
, b
2
) ( a

2
, b
2
) (0, 0) ( a

2
, b
2
) (0, b

2
) ( a

2
, 0)

p = 0.5

Rα/h=10
z = −h/2 16.139 2.5003 18.052 -3.1462 0.1668 2.2638 0.0000 -1.0000 0.0000
z = 0 13.575 -0.1403 18.279 -4.1926 2.8566 3.4524 -1.6845 0.0893 2.2257
z = h/2 11.809 -2.8019 18.202 -2.6501 6.1476 2.7117 0.0000 1.0000 0.0000

Rα/h=100
z = −h/2 0.1426 0.4049×10−2 0.2106 -0.1739 0.1473 0.1700 0.0000 -1.0000 0.0000
z = 0 0.1400 0.0894×10−2 0.2107 -0.3600 0.3552 0.3622 -0.0193 -0.2034 0.0266
z = h/2 0.1376 -0.2260×10−2 0.2107 -0.4101 0.4697 0.4257 0.0000 1.0000 0.0000

p = 1.0

Rα/h=10
z = −h/2 18.049 2.9605 20.282 -3.5217 0.1436 2.5518 0.0000 -1.0000 0.0000
z = 0 15.175 0.0181 20.541 -3.9339 2.5921 3.2708 -1.6686 0.0321 2.2574
z = h/2 13.137 -2.9634 20.460 -2.9090 6.7855 3.0629 0.0000 1.0000 0.0000

Rα/h=100
z = −h/2 0.1582 0.4720×10−2 0.2340 -0.1930 0.1630 0.1890 0.0000 -1.0000 0.0000
z = 0 0.1554 0.1218×10−2 0.2340 -0.3345 0.3294 0.3372 -0.0193 -0.2651 0.0266
z = h/2 0.1527 -0.2285×10−2 0.2340 -0.4549 0.5201 0.4731 0.0000 1.0000 0.0000

p = 2.0

Rα/h=10
z = −h/2 20.276 3.4064 22.819 -3.9597 0.1383 2.8765 0.0000 -1.0000 0.0000
z = 0 17.092 0.1239 23.113 -3.4261 2.1765 2.8422 -1.6514 0.0021 2.3270
z = h/2 14.755 -3.2169 23.028 -3.2787 7.5430 3.4739 0.0000 1.0000 0.0000

Rα/h=100
z = −h/2 0.1776 0.5478×10−2 0.2628 -0.2166 0.1827 0.2123 0.0000 -1.0000 0.0000
z = 0 0.1745 0.1545×10−2 0.2629 -0.2880 0.2830 0.2906 -0.0195 -0.3012 0.0275
z = h/2 0.1714 -0.2389×10−2 0.2628 -0.5105 0.5829 0.5317 0.0000 1.0000 0.0000

Table 5: Benchmark 4, 3D exact displacements and stresses for the sandwich spherical shell embedding
a FGM core.
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Benchmark 1 (B1): one-layered FGM square plate

P (top)=-1Pa (m=n=1)z

P (bottom)=+1Pa (m=n=1)z

Figure 1: Geometry, lamination, materials and loads for the benchmark 1 (B1) about the one-layered
FGM square plate.

Benchmark 2 (B2): one-layered FGM cylinder

Pb (top)=+1Pa (m=n=2)

Pb (bottom)=-1Pa (m=n=2)

Figure 2: Geometry, lamination, materials and loads for the benchmark 2 (B2) about the one-layered
FGM cylinder.

Pb (top)=+1Pa (m=n=1)

Pb (bottom)=0Pa

Benchmark 3 (B3): sandwich FGM cylindrical shell

Figure 3: Geometry, lamination, materials and loads for the benchmark 3 (B3) about the sandwich
cylindrical shell embedding a FGM core.
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Pa(bottom)=-1Pa (m=n=1)

Pa(top)=+1Pa (m=n=1)

Benchmark 4 (B4): sandwich FGM spherical shell

Figure 4: Geometry, lamination, materials and loads for the benchmark 4 (B4) about the sandwich
spherical shell embedding a FGM core.
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Figure 5: Benchmark 1, no-dimensional displacements through the thickness z̃ for a/h = 10 and p = 0.5.
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Figure 6: Benchmark 1, no-dimensional stresses through the thickness z̃ for a/h = 10 and p = 0.5.
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Figure 8: Benchmark 2, no-dimensional stresses through the thickness z̃ for Rα/h = 10 and p = 1.0.
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Figure 9: Benchmark 3, no-dimensional displacements through the thickness z̃ for Rα/h = 10 and
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Figure 10: Benchmark 3, no-dimensional stresses through the thickness z̃ for Rα/h = 10 and p = 2.0.
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Figure 11: Benchmark 4, no-dimensional displacements through the thickness z̃ for Rα/h = 10 and
p = 2.0.
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Figure 12: Benchmark 4, no-dimensional stresses through the thickness z̃ for Rα/h = 10 and p = 2.0.
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