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Coherent vortices in two-dimensional turbulence induce far-field effects that stabilize vorticity
filaments and inhibit the generation of new vortices. We show that the large-scale energy sink often
included in numerical simulations of statistically stationary two-dimensional turbulence reduces the
stabilizing role of the vortices, leading to filament instability and to continuous formation of new coherent
vortices. This counterintuitive effect sheds new light on the mechanisms responsible for vortex formation
in forced-dissipated two-dimensional turbulence, and it has significant impact on the temporal evolution
of the vortex population in freely decaying turbulence. The time dependence of vortex statistics in the
presence of a large-scale energy sink can be approximately described by a modified version of the scaling
theory developed for small-scale dissipation.
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Two-dimensional (2D) barotropic turbulence is one of
the simplest theoretical models used to describe the dy-
namics of rotation-dominated turbulent geophysical flows
in the ocean and the atmosphere [1,2]. Barotropic turbu-
lence is characterized by the presence of strong coherent
vortices that live for a large number of vortex rotation
periods [3–6]. The vortices account for a large portion of
the energy and the enstrophy (squared vorticity) of the flow
[5,6], trap fluid for long times [7,8], and induce non-
Gaussian velocity distributions in the surrounding turbu-
lent flow, with significant effects on particle transport [9–
12].

The dynamics of 2D (or barotropic) turbulence on the
horizontal plane �x; y� and as a function of time t is
described by the vorticity equation
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� J� ;!� � Dhigh �Dlow � F; (1)

where ! � r2 is vorticity,  �x; y; t� is the stream func-
tion, and r2 is the horizontal Laplacian. The symbol
J� ;!� denotes the Jacobian, J�a; b� � @a
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The symbols Dhigh and Dlow denote dissipation operators
at high and low wave numbers, respectively, and F indi-
cates a forcing term. At large Reynolds number (i.e., when
dissipation and forcing are small enough), a random initial
vorticity field evolves spontaneously into an ensemble of
coherent vortices [3,5,13]. The coherent vortices are im-
mersed in a background turbulent field that contains a large
number of vorticity filaments, generated during dissipative
interactions such as vortex merging and vortex stripping.

When dissipation is present but forcing is absent, the
turbulent flow is freely decaying, and the system tends, on
long times, to a state of rest. Usually, freely decaying
turbulence is dissipated only at small scales, with a dis-
sipation operator of the form Dhigh � ��1�n�1�nr2n!,
05=95(1)=014503(4)$23.00 01450
where �n is a viscosity coefficient and n defines the order
of the viscosity operator [3,6,13]. For n � 1, standard
Newtonian viscosity is recovered, and n > 1 corresponds
to hyperviscosity. Note that, in general, hyperviscosity is
taken as a parametrization of the small-scale energy sink
associated with unresolved processes.

In order to obtain a statistically stationary flow in the
presence of dissipation, forcing must be introduced.
Because of the inverse cascade, in forced turbulence en-
ergy piles up at the scales of the simulation domain and a
large-scale energy sink becomes necessary [5,7,14,15].
Large-scale dissipation is typically obtained by a hypovis-
cosity term, Dlow � ��1�m�1Kmr

�2m!, where m is a
positive constant. This form confines dissipation at very
low wave numbers. In the following, we use the value m �
1, which gives Dlow � K1 . Physically, large-scale dissi-
pation is taken as a parametrization of the large-scale
energy sinks associated with the presence of Rossby waves
(due to topography and/or variations in the Coriolis pa-
rameter), free-surface effects, interaction with the bottom
and the boundaries, and interaction with stable circulation
systems at large scales. In this work we show that the
presence of a large-scale energy sink significantly affects
filament dynamics.

When no vortices are present, isolated vorticity fila-
ments are unstable and roll up to form new vortices [16].
In freely decaying turbulence with small-scale dissipation,
filaments generated during vortex interactions are stabi-
lized by the presence of the vortices and do not roll up [16–
20]. In such conditions, barotropic vortices exert their
stabilizing influence to large distances, due to the logarith-
mic form of the Green’s function for 2D flows [10,11].
Modifications of the Green’s function that reduce the range
of the interactions, such as the presence of strong barocli-
nicity, reduce the stabilizing effect of the vortices [21,22].
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In statistically stationary, forced-dissipated 2D turbu-
lence, the number of vortices remains approximately con-
stant in time; new coherent vortices are necessarily
generated as the vortices have a finite lifetime. Some
mechanism that overcomes the stabilizing effect of the
vortices must thus be present. One such mechanism is
the forcing itself, which allows vorticity peaks in the
background to grow into coherent vortices [23]. As dis-
cussed here, another mechanism is associated with the
presence of the large-scale energy sink, which breaks the
far-field effect of the vortices and allows for filament
instability, even in the absence of forcing.

To illustrate this effect, we first consider the case of an
individual merging event. We numerically integrate the
vorticity Eq. (1) with a pseudospectral code on a doubly
periodic domain �2�; 2�� with a spatial resolution of 2562

collocation points [7,20]. We include small-scale dissipa-
tion and no forcing, and we consider two cases character-
ized by the presence or absence of a large-scale energy
sink. Here we use hyperviscosity with n � 4 and, when
present, hypoviscosity with m � 1. The initial condition is
given by a pair of same-sign identical vortices with the
Gaussian profile,!�r� � !0 exp��

r2

r20
� with r0 � �=5. The

initial distance between the two vortex centers is d �
2�=5, which is less than the critical merging distance for
these vortices [24].

Figure 1 shows the outcome of the merging when only
small-scale dissipation is present (left panel) and when
large-scale dissipation is also active (right panel). During
vortex merging, vorticity filaments are ejected, and they
form an almost circular ring around the merged vortices.
When only small-scale dissipation is present, no filament
instability is detected, as the filaments are stabilized by the
long-range strain field induced by the central vortices [16–
18,20]: Filaments are stable when the square ratio of
filament vorticity to the strain field induced by the vortices,
�2 � !2

f=S
2
v, is less than �2

0 � 0:25 [here, S2v � �@xu�
@yv�

2 � �@xv� @yu�
2]. When large-scale dissipation is

included, the situation changes dramatically. The presence
of a large-scale energy sink reduces the long-range inhib-
FIG. 1. Vorticity contours after the merging of two same-sign
vortices when only small-scale dissipation is present (left) and
also when a large-scale energy sink is present (right). The initial
conditions are the same for the two cases.
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iting effect of the vortices, and the filaments can undergo
instability and roll-up.

Filament vorticity has its main spectral components at
small scale, while the far field of the vortices is dominated
by the long-wave components. These components are most
readily eliminated by large-scale dissipation, which damps
more effectively the long-range velocity field induced by
the vortices than the small-scale filament vorticity. Figure 2
shows the energy spectra after the merging, E�k�, both with
(dashed line) and without (solid line) large-scale dissipa-
tion. As expected, without a large-scale energy sink the
spectrum is peaked at the scale of the simulation box, k �
1, and the behavior of the velocity field has a strong non-
local component. With large-scale dissipation, nonlocality
is broken, the energy content at large scales decreases with
time, and the energy spectrum peaks at an intermediate
wave number. The inset of Fig. 2 shows the temporal
evolution of the parameter �2 (averaged over the area
outside the central vortices) for the two cases with and
without large-scale dissipation. When only small-scale
dissipation is present, �2 stays below 0.25, and the fila-
ments are stable. When large-scale dissipation is also
present, �2 is above 0.25, and the filaments are unstable.

The presence of filament instability has major effects on
the evolution of the vortex population that emerges from
random initial conditions. To illustrate this, we numerically
integrate the unforced 2D vorticity Eq. (1) on a square peri-
odic domain �2�; 2�� with resolution 10242 grid points.
For consistency with previous works [6,13], we use small-
scale dissipation with n�2 and �2 � 2:2� 10�10. Large-
scale dissipation, when present, has order m�1 and K1�
1 [25]. The initial vorticity field has a narrow-band energy
 0.01

 0.0001

 1  10  100

k

FIG. 2. Energy spectrum after merging, as a function of the
radial wave number, k. The solid line is for the case where no
large-scale dissipation is present, and the dashed line refers to
the case with a large-scale energy sink. The inset shows the time
evolution of the stability parameter �2 � !2

f=S
2
v without (solid

line) and with (dashed line) large-scale dissipation. The line at
�2

0 � 0:25 separates stable filaments for �2 <�2
0 from unstable

filaments for �2 >�2
0 [20].
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spectrum E�k�/k6=�1�k=k0�
18 with k0 � 60 and total

energy Ek �
R
E�k�dk � 0:5 [13].

Figure 3 shows the time evolution of the number of
vortices when only small-scale dissipation is present (solid
curve) and when large-scale dissipation is also added
(dashed line). The vortices have been identified by the
vortex census algorithm described in [11–13]. In the ab-
sence of large-scale dissipation, the number of vortices
decays according to the scaling theory of Carnevale et al.
with a scaling exponent � � 0:72 [26,27].

The addition of a large-scale energy sink slows down the
decay of the number of vortices: Some of the filaments
produced during vortex merging become unstable, and, as
a result, the decay in the total number of vortices is slower.
At time T � 20, one observes approximately 30% more
vortices when large-scale dissipation is present. However,
kinetic energy decreases faster when large-scale dissipa-
tion is present: At time T � 20 the kinetic energy of the
flow with no large-scale dissipation is Ek�T� � 0:97Ek�0�,
while that of the flow that is dissipated also at large scales
is Ek�T� � 0:38Ek�0�. Naively, one could have expected
that a faster decay of kinetic energy would have led to a
faster decrease of the vortex number. This is not the case,
because of the mechanism of filament instability that is
triggered by the large-scale energy sink.

Experimentation with the intensity of the large-scale
dissipation, K1, shows a dependence of the effect on the
value of K1. When K1 is too large, the vortex population is
rapidly dissipated. When K1 is too small, the far-field
stabilizing effect of the existing vortices is not eliminated
and few new vortices are generated. In order to see filament
instability and generation of new vortices, the large-scale
dissipation should be in an intermediate range where it can
affect the far field of the vortices without destroying them.

Since the new vortices are generated by filament insta-
bility, one expects an excess of small vortices in compari-
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FIG. 3. Number of vortices as a function of time, starting from
random initial conditions, when only a small-scale dissipation is
present (solid line) and when a large-scale energy sink is also
included (dashed line). The dotted line shows the prediction of
the scaling theory of Carnevale et al. [26,27].
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son to the case with small-scale dissipation only. Figure 4
shows the time evolution of the average vortex radius for
the two cases. When large-scale dissipation is present, the
average vortex radius is smaller, and it grows more slowly
than predicted by the scaling theory. The inset of Fig. 4
shows the histogram of the vortex radii, n�r�, at time t �
15: A much larger number of small vortices is present
when large-scale dissipation is active, while the number
of vortices with larger radius is approximately unchanged.

The results reported above indicate that when a large-
scale energy sink is present, the scaling theory discussed by
Carnevale et al. [26,27] does not immediately describe the
evolution of the vortex population. In fact, large-scale
dissipation leads to a significant decay of kinetic energy,
contrary to what is observed in the case of small-scale
dissipation only. However, both the kinetic energy carried
by the vortices, Ek;v � N!2ar

4
a, where !a is the average

peak vorticity of the vortices and ra is the average vortex
radius, and the average peak vorticity itself remain ap-
proximately constant. This indicates that most of the en-
ergy dissipation takes place in the background and suggests
that a scaling theory may still approximately hold. In
addition, at late times the vortex number decays approxi-
mately as a power law, N�t� / t�" with " 
 0:52. Using
this value for the scaling exponent, we obtain estimates for
the growth rate of the average vortex radius and for the
average vortex circulation [27]. Figure 5 shows the vortex
number N, the average vortex radius ra, and the average
vortex circulation �a as a function of time, together with
the predictions of the scaling theory with " � 0:52. At late
times, a good agreement between the numerical results and
the modified scaling theory is observed.

An interesting question concerns the difference between
the value of the scaling exponent with and without large-
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FIG. 4. Average vortex radius as a function of time, starting
from random initial conditions, when only small-scale dissipa-
tion is present (solid line) and when a large-scale energy sink is
also included (dashed line). The dotted line shows the prediction
of the scaling theory of Carnevale et al. [26]. The inset shows the
histogram of the vortex radii at time t � 15 without (solid line)
and with (dashed line) the large-scale energy sink.
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FIG. 5. Time evolution of the vortex number, N (solid circles),
of the average vortex radius, ra (solid triangles), of the average
peak vorticity, !a (empty circles), and of the average vortex
circulation, �a (empty triangles), when both small and large-
scale dissipation are present. The dotted lines indicate the
predictions of the scaling theory with modified scaling exponent
" � 0:52, obtained from a fit to the decay of the vortex number.
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scale dissipation. The scaling theory of Carnevale et al. has
been rationalized in terms of the outcome of vortex merg-
ing events, by making the hypothesis that the merging of
two vortices always leads to only one vortex. When large-
scale dissipation is present, filaments produced by the
merging can become unstable and roll up into one or
more small new vortices. In this case, the outcome is not
always just one vortex. This suggests an extension of the
approach based on ‘‘punctuated Hamiltonian dynamics’’
[27,28], where the outcome of point vortex merging is
allowed to be, with some low probability, more than one
vortex.

The results discussed in this Letter indicate that the
direct action of the forcing is not the only mechanism
that can generate new vortices from background vorticity
peaks. Another mechanism, which has been discussed
here, is filament instability and subsequent roll-up, favored
by the presence of a large-scale energy sink that breaks the
far-field effect of the vortices. It is intriguing, and counter-
intuitive, that adding dissipation allows the vortex popula-
tion to survive for a longer time. Other processes may have
a similar effect, such as the presence of a stably stratified
temperature field coupled with two-dimensional turbu-
lence [29], or the presence of magnetic effects. It would
be interesting to verify whether proper modifications of the
scaling theory of Carnevale et al. apply also to these cases.
In fact, any process that breaks the long-range inhibitory
effect of the coherent vortices may allow for the birth of
new vortices and for a renewal of the vortex population.
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