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Giuseppe Passoni
DIIAR, Politecnico di Milano, Milano, Italy

Antonello Provenzale
ISAC-CNR, Torino and CIMA, Savona, Italy

Edward A Spiegel
Department of Astronomy, Columbia University, New York, New York 10027, USA

(Received 26 September 2003; published 14 May 2004)
194503-1
Turbulent Rayleigh-Bénard convection produces fields of intense updrafts and downdrafts that are
responsible for much of the vertical heat transport. These structures, called plumes or thermals, have
horizontal scales comparable to the thicknesses of the boundary layers in which they arise. In the three-
dimensional numerical simulations reported here, we have observed that convective plumes organize
themselves into clusters with horizontal scales that grow with time and reach the width of the
computational domain. In this two-scale process, kinetic energy is transferred mainly to low horizontal
wave numbers while the sizes of individual plumes remain on the scale of the boundary layer thickness.

DOI: 10.1103/PhysRevLett.92.194503 PACS numbers: 47.27.Te, 92.60.Ek
u�x; t� � �u; v; w� and temperature field T�x; t� where z is
the vertical coordinate, w is the vertical velocity and �T

portion of the naturally arising spherical shells around
planets and stars.
In highly unstable conditions, convective overturning
is dominated by isolated coherent structures, called ther-
mals or plumes [1,2], that mix the fluid and enhance
turbulent heat transfer. In many natural occurrences of
turbulent convection, the plumes are observed to cluster
into structures of larger scale. In rain storms, individual
convective rain cells form mesoscale clusters [3]. In the
intense convection in the solar atmosphere granules—
the smallest resolved convective elements—cluster into
mesogranules and are swept toward the edges of yet
larger structures called supergranules [4]. Experiments
in confined boxes also reveal the formation of large-scale
order in the onset of horizontal circulations on the scale
of the container [5–12], low-frequency oscillations in the
temperature field [6,13,14], and clustering of convective
plumes [11,14,15].

Here, we report on a numerical simulation of turbulent
convection that leads to such large-scale order by the
clustering of convective plumes having like signs of tem-
perature perturbation. We present both qualitative and
quantitative evidence for the occurrence of this process
at a moderately large aspect ratio with periodic boundary
conditions in the horizontal directions. Our horizontal
boundary conditions do not, of course, apply to the closed
containers used in some controlled laboratory experi-
ments, though experiments in a circular annulus would
capture aspects of the periodic boundary conditions.

The simulations reported here were performed for a
fluid with a three-dimensional, solenoidal velocity field
0031-9007=04=92(19)=194503(4)$22.50
is the imposed temperature difference across the layer. As
units of length and time we adopt the layer thickness, d,
and the dynamical (or convective) time, 	dyn ��������������������
d=g��T

p
where g is the acceleration of gravity and �

is the coefficient of thermal expansion. Velocity is mea-
sured in units of d=	dyn and temperature in units of �T.
The thermal time is 	 � d2= and the viscous time is
	� � d2=�. A convenient measure of the overall dissipa-
tion time is the geometric mean, 	diss � d2=

������
�

p
. The

main control parameters in this problem are the Prandtl
number, � � 	=	�, and the Rayleigh number, R �
�	diss=	dyn�2. The Bousinessq approximation is adopted
throughout this work [16].

The basic equations of the system are

@u
@t

� u � ru � 	rp� Tẑz�
�
�
R

�
1=2

r2u; (1)

r � u � 0; (2)

@T
@t

� u � rT �
1

��R�1=2
r2T: (3)

The computational domain is a layer of unit thickness
with a square planform of side L that provides another
control parameter, the aspect ratio. The fluid velocity u
vanishes on z � 0; 1 while T � 1 on z � 0 and T � 0 on
z � 1. As in many simulations of convection, periodic
boundary conditions are imposed in the horizontal direc-
tions [17–20]; these mimic what happens in a small
 2004 The American Physical Society 194503-1
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We integrate the equations using a numerical code that
has been developed from a preexisting 3D spectral-finite
difference Navier-Stokes solver [21]. The code is spectral
in the horizontal, with 4=5 dealiasing [22], finite differ-
encing in the vertical [23], and resolution of 1922 grid
points in the horizontal and 129 (unequally spaced)
points along the vertical [24]. Time advancement is by a
third-order fractional step method [25].

For brevity, we give an account of results from only
one illustrative long run with � � 0:71, R � 107, and
L � 2�. The initial conditions are provided by small-
amplitude random velocity and temperature fluctuations
around the equilibrium state. The convection rapidly
evolves from the initial state to a turbulent regime with
a well-mixed interior that occupies most of the fluid
volume that separates the boundary layers formed at the
lower and upper surfaces of the fluid [18]. The enhance-
ment factor in total heat flux caused by convection is the
Nusselt number, N � 16.

In the interior of the turbulent layer, the horizontally
averaged temperature is nearly constant, but the full
temperature field has strong fluctuations about this mean
caused by intense convective plumes. In Fig. 1, we show a
vertical cross section of the temperature field showing a
forest of hot, rising plumes and of cold, descending
plumes in the body of the fluid.

Plumes are characterized by a strong correlation be-
tween the temperature perturbation, � � T 	 �TT, where
�TT�z� is the horizontal average of the temperature at level z,
and the vertical velocity w. Operationally, we identify
plumes on the midplane by thresholding the value of the
turbulent heat flux, w� [26]. Thus, plumes correspond to
local maxima of the vertical convective heat transport
[17,18,27,28]: In our simulations, the structures that we
identify as plumes account for 50% of the heat flux in the
body of the fluid, while they occupy only about 8% of the
area of the midplane. Outside the plumes, we observe only
a weak correlation between temperature fluctuation and
vertical velocity and a much lower kinetic energy density
than that found within the plumes.

Plumes first appear as updrafts and downdrafts that are
generated by instabilities in the boundary layers and erupt
into the fluid interior [1] in a network of sheetlike struc-
FIG. 1 (color). Vertical slice of the temperature field, T, at
time t � 13.
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tures. These form a spoke pattern like that observed by
Busse and Whitehead [29]. At the intersections of the
sheets, strongly localized structures with roughly circular
horizontal cross sections form. These morph into the
convective plumes whose cores have sizes comparable to
the thickness of the boundary layer from which they
originated. Many plumes survive the journey across the
layer to arrive at the opposite boundary. There they splash
down and generate the boundary layer disturbances that
give rise to fresh plumes that make the return trip. The
result is a statistical symmetry between rising hot plumes
and descending cold plumes that reflects the basic sym-
metry of the Boussinesq model.

After a brief transient, the total number of convective
plumes and the average area covered by each plume
remains approximately constant. (In our simulation, we
have an average of 110 rising and sinking plumes at each
instant). Over the course of time, the spatial distribution
of the ensemble of convective plumes changes dramati-
cally from its initial statistically homogeneous array. The
separation process, by which rising and sinking plumes
cluster into disjoint groups, is captured by Fig. 2, showing
horizontal sections of the temperature field at the mid-
plane at two different times.
FIG. 2 (color). Horizontal slices of the temperature field, T,
at the midplane, z � 0:5, at time t � 13 (a) and at time
t � 160 (b).
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At the earlier time [Fig. 2(a)], the convective plumes
display a statistically homogeneous distribution. As time
goes on, however, plumes of like sign cluster together to
form a large-scale network [Fig. 2(b)]. Two horizontal
scales thus emerge: the individual convective plumes have
a mean horizontal size comparable to the boundary layer
thickness, and they form clusters on the scale of the
computational domain.

The process of forming structures with large horizon-
tal scales is quantified in Fig. 3(a), showing two kinetic
energy spectra E�k�, one at an early time and one later.
The spectra are functions of the horizontal wave number
k, each representing an average over the whole fluid
column. The spectrum at late times, t � 160, shows a
significantly larger energy content at small k than in the
early development of the convection, at t � 13.

The kinetic energy content at the lowest wave number,
k � 1, first becomes dominant at about t � 30. At this
point, a two-roll circulation at the largest scale compat-
ible with the boundary conditions, k � 1, is established
[30]. After this time, the kinetic energy distribution of the
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FIG. 3. (a) Total kinetic energy spectra at times t � 13
(lower, dashed curve) and t � 160 (upper, solid curve), as a
function of the horizontal wave number k. The spectra have
been averaged over three consecutive times. (b) Time evolution
of the scale where the kinetic energy spectrum is maximum,
�M (open circles), of the integral scale, �I (triangles), and of
the average diameter of individual convective plumes (filled
circles). The dashed horizontal line indicates the size of the
computational domain, L � 2�. Time is in units of the dy-
namical time, 	dyn.
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turbulent flow does not evolve further. In this late, statis-
tically stationary regime, the spectrum peaks at the
gravest wave number, and the dynamics may be influ-
enced by the horizontal boundary conditions. In Fig. 3(b),
we show the time evolution of the scale �M � 2�=kM
where the energy spectrum reaches its maximum value,
E�kM�, and of the integral scale �I �

R

E�k�=k� dk=R

E�k�dk. Also shown is the time evolution of the diame-
ter of an individual plume. The scale where the kinetic
energy spectrum is peaked, �M, and the integral scale, �I,
grow with time. By contrast, the average size of the
individual convective plumes remains of the order of
the boundary layer thickness.

The clustering of convective plumes has been ascribed
to the action of the large-scale circulation [31]. However,
our results reveal that the large-scale circulation with
k � 1 is generated as the final stage of a process during
which the energy moves slowly towards low wave num-
bers. This suggests the alternate view that it is the cluster-
ing of plumes that generates the large-scale wind, in
agreement with the indications of recent experiments
[14,15]. When the large-scale circulation is established,
a positive feedback between the wind and the plumes
reinforces the process.

It may be that in a further development of rectification
processes, the global circulation is driven by an instability
of the plumes [32]. However, inspection of the divergence
field in the boundary layer suggests that at R � 107 the
clustering is due mainly to the interaction between
the plumes and the boundary layers. When we initialize
the system with either a pair or an ensemble of hot
adjacent plumes, we see that two rising plumes of like
sign in temperature perturbation weakly attract each
other at very close range, but here such forces appear to
be too weak to cause significant global effects. However,
once plumes hit a boundary layer, they create a strong
divergence of the horizontal velocity field in the boundary
layer itself. This diverging horizontal velocity tends to
push the roots of the newly forming plumes yet closer
together, and a positive feedback is established between
the pattern of convergence and divergence in the two
boundary layers.

Another interesting issue with respect to large-scale
circulations is that a shear mode with k � 0 is not
strongly excited, although such a mode is allowed by
the periodic boundary conditions. This mode, found in
highly truncated theoretical models for layers of infinite
horizontal extent [33], has been used to rationalize the
observation of large-scale wind seen in experiments [5].
Similarly, the statistical excitation of shear flows with
k ! 0 has been argued to be an effective process at large
aspect ratios [34]. In our simulations, though such a k � 0
mode is weakly generated, its amplitude remains very
small, in agreement with the results reported by Hartlep
et al. [20]. To further explore the behavior of the shear
mode, we have run a few simulations that included, as
194503-3
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initial conditions, a vertical shear of the horizontal ve-
locity. In all cases, the amplitude of the mode with k � 0
decreased to the small values observed for the case with
no initial shear.

Also of interest, is the issue of long time behavior in
layers of infinite horizontal extent. Is the clustering pro-
cess arrested at large but finite scale as the aspect ratio is
increased, or does the clustering continue on to ever larger
scales? In the latter case, convection in a layer of infinite
horizontal extent may never reach a stationary state. The
discussion of such issues will have to await the develop-
ment of an acceptable model of this phase separation
process.

We are grateful to S. Childress, C. R. Doering, L. N.
Howard, and K. S. Sreenivasan for enlighting discussions
and useful comments. Part of this work was done during
the GFD summer program at WHOI.
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