

The Sixteenth International Conference on Civil, Structural & Environmental Engineering Computing

CIVIL-COMP 2019

16–19 September 2019

Riva del Garda, It

European Research Council Established by the European Commission

Seismic vulnerability of existing schools

<u>M. Domaneschi¹</u>, G.P. Cimellaro¹, A. Zamani Noori¹, F. Ansari², V. Villa¹

¹ Department of Structural, Building and Geotechnical Engineering, Politecnico di Torino

² University of Illinois at Chicago

September 19, 2019 – Riva del Garda TN

European Research Council Established by the European Commission

Acknowledgments

□ European Research Council under the Grant Agreement n° ERC_IDEAL RESCUE_637842 of the project IDEAL RESCUE-Integrated Design and Control of Sustainable Communities during Emergencies.

 Authors would like to thank the BIMgroup LAB of Politecnico di Milano and the Municipality of Melzo for sharing the BIM model used in this research.

Motivations and Objectives

European Research Council

Most of the schools in Italy were built before the introduction of structural design standard for seismic areas

Approximately 25,000 buildings are therefore not adequate to current standards

This research aims to implement a methodology to evaluate vulnerability index of existing buildings

Introduction

European Research Council

□ The **"Mascagni School**" is a **RC building** located in Melzo (MI) built in **1976**. The school consists of **three separated structures** (classes, gym and canteen)

Visual inspection

European Research Council Established by the European Commission

Joints visual inspection in the school basement

POLITECNICO DI TORINO - DISEG

Visual inspection

European Research Council Established by the European Commission

Superficial concrete deterioration

Reinforcement corrosion and concrete crack

POLITECNICO DI TORINO - DISEG

Non destructive test

European Research Council Established by the European Commission

□Test with Thermal camera

The concrete elements (blue areas) have a lower temperature with respect to the masonry elements, lighting systems and aluminum ventilation elements (orange and yellow areas).

Constructional elements identification using thermal camera

Non destructive test

□Sclerometric Test

Established by the European Commission

The results show that the average resistance of the columns is equal to 31,5 MPa: To create a FE models, the concrete class C25/30 was used neglecting the deterioration of the concrete.

Direzione d'Impag	Rebounded value	R.ck. [N/mm²] 0° →	
Rick (Wmm - Mail 	31	24.9	
$\frac{12}{10.3}$ $\frac{125}{10.3}$ $\frac{11}{10.3}$	30	23.3	тор
25 10.3 18-2 11 26 11.0 17.5 21 77 11.9 18.9 21	35	31.8	
28 13.4 20.3 21 28 14.6 21.8 22 30 16.2 23.3 28	33	28.2	
31 17.6 24.9 21 22 19.1 26.5 31 33 20.6 26.2 31	37	35.5	ר [
34 22.4 30.0 80 35 24.1 31.8 80 56 25.5 33.6 30	34	30.0	
27,8 35,5 3 38 29,6 37,5 3 39 31,6 38,5 4 49 31,6 38,5 4 49 31,6 38,5 4 40 31,6 38,5 4 4	35	31.8	
33.6 416 10 33.6 437 10 43.35.5 437 10 45.9 1	34	30.0	
4 39,7 441 0 44,1 557 4 44,1 557	35	31.8	
9 48.5 20.5 9 48.7 57.5 9 51.3 60.0	37	35.5	
56.5	38	37.5	BOLIOW
	36	33.6	

Data acquisition with sclerometer, instrument conversion table, sample of obtained values

POLITECNICO DI TORINO - DISEG

M.V. Pietropinto

Non destructive test Test with pacometer

European Research Council Established by the European Commission

Pacometer was used to get information about the reinforcement inside the columns, such as location, cover and size of steel reinforcement bars.

Measurements with pachometer

	Number of longitudinal bars (long side)	Number of longitudinal bars (short side)	Diameter of longitudinal bars [mm]	Inter axis [mm]	Cover [cm]	Stirrups diameter [mm]	Stirrups spacing [cm]
Column 25x50 cm	7	3	18	6	4	10	15
Column 30x50 cm	7	3	18	6	4	10	15
Beam 70x28 cm	8	-	20	8	3	10	16

Columns and beam reinforcement detail resulted from pachometer test

Dynamic monitoring

A campaign of experimental investigations was conducted to identify the shed by the European Commission dynamic behavior of the main building

- \rightarrow Ambient vibration tests
- \rightarrow Forced vibration tests

European Research Council

Two output-only identification methods are used to identify the structure frequencies for the ambient vibration test:

- Frequency Domain Decomposition (FDD)
- Random Decrement Technique (RDT)

□Frequency Response Function (FRF) method is used to process Vibrodyne tests

Main classes building configurations used to record the signals with ambient vibration

Accelerometers configurations erc

European Research Council

Gym

Auditorium

Main classes building configurations used to record the signals with ambient vibration

FE models and calibration

European Research Council Established by the European Commission

FE models are prepared and calibrated (freq. & mode shapes)

□ E.g. Classrooms Block 1

FE models and calibration

European Research Council Established by the European Commission

□Gym and Auditorium FE Model

FE models and calibration

Established by the European Commission

S12

Linear

Linear

Linear

▼ Nonlinear

Cancel

S22

Inactive

Nonlinear

- Nonlinear

□FE model nonlinearity

Material nonlinearity

Shell element nonlinearity

POLITECNICO DI TORINO - DISEG

Output-Only methods Result

Mode shapes - Block 1

European Research Council

FEM Result Block 1

European Research Council Established by the European Commission

	Modes	FDD [Hz]	RDT [Hz]	FEM [Hz]	Participating mass ratio
S1A	1 st mode	5,33	5,30	5,40	0,91
(1 st block)	2 nd mode	6,38	6,50	6,40	0,52
	3 rd mode	13,40	13,34	13,20	0,97

M. M.V. Pietropinto

Output-Only methods Result

Mode shapes - Block 2

European Research Council Established by the European Commission

	Madaa	FDD	RDT
	Wodes	[Hz]	[Hz]
S2A (2 nd block)	1 st mode	5,30	5,39
	2 nd mode	6,30	6,40
	3 rd mode	7,25	7,34

FEM Result Block 2

European Research Council Established by the European Commission

	Modes	FDD [Hz]	RDT [Hz]	FEM [Hz]	Participating mass ratio
S2A (2 nd block)	1 st mode	5,30	5,39	5,40	0,96
	2 nd mode	6,30	6,40	6,30	0,67
	3 rd mode	7,25	7,34	7,10	0,63

Output-Only methods Result

Mode shapes - Block 3

European Research Council Established by the European Commission

FEM Result Block 3

European Research Council Established by the European Commission

	Modes	FDD [Hz]	RDT [Hz]	FEM [Hz]	Participating mass ratio
S4A	1 st mode	5,32	5,24	5,30	0,94
(2 nd block)	2 nd mode	7,57	7,49	7,60	0,54
	3 rd mode	11,17	11,24	11,9	0,99

FEM Result *Gym buidling*

European Research Council

	Modes	FDD [Hz]	RDT [Hz]	FEM [Hz]	Participating mass ratio
0.4	1 st mode	4,60	4,64	4,55	0,55
GYM	2 nd mode	7,10	7,10	7,27	0,57
	3 rd mode	10,00	10,04	10,8	0,26

		FRF Freq [Hz]	Damping [%]	Mode Shape	Damping Average [%]
V1-2	North	5	[1,09 1,02 1,02]	[0,1726 0,3459 0,5486]	1,04
(1 st block)	Direction	10	[0,93 0,93 0,93]	[2,0624 1,5417 1,4339]	0,93
		14,61	[3,83 3,73 4,29]	[2,3892 3,4352 -1,3046]	3,95

(Block 1 FDD: 5.3, 9.75 and 13.4 Hz)

Vulnerability index

European Research Council

UVulnerability index ζ_E is evaluated by:

maximum bearable seismic action of the structure

maximum seismic action that would be used in the design of a new building with the same characteristics (LSC - limit state of collapse)

Static non-linear analyses (pushover) and incremental dynamic non-linear analyses, were performed.

Results: nonlinear static analysis 1st and 3rd blocks

European Research Council

Two different lateral load patterns (x and y) were applied to perform pushover analysis up to point of collapse (according to NTC2018)

POLITECNICO DI TORINO - DISEG

Results: nonlinear static analysis

Central block

European Research Council

Results: nonlinear static analysis

Pushover curves

European Research Council Established by the European Commission

Acceleration associated with maximum capacity: the **ratio** between the **maximum force** (collapse mechanism) and the **participating mass** in considered direction

Results: vulnerability index

Pushover analysis

European Research Council Established by the European Commission

ζF

1,78

1,30

1,70

Vulnerability index for classroom building in x direction

Vulnerability index for classroom building in y direction

	F _{max}	Sa	S _d	y		F _{max}	Sa	S_d
	[kN]	[g]	[9]	SE		[kN]	[g]	[g]
Blocco 1	3420	0,36	0,155	2,34	Blocco 1	5370	0,54	0,303
Blocco 2	2650	0,25	0,155	1,66	Blocco 2	3920	0,39	0,303
Blocco 3	2540	0,42	0,155	2,75	Blocco 3	3180	0,51	0,303

Design acceleration $Sd \rightarrow$ design spectra (LSC) for the site of Melzo (MI) - NTC2019

Nonlinear dynamic analysis

European Research Council Established by the European Commission

Only block 1 is here presented

□ Maximum inter-storey drift associated with the collapse state (LSC) \rightarrow 4% (FEMA 273)

□ An iteration procedure is used \rightarrow incremental dynamic analysis \rightarrow maximum bearable acceleration

□ 7 accelerograms compatible with LSC spectra \rightarrow both H directions

Results: vulnerability index Nonlinear dynamic analysis

European Research Council

□ The maximum bearing capacity performing non-linear time history analyses \rightarrow **0.371 g**

□ Considering design spectra (LSC) acceleration for site of Melzo \rightarrow 0.155 g in X and 0.303 g in Y)

□Vulnerability indexes \rightarrow 2.39 in the x direction and 1.22 in y direction \rightarrow Compatible with pushover

Conclusions

The research proposes a reasonable methodology that can be applied for the assessment of the seismic vulnerability coefficient of existing structures as schools

It can be a useful support tool for decision-makers to effectively evaluate priorities and interventions

European Research Council Established by the European Commission

Thanks for your attention

References

Becerik-Gerber, B., Jazizadeh, F., Li, N. & Calis, G. 2011. Application areas and data and data requirements for BIM-enabled facilities management. *Journal of construction engineering and management*, 138, 431-442.

□Cimellaro, G. P. & De Stefano, A. 2014. Ambient vibration tests of XV century Renaissance Palace after 2012 Emilia earthquake in Northern Italy. *Struct. Monit. Maint*, 1, 231-247.

Domaneschi, M., Sigurdardottir, D. & Glisic, B. 2017. Damage detection on output-only monitoring of dynamic curvature in composite decks. *Structural Monitoring and Maintenance*, 4, 1-15.

Eastman, C., Teicholz, P., Sacks, R. & Liston, K. 2011. *BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors*, John Wiley & Sons.

Shiau, J., Vimonsatit, V., Yazdani, S. & Singh, A. 2018. Streamlining information transfer between construction and structural engineering. ISEC Press.

□Welch, D. P., Sullivan, T. J. & Filiatrault, A. 2014. Potential of building information modelling for seismic risk mitigation in buildings. *Bulleting of the New Zealand Society for Earthquake Engineering*.

