POLITECNICO DI TORINO
Repository ISTITUZIONALE

SeMi: A SEmantic Modeling machine to build Knowledge Graphs with graph neural networks

Original

SeMi: A SEmantic Modeling machine to build Knowledge Graphs with graph neural networks / Futia, Giuseppe; Vetro,
Antonio; De Martin, Juan Carlos. - In: SOFTWAREX. - ISSN 2352-7110. - ELETTRONICO. - 12:(2020), p. 100516.
[10.1016/j.s0ftx.2020.100516]

Availability:
This version is available at: 11583/2834234 since: 2020-06-09T18:41:25Z

Publisher:
Elsevier

Published
DOI:10.1016/j.s0ftx.2020.100516

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024

SoftwareX 12 (2020) 100516

Contents lists available at ScienceDirect

SoftwareX g

journal homepage: www.elsevier.com/locate/softx

Original software publication

SeMi: A SEmantic Modeling machlne to build Knowledge Graphs with N

Check for

graph neural networks

Giuseppe Futia *, Antonio Vetro, Juan Carlos De Martin
Nexa Center for Internet and Society (DAUIN), Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Torino, Italy

ARTICLE INFO ABSTRACT

Article history: SeMi (SEmantic Modeling machlne) is a tool to semi-automatically build large-scale Knowledge Graphs
Received 12 August 2019 from structured sources such as CSV, JSON, and XML files. To achieve such a goal, SeMi builds the
Received in revised form 27 March 2020 semantic models of the data sources, in terms of concepts and relations within a domain ontology.

Accepted 19 May 2020 Most of the research contributions on automatic semantic modeling is focused on the detection of

semantic types of source attributes. However, the inference of the correct semantic relations between

Keywords:

Knowledge Graphs these attributes is critical to reconstruct the precise meaning of the data. SeMi covers the entire
Semantic Modeling process of semantic modeling: (i) it provides a semi-automatic step to detect semantic types; (ii) it
Graph neural networks exploits a novel approach to inference semantic relations, based on a graph neural network trained on

background linked data. At the best of our knowledge, this is the first technique that exploits a graph
neural network to support the semantic modeling process. Furthermore, the pipeline implemented in
SeMi is modular and each component can be replaced to tailor the process to very specific domains
or requirements. This contribution can be considered as a step ahead towards automatic and scalable

approaches for building Knowledge Graphs.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_258
Legal Code License GNU General Public License v3.0
Code versioning system used git
Software code languages, tools, and services used Node.js, Python, PyTorch, Elasticsearch.
Compilation requirements, operating environments & dependencies Linux Operating System
If available Link to developer documentation/manual https://github.com/giuseppefutia/semi/blob/master/README.md/
Support email for questions giuseppe.futia@polito.it
1. Introduction Because of their flexibility, KGs are currently employed in

several fields, including semantic search, fraud detection, chat-

Knowledge Graphs (KGs) encode relations between real-world ~ bots development, drug discovery, and risk analysis (e.g., [2-4]).
facts through nodes and edges associated to semantic entities. ~ However, the construction of KGs is not yet a scalable process,

For example, the statement “Mona Lisa is created by Leonardo da especially because of low automation of the semantic modeling
Vinci” , is represented by the nodes “Mona Lisa” and “Leonardo step. In fact, there is often lack of the metadata that link the
da Vinyci" connected by the edge “is created by”. The KG is attributes of an input data source - for instance the fields of a

modeled through the Resource Description Framework (RDF) [1], /C\SV file - to the classes i.nd prgple rties ddecfi?edbbylcelm orll(té)logy :
that shapes data in the form of subject (Mona Lisa), predicate (is S d CONSEqUENCE, semantic models neeced for buriding K:s are

created by), and object (Leonardo da Vinci). Therefore, subject and ?;;eg_sccrae]ae tle<c(13 r;?]réléa;lr{; afl?lljl ;S arg:éalbrlee Sirr%zlsr}?i f}(:refl?(lxltdalgg
object are the nodes in the graph, while the predicate is the edge. & ’ bp d &

several domain experts, due to the magnitude and the variety of
data available on the Web.

* Corresponding author. We developed SeMi (SEmantic Modeling Machine) to address

E-mail address: giuseppe.futia@polito.it (G. Futia). this issue, providing a modular pipeline to semi-automatically

https://doi.org/10.1016/j.s0ftx.2020.100516
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100516
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100516&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_258
https://github.com/giuseppefutia/semi/blob/master/README.md/
mailto:giuseppe.futia@polito.it
mailto:giuseppe.futia@polito.it
https://doi.org/10.1016/j.softx.2020.100516
http://creativecommons.org/licenses/by/4.0/

2 G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516

reconstruct the semantic model of a data source. The semantic
model is formalized as a graph where leaf nodes are the attributes
of the data source and the other nodes and edges are derived from
the ontology (see Fig. 1). The semantic model generation relies on
the following steps:

1. The semantic type detection, that assigns a class and a
property of the ontology (semantic label) to each attribute
of the target source. In SeMi this is a semi-automatic step,
because it suggests a ranking of semantic labels for each
attribute of the source, to be validated by the user or by
the domain expert. The implemented approach is based on
the work of Ramnandan et al. [5].

2. The semantic relation inference, that establishes the correct
semantic relations between the target source attributes.
In SeMi this step is fully-automatic and characterizes the
novelty of our approach, based on a graph neural network
that is trained on background linked data.

Our approach takes inspiration from the work of Taheriyan
et al. [6]. In this article the authors describe a method that
exploits linked data as background knowledge to infer semantic
relations within a data source. They perform a manual extraction
of features from linked data with SPARQL [7] queries. These
features include various types of complex graph patterns, that
represent semantic relations of different lengths. The extraction
of these patterns requires a compound feature engineering pro-
cess, it is not scalable as the length of the semantic relation
increases, and it requires prior knowledge of the linked data
structure. On the contrary, our method to extract features from
linked data is automatic. Our proposed approach is based on a
graph neural network that automatically learns latent features
from the local neighborhood structures of the linked data graph.
These latent features are aggregated into a vector representation
of entities and properties (embeddings), which are employed to
predict the semantic relations within the target source. In this
paper, we demonstrate that the adoption of the embeddings
increases the accuracy in reconstructing the correct relations
in complex data sources, compared to manually-selected and
compound features. Furthermore, we show that the graph neural
network training is a more scalable procedure than the extraction
of increasingly complex graph patterns through SPARQL queries.

The remainder of this paper includes the following sections.
Section 2 presents an overview of the research into automatic
semantic modeling, underlying our contribution in the field. Sec-
tion 3 provides details on the system goal of SeMi and its main ar-
chitectural requirements. Section 4 introduces the pipeline com-
ponents for the semantic model generation, whose implementa-
tion details are reported in Section 5. Details on the evaluation
method the and results obtained by SeMi are described in Sec-
tion 6. Section 7 shows the package components and practical
uses of the tool. In Section 8 we summarize our contribution and
give notice of on-going applications of SeMi and future planned
developments.

2. Related work

The semantic modeling process involves two main tasks: (i)
the semantic type detection (or semantic labeling) and (ii) the
semantic relation inference. Among the most recent contributions
in semantic labeling, we mention the work of Pomp et al. [8], in
which the authors propose a semantic concept recommendation
system for data attributes based on the “data representatives”.
Data representatives define multiple representations of informa-
tion that are generated from the data values, rather than from
the labels of the source attributes. On the same topic, Ruemmele
et al. [9] developed three different systems for the detection

wasBornin

people birth dates birth places
Bob Dylan 1941-05-24 Duluth
Elvis Presley 1935-01-08 Tupelo
Little Richard 1932-12-05 Macon

Fig. 1. Example of semantic model of a tabular data source.

of semantic types: a classification model based on a manual
feature engineering process and two deep learning models that
exploit the Convolutional Neural Network and the Multi-Layer
Perceptron architecture respectively. Ramnandan et al. [5] adopt
a different perspective for semantic labeling, that consider an
holistic view of the data values corresponding to a semantic
label. The goal of this approach is to capture the features of data
instances that are related to a semantic type as a whole. Their
classifier assigns a semantic label to each attribute of the target
data source: the algorithm predicts candidate semantic types by
computing the cosine similarity! between the TF-IDF? vectors of
the labeled values in the training data, and the unlabeled values
coming from an attribute of a new target source.

In SeMi we implement the method proposed by Ramnandan
et al. [5]. Their approach has the following advantages: (i) ef-
ficiency and scalability: their method is about 250 times faster
than methods that use other algorithms such Conditional Random
Fields; (ii) accuracy in different fields: their approach improves
accuracy of competing methods on a plethora of diverse sources;
(iii) generality: the method is agnostic in terms of ontology and
schema for the semantic labeling purpose. At the end of the
semantic labeling process, SeMi suggests a ranking of semantic
labels for each attribute of the source, to be validated by the user
or by the domain expert.

In their influential works [6,10,11] Taheriyan et al. indicates
that research efforts in semantic modeling focused so far mainly
on the detection of semantic types (or semantic labeling), while
less attention has been given to the automatic inference of se-
mantic relations. The motivation for this observed trend has to
be found in the complexity of the second step: in fact, even
when semantic labels are properly refined with human inter-
vention, as expected in the functioning of SeMi, inferring the
relations through an automatic mechanism is not trivial and it
is still an open issue in research. In addition, in more complex
(but not unusual) situations, semantic types can be connected
through multiple paths that include different sequences of on-
tology classes and object properties. As a consequence, without

1 Cosine similarity is a measure of similarity between two vectors, obtained
computing the cosine of the angle between them.

2 The term frequency-inverse document frequency (TF-IDF) reflects how
important a word is to a document from a collection or corpus.

G. Futia, A. Vetrd and J.C. De Martin / SoftwareX 12 (2020) 100516 3

Input Data
Source

Poro

o
o
Multi-Edge and
Weighted Graph

Domain
Ontology

Training
Knowledge Graph

%
-z

L

Semantic Model [

(Steiner '/r—“ Scored Facts

ree)
SEE

Refined Semantic Model

Fig. 2. Pipeline components of SeMi.

explicit and additional background context, it is difficult to iden-
tify which paths - or in other words which semantic relations -
define the actual meaning of the data.

Recent works that cover the entire semantic modeling process,
including the semantic relation inference, exploit as background
knowledge existing semantic models for similar sources, to learn
the semantics of the target source. In this context, the work of Vu
et al. [12] employs probabilistic graphical models to identify the
most plausible semantic model of a data source within a combi-
natorial space. Among the advantages offered by this approach,
the authors mention the robustness against noisy information
and a straightforward method for taking advantage of relations
within the data. Taheriyan et al. [11] propose a system that
exploits existing semantic models and an ontology to build a
weighted graph that includes all plausible semantic models for
the target source. Then, on the basis of the assigned weight, the
system computes a ranked list of candidate semantic models.

The main limitation of both approaches is that accuracy is
hugely dependent on the availability of semantic models. How-
ever, in many domains existing semantic models are not available
and manually create them is a very expansive process.

Among other approaches proposed in the literature to address
the semantic modeling problem, and in particular the relation
inference, a promising one is the exploitation of linked data
repositories as background knowledge. Linked data available on
the Web [13] or in private repositories include a vast amount of
meaningful information, that can be used to learn how different
entities are related to each other. As demonstrated by the work of
Taheriyan et al. [6], the results of this learning process are helpful
to select a path representing the correct semantic interpretation
of the target source. We took inspiration from this work to inte-
grate in SeMi a novel mechanism for inferring semantic relations
using background linked data. The most important difference
between our approach and the work of Taheriyan et al. [6] is
that the latter adopts a manual extraction of compound features
(e.g., complex graph patterns to represent semantic relations of
different lengths), while our method automatically learns latent
features for entities and properties, encoding them in a vector
space. These features are learnt by the graph neural network,
exploiting the local neighborhood structures within the linked
data graph.

3. Goal and main architectural requirements

The goal of the SeMi tool is to produce a semantic model,
given a data source, a domain ontology, and a background linked

data as input. To achieve such a general goal, we identified two
architectural requirements:

o A flexible and modular pipeline: the first requirement consists
in the development of a pipeline where each component
can be individually improved or replaced, for a variety of
purposes, such as tailoring the tool to a very specific domain,
or injecting user input in an intermediate step. In the current
implementation of SeMi, only the semantic labeling step
enables the possibility of user-based refinements.

e A graph neural network model included in a production
pipeline: the implementations of graph neural networks in
research literature (i) show results in comparison to other
models (ii) on available benchmarks and (iii) according to
specific evaluation metrics. Nevertheless, the usage of these
models in a data pipeline to reach a specific purpose is a
complex task. According to this requirement, we needed to
include and re-engineer an existing graph neural network
to the purpose of semantic relations inference.

4. SeMi pipeline components

The pipeline to produce semantic models includes five main
components (Fig. 2):

Semantic Type Detector (STD);

Multi-Edge and Weighted Graph Generator (MEWGG);
Semantic Model Builder (SMB);

Link Predictor (LP);

Semantic Model Refiner (SMR).

The input artifacts to this pipeline are (i) the input data source,
(ii) the domain ontology, (iii) the background linked data; herein
we describe them.

1. Input data source: an example of an input data source is in
Fig. 3. The title of the columns of this table are also known
as attributes of the source.

2. Domain ontology: an example of an ontology is in Fig. 4. The
nodes of the ontology are defined as classes of the ontology,
while the edges can be defined as follows:

(a) Object properties connect entities belonging to two
different classes. In Fig. 4 “lives in” links a “Person”
to a “Place”.

4 G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516

people birth dates birth places
Bob Dylan 1941-05-24 Duluth
Elvis Presley 1935-01-08 Tupelo
Little Richard 1932-12-05 Macon

Fig. 3. Example of input data source.

name wasBornin

latitude (City) (Country)
N~

locateln

:subclass property

_|—> :object property

:data property

Fig. 4. Example of domain ontology.

(b) Subclass properties are a special case of object proper-
ties that connect entities belonging to two different
classes. In particular, they establish a connection
from a broader concept to a more specific concept.
In Fig. 4 “Place” and “City” are linked by a subclass
property.

(c) Data properties connect an entity belonging to a class
and a literal value. In our example, “bornOnDate”
connects a “Person” with his birth date.

3. Background linked data: an example of linked data adopted
for training purposes is depicted in Fig. 5. This background
knowledge covers data belonging to the same domain of
the target source, it adopts a subset of the properties de-
clared in the ontology, and it includes instances of classes
of the domain ontology.

The domain ontology provides a formal definition of entity
types and properties that connect entities within a specific do-
main. It generalizes the model of the data, but it does not include
details on the entities themselves. The background linked data
collects specific information on the entities, that are described
and interconnected in a graph structure using types and proper-
ties defined by the domain ontology. In other words, the ontology
does not contain facts related to the data, but it provides the
necessary semantic scaffolding to structure the collection of data
facts within the linked data graph.

hasg,,
L0dey

1941-05-24)_bomOnDate
_yName
nasFam=="

e
Zimmerman O 0

e

@

Fig. 5. Example of background linked data.

4.1. Semantic type detector

The STD component takes the data source and the ontology
as input. The goal of the STD is to assign a semantic type (also
called semantic label) to each attribute of a data source. Such
semantic label consists of a combination of an ontology class and
an ontology data property. As shown in Fig. 1, the semantic label
of the attribute “people” is “Person_name”, where “Person” is a
class and “name” is a data property.

4.2. Multi-edge and weighted graph generator

The MEWGG component receives the semantic types produced
by the STD and the domain ontology. The goal of the MEWGG
is to build a multi-edge and weighted graph that includes all
plausible semantic models for the target source. More specifically,
MEWG reconstructs all possible semantic relations between all
the semantic types, according to the object properties of the
domain ontology. The weights assigned to these object properties
are only based on the structure of the ontology (see Section 5.2).

The semantic relation is a path that connects two semantic
types. In the simplest case, the semantic relation is an object
property. In more complex cases, the path includes different
classes and more object properties. For instance, with reference to
the semantic model of Fig. 1, “Person” is connected to “City” with
a path that includes the object property “wasBornln”, the class
“Place”, and the subclass property that links “Place” to the class
“City”. We implemented the algorithm of Knoblock et al. [14] to
build the multi-edge and weighted graph.

4.3. Semantic model builder

The SMB component takes the graph produced by the MEWGG
as input. The goal of the SMB is to select an initial semantic
model, among all plausible semantic models, which encompasses
the minimum cost path on the graph that connects all semantic
types. The detection of this path in the graph can be considered
a steiner tree problem [15]. To resolve the steiner tree problem,
we adopt the approach provided by Kou et al. [16]. In our case,
the classes of the semantic types are the steiner nodes and the
generated semantic model describes the target source in terms
of classes and properties of the domain ontology. The detection
of the steiner tree in the graph produced by the MEWGG has the

G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516 5

following limit: the object property weights are based only on the
structure of the ontology and they do not necessarily reflect the
correct semantic interpretation of the target source.

4.4. Link predictor

The LP component is characterized by an offline and online
stage. In the offline stage, the input of the LP are RDF facts from
background linked data repositories. This background knowledge
is adopted for training the graph neural network model, whose
output are the embeddings of entities and object properties of
RDF facts seen during the training process. In the online stage,
these embeddings are used to score the unseen RDF facts, result-
ing from all plausible semantic models produced by the MEWGG.
In details, the RDF fact scores are properly used to adjust the
weights assigned to the graph by the MEWGG, incorporating
information from the background knowledge provided by linked
data. The intuition behind this refinement is that properties used
by other people to semantically describe data in a domain are
more likely to represent the semantics of the target source in the
same domain.

The adoption of the LP component represents a step towards
in the semantic modeling process. In fact, in the work of Taheriyan
et al. [6] the weights of the semantic relations derived from
complex graph patterns are assigned through an inverse rela-
tion of their frequency in the background knowledge. In our
approach, we consider latent information embodied in the back-
ground knowledge which are not the result of a manual and
compound features extraction from the linked data, but are au-
tomatically extracted by means of the graph neural network (see
implementation details in Section 5.4).

4.5. Semantic model refiner

The SMR component receives the initial semantic model built
by the SMB, the embeddings to score unseen RDF facts, and all
plausible semantic models included in the MEWGG. The SMR
computes the aggregation of the RDF score facts that refer to
the same semantic relation. Comparing such aggregated values,
the SMR replaces (or confirms) the semantic relations that link
semantic types classes and performs a new steiner tree detection.
Therefore, the goal of the SMR is to provide a new semantic model
that describes in a more accurate and rich way the semantics of
the target source.

5. Implementation details

This section discusses the implementation of the current SeMi
release.

5.1. Semantic type detection querying indexes

To assign a semantic label, the STD measures the similar-
ity [17] between the data values of unlabeled attributes of the
target source and the data values of sources with labeled at-
tributes. Such labeled data sources are stored within an Elas-
ticsearch [18] Lucene index: therefore, the STD composes and
performs a Lucene query to obtain a ranking of scored semantic
types for each attribute of the target source. After this ranking, the
user can select which semantic types correctly label the attributes
of the target source.

The current implementation of the STD is available in Node.js,
because it is suitable to interact with RESTful services provided
by Elasticsearch.

5.2. Incremental generation of the multi-edge and weighted graph

The MEWGG component incrementally creates a graph G
through the following steps (see Algorithm 1 for more details):

o Addition of semantic types (lines 1-5 of Algorithm 1): for
each semantic type the algorithm creates and adds to G the
following graph structures: (i) a class node, (ii) a data node,
(iii) a weighted edge between the two nodes. Then, it assigns
a weight of 1 to this edge.

o Addition of closure nodes (lines 6-9 of Algorithm 1): for
each class node in G the algorithm performs a SPARQL
query [7] to get the related ontology classes. Such classes
are added as new class nodes (closures) to G.

o Addition of edges between class nodes (lines 12-21 of Al-
gorithm 1): object properties (see Section 4) connecting all
class nodes in G are retrieved from the ontology through a
SPARQL query. Such properties are added to G as new edges.

o Assignment of a weight to each new edge: different types
of object property p can connect the class nodes ¢, and c,
in G:

- direct properties (lines 14-15 of Algorithm 1): p is a
direct property between c, and c, if they are respec-
tively defined as domain and range of the p in the
ontology. The algorithm assigns a weight of 100 to
edges corresponding to direct properties;

- inherited properties (lines 16-17 of Algorithm 1): p is
an inherited property between ¢, and c, if its domain
contains one of the super classes of ¢, and its range
contains one of the super classes of c,. The algorithm
assigns a weight of 100 + € to edges corresponding to
inherited properties;

- subclass properties (lines 18-19 of Algorithm 1): p is
a subclass property between ¢, and c, if they are
linked by a special property in the ontology called
rdfs:subClassOf. The algorithm assigns a weight of 100/e
to edges corresponding to subclass properties.

This component is implemented in Node.js, because it is suit-
able to manage the response of SPARQL queries in an asyn-
chronous way.

5.3. Semantic model definition through steiner trees and SPARQL
syntax

The detection of the shortest path within the graph that con-
nects the class nodes of the semantic types is a steiner tree
problem. The time complexity of the steiner algorithm (see Sec-
tion 4.3) is equal to O(|Ng||Nc|?) in which Ny is the set of data
nodes and N¢ is the set of class nodes in G. Considering the dataset
adopted in our experimental evaluation (see Section 6.1 for more
details), time complexity for this step is negligible compared to
other steps, for instance the training time of the graph neural
network. However, it can be an indicator for other users that
intend to adopt SeMi for building their own KGs.

The detected steiner tree represents, in the form of a graph,
the initial semantic model. Nevertheless, the semantic model
needs to be converted using the syntax of a mapping language,
such as R2RML [19], RML [20], or SPARQL. Semantic models
expressed using a mapping language can be processed by engines
such as MIRROR [21], RML Mapper [20], and TARQL [22] to
generate KGs. In our implementation we chose a specific SPARQL
syntax that can be processed by the JARQL library [23]. The
source code that converts the graph representation of the seman-
tic model in SPARQL is implemented in Node.js, while JARQL is
implemented in JAVA within an external library.

6 G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516

Algorithm 1: Generate the Multi-Edge and Weighted Graph

Input: Semantic Types STs{class, data_prop, source_attr}
Input: Domain Ontology O{classes, object_props}
Output: Graph G

for loop on STs do

G.add_class_node(ST{class});

G.add_data_node(ST {source_attr});
G.add_edge(ST{class}, ST {source_attr}, ST{data_prop}, w =
1);
end
closures < sparql_closure(O{classes});
for loop on closures do

\ G.add_class_node(closure);
end
10 c,S < get_class_nodes(G);
11 ¢S < get_class_nodes(G);
2 for loop on c,s do

© 0 N W B W N =

-

13 for loop on c,s do
14 direct_props < sparql_direct(c,, c,, O{object_props});
15 G.add_edges(cy, c,, direct_props, w = 1);
16 inherited_props <

sparql_inherited(c,, c,, O{object_props});
17 G.add_edges(cy, c,, inherited_props, w = 1+ €);
18 subclass_props <

sparql_subclass(cy, c,, O{object_props});
19 G.add_edges(cy, c¢,, subclass_props, w = 1/¢);
20 end
21 end

5.4. Graph neural network architecture for link prediction

The LP is a graph neural network composed by two main
units: (i) an encoder, which is a neural architecture called Re-
lational Graph Convolutional Networks (R-GCN) [24]. The goal
of the R-GCN is to assign embeddings, to entities within the
background linked data (ii) a decoder, which manipulates such
vectors with a factorization method in order to predict new facts
in the background linked data (see Algorithm 2 for more details).
The propagation model of the R-GCN, for each layer | of the
network, is defined as follows (line 6 of Algorithm 2):

1
h$'+l) — U(Z Z C*Wr“)h}” + Wél)hgl)) 1)

reRje g’ ir
where:

o h! e R?” denotes the hidden state of the node v (its vector
representation) in the Ith layer of the neural network

o is an element-wise activation function such as ReLU;

J is the set of indices of the neighbors of node i under the
relation r € R;

cir is a hyperparameter of the application that controls the
entity of the normalization;

e W is a weight matrix.

The computation of Eq. (1) is performed in parallel for all
nodes at each network update. By stacking up several layers, it
is possible to capture and encode the relations between nodes
across multiple steps.

The purpose of the decoder is to predict new facts within
the background linked data, by scoring candidate new RDF facts
in the form (subject, relation, object) using a factorization func-
tion. In practice, the decoder could employ any factorization or
scoring function, so we chose to employ DistMult [25], as done

by Schlichtkrull et al. [24]. Given a background linked data, we
want to assign a certain score f(s, r, 0) to a candidate fact (s, r, o).
DistMult associates each relation r with a diagonal matrix R, and
the score for a given candidate fact is computed as follows (line
12 of Algorithm 2):

f(S,T,O) = eZRreO (2)

The model is trained by means of the negative sampling: for
each training sample, a set of negative samples is generated by
randomly corrupting either the subject or the object of the fact.
The model is optimized so that the positive facts are scored higher
than the negative ones.

To include the LP in the semantic model pipeline we modified
the implementation of [24], in order to produce embeddings
that are used by next block to score RDF facts generated by
the plausible semantic models of the target source. The LP is
implemented in Python adopting the Deep Graph Library [26]
based on the PyTorch framework.

Algorithm 2: Link prediction with the graph neural network

Input: complete_set, train_set, valid_set, test_set, adj_matrix
Output: entity_embs, property_embs

1 entity_dict < create_entity_dict(complete_set);

2 property_dict < create_property_dict(complete_set);

3 entity_embs < initialize_embs(entity_dict);

4 property_embs < initialize_embs(property_dict);

/* Forward: aggregate and update entity
embeddings using the local neighborhood
structure */

5 entity_embs <— update_features(entity_embs, adj_matrix);

/* Backward: computing gradients and update
entity and property embeddings to reconstruct
the facts */

6 S_trig, p_trig, 0_trig < extract_ids(train_set);
7 S_vdjg, P_vajq, 0_vajq < extract_ids(valid_set);
8 S_tejq, p_teig, 0_tejy <— extract_ids(test_set);
9 for epochs do
10 grads <«
compute_grads(emb(s_trig) * emb(p_trig) * emb(o_triy));
1 entity_embs, property_embs < update_weights(grads);
12 model <
best_on_validation(emb(s_va;q), emb(p_vaiq), emb(o_vajq));

13 end
/* Evaluation: evaluate the best model on the test
set and return computed embeddings x/

14 fact_scores <
evaluate(emb(s_teiq), emb(p_teiq), emb(o_teiq), model);

5.5. Semantic model refinement based on fact scores

The SBR determines whether to refine or validate the initial
semantic model. The weight of each semantic relation of all plau-
sible semantic models are updated according to the aggregated
scores of the related RDF facts. These scores are then weighted on
the number of occurrences of each semantic relation. On the basis
of this aggregated score, the algorithm performs a new steiner
tree detection and propagates any changes to the initial semantic
model. This component is implemented in Python.

6. Evaluation

Our objective is to investigate the capability of SeMi in infer-
encing accurate semantic relations within a target source. In this

G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516 7

Section, we described the dataset adopted for the evaluation and
we reported details on the validation procedure, discussing the
obtained results.

6.1. Evaluation dataset

The evaluation dataset includes 15 target sources available in
JSON format on the advertising domain. The domain ontology is
an extension of Schema.org [27], which contains 736 classes and
1081 properties. To prepare the background knowledge for each
target source we employed the leave-one-out setting. In practice,
if k is the number of sources in our dataset, the background
linked data assigned to each target source is created from the
RDF facts obtained by the other k — 1 sources. In other words,
each background knowledge includes RDF facts which come from
all the sources, except those obtained from the target source. The
leave-one-out setting guarantees that the background knowledge
does not contain the facts related to the semantic relations within
the target source, that have to be predicted in the experiment.
Nevertheless, we included the RDF facts from the target source
that are specifically related to the semantic types. This step has
no impact on the performance of semantic relation inference,
because semantic type facts are not considered during the ex-
perimental evaluation. However, additional facts derived from
semantic types are required within the training process, because
the graph neural network has to learn the latent features of all
entities, including the target source entities, in order to execute
the link prediction task. To ensure the quality of linked data
repositories adopted as background knowledge, the RDF facts are
generated using the ground-truth semantic models.

The original dataset, including the target sources, the on-
tology, and the ground-truth semantic models are available in
the Taheriyan GitHub repository.> We chose to perform the
evaluation on this specific dataset, because it represents the
case in which the approach of Taheryan et al. [6] obtained the
best performance. The background linked data for training the
graph neural network are novels and constructed specifically
for our experiment. To simplify the access to all data employed
in the evaluation, we created two folders in the SeMi GitHub
repository: (i) input sources, ontologies, and background linked
data are available at https://github.com/giuseppefutia/semi/tree/
master/data/taheriyan2016/task_04; this folder includes also the
semantic models generated by our system. The ground truth
semantic models and the semantic models computed by baseline
algorithms (see Subsection 6.2.2 for more details) are available
at https://github.com/giuseppefutia/semi/tree/master/evaluation/
taheriyan2016/task_04. Details on the input sources (number of
attributes), on the background linked data (number of entities
and object properties), and on ground-truth semantic models
(number of nodes and semantic relations) are reported in Table 1.

6.2. Evaluation procedure and results

The evaluation procedure relied on two different steps: (i) the
validation of the graph neural network; (ii) the validation of the
semantic relation inference task.

6.2.1. Validation of the graph neural network

The first step of the evaluation procedure consisted in the
validation of the link prediction (LP) mechanism, based on the
graph neural network trained with background linked data. Each
background linked data assigned to a target source was splitted
into three different datasets: the training set, the validation set,
and the test set. Then, these datasets are taken as input by the

3 https://github.com/taheriyan/iswc-2016/blob/master/weapon-ads.zip.

Table 1
Details on target sources, background linked data, and ground truth semantic
models.

Sources #attrs Background LD Ground-Truth SMs
#entities #facts #nodes #links
alaskaslist 8 3396 6954 12 3
armslist 20 3396 6793 15 4
dallasguns 15 3379 6940 23 7
elpasoguntrader 8 3396 7044 13 4
floridagunclassifieds 16 3396 6904 23 6
floridaguntrader 10 3396 6774 15 4
gunsinternational 10 3396 6945 19 4
hawaiiguntrader 7 3396 7122 11 3
kyclassifieds 10 3396 6945 14 3
montanagunclassifieds 9 3396 7104 14 4
msguntrader 11 3375 7086 16 4
nextechclassifieds 20 3396 6198 32 11
shooterswap 11 3396 7041 15 3
tennesseegunexchange 14 3396 7104 21 6
theoutdoorstrader 12 3396 6784 18 5

graph neural network and used to perform the LP. To measure
the performance of the LP we employed as metric the standard
Mean Reciprocal Rank (MRR) [28]. In our case the MRR provides
an insight on the correctness of the facts reconstructed by the
graph neural network, exploiting the learned embeddings of en-
tities and object properties. For each background linked data,
Table 2 reports: (i) details on the number of facts included in
the training set, the validation set, and the test set respectively;
(ii) the resulting MRR on the test dataset. An overview of the
most significant hyperparameters used to train the graph neural
network is available in Table 3.

To understand the effectiveness of the graph neural network
on our background linked data, we compared our results with
the MRR values obtained by the graph neural network on FB15-
k237[29], one of the most well-known dataset for benchmarking
KG completion tasks. These MRR values reported in literature [24]
are:

e MRR Raw: 0.158
e Hits 1:0.153
e Hits 3: 0.258

MRR values obtained on background linked data (Raw and
Hits 1) are higher than the MRR values obtained on FB15-
k237, therefore the graph neural network performed very well
on our dataset. In practice, this means that entity and object
property embeddings encode in a proper way the local neighbor-
hood structure of the background knowledge. As a consequence,
these embeddings can be suitable to score facts derived from all
plausible semantic relations in the target source, identifying the
most accurate ones.

6.2.2. Validation of the semantic relation inference task

In the second step of the experimental evaluation we inves-
tigated if SeMi performs better than the approach of Taheriyan
et al. [6], that is currently implemented in Karma [14]. Further-
more, we compared our approach with two different base lines:
(i) a method exploiting only the frequency of semantic relations
of length 1 within linked data (no heuristics to extract and rank
complex the graph patterns, as done by Taheriyan et al. [6]); (ii) a
method based on the detection of a steiner tree on a multi-edge
and weighted graph, whose weights are assigned using only the
ontology structure (no background knowledge). We focused the
evaluation procedure on the semantic relation inference task and
for this reason we considered that the correct semantic types are
already available. We evaluated the accuracy of computed seman-
tic models in terms of precision and recall, by comparing them

https://github.com/giuseppefutia/semi/tree/master/data/taheriyan2016/task_04
https://github.com/giuseppefutia/semi/tree/master/data/taheriyan2016/task_04
https://github.com/giuseppefutia/semi/tree/master/data/taheriyan2016/task_04
https://github.com/giuseppefutia/semi/tree/master/evaluation/taheriyan2016/task_04
https://github.com/giuseppefutia/semi/tree/master/evaluation/taheriyan2016/task_04
https://github.com/giuseppefutia/semi/tree/master/evaluation/taheriyan2016/task_04
https://github.com/taheriyan/iswc-2016/blob/master/weapon-ads.zip

8 G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516

Table 2

Number of facts in the training, the validation, and the testing set and the MRR values obtained by the graph neural

network on each background linked data.

Sources Background LD - #Facts Mean Reciprocal Rank (MRR)
Training Validation Testing Raw Hits @1 Hits @3

alaskaslist 6264 345 345 0.202556 0.171014 0.221739

armslist 6123 335 335 0.189313 0.156716 0.214925

dallasguns 6250 345 345 0.222723 0.201449 0.233333

elpasoguntrader 6344 350 350 0.175496 0.135714 0.198571

floridagunclassifieds 6214 345 345 0.213165 0.191304 0.224638

floridaguntrader 6104 335 335 0.207233 0.174627 0.229851

gunsinternational 6264 345 345 0.205095 0.188406 0211594

hawaiiguntrader 6412 355 355 0.208059 0.180282 0.223944

kyclassifieds 6255 345 345 0.191376 0.163768 0.207246

montanagunclassifieds 6394 355 355 0.233740 0.212676 0.245070

msguntrader 6386 350 350 0.209148 0.188571 0.222857

nextechclassifieds 5588 305 305 0.204046 0.177049 0.216393

shooterswap 6341 350 350 0.226965 0.205714 0.241429

tennesseegunexchange 3694 355 355 0.203350 0.180282 0.214085

theoutdoorstrader 6114 335 335 0.185680 0.159701 0.205970

Table 3 cost is equivalent to select the most frequent semantic relation.
Graph neural network hyperparameters. On the other side, the coherence gives priority to longer semantic

Hyperparameters Values relations. From a different perspective, SeMi assigns to each plau-
Dropout 0.2 sible semantic relation a cost, aggregating the scores obtained by
:%gge“ layers %00 each RDF fact of the semantic relation. This score is computed by
Ll €N neurons the DistMult factorization method (see Section 5.4) that takes as
earning rate le—2
Epochs 6000 input the embeddings of .the subject, the predicate, and the object
Regularization 0.01 of the RDF fact. Embeddings represent more granular and latent
Edges sample size 1000 information that incorporate hidden regularities in the data that
Negative sampling 10

with the ground-truth semantic models. If the correct semantic
model of the source s is denoted as sm and the semantic model
computed by the system is denoted as sm’, precision and recall
are defined by Taheriyan et al. [6] as follows:

rel(sm) Nrel(sm’)

precision = ——= (3)
rel(sm’)
ﬂ /
recall — rel(sm) N rel(sm’) ()
rel(sm)

where rel(sm) is the set of triples (u, v,), where e is an object
property from the ontology class u to the ontology class v. Table 4
reports the results in terms of precision and recall obtained by:
(i) SeMi; (ii) the approach of Taheriyan et al. [6]) (Tahe in the
Table); (iii) the baseline exploiting only the frequency of semantic
relations of length 1 (Occs in the Table); (iv) the baseline using
the steiner tree performed on a weighted graph based on the
ontology structure (Stei in the Table).

In our evaluation experiment SeMi always obtained a better
accuracy in terms of precision and recall, compared to: (i) the
baseline that captures the frequency of semantic relations of
length 1; (ii) the baseline of the steiner tree built on the graph
weighted according to the ontology structure. In this experi-
ment we employed the dataset in which the Taheriyan et al. [6]
approach obtained the best results. The results show that our
approach outperforms the state of the art in case of the following
data sources: “dallasguns”, “floridagunclassifieds”, “gunsinterna-
tional”, and “shooterswap”. These sources have the most complex
structure in terms of number of nodes and links in the ground-
truth semantic models (see Table 1 for more details.) The accuracy
improvement in these specific cases can be explained considering
the different levels of features extraction. The system of Taheriyan
identifies the best semantic relation considering two metrics: (i)
cost and (ii) coherence. The cost of the semantic relation derived
from a graph pattern is computed according to an inverse func-
tion of its popularity. As a consequence, computing the minimum

cannot be detected adopting a manual approach for the extraction
of compound features. For many other data sources, SeMi reaches
the accuracy in terms of precision and recall of the state of the
art [6]. Therefore, we believe the our approach allows to distin-
guish very well the correct relation, exploiting the neighborhood
structure of the graph. On the other side, we noticed that the per-
formance of SeMi in terms of precision drastically low in presence
of many data attributes within sources that are characterized by
the same semantic type (see “elpasoguntrader” and “nextechclas-
sifieds”). For instance, the “nextechclassifieds” source includes
5 different attributes that are labeled with the ontology class
“schema:Offer”. According to the ground-truth semantic model
of this source, the class of the semantic type “schema:Offer1” is
linked to the other 4 entities classes with the object property
“schema:relatedTo”. Nevertheless, this type of graph structure
represents an anomaly because it never appears in the semantic
models of the other sources, that have been exploited for creating
the background knowledge of “nextechclassifieds”. We believe
that including in the background linked data analogous graph
structures the performance of SeMi should increase.

Regarding the scalability issues, in their work, Taheriyan et al.
[6] underlines that performing a single SPARQL query on Virtu-
0s0 [30] repository with more than three million of triple requires
approximately one hour for the graph patterns of length five
(Mac OS X System, 2.3 GHz Intel Core i7 CPU, 16 GB of RAM).
This time is expected to grow exponentially as the dimension
of semantic relations increase. The training of the graph neural
network is the operation performed by SeMi, that specifically
involves the background linked data, as the SPARQL queries per-
formed by Taheriyan et al. [6]. The training execution time is
less than 30 min and does not encounter issues related to the
growing of semantic relations complexity. The training step has
been performed on a Centos 7 - OpenHPC 1.3 System, nVidia Tesla
V100 SXM GPU, 32 GB of memory, 5120 cuda cores.

7. Package components and practical uses

The current version of SeMi includes the following compo-
nents in the GitHub repository:

G. Futia, A. Vetro and J.C. De Martin / SoftwareX 12 (2020) 100516 9

Table 4
Results of the semantic relation inference in terms of precision and recall.
Sources Precision Recall
Semi Tahe Occs Stei Semi Tahe Occs Stei
alaskaslist 1 1 0.667 0 1 1 0.667 0
armslist 0.750 0.750 0.500 0 0.750 0.750 0.500 0
dallasguns 0.667 0.570 0.500 0 0.570 0.570 0.428 0
elpasoguntrader 0.500 1 0.500 0.250 0.500 0.750 0.500 0.250
floridagunclassifieds 0.833 0.800 0.167 0 0.833 0.670 0.167 0
floridaguntrader 1 1 0.750 0 1 1 0.750 0
gunsinternational 0.750 0.600 0.250 0 0.750 0.750 0.250 0
hawaiiguntrader 1 1 1 0 1 1 1 0
kyclassifieds 1 1 0.333 0.333 1 1 0.333 0.333
montanagunclassifieds 0.750 1 0.500 0 0.750 1 0.500 0
msguntrader 0.670 0.670 0.667 0 0.500 0.500 0.500 0
nextechclassifieds 0.454 1 0.182 0 0.454 0.360 0.182 0
shooterswap 1 0.750 1 0 1 1 1 0
tennesseegunexchange 0.667 1 0.500 0.167 0.667 1 0.500 0.167
theoutdoorstrader 0.800 0.830 0.200 0.200 0.800 1 0.200 0.200

e semantic_typing (see Section 4.1):

- semantic_label.js performs the query on the Elastic-
search index to obtain the semantic labels ranking;

o semantic_modeling (see Sections 4.2 and 4.3):

- graph.js generates the multi-edge and weighted graph
that includes all plausible semantic models;

- steiner_tree.js runs the steiner tree algorithm on such
graph to identify the initial semantic model;

- jarqljs serializes the steiner tree graph representation
in SPARQL syntax;

e link_prediction (see Section 4.4):

- link_predict.py performs the link prediction task using
the R-GCN encoder and the DistMult decoder both
implemented in model.py;

- utils.py produces as output the scores of the facts gen-
erated through all plausible semantic models;

e semantic_refinement (see Section 4.5):

- refine.py refines the graph produced by steiner_tree.js
according to the aggregation of the RDF facts.

8. Conclusion and future work

Automatic and semi-automatic techniques for semantic mod-
eling are needed to build large-scale KGs. In this paper we de-
scribed SeMi (SEmantic Modeling machine), a tool that is able to
semi-automatically generate semantic models for KG generation,
adopting a graph neural network trained with background linked
data. SeMi extracts features from linked data in an automatic way,
learning latent features from the local neighborhood structures
of the linked data graph. These latent features are aggregated
into a vector representation of entities and properties (embed-
dings), which are employed to predict the semantic relations
within the target source. We demonstrated that the adoption
of the embeddings increases the accuracy in reconstructing the
correct relations, compared to manually-selected and compound
features. Furthermore, we show that the graph neural network
training is a more scalable procedure than the extraction of
increasingly complex graph patterns through SPARQL queries. At
the best of our knowledge, this is the first technique that exploits
a graph neural network within the semantic modeling process.
In addition, we built SeMi with a modular pipeline where each
component can be easily replaced: we deem this feature relevant
because it enables higher reuse and makes possible to replace
modules with alternative ones in the future.

At the moment, we are experimenting the link prediction
mechanism of SeMi (Section 5.4) in the field of scholarly liter-
ature, improving a former approach used to support and partially
automatize systematic literature reviews [31,32]. The prediction
mechanism is embedded in a platform called Geranium, that
allows users to search for scientific publications and authors
by inferred semantic topics rather than keywords, and to show
implicit connections between researchers from different groups
or departments. The platform works on top of the research insti-
tutional repository of Politecnico di Torino (https://iris.polito.it/),
it is currently in alpha version and it is being tested by a pool of
directors of Politecnico.

As far as future developments are concerned, we intend to
extend SeMi to compute semantic models, in a context of a
constant evolution of the ontology or of the KG [33]. This feature
can be particularly useful in real-world situations, in which new
data sources and the related semantic models are included in a
continuous data integration process. The current implementation
of our system is able to parse XML and JSON files with basic
structures, which do not include tag parameters or deep nested
structures. We aim to increase the robustness of our parsers, in
order to process files with more complex structures. Moreover,
we intend to employ SeMi in a specific scenario related to the
public procurement, that we covered and analyzed in previous
works [34,35]. Finally, we plan to develop an interactive user in-
terface that shows the construction of the semantic model along
each block of the pipeline, enabling the possibility to the user
to intervene in each step of the semantic modeling process. We
believe that a valuable solution is presenting a list of candidates
as output of each block, instead of the most plausible output
from the implemented algorithms. For instance, the current im-
plementation of the Semantic Model Refiner (Sections 4.5 and
5.5) selects the correct semantic relation, taking into account the
best score obtained from the Link Predictor (Sections 4.4 and 5.4).
On the contrary, an interactive system would propose a list of
possible refinements, that are ranked according to different scores
computed by the Link Predictor. Therefore, the interactive system
will guide the user in the definition of the correct semantic model
during the entire process.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

https://iris.polito.it/

10

G. Futia, A. Vetrd and J.C. De Martin / SoftwareX 12 (2020) 100516

Acknowledgments

Computational resources provided by hpc@polito, which is a
project of Academic Computing within the Department of Control
and Computer Engineering at the Politecnico di Torino (http://
www.hpc.polito.it).

References

(1
(2]

(3

[4

[5

[6

[7]

8

[9

[10]

(1]

[12]

[13]

[14]

[15]

Lassila O, Swick RR, et al. Resource description framework (rdf) model and
syntax specification. Citeseer; 1998.

Hooi B, Song HA, Beutel A, Shah N, Shin K, Faloutsos C. Fraudar: Bounding
graph fraud in the face of camouflage. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining.
ACM; 2016, p. 895-904.

Athreya RG, Ngonga Ngomo A-C, Usbeck R. Enhancing community inter-
actions with data-driven chatbots-the DBpedia chatbot. In: Companion
proceedings of the the web conference 2018. International World Wide
Web Conferences Steering Committee; 2018, p. 143-6.

Hasnain A, Kamdar MR, Hasapis P, Zeginis D, Warren CN, Deus HF, et
al. Linked biomedical dataspace: lessons learned integrating data for drug
discovery. In: International semantic web conference. Springer; 2014, p.
114-30.

Ramnandan SK, Mittal A, Knoblock CA, Szekely P. Assigning semantic labels
to data sources. In: European semantic web conference. Springer; 2015, p.
403-17.

Taheriyan M, Knoblock CA, Szekely P, Ambite JL. Leveraging linked data to
discover semantic relations within data sources. In: International semantic
web conference. Springer; 2016, p. 549-65.

DuCharme B. Learning SPARQL: querying and updating with SPARQL 1.1.
O'Reilly Media, Inc.; 2013.

Pomp A, Poth L, Kraus V, Meisen T. Enhancing knowledge graphs with data
representatives. 2019.

Ruemmele N, Tyshetskiy Y, Collins A. Evaluating approaches for supervised
semantic labeling. 2018, arXiv preprint arXiv:1801.09788.

Taheriyan M, Knoblock CA, Szekely P, Ambite JL. A graph-based approach
to learn semantic descriptions of data sources. In: International semantic
web conference. Springer; 2013, p. 607-23.

Taheriyan M, Knoblock CA, Szekely P, Ambite JL. Learning the semantics
of structured data sources. Web Semant Sci Serv Agents World Wide Web
2016;37:152-69.

Vu B, Knoblock C, Pujara J. Learning semantic models of data sources using
probabilistic graphical models. In: The world wide web conference. ACM;
2019, p. 1944-53.

Bizer C, Heath T, Berners-Lee T. Linked data: The story so far. In: Semantic
services, interoperability and web applications: Emerging concepts. IGI
Global; 2011, p. 205-27.

Knoblock CA, Szekely P, Ambite JL, Goel A, Gupta S, Lerman K, et al.
Semi-automatically mapping structured sources into the semantic web. In:
Extended semantic web conference. Springer; 2012, p. 375-90.

Hwang FK, Richards DS. Steiner tree problems. Networks 1992;22(1):55-
89.

[16]

[17]

(18]
[19]

[20]

[21]

(22]

(23]

(24]

[25]

[26]
[27]
(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

Kou L, Markowsky G, Berman L. A fast algorithm for Steiner trees. Acta
Inform 1981;15(2):141-5.

Mihalcea R, Corley C, Strapparava C, et al. Corpus-based and knowledge-
based measures of text semantic similarity. In: Aaai, vol. 6. 2006, p.
775-80.

Gormley C, Tong Z. Elasticsearch: the definitive guide: a distributed
real-time search and analytics engine. O'Reilly Media, Inc.; 2015.

Das S, Sundara S, Cyganiak R. R2RML: RDB to RDF mapping language. W3C
recommendation (2012). 2016.

Dimou A, Vander Sande M, Colpaert P, Verborgh R, Mannens E, Van
de Walle R. RML: A generic language for integrated RDF mappings of
heterogeneous data. In: Ldow, vol. 1184. 2014.

de Medeiros LF, Priyatna F, Corcho O. MIRROR: Automatic R2RML mapping
generation from relational databases. In: International conference on web
engineering. Springer; 2015, p. 326-43.

Cyganiak R. Tarql (sparql for tables): Turn csv into rdf using sparql syntax.
Technical report, Jan. 2015, 2015, http://targl.github.io.

Schiavone L, Morando F, Allavena D, Bevilacqua G. Library data integra-
tion: the CoBiS linked open data project and portal. In: Italian research
conference on digital libraries. Springer; 2018, p. 15-22.

Schlichtkrull M, Kipf TN, Bloem P, van den Berg R, Titov I, Welling M.
Modeling relational data with graph convolutional networks. In: European
semantic web conference. Springer; 2018, p. 593-607.

Yang B, Yih W-t, He X, Gao], Deng L. Embedding entities and relations
for learning and inference in knowledge bases. 2014, arXiv preprint arXiv:
1412.6575.

Wang M, Yu L, Gan Q, Zheng D, Gai Y, Ye Z, et al. Deep graph library.
2018, URL http://dgl.ai.

Guha RV, Brickley D, Macbeth S. Schema.org: evolution of structured data
on the web. Commun ACM 2016;59(2):44-51.

Craswell N. Mean reciprocal rank. In: Encyclopedia of database systems,
vol. 1703. 2009.

Toutanova K, Chen D. Observed versus latent features for knowledge base
and text inference. In: Proceedings of the 3rd workshop on continuous
vector space models and their compositionality. 2015, p. 57-66.

Erling O, Mikhailov I. RDF support in the virtuoso DBMS. In: Networked
knowledge-networked media. Springer; 2009, p. 7-24.

Rizzo G, Tomassetti F, Vetro A, Ardito L, Torchiano M, Morisio M, et
al. Semantic enrichment for recommendation of primary studies in a
systematic literature review. Digit Scholarsh Humanit 2017;32(1):195-208.
Tomassetti F, Rizzo G, Vetro A, Ardito L, Torchiano M, Morisio M. Linked
data approach for selection process automation in systematic reviews.
In: 15th annual conference on evaluation & assessment in software
engineering. IET; 2011, p. 31-5.

Pomp A, Lipp J, Meisen T. You are missing a concept! enhancing
ontology-based data access with evolving ontologies. In: 2019 IEEE 13th
international conference on semantic computing. IEEE; 2019, p. 98-105.
Futia G, Morando F, Melandri A, Canova L, Ruggiero F. ContrattiPubblici.
org, a semantic knowledge graph on public procurement information.
In: Al approaches to the complexity of legal systems. Springer; 2015, p.
380-93.

Futia G, Melandri A, Vetro A, Morando F, De Martin JC. Removing barriers
to transparency: A case study on the use of semantic technologies to tackle
procurement data inconsistency. In: European semantic web conference.
Springer; 2017, p. 623-37.

http://www.hpc.polito.it
http://www.hpc.polito.it
http://www.hpc.polito.it
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb1
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb2
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb3
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb4
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb5
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb6
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb6
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb6
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb6
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb6
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb7
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb8
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb8
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb8
http://arxiv.org/abs/1801.09788
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb10
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb11
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb11
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb11
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb11
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb11
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb12
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb12
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb12
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb12
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb12
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb13
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb14
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb14
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb14
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb14
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb14
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb15
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb15
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb15
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb16
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb18
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb18
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb18
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb19
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb19
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb19
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb21
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb21
http://tarql.github.io
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb23
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb23
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb23
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb23
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb23
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb24
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb24
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
http://dgl.ai
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb27
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb27
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb27
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb28
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb28
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb28
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb30
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb31
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb31
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb31
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb31
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb31
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb32
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb33
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb33
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb33
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb33
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb33
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb34
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35
http://refhub.elsevier.com/S2352-7110(19)30262-6/sb35

	SeMi: A SEmantic Modeling machIne to build Knowledge Graphs with graph neural networks
	Introduction
	Related work
	Goal and main architectural requirements
	SeMi pipeline components
	Semantic type detector
	Multi-edge and weighted graph generator
	Semantic model builder
	Link predictor
	Semantic model refiner

	Implementation details
	Semantic type detection querying indexes
	Incremental generation of the multi-edge and weighted graph
	Semantic model definition through steiner trees and SPARQL syntax
	Graph neural network architecture for link prediction
	Semantic model refinement based on fact scores

	Evaluation
	Evaluation dataset
	Evaluation procedure and results
	Validation of the graph neural network
	Validation of the semantic relation inference task

	Package components and practical uses
	Conclusion and future work
	Declaration of competing interest
	Acknowledgments
	References

