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Summary

The Moore’s law defined the trend for digital circuits over the last 50 years.
The number of transistors inside a single chip has doubled every year and a half
thanks to dimensions scaling. However, this trend is reaching an end due to phys-
ical limitations. Dimensions and power density are the main issues. Transistors
gate length below 5 nm will be probably the last technology node of the CMOS
(complementary metal oxide semiconductor). Furthermore, the power density in-
side the chip, increasing with the performance of the circuit, is a big limit for the
current technology. For these reasons new technologies are being studied in order
to find possible alternatives. In particular, the QCA (quantum-dot cellular au-
tomata) technology is one of the most promising. Different implementation of this
technology are currently studied by the research community. Molecular and mag-
netic QCA are addressed in this work. These technologies seems promising thanks
to a lower power consumption, compatibility with CMOS fabrication process and
their non-volatile nature. In fact, the concept of logic-in-memory can be explored
using these technologies. However, their performance is not yet comparable with
the CMOS technology.

Technologists focus on the design of the single device and its characteristics.
However, even at the early stage of development, a circuit level exploration is nec-
essary. This kind of analysis can be used to verify the behavior of new technologies
inside digital circuits. Furthermore, parametric analysis are mandatory to under-
stand the effect of modification of properties of the devices. Another key aspect is
the research of architectural optimization specifically designed to take advantages
from the technological properties. These kind of explorations need software tools,
like CAD (Computer Aided Design) and EDA (Electronic Design Automation), in
order to speed up the process.

No commercial tools are available capable of handling these kind of devices.
To solve this issue the ToPoliNano framework was developed at the Politecnico di
Torino. This framework, comprised of different tools, enables the analysis of emerg-
ing technologies giving almost the same flow available for CMOS. In particular two
tools are part of the framework. In this work an overview of the entire framework
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is presented, and a new simulator is introduced. Currently the framework is com-
posed by ToPoliNano and MagCAD.

ToPoliNano is a tool that starts from a HDL (Hardware description Language)
description of a circuit and performs the physical place & route based on the tech-
nology constraints. Different optimization algorithms are available in the tool and
the user can also modify some properties of the technology. It supports hierarchi-
cal layout and it is possible to select different approaches in order to handle the
hierarchy of the circuits. The tool is not focused on logic synthesis, however VHDL
and Verilog are supported. After performing the layout of the circuit it is possible
to run simulations to verify the layout thanks to a behavioral simulation engine.
At the moment of writing it supports iNML technology.

MagCAD on the contrary is a custom layout editor. Firstly, it is possible to
design a new circuit simply placing the technology building blocks inside a drawing
area. It is possible also to open a ToPoliNano layout file and modify the circuit.
This tool supports hierarchical layouts too. Furthermore, 3D circuits can be de-
signed. After the design phase it is possible to extract a VHDL netlist based on the
technological elements. Specifically designed model are embedded in the generated
file and are solved during the simulation, which can be performed using commer-
cial HDL simulators. The HDL netlists extraction is performed using the FunCoDe
(Function and Connection Detection) algorithm. This tool fully supports two im-
plementations of magnetic QCA (iNML and pNML) and MolQCA. Furthermore,
the entire framework is based on general tools and technological plugin. In this
way new technology could be easily added.

The main contribution described in this work is FCNS (Field coupled nano-
technologies simulator). This tool, that will become part of ToPoliNano, is a new
simulator capable of handling different FCN technologies. A tech-independent core
was developed following the idea of the framework. Furthermore, three simulation
engines were added to demonstrate the flexibility of the system. MolQCA and
iNML can be simulated using FCN. Another strength of FCN is the possibility to
define different simulation engines for the same technology: iNML can be handled
with both behavioral or physical engines. In order to verify the simulator capa-
bilities, several circuits based on the different technologies were simulated and the
results compared to state of the art simulators. FCNS performance was compared
with the other simulators: FCNS is in general faster than the reference simulators
giving compliant results.

The ToPoliNano framework can be used to perform circuit level exploration of
digital circuits. The results obtained with this kind of analysis can be used to define
new trends for the development of those technologies.
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Chapter 1

Introduction

The scaling of CMOS technology is reaching its limit. The trend described by
Moore’s law will be no longer valid in the future. Transistor dimension and power
dissipation are the main physical limitation arising. New technologies are being
studied in order to find possible alternatives to CMOS. Emerging technologies, also
called beyond CMOS technologies [26], are based on completely new paradigms
and physical properties. A vast variety of technologies can be identified in this
category: quantum computing [29], carbon nanotubes [4], quantum-dot cellular
automata (QCA) [30] and many others. This work will focus on QCA and in par-
ticular on field-coupled nanocomputing (FCN) technologies. In FCN there is no
current flowing among the elements, as in CMOS, but the information propagation
is due to field coupling among the elements. The main advantage of this technol-
ogy is the reduction of power consumption. Furthermore, implementations based
on nano-magnets or molecules are based on non-volatile building blocks. This last
characteristic can be exploited to develop circuits with the logic in memory princi-
ple. However, there are still severe limitations in FCN, like the performance. The
operating frequency of circuits based on these technologies is limited to few MHz.
Furthermore, the fabrication process is at a preliminary stage. Considering these
issues, FCN technologies are not yet ready to replace CMOS technology. Technolo-
gists are studying these technologies in order to find new materials or processes to
improve performance. This kind of research could lead to useless results without
a complementary circuit-level analysis of the technological elements. Furthermore,
new technologies are based on different paradigms, and the well-known principle of
CMOS, both regarding architecture and layout, are not applicable in this case. The
feedback obtained by a circuit-level exploration could be a huge help for technolo-
gists, helping to define a roadmap for the research. Even at the early stage of the
research, the design of relatively complex circuits and architectures is mandatory to
prove the feasibility of an emerging technology. Increasing circuit complexity arises
the need for CAD and EDA tools. However, this kind of tool is not commercially
available. This is the main motivation for this work.
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1 – Introduction

In this work, a CAD framework is presented. The ToPoliNano framework is
a complete framework enabling the FCN circuits in terms of design, simulation,
and validation. The ToPoliNano project started before the beginning of this work.
In fact, different parts of the framework were not developed during this thesis
project. However, a general description of the framework is given since the devel-
oped features are strictly related to the framework. In particular, this thesis covers
the development of some functionality of ToPoliNano and MagCAD, the two tools
composing the framework. However, the main contribution here presented is FCNS
(field-coupled nanocomputing simulator). FCNS is a general simulator, capable of
handling different technologies. Furthermore, it was designed in order to be easily
extended to new technologies based on the field coupling principle. Currently, the
only options available to simulate FCN circuits are physical simulators. These tools
are based on complex models of the physical properties of the technological elements
and on numerical methods. Their huge complexity results in a limitation of the
number of elements composing the simulated circuits. FCNS is based on simplified
models and approximations. In this way, the simulation time and computational
power demand are reduced. As a trade-off, the accuracy is also reduced. Further-
more, the simulator is designed in a way so that it is possible to define different
levels of approximation for the supported technologies. For example, it is possible
to perform a very fast “fully digital” simulation to verify the logical correctness and
later perform a “physical” to validate the circuit.

This approach has been used also with CMOS technology. A circuit is verified
before with logical simulators, and only after a behavioral verification, it is then
simulated with low-level simulators. In this way the simulation phase is simplified
in the beginning, avoiding the need for long and complex physical simulation when
the architecture is designed.

The structure of this thesis is organized as follows. Firstly, a technological
background is presented. A general introduction to QCA is given, focusing then on
molecular and magnetic implementations of the technology. After the technological
background, two parts are present. In the former, part I, the ToPoliNano framework
is introduced and described. The two tools, ToPoliNano and MagCAD are described
in this part, in chapter 3 and chapter 4. Particular focus is given to the new features.
Verilog parser and the integration of fiction, another CAD tool for FCN, are the
feature related to ToPoliNano. The FunCoDe algorithm, the technology property
change, and the molecular plug-in are the main features developed for MagCAD.
In the latter part, part II, the new simulator is introduced and deeply analyzed.
Firstly, an introduction to the available physical simulators for FCN is presented in
chapter 5. Then, the technology-independent core of the simulator is described in
chapter 6. The different technological implementations initially supported by FCNS
are described in chapter 7. Finally, the results of the simulations and performance
analysis are presented in chapter 8.
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Chapter 2

Background

The scaling of transistor dimensions predicted by Moore’s Law will be no longer
valid quite soon. Physical limits are being reached and it will not be possible to
reduce gate dimension in the future [27]. Furthermore, doubling the number of
transistors inside a circuit leads to power problems [11]. New technologies, so-
called “Beyond CMOS” technologies, are currently researched to find a possible
solution for those problems. Among these technologies, QCA (Quantum-dor Cellu-
lar Automata) [30][14] seems to be the most promising. In QCA technology binary
information is encoded inside bi-stable cells. Each cell has four quantum-dots and
two free electrons: the electrons will occupy the dots to minimize the energy. Fig-
ure 2.1 shows the configuration of two cells. The idea behind QCA is to use field

'0' '1'
Figure 2.1: Two QCA cell encoding binary information.

coupling effects (both electric and magnetic) to propagate information. The basic
cells are used to build circuits. Simply placing cell one near the other, a wire is
formed as showed in Fig. 2.2.a. The Majority Voter (MV) is the basic logic gate of
QCA. When a cell is surrounded by an odd number of other input cells the output
will be the majority of the inputs. Fig. 2.2.b shows an example of three-inputs
MV. Classical logic function, AND & OR, are realized fixing one of the inputs of
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2 – Background

the MV. Table 2.1 shows the truth table of an MV. A logic AND is obtained if an
input is set to ‘0’. On the contrary, a logic OR is obtained if ‘1’ is used as fixed
input. An inverter gate is shown in 2.2.c. By using wires, MVs and inverters it is
possible to implement every boolean expression.
Since no current flows in the circuit, something is needed to define the direction
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Figure 2.2: Basic structures in QCA circuits. (A) shows a wire. (B) is an inverter.
(C) shows a majority voter.

of information propagation. A clocking mechanism is used for this purpose. The
idea is to divide the circuit into clock zones, and then force the elements of a clock
zone in an unstable state, called reset. By applying a multi-phase clock signal,
it is possible to reset alternatively different clock zones. The information will be
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2 – Background

therefore propagated when the clock signal is removed. The cells will reach a new
stable state, that will depend on the value of the neighbors. Figure 2.3 shows an
example of a circuit with a three-zone clock mechanism. Different clock schemes
were proposed in literature [49][42][2][23]. The clock signal is needed also for the
following reason. As mentioned before, the QCA cells have two stable configura-
tions. It is impossible to change the state with the effect of surrounding elements.
The clock signal will reduce the energy barrier of the cell and enable therefore the
unstable state. The energy needed for the clock mechanism is the only one needed
by the circuit. Differently from CMOS technology, no energy is consumed to keep
the value or during state switching.

IN
PU

T

O
U

T
PU

T

CZ 0 CZ 1 CZ 2

Figure 2.3: QCA wire divided in three clock zones. Each clock zone is reset inde-
pendently and the information is propagated.

Table 2.1: Majority voter truth table.

A B C Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Different implementations of QCA are available in literature. This work will
focus on a molecular and two different magnetic implementations. In this chapter,
a technological background will be given.
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2.1 Molecular QCA
A possible implementation of QCA is based on molecules. Molecular QCA

(MQCA) is a promising implementation. The nano-scale dimension of its building
elements and the possibility to work at room temperature are the key aspects.

Ferrocenes

Dot1Dot2

Dot3
Carbazole

Thiol

d = 1.0 nm

A) B)

N

FeFe

SH

Figure 2.4: Bis-ferrocene molecule. (A) structural representation. (B) Ball and
stick representation.

The Bis-ferrocene molecule, used in this work, will be presented. This molecule,
Fig. 2.4, that has been synthesized ad-hoc to be used in MQCA, has two “dots”,
called Logic dots, and another one called Null dot. These dots are redox sites and
behave as charge containers. This is because a redox site can lose an electron (be
oxidized) or gain an electron (be reduced) without breaking the chemical bonds of
the molecule. This configuration results in a molecule with three spots where the
charge could be located. The central dot is a third redox sites. Considering the
previous introduction on QCA (2), four dots should be available. Even if molecules
with four redox sites exist, two Bis-ferrocene molecules will form a QCA cell. In
this way, the logic dots will form the discussed 4 dots structure, while the two
null dots will be used to encode the reset, unstable, state. A possible clocking
mechanism for Molecular QCA is the same showed in 2.3. A three or four phases
clock could be used. Since electrons are involved in MQCA, the reset signal is an
electric field. The molecules are anchored to the substrate through a fourth dot: a
thiol group. This fourth dot is used during Self-Assembled-Monolayer (SAM) on
a gold substrate. Figure 2.5 shows a schematic view of a MQCA wire. In order
to reset the elements a vertical electric field is used. The charge will be pushed to
the null dot and the molecule will be in reset state. An opposite electric field is
used to force the charge out from the null dot. The other elements of the circuit
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Clock
Electrode

Gold
Substrate

Clock
Field

Switching
Field

Figure 2.5: 3D view of a molecular wire. In the picture, it is possible to see the gold
substrate where the molecules are anchored and the top electrode use to generate
the clock field. The other molecules are responsible for the switching field.

will generate an interaction field. This field is mainly horizontal since the charges
are almost equidistant from the substrate. The superposition of the vertical and
horizontal field is enough to move the charge in one of the logic dots. In this way,
the information will be propagated.

2.2 Magnetic QCA
Another possible implementation of QCA is based on magnetic elements. These

technologies are normally referred to as Nano-Magnet Logic (NML). In NML tech-
nology, single-domain nanomagnets are used to represent binary information. The
magnetization vector encodes the logic ’1’ and ’0’. Two different versions of the
NML can be identified: the in-plane NML (iNML) and the perpendicular NML
(pNML). In iNML technology, the magnetization vector lies in the plane of the
magnets [41][32]. On the contrary, the magnetization is perpendicular to the plane
where the elements are placed in pNML.

2.2.1 iNML
In this technology, single-domain nanomagnets are used as a basic computa-

tional cell. The shape anisotropy is exploited to encode binary information. Rectan-
gular shaped nanomagnets are usually preferred with a dimension of (50x100x20)nm
or (60x90x20)nm [32]. They show only two stable configurations, which represent

7



2 – Background

the logic 0 and logic 1 (Fig.2.6.A). Thus, the magnetization vector lies parallel to
the plane where the magnets are placed [25]. The magneto-dynamic interaction
among neighboring devices makes it possible to propagate the digital information
through the circuit. Magnets arranged in a row try to reach the minimum energy
configuration, i.e. they are antiferromagnetic (AF) coupled and align themselves in
an antiparallel way (Fig. 2.6.B). On the other hand, nanomagnets aligned vertically
are coupled ferromagnetically (F) (Fig. 2.6.C). As described in [45], the coupling

Logic 1 Logic 0

A) B) C)

AF Coupling

F Coupling

HOLD SWITCH RESET

Zone 1 Zone 2 Zone 3

RESET HOLD SWITCH

SWITCH RESET HOLD

H3H2

t t

Time 
Step 1

Time 
Step 2

Time 
Step 0

H1

t

Time 
Step 3

InputD)

Figure 2.6: A) iNML basic cells; B) Chain of nanomagnets antiferromagnetically
coupled; C) Vertically aligned nanomagnets ferromagnetically coupled; D) iNML
three-phase clock system;
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2.2 – Magnetic QCA

among neighboring cells is not enough to obtain the switching of the nanomag-
nets. The energy barrier introduced by the shape anisotropy is too high to be
overcome by the dipole-dipole interaction. Hence, magnets need to be forced into
a metastable state to propagate the information correctly. An external field gen-
erated by a current wire buried inside the substrate is usually used to force the
magnets into an unstable state, which is called the reset state. This external agent
is called the clock and rotate the magnetization vector along the short axis by 90°.
Once the external field is released, the magnets re-align themselves according to
the dipole-dipole interaction. Unfortunately, due to the thermal noise, the number
of magnets that can be cascaded is limited to five or six [32]. In the literature,
several clocking mechanisms have been proposed to overcome this limitation. The
most common is a three-phase clock scheme, where three partially overlapped clock
signals are alternatively applied as depicted in Fig. 2.6.D. The picture summarizes
the topology of common iNML circuits that in this particular case is a magnetic
wire. The layout is divided into slices, named clock zones, and by applying in
sequence the three clock signals the digital information propagates towards the
output. Time step 0 shows the initial configuration of the magnets. At time step
1, the clock signal H1 is applied to zone 1, forcing the magnets belonging to that
zone into the metastable state (RESET). At time step 2, the clock signal is released
from zone 1, consequently, the magnets from that zone go into the SWITCH state,
while zone 2 is forced into the reset state. Similarly, at time step 3, zone 1 retains
its magnetization (HOLD state), zone 2 switches, while zone 3 moves into the reset
state.
Logic operations are achieved by iNML gates that are obtained by properly arrang-
ing the nanomagnets in the layout or changing their geometry. The basic gates
are majority voters and inverters: the former is achieved by surrounding a central
element with three magnets (Fig. 4.5.A). The latter is obtained by chaining an odd
number of magnets in the clock zone. Finally AND and OR gates are obtained
with magnets with a slanted edge [33], in this way a preferred direction is set, and
the logic function is defined.

2.2.2 pNML
In pNML technology, single domain nanomagnets with perpendicular magnetic

anisotropy (PMA) are used to represent the binary information. The magnetization
vector encodes the logic ’1’ and ’0’ [12] [10] as depicted in Fig. 2.7.A. In pNML
technology, information propagation is accomplished differently from CMOS; here,
each magnet is a non-volatile memory element. The PMA is obtained with a multi-
layer stack of Co/Pt. The number of layers and their thickness define the magnetic
properties of the device [8]. By placing magnets one near the other, it is possible to
obtain a wire (Fig. 2.7.(C)). Two neighboring magnets try to reach the minimum en-
ergy configuration; thus, opposite magnetization direction. However, the magnetic
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Figure 2.7: NML: (A) magnetic binary representation; (B) Notch; (C)(D) pNML
wire; (E)(F) pNML majority voter; (G) pNML clock mechanism. (H) Clock coil
representation.

interaction among neighboring magnets is not enough to enable the magnetization
reversal. Two additional elements are introduced to guarantee a correct information
propagation: the clock mechanism [41] and the artificial nucleation center (ANC)
[39]. The former is needed to help the magnetization reversal when the superpo-
sition of the clock field and the coupling field, coming from neighboring cells, are
present. The latter, instead, defines the information propagation direction.

An example of the clock mechanism is depicted in Fig. 2.7.(G). In pNML tech-
nology, the clock field is a sinusoidal magnetic field, perpendicular to the magnets
plane, applied to the whole circuit. In order to generate this magnetic field, coils
are placed beneath the magnets. Figure 2.7.(H) shows how the coil can be 3D
integrated in pNML technology. The clocking apparatus corresponds to the “power
supply" in CMOS circuits [32]. To understand its behavior, consider that a new
input is placed near a pNML wire in stable conditions (Fig. 2.7.(G)). The input
magnet and the first element of the wire have the same magnetization direction.
The anti-ferromagnetic interaction tries to force an opposite value on the first mag-
net, but the coupling field is not enough. When the clock field has the same
direction as the “desired” value, the superposition of the two forces leads to the
magnetization reversal. This situation is verified at t=1 in the example. At time
t=2 the first two elements of the wire have the same magnetization, and the clock
field has inverted its direction. The same conditions as before are verified and also
the second magnet can switch to the new value. The process is repeated for the
successive time instants until the input is transferred to the output. The minimum
energy configuration is preserved even if the clock field continues oscillating.

10



2.2 – Magnetic QCA

The problem of information direction is not solved by the clock field. The
process described before works only if it is possible to ensure that the magnet on
the right will be the switching one. The ANC is used to force this behavior. By
changing the magnetic properties on a specific spot of each magnet, it is possible
to define a region more sensitive to magnetic field changes. The ANC is the area
of the magnet where the nucleation of the domain wall takes place. In this area,
the magnetic field needed to force a new value is less with respect to the rest of
the magnet. Considering Fig. 2.7.(C), the darker part of each element identifies the
ANCs. In this example, the left magnet is able to influence the one to its right,
while the contrary is not possible. Thus, the only allowed propagation direction is
from left to right. Normally the ANCs are obtained through a Ga+ Focused Ion
Beam (FIB) irradiation. The FIB changes the magnetic properties of the irradiated
part, lowering the magnetic anisotropy. A different way for creating the ANC has
been presented in [28]: a modification in the magnet geometry and the fabrication
process leads to the same result as FIB irradiation. An example can be seen in
Fig. 2.7.(D). In pNML technology, the main logic gate is the Majority Voter (MV),
Fig. 2.7.(E). By placing three different magnets near an ANC it is possible to define
an MV. The output of this logic gate is the opposite of the majority of the inputs,
due to the anti-ferromagnetic interaction. Note that an MV with a fixed ‘0’ input
behaves as an AND gate, while a ‘1’ defines an OR gate. Furthermore, 3D circuits
are intrinsically enabled by the technology [5]. Fig. 2.7.(F) shows a compact version
of the MV. In that case, two inputs lay on different planes with respect to the gate.
Considering that MV can work with an odd number of inputs [7], it is easy to create
very compact layouts.

pNML technology provides also a synchronization element. Fig. 2.7.(B) shows
a notch [22]. This element, thanks to its particular shape, pins the incoming in-
formation [38] [37]. An additional magnetic field, parallel to the magnet plane, is
needed to lower the energy barrier restoring the information propagation in the
notch. This in-plane field is called the de-pinning clock. The de-pinning clock is
generated by a wire passing under the notch.
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Part I

ToPoliNano Framework
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Even at the early stage of a technology, it is important to explore its possibility
and limitation. While the technologists focus on the device, also a circuit explo-
ration is important. These kinds of studies could give important feedback to the
scientific community. Increasing the number of elements inside a circuit leads to
the need for CAD and EDA tools to perform design and simulation. No commer-
cial tools exist capable of handling such technologies. Also at the research level
the available tools are limited. QCADesigner [47] is widley used by the scientific
community. However, it is based on the general QCA principle. The cell avail-
able don’t have a physical counterpart, resulting in an approximate analysis of the
technological implementation. QCADesigner is not capable of automatic place and
route QCA cells. Other tools are available in literature for this purpose, like fiction
[46] and Ropper [19]. The former is an open-source project that enables minimum
layout dimensions fixing the constraints. It also provide heuristic approach. Dur-
ing the development of this work, the collaboration with the developers of fiction
lead to an integration of the two tools. The latter is very similar to fiction and
enable the automatic place and route of verilog netlists. None of the other tool in
literature is based on physical implementation of QCA technologies. For these rea-
sons the ToPoliNano was designed. The ToPoliNano framework (Torino Politecnico
Nanotechnologies), is a complete framework for the design and simulation of digital
circuits based on QCA technologies. The idea is to have a flow similar to the one
available for CMOS technology. The ToPoliNano framework is composed by two
different tools: ToPoliNano [36] and MagCAD [35]. It supports different implemen-
tation of FCN technologies and it was developed with a modular structure. In this
way it is possible to add new technology and increase the framework possibilities.
The tools are developed in C++ and can be downloaded for free from the ToPoli-
Nano website (https://topolinano.polito.it). Furthermore, they are cross-platform
and available for Windows, MacOS and CentOS. Figure 2.8 shows the framework
design flow.
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Figure 2.8: Schematic representation of the ToPoliNano framework.
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ToPoliNano is an EDA tool that embeds a place&route and simulation engine. It
can perform physical layout automatically, starting from a structural HDL descrip-
tion. Furthermore, it can compile a VHDL testbench and perform the simulation
of the generated layouts. Layouts performed by ToPoliNano can be exported and
later re-opened or can be manually modified using the other tool, MagCAD.

MagCAD is a custom layout editor. Here, the user has a fast prototyping flow:
design a circuit, and then extract a VHDL netlist to simulate it. The automatically
generated netlist embeds a compact model of the target technology. The extracted
layouts can also be opened in ToPoliNano or used as cells within the user’s compo-
nent library during the physical design. An important aspect of our framework is
the support for different technologies. The tools are based on technology plugins:
specifying the technology building blocks, the associated compact models for each
element is enough to define a new technology that could be loaded and used during
the design phase. With the tools, new files type have been defined: QCA Layouts
(qll) and QCA Components (qcc). Those extensions define particular type of XML
files. Both are based on “tags” as standard XML but the main difference is in the
fact that components do not have information on the technological settings. On
the contrary layout files need to have all the information related to the elements
and the technology. In the following section, detailed descriptions of the tools are
presented, with a specific focus on the features developed during my Ph.D.
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Chapter 3

ToPoliNano

ToPoliNano is an EDA tool that enables a top-down design flow similar to the
one available for CMOS. Starting from post-synthesis HDL description it is possible
to perform Place&Route ad simulation. A detailed flow of the tool is available
in Fig. 3.1. In this way, it is possible to design complex architecture using the
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Figure 3.1: Schematic representation of the ToPoliNano tool flow.

selected technology. Different architectures and circuit topology can be described
in HDL, and then the tool is used to perform the Place&Route. Furthermore,
it is possible to tune the technological parameter and also select among different
optimization algorithm. ToPoliNano can handle circuit with increasing complexity
and number of gates up to tens of thousands. Behavioral descriptions can be
synthesized (using Synopsys design compiler or ABC or any desired tool) in order
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to provide a structural netlist. ToPoliNano supports also majority gate synthesis,
where logic gates are achieved through MVs. Currently, it supports a three-phase
clock mechanism. In the following sections, the main part of the tool are analyzed.

3.1 HDL Parsing
The tool supports structural, hierarchical and combinational circuit descrip-

tions. Loops are not handled by the tool, indeed it is able to detect loops in the
netlist and generate an error. Input files could be both in VHDL and Verilog. The
VHDL parser was already present in the tool, while the Verilog one has been de-
veloped as part of this work. The Verilog parser is based on an open-source project
developed at the EPFL, called “Lorina” [16]. The adopted parser is structured
in order to call a specific function, called “callbacks”, for every tag in the Verilog
file (Module Declaration, Inputs, Outputs, And Gate, etc.). This approach is very
flexible, the “callbacks” are part of the API of the parser. Indeed, the parser is
divided into two different classes: the actual parser, called VerilogParser and the
VerilogReader. The former is used to tokenize, parse and interpret the Verilog
source file. The latter, instead, is an interface, providing all empty implementation
of the “callbacks”. This class can be subclassed in a custom class where the “call-
backs” are used to build the desired data structure. Thus, the “callbacks” have
been reimplemented in order to translate the parsed Verilog in the HDL Graph
used inside ToPoliNano. Figure 3.2 shows an example of the HDL Graph result-
ing after parsing a 4-bits ripple carry adder (RCA). The internal data structure of
ToPoliNano for HDL netlist is a tree: the root is the top-level entity/module, the
other components/modules are the trunks, while logic gates are in the leaves. The
nodes of the tree, called HDLNodes, have the name of the corresponding element in
the HDL description. Furthermore, each node holds the pointer to its father and a
list of connections. Each connection is stored as a pair of string, where each string
is one of the two net to be connected. Nodes can be of two types: Composite Node
or Leaf Node. The former is used for all the components/modules of the hierarchy.
It has also a vector of pointers where the children nodes are saved. The name used
for Composite Node is the one of the instance, while member Component Type is
used to save the name of the component. As an example, in the RCA4 of Fig. 3.2
the two RCA2 nodes will have different names but the same type. The latter is
used for the logic gates of the circuit and has no children nodes. Also in this case,
Component Type is used to define the element associated with the node. Leaf Nodes
can be AND, OR, Inverter or majority voter. With this structure, it is possible to
visit all the elements of the graph knowing only the head. This is used during the
layout phase. The “callbacks” of the different logic gates were defined to allocate a
new Leaf Node and define the interconnections. In the case of a module instance,
a new parser object is defined recursively. If the module description is available,
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RCA4

RCA2RCA2

FullAdderFullAdder FullAdderFullAdder
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INVERTER MV

AND OR

INVERTER MV

AND OR

INVERTER MV

Figure 3.2: Graph representation in memory of a hierarchical 4-bits ripple carry
adder. The top-level is the root of the tree. 2-bits RCA instantiated in the circuit
are the trunks of the tree with the four instances of full adders. Finally, the leaves
are composed by the logic gates: AND, OR, Inverter and MV.

it is parsed and an HDL Graph associated with the module is defined. The head
of the new graph will be used as a node of the original graph and also added to
the component list. In this way, multiple instances of the same components will
be parsed only once. Unfortunately, hierarchical Verilog parsing was a new feature
of the “Lorina” parser. During the development of the “callbacks”, several issues
were fixed also on the parser side. For example, wire buses assigned in module in-
stantiations resulted in parser errors. To solve those problems the source file of the
“Lorina” parser was modified and the support for hierarchical designs was added.
The final version of the parser is capable of handling Synopsys post-synthesis Verilog
descriptions, ABC output files and Verilog produced with the “Lorina” parser itself.

3.2 Layout Phase
After parsing the source files the internal data structure is ready for the layout

phase. During this phase, specific algorithms are used to perform the placement
and routing of the elements. The layout is composed of different steps. Firstly
the HDL Graph is translated into another data structure. Since ToPoliNano has
been developed to handle different technologies, the HDL data structure needs to
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be translated according to the selected technology. Currently, only iNML is sup-
ported for the layout process. An adjacency list is used during the iNML layout.
The translated data structure is then processed by specifically designed algorithms,
that take into account the technology constraints. As an example, the maximum
number of elements or the limit of cascaded logic gates in the same clock zone are
some of the constraints. Figure 3.3 shows the internal graph of a 2-to-1 multi-

Select In_BIn_A

AND

AND

INV

OR

Output

Figure 3.3: Internal representation of the 2-to-1 multiplexer. Each circle in the
picture is a node of the ToPoliNano data structure. Edges show inputs and outputs
of each node.

plexer, after the HDL translation. Fan-outs are added as the first step: a coupler
is inserted when a signal drives more than 1 gate or output. Later, the circuit goes
through a function that balances the paths among the logic gates. iNML circuits
are like big pipelines, and the inputs of logic gates must be synchronized. Figure
3.4 shows the mux graph after fan-out management and path balance. The coupler
inserted for input “Select” was balanced with two wires node for the other inputs.
In this way, both the input of the logic gates have to travel the same number of
clock zones. At this point the main issue of iNML technology is addressed: cross
wires reduction. Since iNML is a planar technology, a special element is used to
implement crossing in the signal paths. The introduction of a cross wire needs to
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Coupler0 W1W0

AND

AND

INV

OR

Output

Select In_BIn_A

W2

W3

Figure 3.4: The multiplexer structure after path balance and coupler management.
The number of nodes is increased, together with the number of levels. This structure
will be used to perform the actual Place&Route

add a clock zone to the circuit: wires have to be added to balance again the paths.
Therefore, the number of crosswires is critical and a specifically adapted algorithm
is used to tackle this issue [36]. After this step, the graph is fixed and the physical
placement is started. Each element is translated into the corresponding physical
implementation. Each level of the graph will be a clock zone of the physical layout.
After placing the gates and every element resulting from the previous management
of the graph the connections among the clock zones are routed. The final layout is
then optimized and useless columns, composed by only straight wires, are removed
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in order to improve the circuit performance. Figure 8.13 shows the final layout of
the discussed mux.

ToPoliNano supports different layout approaches: Fully Hierarchical, Partially

In_BIn_B

INVERTER

Output

In_AIn_A

Select

In_B

INVERTER

Output

In_A

Select

Figure 3.5: Final layout of the 2-to-1 multiplexer: input and output pins are the
light blue elements with the name superimposed. Magnets of different colors belong
to different clock zones. Logic gates are differently colored and it is possible to see
the slanted edge of the central magnet.

Hierarchical and Flat. Depending on the selected approach only some nodes of the
HDL Graph are used to build the adjacency list. For example, with the Flat ap-
proach, only the leaves of the HDL graph are used. Thus, only the basic logic gates
will be translated and used to perform the layout. Differently, with hierarchical
approaches, the nodes identified as components will be used, and all the children
of those nodes will be ignored. Considering again Fig. 3.2, if a fully hierarchical
approach is selected, the 2-bits RCA will be marked as components. As a result,
in the final layout, only those elements and the magnet used to interconnect them
will be present. A hierarchical layout could be used also to reduce computational
time in case of big circuits. Indeed, it is possible to load components previously
defined during the layout phase. If components are not present in the library a
new one is generated and saved on the disk. To handle components the layout
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phase is divided into two parts: component management and the final layout. The
second part consists of the same steps performed during the flat layout. Instead,
during component management, all the components node are considered. If the
user selected to load the component from the library, the tool will try to load it
from the disk. If the file is not present a new component is generated. Otherwise,
component information is extracted from the file, and the component is added to
the layout. This process is recursive: if a component includes a smaller block, the
operations are repeated until the leaves of the graph are reached. For example, in
the 4-bits RCA, the 2-bits RCA is a component. When the component needs to
be generated, a new layout process is launched, and considering the 2-bits RCA as
the top-level circuit. Recursively, the FA is generated, and then each block is used
to build the higher circuit in the hierarchy. This description is valid for the fully
hierarchical approach. In case of partially hierarchical selection, the 2-bits RCA
are realized flat.
Those differences in the hierarchical approaches defined the need for a particular
management of the component on the disk. Thus, two different folder are present in
the ToPoliNano workspace for components: Components Created and Components
Hierarchical. In this way it is possible to separate the matryoshka like circuits
from the flat ones. During the layout phase ToPoliNano is looking in the folder
corresponding to the selected method. The final layout could be inspected through
the ToPoliNano GUI. Furthermore it is possible export an image or save it in the
ToPoliNano file format.

3.2.1 fiction Integration
ToPoliNano place&route engine is based on heuristic algorithms. An exact

approach was not available in the framework. However, fiction [46] have been de-
veloped at Bremen University. fiction is a command-line tool capable of performing
an exact placement of a circuit given a set of cells and technology parameters. Un-
fortunately, this kind of approach is limited to small circuits, less than twenty gates.
Anyway, the resulting circuits are the best in terms of area occupation, and therefore
performance, obtainable with the given constraints. Given the hierarchical design
capability of ToPoliNano the exact approach could have been used for the building
blocks, using the heuristic algorithm during the top-level interconnections routing.
This idea was used during a joint research project with the Bremen University. The
scope of the project was to implement an automatic procedure integrating fiction
and ToPoliNano. Firstly, the ToPoliNano clock scheme and technological param-
eters have been inserted inside fiction. Furthermore, the possibility of writing a
“.qcc” file was introduced inside the fiction code. Simultaneously, ToPoliNano was
modified in order to add the fiction call during the layout phase. A checkbox and
a spin-box were added to the layout parameter selection window, Fig. 3.6.

23



3 – ToPoliNano

Figure 3.6: ToPoliNano windows showing the parameters related to fiction calls.
The user can check the fiction box and specify the maximum time available to
complete the layout phase before going back to the ToPoliNano engine.

In this way the user can select to use fiction and specify a timeout. fiction exe-
cutions could last also days if a high number of logic gates is present in the circuit.
The user can set a maximum iteration time, if the exact placement is not avail-
able after that time, the heuristic process is called. Inside the ToPoliNano code,
the “QProcess” class was adopted to implement the fiction calls. In particular,
the string needed to perform the layout, including the technological parameters,
is composed by combining all the elements. Then a “QProcess” is called with the
given string. This class executes a command in a temporary shell, and collect the
output of the execution. When the fiction call ends, either with positive output or
terminated by the time out, ToPoliNano check if the component description was
generated. A new folder, Component fiction was defined inside the ToPoliNano
folder structure. The components generated by fiction are placed there. Further-
more, during the layout phase this folder is checked before the other ones: if a
component is present, it is loaded In this way the exact components are preferred
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to the heuristic ones. The Resulting block diagram after the integration is shown

ToPoliNano
Structural/
Hierarchical
HDL Netlist

Design Rules

Simulation Engine
VHDL 

Testbenches

fiction

Circuit 
Layouts

Simulation 
Waveforms

Gate 
Libraries

Logic Network 
Parsing

Design Rule 
Checking

Exact & Heuristic 
Physical Design

Gate & Cell Level 
Optimization

Physical Design
Place & 
Route 
Engine

fiction 
calls

VHDL/Verilog 
Parsing

Figure 3.7: Schematic view of the toll structure. fiction is integrated inside ToPoli-
Nano and it is called during the layout phase. The exact algorithm is used to
manage components in the hierarchy.

in Fig. 3.7.

3.3 Simulation
After performing the layout it is possible to simulate the resulting circuits. It is

also possible to load a previously saved circuit and perform directly the simulation.
A VHDL testbench is needed to perform a simulation: ToPoliNano can parse the
testbench and apply the correct stimuli to the circuit. The parsed VHDL testbench
is used to create an internal data structure composed of Levels. Each Level has
a boolean value and two time information, start and stop time. This structure
is used during simulation to retrieve the values to be applied to the input of the
circuit. Furthermore, the clock signals are defined according to the selection made
by the user through the GUI, as shown in Fig. 3.8. In the same picture, it is
possible to notice that two algorithms are available for simulation: Behavioral and
Single Domain Equation. As expected, the former does not take into account the
physical properties of the elements. It is based on the ideal ferromagnetic and anti-
ferromagnetic coupling among the elements, that are considered boolean variables.
If the clock is active for an element, it will be in the reset state. On the contrary,
if the clock is not active the surrounding elements are used to evaluate the new
state. Since the clock mechanism is fixed, it is possible to visit the circuit knowing

25



3 – ToPoliNano

Figure 3.8: topo windows showing the parameters related to the simulation. The
user can select the clock waveform specification and the simulation engine. Fur-
thermore, the simulation resolution can be modified.

the direction of propagation. This kind of visit, described in [36], distinguishes the
case where the number of neighbors is greater than one (MVs and Couplers) from
the others (Wires, Inverters, etc.).

Pseudocode 1 is used in the former situation. In the case of Couplers some of
the elements will be in the reset state, therefore only one of the surrounding element
will be used to determine the value of the magnet. The other possible configuration
is solved using pseudocode 2.

The other simulation engine is based on the LLG equation [llg]. As in the pre-
vious case, the visit of the circuit is not general and assumes a specific clocking
mechanism. Indeed, changing the visiting order would lead to completely different
results. Furthermore, it is designed only for iNML technology. For these reasons,
a new simulation engine has been developed. The new simulator is the main con-
tribution described in this work and it will be presented in part II.
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Algorithm 1 Behavioral simulation algorithm for more than one surrounding mag-
nets
Precondition: magnet is the magnet to be evaluated, neighbors is the list of the

elements surrounding the evaluated magnet.

1: ones ← 0
2: zeros ← 0
3: for each element ∈ neighbours do
4: if element.x() = magnet.x() then
5: if element.value =′ 1′ then
6: zeros ← zeros + 1
7: else
8: ones ← ones + 1
9: end if

10: else
11: if element.value =′ 1′ then
12: ones ← ones + 1
13: else
14: zeros ← zeros + 1
15: end if
16: end if
17: end for
18: if zeros > ones then
19: magnet ← ′0′

20: else
21: magnet ← ′1′

22: end if
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Algorithm 2 Behavioral simulation algorithm for single surrounding magnet
Precondition: magnet is the magnet to be evaluated, neighbour is the coupled

magnet.

1: if neighbour.x() = magnet.x() then
2: if neighbour.value =′ 1′ then
3: magnet ← ′0′

4: else
5: magnet ← ′1′

6: end if
7: else
8: if neighbour.value =′ 1′ then
9: magnet ← ′1′

10: else
11: magnet ← ′0′

12: end if
13: end if
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Chapter 4

MagCAD

The other tool part of the ToPoliNano framework is MagCAD. This tool is a
custom layout editor: the user can design custom circuits starting from the technol-
ogy building elements and previously designed components. The tool has a simple
and user-friendly GUI. At the start-up a new layout is created: the user can select
the target technology among the ones supported by the tool. The technologies are
plug-in that the tool can load. A new technology could be added simply by defining
the correspondent plugin. A technology is identified by its building blocks and a
set of general properties. Fig. 4.1 shows the technology selection windows and in

Figure 4.1: Technology selection window. On the right the settings for iNML
technology modifiable by the user.
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particular the technology settings for iNML technology. In the same figure it is pos-
sible to notice that three technology are supported in MagCAD: iNML, pNML, and
MolQCA. After technology selection, the main GUI is shown to the user, Fig. 4.2.
It is composed of four main parts. The central portion is the drawing area. On the

Figure 4.2: Mainwindow of MagCAD

left, there are the technological elements and the widgets used to set the technolog-
ical properties of the elements. On the right, a tree-view is used to browse all the
previously designed circuit. Finally, in the top part, all the menus are present. The
design phase consists of placing the element from the left part in the drawing area.
Furthermore, the tool has different features that the designer could use during the
layout: cut&paste, collision detection, and zoom are some of them. It is possible to
insert also pin elements: these objects are used to define the connection when the
circuit is exported as a layout “.qll” or as a component “.qcc”. Components will load
default technology settings when opened for inspection. Furthermore, it is possible
to insert in the layout also circuit from the component library: in this case, the
settings of the layout will be used to define the elements. Indeed, two possible type
of insertion are available: Insert as component or Flat insert. With the former, the
circuit is inserted as a black-box and the pins are shown to properly connect the
signals. In order to verify the designed circuit, it is possible to extract a VHDL
description of the layout. This description is based on technological libraries that
embed models of the target technologies [40]. The extracted netlist can be simu-
lated using standard HDL simulators, like Modelsim from Mentor Graphics [31].
Another possibility is to open the circuit with ToPoliNano and perform the sim-
ulation with the internal simulation engine. Different functions of MagCAD have
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been developed as part of this work. In the following, three main contributions will
be described: the FunCoDe (FUnction and CONnection DEtection) algorithm, the
molecular Plugin and the physical parameter management.

4.1 FUNction and COnnection DEtection Algo-
rithm

MagCAD enables the design of custom circuits. After the design phase it is pos-
sible to extract a VHDL netlist of the circuits. In the netlist each cell is associated
to the corresponding behavioral model. However, the interconnections among the
cells and also their functionality depend on the circuit layout. The whole algorithm
has been designed in a general way so that it may be easily extended to new devices.
The algorithm determines the function implemented by groups of building blocks.
Indeed, according to the surrounding elements and the signal direction, specific
logic functions can be implemented. First, the connectivity of the custom layout is
verified according to technology-dependent rules. Fig. 4.5 reports the connections
allowed for every building block of both iNML and pNML technology. For example,
in Fig. 4.5.A the central magnet of the Coupler and the Majority Voter implement
a different function according to the neighboring elements. Moreover, many build-

Design
Building 
Blocks

Error Log

Components

Layout Netlist

FUNCODE

Algorithm

Figure 4.3: Design methodology in which the FUNCODE algorithm was intro-
duced

ing blocks do not have a predefined connection. Thus, the final connectivity can
be determined with an overview of the whole layout by looking at how the digital
information moves from input to output.
As an example, in the iNML wire described in Fig. 2.6.D, the clock zone sequence
can be helpful for determining the signal propagation. A similar approach can be
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applied to pNML circuits. The signal flows from ANC to the opposite side of the
magnetic nanowire.
After defining the connectivity of the building blocks, the basic gates are identi-
fied before writing the final VHDL netlist. Fig. 4.3 summarizes the design flow
in which the proposed solution has been adopted. It is possible to use previous
designed circuits, stored in a user library, as building blocks. In this case too, the
connections are defined by the algorithm and a hierarchical netlist is provided to
the user. The generated netlist could be simulated using a standard VHDL sim-
ulator, like ModelSim [31]. It is therefore possible to use commercial simulator to
verify FCN circuits. A model of the technological elements is needed. However,
the definition of a behavioral model at the early stage of a technology can speedup
the research phase. In the following, a detailed description of the main steps is
presented.

The proposed algorithm, FUNCODE (FUNction & COnnection DEtection),
can be used for circuits based on iNML and pNML technology presented in chap-
ter 2. The general flow of the algorithm is summarized in Fig. 4.4. It starts from
the inputs of the design, correctly connects each element of the circuit, determines
the function implemented by an element based on the neighboring cells and then
writes the final VHDL netlist.

Firstly, all the elements of the layout are translated into their corresponding
HDL-Element. This data structure and the list of circuit inputs are taken as input
by the algorithm. The HDL-Element stores the information about the available
connections. The connectable cells are set according to the source element. As
an example, the Simple Magnet in iNML technology has a total of eight possible
connections. Each side of the magnet can be both input or output (Fig. 4.5.A).
On the contrary, the pNML Magnet has four connections available, which means
that only two sides can be connected (Fig. 4.5.B). However, in both cases, it is
not possible to determine in advance which is the input and therefore the output.
Fig. 4.5 shows examples of connections for the elements of both iNML and pNML
technology. From this figure it is possible to observe that some elements have pre-
defined connectivity.
Each time an element in the layout is translated, an HDL-Element is allocated in
the memory. As the circuit gets bigger, the matrices become incredibly large and
sparse. Therefore, the position of the HDL-Element is inserted into two special ta-
ble structures, which henceforth are called sparse matrices, (Fig. 4.6.C). In the case
of multi-layer (3D) layouts, a vector of these sparse matrices is used, where the layer
number is used as the index in the vector. The sparse matrices are implemented
as vectors and a binary search is used to insert and read the data. This approach
has been preferred in order to limit the required memory to just the actual num-
ber of elements in the layout. Fig. 4.6.B and Fig. 4.6.C show the HDL-Elements
translation, comparing the matrix and sparse matrix representations respectively.
Even if the circuit reported in Fig. 4.6.A is quite simple, it is possible to observe
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Figure 4.4: FUNCODE flow chart

that for large circuits a lot of memory can be saved. Usually, the number of build-
ing blocks enclosed within the bounding box of the circuit is much smaller than
the total number of cells in the grid. Furthermore, some elements are not in both
the input/output data structures. As an example, input pins are only available in
the output sparse matrix, while output ones only in the input (Fig. 4.6.B). This
distinction is necessary since, from the netlist point of view, inputs can provide an
output connection, while outputs can receive an input connection from a neighbor-
ing cell. The vector representations are used for fast look-up during the element
connections: the structure can be accessed with the coordinates of the element in
the layout and the output is available in logarithmic time.
When this setup phase is completed, the main algorithm can start.
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Figure 4.5: A) iNML elements and corresponding available connections. Inputs are
blue, while outputs are the red arrows. B) pNML elements and relative connections.
Blue crosses show input coming from another layer, while red circles are output
interconnections towards adjacent planes.

4.1.1 Connection Detection
The first step of the algorithm is responsible for the detecting the real con-

nections among elements and therefore how the information propagates inside the
circuit. The pseudocode is summarized in algorithm 3. Only some elements have
their inputs and outputs pre-determined, while the others have their direction de-
fined as they are linked to their neighboring cells. Since each element has different
connection, at line 2 the connectable cells are extracted. The list of connectable
cells, with all the directions available for output interconnections, is used to access
the input sparse matrix. Considering the layout in Fig. 4.6.A, pin “A” is the only
element of start. This pin, according to its orientation, can be only be connected
to its right. The input sparse matrix is accessed at (1,1) and “M1” is returned.
The function at line 6 is used to determine if it is possible to create a connection
between the current pin and the one extracted from the sparse matrix. The pres-
ence of the cell in the sparse matrix is not enough to determine if a connection is
possible. The input connection of the target pin could already be occupied. More-
over, the orientation of the element in the layout provides information about its
connectable sides. Indeed, the connection cannot be achieved with an element on a
non-connectable side. When it is not possible to create a new connection, an error
is generated. The error is used to provide a report message to the user. On the
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Algorithm 3 Connection detection pseudocode
Precondition: Inputs and Outputs are the two sparse matrices, start is the list

of the input pins of the circuit.

1: for each element ∈ start do
2: connectable ← element.GetConnectableCells()
3: for each cell ∈ connectable do
4: if inputs.contains(cell) then
5: input ← inputs[cell]
6: if cell.canConnect(input) then
7: CreateConnection()
8: input.SetEffectiveDirection()
9: start.insert(outputs[cell])

10: else
11: return ConnectionError
12: end if
13: else
14: return ConnectionMissing
15: end if
16: end for
17: end for
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Figure 4.6: Example of how to circuit is translated in memory. A) Example of iNML
coupler; B) Example of translation using two matrices; C) Example of translation
using two vectors.

contrary, if the connection is available, it is formed. Each HDL-Element has the
name of its output signal. To form a connection, the output name is inserted in the
vector of input of the target cell. This information is useful when writing the VHDL
netlist. In particular, the signal name is used in the port map of the corresponding
cell. Once the new connection is defined, an element-specific function is called to
define the propagation direction (line 8). These operations are repeated for all the
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Figure 4.7: Elements connectivity examples. A) shows a portion of a pNML circuit
with two elements and one input pin. B) highlights the connection available for the
elements and C) shows the correct connection detection. D) represents the same
circuit with extra input. E shows the connection available and F) is an example of
output-output error. G) shows a portion of the iNML circuit where an inverter has
two neighboring pins. H) highlights the error due to multiple input connections to
a single input element. I) is a pNML corner with a pin placed where there are no
available connections, generating the error in L).

possible outputs of the current cell, and each new connected element is added to
the start list. When an output pin is reached, nothing is added to the start list,
thus nothing is present in the corresponding position in the output sparse matrix.
Therefore, the loop ends when all the elements have been visited.
As an example, consider Fig. 4.7.A. The X-Connection has connectable pins in ev-
ery direction. The number of pins is doubled, i.e. each side could be both input or
output. During the execution of the algorithm, the left input comes from an input
pin of the circuit. When that connection is defined (Fig. 4.7.B), the redundant pins
need to be removed. The one connected is the only available input and the others
are set as outputs, as shown in Fig. 4.7.C.
Fig. 4.7.D shows an example of an incorrect layout. Two input pins are placed close

37



4 – MagCAD

to the X-Connection element. The first connected input sets the actual direction
of the Nucleation Center cell. Subsequently, input “B” is connected defining the
actual direction of the X-Connection. At this point, when it tries to connect the
two elements, an output/output error occurs (Fig. 4.7.F). Another possible error is
shown in Fig. 4.7.G: the first pin will be connected and since the inverter has only
one possible input, the second will trigger an error. Finally, an input mismatch is
shown in Fig. 4.7.H.
This part of the algorithm is common to both the technologies. Some elements
need particular attention: the Simple Magnet in iNML and Nucleation Center in
pNML. They are handled by the Handling Technological Issues blocks, which are
described in sections 4.1.3 and 4.1.4. Before entering into the details of this step,
the function detection, still common to both the technologies, is described.

4.1.2 Function Detection
Once the connections have been defined for all the elements and no errors have

been generated, no more entries are available in the start list. The execution moves
to the next step, the function detection, whose implementation is summarized by
pseudocode 4. The VHDL netlist is based on a library of technological components.

Algorithm 4 Function detection pseudocode
Precondition: Elements is the list of all the HDL-Element of the layout.

1: for each element ∈ Elements do
2: if element.outputs /= connected then
3: return OutputDisconnected
4: end if
5: if element.inputs /= connected then
6: return InputDisconnected
7: end if
8: EvaluateFunctionality(element.connections)
9: WriteV HDL()

10: end for

The library embeds the description of all the gates and building blocks supported.
During the final phase, each layout element is associated to one of the library el-
ements, depending on its function. Some elements have a one-to-one mapping in
the library: an AND element in the layout is mapped into an AND gate in VHDL.
A Simple Magnet in iNML could either be a Majority Voter, a Coupler or a Simple
Magnet based on its interconnections. Each element is therefore analyzed. The
first check is made on the output interconnections: if an output pin is not con-
nected to any other element an error is generated. The same test is done on the
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input pins. If both tests fail, the function at line 8 is executed. This function has
specific implementation for each HDL-Element. The number of input and output
connections is used to determine the function. Once detected, the correct library
component is associated with the cell. For example, if a Simple Magnet, in iNML,
has three inputs and one output, a Majority Voter is associated with the element
and the corresponding VHDL netlist is written. On the contrary, if the same ele-
ment has one input and two or three outputs, a Coupler is instantiated. Similarly,
for the Nucleation Center in pNML, three inputs identify a Majority Voter, while
one input identifies an inverter. Another example is the pNML Pad, but outputs
are considered in this case. The components Pad, T-Connection or X-Connection
are associated to one, two or three outputs respectively. Finally, during the VHDL
writing step, the coupling among cells needs to be evaluated. The relative position
between the interconnected elements is used and the inverters are inferred in the
netlist in order to model the correct coupling.
The previous part of this section described the general algorithm adopted for con-
nection and function detection. In the following, two sub-sections will describe the
technology-dependent aspects of the proposed solution.

4.1.3 Handling iNML Technological Issues
In iNML technology, the Simple Magnet is the most critical element during the

process of detecting the connection. When it is first connected, the number of
surrounding elements is evaluated. If only one or two neighboring cells are avail-
able, the proper number of connections is created and the process continues to
the next element. If a Simple Magnet has all the connectable positions occupied
by other elements, it is marked as “ambiguous” and added to a specific list called
AmbiguousItems. No connections are defined and the start list is not updated. Af-
ter completing the analysis of the non-ambiguous elements, the AmbiguousItems
list is checked with the pseudocode presented in 5. In order to understand the
connection of an ambiguous element, all the neighboring elements are analyzed.
Each neighbor can be ambiguous, thus this connection is marked as undetermined,
or non-ambiguous. In the case of non-ambiguous elements, a connection with a
new element could be evaluated. If the new element has a fixed direction for in-
put/output (it is an AND gate for example) or belongs to a different clock zone,
the direction of the connection can be determined (line 12). Otherwise, this ele-
ment becomes the new neighbor until the direction is fixed (line 9). When all the
directions are completed, the if-then-else statement at line 19 is used to extract
the actual number of connections. Since the resolution of an ambiguous pin could
solve other connection uncertainty, the loop is interrupted as soon as a new func-
tion is identified. The resolved element is removed from the AmbiguousItems list
and added to start. Thus, the normal connection algorithm 3 is executed with the
updated start list. On the contrary, if it is impossible to determine the function of
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Algorithm 5 Ambiguous element resolution
Precondition: AmbiguousItems is the list of all the ambiguous elements found.

start is the list of the non-ambiguous elements.

1: Iterations ← 0
2: while iterations ≤ 2 do
3: for each element ∈ AmbiguousItems do
4: for each neighbor ∈ element.getConnectable() do
5: while neighbor /= fixedDirection do
6: if neighbor.outputs > 1 then
7: neighbor ← Undetermined
8: else
9: neighbor ← neighbor.output

10: end if
11: end while
12: element.defineNeighborDirection()
13: end for
14:
15: inputs ← element.inputs
16: outputs ← element.outputs
17: undetermined ← element.undetermined
18:
19: if inputs = 3 | (inputs = 2 & undetermined = 1) then
20: element ← MajorityV oter
21: start.append(element)
22: AmbiguousItems.pop(element)
23: break
24: else if (inputs = 1 & undetermined < 2) | (outputs > 1

& undetermined = 1) then
25: element ← Coupler
26: start.append(element)
27: AmbiguousItems.pop(element)
28: break
29: else if (inputs + undetermined) = 3 & outputs = 1 &

iteration /= 0 then
30: element ← MajorityV oter
31: start.append(element)
32: AmbiguousItems.pop(element)
33: break
34: end if
35: end for
36: Iterations ← Iteration + 1
37: end while
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an element, the next one in the AmbiguousItems list is analyzed. If no ambiguous
elements are resolved during the loop on the list, the number of iterations is in-
creased and therefore the condition at line 29 becomes true. This condition, lines
29-32, is used to “guess” the function of an element. The Majority Voter function
is assigned to the first ambiguous element with exactly one output and a total of
three connections, considering inputs and undetermined neighbors. Usually, this
situation is very uncommon and correct circuits are solved avoiding the need for
two subsequent analyses of the AmbiguousItems list. If a guess is needed, there
is probably an error in the layout. Indeed, this solution can detect errors. After
guessing the function, the algorithm tries to connect all the neighboring cells as
outputs, and conflicts appear in the circuit. Exceptions exist but are very uncom-
mon: a symmetric circuit belonging to a single clock zone is correctly solved by the
algorithm, but the function assignment is unpredictable. As mentioned, these kinds
of circuits have been used as a corner case during the validation of the algorithm
and without any practical function.

4.1.4 Handling pNML Technological Issues
In pNML technology, the critical element is the Nucleation Center. Thanks to

the fixed direction of all the pNML elements, in this technology the solution is
simpler compared to iNML. During the connection generation, it is important to
know the number of inputs for all the Nucleation Centers in the circuit. In the case
of an even number of inputs, an error is present in the layout. To handle this issue,
a Set data structure storing the ambiguous Nucleation Center has been introduced.
When a Nucleation Center is connected, if the number of connections is even, its
position is added to the Set. On the contrary, it is removed from the Set if an odd
number of connections is present. When the start list is empty, all the positions
stored inside the Set are marked as error and added to the output log file.

4.1.5 Performance and verification
The presented algorithm was tested with several circuits. Fig. 4.8 shows the

flow adopted to test the algorithm. Different layouts were used, designed by hand
with MagCAD [35] or generated with ToPoliNano [36] starting from a behavioral
description. The FUNCODE algorithm was used to extract the VHDL netlists
from the circuit layouts. The generated netlists were verified through VHDL sim-
ulations by using ModelSim from Methor Graphics [31].

Fig. 4.9.A shows an example of a circuit in iNML technology. It has three
inputs (A, B and C) and two outputs (O1 and O2). It is composed of several
Simple Magnet items and one inverter. Furthermore, two groups of magnets (the
blue squares in the figure) implement the Coupler and the Majority Voter gates.
Once the layout is processed by FUNCODE, it produces the VHDL netlist, of
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Layout

ToPoliNano MagCAD

FunCoDe

HDL Simulation

Results in textual format

Verification Script

Figure 4.8: Methodology adopted to verify the correct behavior of the proposed
FUNCODE algorithm.

which an excerpt is shown in Fig. 4.9.B. The highlighted cells report automatically
detected functions. Each cell label is named with its position, and a different
library element is associated to it. For example cell5_2 is associated to a NML_cell
and the number of interconnections is specified using the generic map directive of
VHDL. In the port map, the corresponding connections are made. Two issues can be
noticed by observing the connections of the Majority Voter by name associations.
First, a negated function is inserted to model the AF coupling of the input on the
left. Second, the signal naming format. The signal ls4_2o1 inverted is assigned
to CELL_IN(0). For each cell connection, one signal is defined in VHDL. The
name is constructed with the format ls + cellposition + _o + outputnumber. The
interconnections to the Majority Voter come from the cell on the left, above and
below. For the Coupler the same type of cell is used but different interconnections
are specified in the generic map. A different cell is instead used for the inverter. The
simulation of the generated VHDL is shown in Fig. 4.9.C. The majority between
A, B, C determines the O1 output, whereas the output O2 is the inverted value
of input C. It is possible to observe that the output signals take into account the
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Figure 4.9: A) Example of iNML layout; B) Excerpt of the generated VHDL that
show the automatically detected functional blocks; C) Simulation of the sample
circuit that take into account the latency introduced by the target technology.

signal delays introduced by the clock scheme. The circles highlight the input-
output correlation. The latency is due to the clock mechanism. Inputs have to
travel through the circuit before reaching the outputs. Therefore, the generated
VHDL takes into account the physical behavior in terms of timing introduced by
the target technology.

The same approach was used for all circuits discussed in this section. Before
starting the analysis of the results, the selected circuits are presented. The layouts
for the iNML technology have been generated using ToPoliNano. We adopted two
synthesis approaches to generate the circuits. The first is based on standard AND,
OR and inverters gates. The second approach is based on majority gate synthesis.
This approach makes larger circuits possible. The full adder, the Ripple Carry
Adders (RCA) with different data parallelism and the array multiplier belong to
the first category. Furthermore, the c17, c432, c880 and c499 circuits from the IS-
CAS85 benchmark suit [9] were generated using the same strategy. The remaining
circuits are based on the second approach, performed with SIS and ABC [6], two
tools developed at the University of California, Berkeley. The circuits based on the
majority gate synthesis are part of the design of an Advanced Encryption Standard
(AES) Substitution-BOX (S-BOX). The S-BOX is composed of the following sub-
circuits: a 4-bit xor (xor4), a matrix multiplication circuit (affine_transformation),
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Table 4.1: Verification example of circuit c432. Inputs are applied to both the
model and the FUNCODE generated netlist, outputs are collected and analyzed.

Inputs Vectors Model
outputs

FUNCODE
netlist

outputs
E[8;0] A[8;0] B[8;0] C[8;0] PA PB PC Chan[3;0]

111111111 011111111 011111111 011111111 1 1 1 0000 1 1 1 0000
111111111 101111111 101111111 101111111 1 1 1 1111 1 1 1 1111
111111111 110111111 110111111 110111111 1 1 1 1110 1 1 1 1110
111111111 111011111 111011111 111011111 1 1 1 1101 1 1 1 1101
111111111 111101111 111101111 111101111 1 1 1 1100 1 1 1 1100
111111111 111110111 111110111 111110111 1 1 1 1011 1 1 1 1011
111111111 111111011 111111011 111111011 1 1 1 1010 1 1 1 1010
111111111 111111101 111111101 111111101 1 1 1 1001 1 1 1 1001
111111111 111111110 111111110 111111110 1 1 1 1000 1 1 1 1000
111111111 111111111 010011111 101111111 0 1 0 0110 0 1 0 0110
111111111 111111111 101111111 010000000 0 1 0 1111 0 1 0 1111
111111111 111111111 110110101 111111111 0 1 0 1110 0 1 0 1110
111111111 111111111 111010111 111111111 0 1 0 1101 0 1 0 1101
111111111 111111111 111100111 111111111 0 1 0 1100 0 1 0 1100
111111111 111111111 111110111 111111111 0 1 0 1011 0 1 0 1011
111111111 111111111 111111011 111111111 0 1 0 1010 0 1 0 1010
111111111 111111111 111111101 111111111 0 1 0 1001 0 1 0 1001
111111111 111111111 111111110 111111111 0 1 0 1000 0 1 0 1000
111111111 111111111 111111111 011111111 0 0 1 0000 0 0 1 0000
111111111 111111111 111111111 101111111 0 0 1 1111 0 0 1 1111
111111111 111111111 111111111 110111111 0 0 1 1110 0 0 1 1110
111111111 111111111 111111111 111011111 0 0 1 1101 0 0 1 1101
111111111 111111111 111111111 111101111 0 0 1 1100 0 0 1 1100
111111111 111111111 111111111 111110111 0 0 1 1011 0 0 1 1011
111111111 111111111 111111111 111111011 0 0 1 1010 0 0 1 1010
100000010 100000010 100000010 100000000 0 0 1 1001 0 0 1 1001
011111101 011111101 011111101 011111100 0 0 1 1000 0 0 1 1000
111111111 111011011 000100100 000100100 1 0 0 1101 1 0 0 1101
111111111 111101001 111111111 111111111 1 0 0 1100 1 0 0 1100
111111111 011111111 100000000 100000000 1 0 0 0000 1 0 0 0000
111111111 001111111 111111111 001111111 1 0 1 0111 1 0 1 0111
000000000 000000000 000000000 000000000 0 0 0 0000 0 0 0 0000

a Galois Field Isomorphic Mapping circuit (GFMap), a 4-bit Galois Field multi-
plication (gfmul4), a Galois Field Inversion circuit (GFInv), a circuit performing
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square exponential computation plus constant multiplication (SquareEX) and fi-
nally the inversion of the Galois Field Isomorphic Mapping (GFmapinv).
The pNML circuits were manually designed using MagCAD. In pNML technology,
the Majority Voter and the inverter are used to perform all the logic functions.
Therefore, the number of gates in the same circuit is different with respect to the
iNML version. The ripple carry adders with different input parallelism were used.
The 32-bit version of the RCA has been presented in [21]. Furthermore, a decoder

A)

B)

Figure 4.10: A) iNML FUNCODE execution time as a function of the total num-
ber of elements; B) pNML FUNCODE execution time as a function of the total
number of elements.
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Table 4.2: Generation algorithm timing report using different iNML architectures
with an increasing number of elements.
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Table 4.3: Generation algorithm timing report using different pNML architectures
with an increasing number of elements.

C
irc

ui
t

N
am

e
#

G
at

es
#

In
pu

ts
/

#
O

ut
pu

ts
#

El
em

en
ts

Tr
an

sla
tio

n
El

em
en

ts
[m

s]

C
on

ne
ct

io
n

D
et

ec
tio

n
[m

s]

Fu
nc

tio
n

D
et

ec
tio

n
[m

s]

To
ta

l
T

im
e

[m
s]

m
ux

2t
o1

13
2/

1
36

0
0

1
1

fu
ll-

ad
de

r
8

3/
2

55
0

1
0

1
de

co
de

r2
to

4
21

2/
4

94
0

1
1

2
rc

a2
21

5/
4

94
0

1
1

2
m

ux
2t

o1
x3

49
7/

3
16

2
0

1
0

1
rc

a4
43

9/
5

19
4

2
2

2
6

ca
rr

y
se

le
ct

14
9

9/
5

83
8

2
2

1
5

rc
a8

15
6

17
/9

88
6

17
15

4
36

fsm
11

6
5/

12
14

38
14

19
7

40
pl

a
51

3
51

/1
4

29
39

24
26

12
62

rc
a1

6
46

1
33

/1
7

31
99

20
26

14
60

m
em

or
y4

x4
97

2
5/

14
32

94
27

30
9

66
sa

t
10

50
10

/1
9

46
62

48
39

22
10

9
rc

a3
2

13
91

65
/3

3
11

74
5

68
94

35
19

7

with two inputs and four outputs and a memory array 4x4, presented in [18], were
used. Other circuits adopted are a finite state machine (FSM) with four states
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and a programmable logic array (PLA) with three inputs, four minterms, and four
maxterms, both presented in [21]. A circuit implementing the summed area table
[34] (SAT) algorithm was analyzed. Finally, a hierarchical version of a 4-bit carry
select adder (CSA) circuit was designed: the building blocks used are 2to1 mul-
tiplexers and 2-bit RCA. We performed VHDL simulations to verify the correct
logic behavior of the generated netlists. Given the complexity of the benchmark
circuits, the process was automated via a script. A behavioral code, or model in
case of custom circuits, was simulated and the output was saved on a file. The
extracted FUNCODE netlists were fed with the same input and all the produced
outputs were written into a file. The latency introduced in the new structures led
to a larger file, with many more output lines. A script was used to extract the
useful data in the simulation output and to compare these with the data obtained
with the model. Two data are needed in order to run the script: circuit latency
and number of clock cycles without changing the input vectors. The circuit latency
is used to remove the firsts outputs, where no data is present since inputs are still
loading the pipeline. The number of clock cycles is used to skip clock cycles where
the outputs would have been equal.
Table 4.1 shows an example of the verification process for the c432 circuit. Circuit
c432 is a 27-channel interrupt controller. The input channels are grouped into three
9-bit buses (named A, B, and C), where the bit position within each bus determines
the interrupt request priority. A fourth 9-bit input bus, named E, enables and dis-
ables interrupt requests within the respective bit positions. The seven outputs
PA, PB, PC and Chan[3:0] specify which channels have acknowledged interrupt
requests. Only the channel of highest priority in the requesting bus of highest pri-
ority is acknowledged. The input vectors are listed in the first column of Table 4.1.
Since the circuit is combinational the outputs of the reference description are im-
mediately available without any latency. They are reported in the second column.
The output file of the FUNCODE netlist was elaborated through the script and
the resulting values are reported in the third column.

All the analyses reported in this section were performed on an Intel Core i-7
7700, equipped with 16GB of RAM, running CentOS 7 operating system.
The tests show that the algorithm complexity is linear with the number of elements
in the circuit. Fig. 4.10 shows an analysis of the execution time for the different
parts of the algorithm for the two technologies. The performance of the iNML
version is reported in Fig. 4.10.A. The different circuits are listed on the x-axis.
The line shows the number of elements of the circuit and is plotted on the sec-
ondary y-axis. The stacked bars show the time needed to execute the algorithm.
The graph shows that the total execution time increases linearly with the number
of elements. Furthermore, the different parts of the algorithm are associated with
different portions of the stacked bars. The translation to the HDL-Elements is in
green, while the connection detection is in blue. The connection time also includes
the handling of technological issues. The function detection and the VHDL netlist
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writing are represented by the orange part of the bars. The bars reveal that the
translation time is the longest, and is almost half of the total time. In fact, dur-
ing the translation, different data structures are allocated and different operations
are performed on each element. Furthermore, the connection detection execution
impacts the total time for approximately 37%. Finally, the function detection is
the shortest. Once all the connections have been defined, the function is assigned
according to the connected elements. A similar analysis was performed for pNML
technology. Fig. 4.10.B shows the trend of the execution time over the number of
elements. As expected, also for the pNML case, a linear complexity is achieved
since the core of the algorithm is shared by both the technologies. Differently from
iNML technology, the most time-consuming portion of the algorithm is the connec-
tion detection, which is almost 45% on average. The translation time is about 38%
of the total time and the function detection only impacts 18% of the time. The dif-
ferences between the two technologies derive from the fact that the Simple Magnet
in iNML technology, the most common item in the circuits, has high connectivity.
In fact, during translation, a huge number of redundant connections are generated,
and this impacts on the final performance. By contrast, in pNML technology, the
global clock mechanism increases the complexity of the interconnection detection:
without the constraint of sequentiality given by the clock zones an additional degree
of freedom is present.
Tables 4.2 and 4.3 show the results for iNML and pNML technology respectively.
The tables are organized as follows. The first column is the circuit name. Circuit
details, such as the number of gates, inputs, outputs, and elements are shown in
the subsequent columns. In the fifth column the approach, flat or hierarchical, is
presented. The last columns are used to show the time performance of the algo-
rithm. As in Fig. 4.10, the times are divided in translation, connection and function
detection. The last column is the total time needed by the algorithm.

4.2 Technological properties change
One of the most important aspects while studying a new technology is the possi-

bility to analyze the effect of different parameters on the device performance. Even
in circuit exploration, this kind of analysis is very important. The netlists extracted
by the FunCoDe algorithm are not enough for this purpose. Indeed, the technolog-
ical library developed to perform the simulations is based on equations that model
the devices of the selected technology. Those libraries have been therefore split
into two different files: the library itself and a definitions file. The former contains
the descriptions of the technological elements and the model equations. It is the
same for every circuit designed with the selected technology. On the contrary, the
latter embeds all the physical parameters that could be changed for the selected
technology. In this way, by changing the variables inside the definition files it is
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possible to analyze the effect of those changes on the circuit. Given that MagCAD
has been developed in order to simplify the design and therefore a circuit-level
exploration of emerging technologies, manual modification of the definition files
was not enough. Furthermore, a potential user of the tool could be un-expert of
VHDL syntax. Therefore, a graphical interface was developed for parameter vari-
ation. During netlist extraction, if no error were generated, a window, Fig. 4.11,
is showed to the user depending on the select technology. The changes in the win-
dow will be transferred to the definitions file. Furthermore, physical limits for the
available parameters are specified: when the user confirms its selection, the out-
of-range elements will be highlighted. The process is iterated until all the inserted
parameters are valid.

4.3 Molecular plugin
QCADesigner [47] enables the design of circuit based on MolQCA technology.

However, it is based on the general idea of the technology, but no physical imple-
mentation is really used in the tool. In the ToPoliNano framework, the physical
implementation is very important. MolQCA technology support was added to the
framework, starting from MagCAD. The technological plugin for MolQCA has been
developed. MagCAD is able to load new technology at start-up as plugins. iNML
and pNML plugins have been developed in the first versions of the tool. In order to
define a new plugin, the technological basic blocks were selected. As described in
section 2.1, the bis-ferrocene molecule has been used. The molecule is represented
by three circles. The two bigger ones are the logic dots of the molecule, while the
small central circle is the null dot. Indeed, a couple of molecules, therefore a QCA
cell, defines the basic element. This choice results in a uniform squared grid. In
this way, elements in the grid can be rotated without the risk of collisions and su-
perposition. On the other hand, using the single molecule as building block could
give more flexibility to the user, enabling the possibility to change properties of
the single molecule. The main aim of MagCAD is a fast design of circuits based
on different technology. Indeed, the exploration of different technological solutions
or the modeling of process variation is a key aspect of the tool. For this reason, a
more sophisticated technological widget has been developed, Fig. 4.12. The widget
is divided into two different parts: each portion is associated with one of the two
molecules defining the cell. In this way, it is possible to set different properties for
each molecule. Rotation angle and 3D displacement could be changed by the user.
Furthermore, it is also possible to remove one of the two molecules, simulating an
error in the fabrication process. During the layout phase, rotation of the cell or
molecule properties could lead to a difficult understanding of which molecule is as-
sociated with the different parts of the widget. For this reason, different colors are
used to draw the two molecules. Furthermore, a smaller circle is inserted in one of
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A)

B)

Figure 4.11: Technology parameters selection. (A) iNML and (B) pNML.

the two logic dots. The clock zone property, represented by the background color,
can be modified for the entire cell. The technological property that is common to
all the layout is the inter-molecular distance. During the technology selection, it
is possible to set this value, and it will be used to define the grid dimension. As
mentioned before, a square grid is used. In order to have the same distance among
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Figure 4.12: MolQCA property widget.

all the molecules, also considering adjacent cells, the double of the inter-molecular
distance is used as the grid unit. Figure 4.13 shows the resulting dimension in the
default settings: inter-molecular distance equal to 1 nm.

Even if the bis-ferrocene is the only molecule considered at the moment for the
analysis described in part II, this may not be in the future developments. Therefore
different molecules could be defined in the plug-in. For test purpose, the butane
molecule has been defined. Even if the molecular structure is not compatible with
the QCA paradigms, it is possible to insert those molecules in the layouts. Since the
grid dimensions are fixed with the inter-molecular distance the molecule dimensions
are used to scale the representation. For example, the butane molecule defined in
the tool has a 600 nm distance among the dots, while the bis-ferrocene has 1000
nm. When the two cells are placed in the same layout the butane molecules will
be smaller compared with the bis-ferrocene.
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1 nm

1 nm

1
 n

m

Figure 4.13: Highlight of the distance among the molecules. Each dot, in the same
molecule or of two different molecules is distant at least 1 nm from its neighbors.
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Part II

Field-Coupled Nanocomputing
Simulator
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The ToPoliNano framework has been designed in order to extend the classic
CMOS flow also to emerging technologies. Place & route and custom layouts have
been already described in the previous part with the overview of the two tools.
MagCAD and the FunCoDe algorithm can be used to simulate the layout produced
with the framework but it relies on the usage of external tools. Furthermore, even
if the library of technological elements is based on models of the physical behavior,
standard HDL simulators are not designed to perform those kinds of simulations.
Indeed, physical simulators are available and are used to perform the device level
analysis. Unfortunately, increasing the number of elements it is no more possible
to perform physical simulations in a reasonable amount of time. The high accuracy
achievable with that approach costs in time and computation power demand. For
those reasons, a new simulator was developed, and inserted in the framework: Field-
Coupled Nanocomputing Simulator (FCNS). In the following chapters the simulator
will be described and its performance analyzed.
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Chapter 5

Physical simulators

Before entering in the details of the proposed simulator, an introduction about
the available simulation tools is presented. Speaking of magnetic technologies
micro-magnetic simulators are the reference ones. In particular, OOMMF [15]
and Mumax3 [44] are widely used by the scientific community. For what concern
MQCA technology instead a different approach is present. Physical simulators for
molecules, like Gaussian [17] and ORCA [24], are limited to ab-initio simulation,
were the characteristic of a single molecule can be extracted. It is possible to sim-
ulate also a few molecules together but with some limitations that will be later
discussed. For this reason, a simulation tool has been developed in the VlsiLab of
Politecnico di Torino: SCERPA [48] [3]. SCERPA was used as a reference simu-
lator during the development of the proposed software. Finally, QCADesigner can
be used to design and simulate circuits based on QCA technology. In the following
sections, the state-of-the-art simulators are described.

5.1 Micro-magnetic Simulators
In order to simulate the evolution of the element of a circuit a time-dependent

motion of the magnetization has to be simulated. The transition among two stable
states based on external magnetic fields is descibed by the Landau-Lifshitz-Gilbert
(LLG) equation [13]. The formula describes the magnetization dynamic considering
an applied effective magnetic field:

∂M
∂t

= −γµ0 (M×H) + αγ

Ms

(︄
M× ∂M

∂t

)︄
(5.1)

In the formula, γ is the gyromagnetic ratio while α is the damping constant.
This differential equation is used to describe the orientation of the magnetization
vector of an element. The equation is usually solved numerically in order to evaluate
the system evolution. Both the micromagnetic simulators cited before are based
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on the finite differences method (FDM) and this equation. The region of space
that has to be simulated is described defining geometries of different materials,
like permalloy and also the empty spaces. Then, the region is divided into smaller
parts using a grid mesh: in this way the equation is solved for every element of
the mesh. The interactions among all the mesh elements and an optional external
field are grouped in the Heff term of the equation. Since the equation describes
the dynamic behavior of the magnetic elements, the result of the simulation is the
evolution during time of the tested region. The simulation time is divided into
very small time steps. The changes in the magnetization direction are considered
to be infinitesimal. The computation could be done in parallel: at each step, all
the elements can be evaluated. Successively the values are updated and simulation
moves to the next step. The main difference between OOMMF and mumax3 is
that the former runs on CPUs, while the latter is developed to run on GPUs.
Parallel evaluation of a time step could lead to impressive improvements with a
high number of elements. Indeed, Mumax3 outperforms OOMMF even on a low-
end GPU. Even with parallel execution, these kinds of simulations are extremely
slow. Increasing the complexity of the simulated region, meaning the number of
elements to be simulated, causes an exponential growth of the mesh dimension. For
example, a single magnet, 60x90x20 nm, with a grid size of 5 nm results in 864 grid
elements. This number increases to 1872 by adding another aligned magnet, with
the same dimensions, at 10 nm distance. Therefore, it is not feasible to simulate
entire circuits with this approach.

5.2 Molecular Simulators
In order to study the behavior of electrons inside a molecule, quantum chemistry

should be considered. This approach could be used solving the Schrodinger Equa-
tion for the target molecule, resulting in a probability of finding an electron in a
particular position. Unfortunately, that equation can be solved numerically only for
the hydrogen atom. Therefore, some approximation are used to handle more com-
plex molecules. Among the different approaches available, ab-initio simulations will
be here described. This kind of approximations are based on quantum mechanical
laws and physical constants. Indeed, ab-initio methods are accurate and compu-
tational intense. Using Gaussian it is possible to perform ab-initio simulation on
the desired molecules. The main drawback of this approach is that computation
cost becomes unsustainable with a very small number of elements: this kind of
simulation on a circuit based on four molecules is require a huge amount of time.
Furthermore, it is not possible to define several zones where different electric fields
should be applied, as in the clock zone mechanism normally used for MolQCA.
For these reasons, a different approach was introduced. The ab-initio simulation
are used to extract the molecule characteristics, that are then used to model the
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behavior of complex systems. SCERPA (Self Consistent Electrostatic Potential Al-
gorithm) has been developed in order to perform simulation of complex molecular
architectures. It consists in Matlab scripts capable of loading a circuit description
and perform simulation taking into account different clock zones and input val-
ues. Differently from micro-magnetic simulators the model used inside SCERPA
does not consider molecular dynamic evolution during time. Instead, a equilibrium
simulation engine is used. During simulation, molecule are evaluated until the equi-
librium is reached. Then new clock and input values are applied and the process
iterates again until a new stable state is reached.

5.3 QCADesigner
Among the available simulator for QCA technologies QCADesigner [47] has to

be listed. It is a tool that enables the design and simulation of circuits based on
QCA technology. Well known to the scientific community, it gives all the functional-
ity useful to a designer. While it is very similar to MagCAD the main difference lays
in the fact that QCADesigner is not based on a particular physical implementation
of QCA technologies. This means that the basic cells are the ones described in the
beginning of chapter 2. Squared cells with four dots are the only available elements
in the tool. Therefore it is almost impossible to explore also other QCA technolo-
gies, like the magnetic ones. By the way, QCADesigner can perform simulations
of the described layouts. Two different simulation engines are present: Coherence
Vector and Bistable engine. The former, that can model dissipative effects as well
as perform a time-dependent simulation of the design. The simulation engine eval-
uates the equation of motion (a partial differential equation) using an explicit time
marching algorithm. The latter does not include any timing information. The sim-
ulation engine calculates the state of each cell with respect to other cells within a
preset effective radius. This calculation is iterated until the entire system converges
within a predetermined tolerance. Once the circuit has converged, the output is
recorded and new input values are set. This approximation is sufficient to verify
the logical functionality of a design it cannot be extended to include valid dynamic
simulation. The bistable simulation engine can simulate a large number of cells
very rapidly, and therefore provides a good in-process check of the design.

In the next chapters a detailed description of the proposed simulator will be
presented.
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Chapter 6

FCNS

Before entering in the details of the simulator, an overview of the approach will
be given. The idea is to have a multi-technological system, capable of handling dif-
ferent implementation of FCN. Fig. 6.1 shows the general principle of the simulator.
Even if different implementations rely on different physical phenomena and interac-

Field Coupled Nanotechcnologies 
Simulator

System Definition

Simulation Engine

Visiting 
Algorithm

Interaction 

MagCAD 
layout

VHDL 
Testbench

Simulation 
Result

Figure 6.1: Schematic overview of FCNS

tions, common characteristics are present. In FCN the information is moved thanks
to the interactions among the elements. The magnetic or electrical field generated
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by one of the elements will influence the other ones, and information will be propa-
gated. In particular, each element is influencing every other element of the system.
This statement is true for every FCN. Therefore, the visiting algorithm has been
developed in order to be technology independent. Another aspect common to the
different implementations is the division in evaluation steps. During simulations,
new values are evaluated freezing the state of the system. After the evaluation of
a new value for every element, an update function is called: during the update the
new value is set and the process is repeated for the entire simulation. Above the
general core of the system, technology-specific modules are used. Each technology
defines a set of functions, like interaction models and stability criteria, that will
be called during execution. The flexibility of the simulator enables the insertion of
specific properties of the technological elements. In this way it is possible to check
how process variations impact the technology. The simulator is developed in C++
and Boost libraries [20] have been used. Furthermore, it is multiplatform thanks
to the Qt framework. The following sections will enter the details of the tool.

6.1 General Flow
Before starting the analysis of the simulation process, it is useful to describe

how the inputs, both circuit and stimuli, are loaded in the simulator. Currently, the
simulator has been developed as a standalone command-line application, but it is
going to be integrated inside the ToPoliNano tool. Therefore the circuit description
is a layout in the ToPoliNano format (“.qll”). ToPoliNano can parse the “.qll” files
and show to the user the layout. When the user selects to perform a simulation an
instance of Simulation Controller is created. This object accepts as input the list
of the elements and the technological settings relative to the circuit, both already
loaded in the internal data structures. In the current version of the simulator, the
Simulation Controller is instantiated inside the main of the program. Therefore
the parser of the “.qll” files is part of the simulator. Since no GUI is present, the
layout is directly used to perform simulation, without the creation of a graphical
representation. A similar approach is used for the input stimuli. In order to simplify
the process of integration of FCNS inside ToPoliNano the following approach has
been used. The data structure resulting after parsing a testbench is written to a
file using a temporary debug output of ToPoliNano. The resulting file is read in
the FCNS main and translated in the original data structure that is then passed to
the simulation controller. In this way, the controller is ready to be integrated inside
ToPoliNano. The other parameters for the simulation process are now retrieved as
command-line arguments.
The Simulation Controller is the main class of the simulator. It receives the list

of elements and the technological settings, Fig. 6.2 shows a detailed flow chart of
the simulator structure. The first step of the simulation process is the creation
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System Definition

Create Elements
Layout 
Items

Technology 
Settings

Create Clocks

Build Interactions

Create Timeline

Set Simulation Step

Start Simulation

Interaction 
Distance

Testbench 
Values

Simulation 
Step

Simulation 
Time

Simulation Loop

Apply Inputs/Clocks

Evaluate Interactions

Advance Step

Figure 6.2: Detailed flow of FCNS. Each step is executed in sequence, the last one
is the simulation loop reported on the right.

of the internal graph used to represent the circuit. Depending on the technology
selected each element in the list of items read from the “.qll” is translated in the
corresponding simulation element and added as a vertex to the System graph. In
the case of input pins of the layout, the corresponding boolean flag is set to “true”.
As shown in Fig. 6.6, a geometry is associated with every element. The geometry
is sub-classed depending on the technology, but the base class holds the position
of the element in space. This information is used to compute the distance among
the elements in the subsequent step: Build Interactions. This function iterates
on all the vertex of the System and defines the edges of the graph. Here the
interaction distance is used to build the graph. This key parameter, that is passed
to the constructor of the controller, is used to define a range of interaction for
each element. Since the field coupling effects decay rapidly increasing the distance,
it is useless to compute the interaction of very distant elements. However, the
user could be interested in evaluating all the possible interactions in the designed
circuit. Therefore the interaction radius is one of the parameters modifiable by
the user. Fig. 6.3 shows a schematic representation of the described idea. In the
Build Interactions function the distance, intended as geometrical distance among
the element geometries, is compared with the interaction radius. If it is larger, the
edge is not created. On the contrary, if the distance is smaller than the radius, the
correct edge is instantiated and added to the graph. In the graph the presence of
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In_BIn_B

INVERTER

Output
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Select

In_B

INVERTER

Output

In_A

Select

4163452

Figure 6.3: Interaction radius example. Each value results in a different amount of
interacting elements, reported with the number near each circle.

an edge from node A to node B means that node A is influencing the target node
B. If the node is related to an input, the incoming edges are not created during
the process: input are particular nodes capable of influencing the other elements
but not influenced by any other element of the circuit. Fig. 6.4 shows an example
circuit and the resulting graph. The last preparatory step is the Clocks Creation.
Depending on the technological settings the clock signals are defined. Clock sources
are represented as particular elements, with different properties.
At this point the circuit data structure is complete. The simulation process could
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21 30In_AIn_A OutputOutput21 30In_A Output

In_A 0 1 2 3 OutputIn_A 0 1 2 3 Output

Figure 6.4: Example of circuit and the corresponding graph. The circuit is a
short wire composed of four magnets and two pins. In the graph, obtained with
radius = ∞ each node is an element and the arrows show the interactions. Input
and output pins do not have incoming edges: they can not be influenced.

be repeated on the same circuit changing input stimuli and simulation step avoiding
the need of loading the circuit again. Therefore, two functions are used to load the
input stimuli and set the desired simulation step. The former is called Timeline
creation. In this function, the testbench data structure is translated into an ordered
list of signal-level pairs. Each pair holds the name of the signal and the same Level
structure present in the ToPoliNano data structure. The list is ordered based on
the starting time of the Levels to simplify the simulation process. The latter is Set
Simulation Step. It sets the step value in the controller. Finally, the simulation
process can begin by calling Start Simulation with the desired simulation time.
When the function execution ends it is possible to load new stimuli or change the
simulation step and launch a new simulation. In the following sub-section, the
simulation loop will be described.

6.1.1 Simulation Loop
The simulation itself is a sequence of steps, repeated until the simulation time

is reached. Fig. 6.2 shows the flow chart of the main simulation loop. Three main
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macro step are present: Manage inputs&clocks, Evaluate Interactions and Advance
Step. The first step is used to update the input and clock values depending on the
Timeline. Since the elements in the list are time ordered, during simulation it is
possible to check the head of the list: if its time is lower or equal to the current time,
the value translation encoded in the Level is applied to the relative input signal.
This process is repeated until a higher value is found as described in pseudocode 6.

Algorithm 6 Input stimuli application process.
Precondition: timeline is the list of pairs defining the input stimuli.

1: while timeline.head().level.start ≤ simulationT ime do
2: name ← timeline.head().name
3: level ← timeline.head().level
4: timeline.popfront()
5: if name.contains(”clock”) then
6: SetClockV alue(name, level.value)
7: else
8: SetInputV alue(name, level.value)
9: end if

10: end while

This pseudocode introduces two functions: SetClockValue and SetInputValue.
The former is used to set a new value for a clock signal, while the latter is the
only option to change an input element value. Both the functions iterate among
the respective list of elements and, when the correct name is found, the new value
is set. Values for clock and circuit elements might be represented by different
quantities. Furthermore, different technologies rely on different physical quantities.
In order to use the same class for the different possible values the Value class has
been defined and it will be described in section 6.2. The second step is Evaluate
Interactions: it is the central core of the simulator, where the visiting algorithm
is implemented. Each element of the System graph is visited and the function
Compute New Value is called for every node. This last function evaluates the new
value for the current element considering the influence of the clock signals and all
the incoming edges. The pseudocode of this step is presented in 7

From the pseudocode, it is possible to understand that the value of each element
is not changed during this step. In this way the order used to visit the element is
not important: the same results are obtained independently from the visiting order,
they depend only on the values of the elements. The Solver class is used to evaluate
the actual resulting values of the elements. How the value is computed depends on
the interaction defined for the technology. Once all the elements are evaluated, it
is possible to update the values and move to the next step. The last function is
Advance Step. The operations performed by this function are mainly two. Firstly,
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Algorithm 7 Interaction evaluation step.
Precondition: system is the graph of the circuit, while clocks is the list of all

the clock signals defined for the simulation. Solver is the class managing the
interactions.

1: for each node ∈ system do
2: computeNewV alue(node)
3: end for
4:
5:
6: function computeNewV alue(node)
7: if node.isInput() then
8: return
9: end if

10: ckV alue ← 0
11: for each clock ∈ clocks do
12: ckV alue ← ckV alue + clock.getV alue(node)
13: end for
14: neighborV alue ← 0
15: for each neighbor ∈ graph.inEdges(node) do
16: neighborV alue ← neighborV alue + neighbor.getV alue(node)
17: end for
18: result ← Solver.evaluate(node.value, ckV alue, neighborV alue)
19: node.setNewV alue(result)
20: end function
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update the value of each element with the one computed before. This is done call-
ing a specific function, updateValue, on every node of the graph. This function has
been developed in order to perform multiple operations: Before updating the value
a pair composed by the element position in space and the old value is instantiated.
Furthermore, the difference among Value and newValue is computed. Finally, the
update is performed and the two results previously described are returned to the
caller. In this way, the pair is passed to the Data Manager, while the difference
could be used to define the stability of the step. The difference could be unused by
some technological implementation, but with this choice the updateValue function
is common to every element implementation. The other element introduced before,
the Data Manager, is used to handle the output result. Its functionality will be
later described. Finally, the simulation time is incremented by the step value. The
described loop will be repeated until the simulation time is lower than the stop time.

In the following section the class organization will be presented.

6.2 Class organization
Fig. 6.5 shows the general view on the FCNS structure. The organization pre-

sented here refers to base classes that are the interfaces of the tool. Each technology
needs to extend the functionality of the classes, as it will be later described. The
main class is called SimulationController. This class handles the entire simulation
process. Starting with loading the circuit layout and parameters, launching the ac-
tual simulation and writing the outputs. Furthermore, it manages the System class.
It is the actual circuit under test: it contains all the elements and the clocks. System
is a template class. This choice was mandatory to have a technology-independent
core. Another class present in the Simulation Controller is the Data Manager. As
expected, this class handles the data produced during simulation, and in particular,
the files produced. Finally, the Solver class is present. This last class is the actual
interaction used during simulations.

The aforementioned classes define the controller part, while the ones present in
Fig. 6.6 are used to represent the data. Element class is the general item of the cir-
cuit. It is always associated with another class, Geometry, that holds the position
and shape of the element. Furthermore, two objects of the Value class are members
of each element. The same figure shows also the derived class: Clock Element. This
class extends an element with a particular function needed to evaluate the clock
value during simulation. Similarly the Edge class has been defined. This is used
as the base class for the edges in the graph. It is defined by two components: a
real number indicating the geometrical distance among the elements and a three-
element vector. The elements of the vector are the x, y and z components of the
distance, referred to as direction in the following descriptions.
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Figure 6.5: Class diagram of the interface classes. Here the class used to perform
the operations are shown.
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- distance : double
- direction_ : Vector<double>

+ Edge(distance : double, direction : Vector<double>)

Edge

- is_input_ : bool
- geometry_ : Geometry
- new_value_ : Value
- value_ : Value
- name_ : String

+ UpdateValue(&difference : double) : Pair<Point,Value>
+ IsInput() : bool
+ GetPosition() : Point
+ Element(geometry : Geometry)

Element- position_ : Point

+ Contains(p : Point) : bool
+ GetVolume() : double
+ Geometry(position : Point)

Geometry

+ operator>(rhs : Value) : Value
+ operator-(rhs : Value) : Value
+ operator[](key : String) : double
+ AddValue(name : String, quantity : double) : void
+ Value(name : String, quantity : double)

- values_ : HashMap<String,double>

Value

+ GetValueInPosition(pos : Point) : Value

ClockElement

Figure 6.6: Class diagram of the data classes. These elements are used to store the
data during the simulation.

6.3 Interface Classes
In this section each class presented before will be described and documented.

The first class that will be presented is the SimulationController. Firstly the mem-
bers will be described. Members stored in this class are the parameters used during
the execution. They are:

Max Distance It stores the interaction radius used to build the interaction graph.

Simulation Time It is the actual time: it is increased each step and used to
understand when new inputs have to be loaded.

Simulation Step This value is added to the Simulation Time every time a step
is completed.

Timeline This vector holds an ordered sequence of new values for the inputs of
the circuit.
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Furthermore, three other members are available: System, Data Manager and Solver.
These last three members are objects of the corresponding classes.

belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip// Constructor .
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipSimulationController ( double max_dist );
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip// Circuit preparation .
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvirtual void BuildInteractions () {;}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvirtual void CreateClocks () {;}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvoid CreateTimeline ();
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip// Simulation loop.
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvirtual void StartSimulation ( double stop_time , QString file_name
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip= 0) {;}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvirtual bool advanceStep () { return true ;}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip// Level Structure
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipstruct Level
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdouble start_ ;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdouble stop_;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipValue value_ ;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip};

Listing 6.1: Simulation controller methods and Level structure
Code in listing 6.1 shows the functions of the controller interface. The con-

structor receives as parameter the interaction distance. This parameter is the only
one common to all the technological implementations. Then, three functions are
present. These functions are the ones used during circuit preparation. The Build
Interaction and Create Clock are just empty virtual functions. On the contrary,
Create Timeline is defined in this interface since the Level struct, showed in 6.1,
is based on the Value class. This class is a wrapper around an ordered map. In
the map keys are strings, and refer to the physical quantity that is stored in that
entries. Each key is associated with a real number. In this way it is possible to use
the same class to store different physical properties: for example, it is possible to
store a three-axis magnetization vector, a logic value or the value of four dots in a
molecule. The Value class exposes methods to add and retrieve a quantity. Fur-
thermore, mathematical operators have been re-implemented. In particular, during
the update of the values, the difference is calculated for each key in the map, and
a new Value object is defined, where each element is the result of the subtraction.
Fig. 6.7 shows an example of Values and the result of a subtraction. Another im-
portant interface is the System class. As showed in Fig. 6.5, this has two member
values: Graph and ClockList. Those two elements are the circuit data structure,
used to store the elements and compute the interactions, and the list of the avail-
able clock signals respectively. The former is based on the Boost Adjacency List,
one of the possible representations of a graph available in the selected libraries. In
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Value 1

Q1 0.024Q1 0.024

Q2 0.972Q2 0.972

Q3 0.004Q3 0.004

Q4 0.001Q4 0.001

Q1 0.024

Q2 0.972

Q3 0.004

Q4 0.001

Value 1

Q1 0.024

Q2 0.972

Q3 0.004

Q4 0.001

Value 2

Q1 0.124Q1 0.124

Q2 0.872Q2 0.872

Q3 0.004Q3 0.004

Q4 0.001Q4 0.001

Q1 0.124

Q2 0.872

Q3 0.004

Q4 0.001

Value 2

Q1 0.124

Q2 0.872

Q3 0.004

Q4 0.001

Value 2

Q1 -0.1Q1 -0.1

Q2 0.1Q2 0.1

Q3 0Q3 0

Q4 0Q4 0

Q1 -0.1

Q2 0.1

Q3 0

Q4 0

Value 2

Q1 -0.1

Q2 0.1

Q3 0

Q4 0

-

Figure 6.7: Example of two objects of class Value. Each one stores four differ-
ent quantities, named Q1, Q2, Q3, and Q4. The difference is performed and the
resulting value has the same number of quantities.

order to define an Adjacency List, two classes are needed. One is used as vertex
elements, while the other defines the edges of the graph. Since the Adjacency List
is used for each technology defined in the simulator, interfaces were developed for
representing vertexes and edges. The base class for vertexes is the Element. This
class, as showed in Fig. 6.6, has five different members:

Name A string used to identify the element.

Value It stores the current value of the element.

New Value It is the value that the element will assume in the next step.

Geometry It defines the physical properties of the element.

Is Input This boolean is used to distinguish normal elements from circuit inputs.

The most important is the Geometry class. Indeed, the constructor of an Element
needs a geometry object: it is not possible to define a new element of the simulator
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without providing a correct Geometry. The methods available for the Element class
are Getter&Setter for the members, except for the Update Value. The function code
is shown in listing 6.2. The difference value is passed as reference, while the pair
storing the position of the element and its current value is returned to the caller.
In this way, the pair is ready to be sent to the Data Manager, while the difference
among all the quantities inside the Value is used by the simulation controller, as
defined by the technology.

belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipQPair < Geometry :: Point , Value > Element :: updateValue (Value&
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdifference )
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipQPair < Geometry :: Point , Value > p(geometry_ -> GetPosition (),
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvalue_ );
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipif (! is_input_ )
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdifference = new_value_ - value_ ;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipvalue_ = new_value_ ;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipreturn p;
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip}

Listing 6.2: Update Value function code.

The next class that will be described is the Geometry one. As mentioned before,
an object of this class is associated with each element. Different technological ele-
ments have different shapes and therefore the Geometry is sub-classed to describe
the properties of the elements. Also this class is based on the Boost libraries:
Cartesian points and segments from Boost Geometry Model are used. The base
class defines that each geometry is associated with a point, saved as a member
called position. This position is used to compute also the distance among two
elements and it is normally the center of the shape in case of more complex ge-
ometries. Another important member is the Volume: the base class, intended as
a single point has a volume equal to zero. An important method of the Geome-
try class is Contains: it returns true if the point received as parameter is “inside”
the geometry shape. Its implementation depends on the different implementations.
Finally, operators like subtraction and division have been re-defined to handle the
three dimensions points. These operators are used to compute the direction among
two elements. Direction is intended as the vector, or better its components, rep-
resenting their distance, as shown in Fig. 6.8. The direction and its magnitude,
referenced as distance, are the two fundamental members of the Edge class. These
members have to be defined for each edge, but different technologies can extend the
base class to add useful information. The idea behind this class is the possibility to
store properties of a couple of interacting elements in the graph, in order to avoid
further computations during simulation. Another class derived from Element is
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A(x,y,z)

B(x,y,z)

Distance=   (Xa-Xb)2+(Ya-Yb)2+(Za-Zb)2

Direction=(Xa-Xb,Ya-Yb,Za-Zb)

Figure 6.8: Direction and distance example with the formula used to compute them.

the Clock Element. This class was developed as an additional interface to represent
the different clock sources defined by each technology. Indeed, each clock source is
associated with a geometry, it is an Element. In this way, it is possible to define
physical shapes and also properties for the clock sources. Indeed, the clock element
could be a “logical signal” represented by a dimensionless point or a copper wire
placed below the elements or a dipole placed in a specific position. The flexibility
of this approach will be clear when the technological implementation is described.
A specific method was defined: Get Value In Position: as expected, it receives a
point as a parameter, and a Value is returned. In this way it is possible to specify
also distance dependent equation for the clock value: if the clock nominal value is a
magnetic field, its effect is different based on the point where the value is computed.

The Solver class is used to define the interaction among the elements. Each
technology specifies this class adding the equations or models for the interaction.
Finally, the Data Manager is presented. This class has been defined to handle
output file management. At the moment of writing FCNS is not yet part of the
ToPoliNano tool. Furthermore, the old simulator present in ToPoliNano was saving
only output pin values. In FCNS all the elements’ values for each time step could
be saved on disk. All the data produced by the simulation process are moved from
the controller into the Data Manager. Here, a vector of vectors is used: each ele-
ment of the vector is a time step. Each time step stores the values of each element
of the circuit, counting also the clock sources of the circuit. The Data Manager
class opens a new file each time a simulation is started. Then, each time a step is
completed the controller calls the New Time Step function. This function is used
to add an element to the vector of time steps. When the vector size multiplied by
the time step is greater than the export interval, the data are written to the file.
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Time step and Export Interval are members of the class, as well as the File Name.
This last parameter is used to open the output file in append mode each time it is
needed, to avoid to keep it opened during the entire simulation process. Through
another member parameter, Export Step, the user can select to write on the file
only a smaller portion of the computed time step. During the writing process data
are extracted from the vector trough a for loop: Export Step is used to increment
the loop vector index as shown in listing 6.3. The values vector is cleared after the
writing process is completed.

belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfor (int i = 0; i< values_ .size (); i+= export_step_ )
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfile << "Time: " << start_time_ + time_step_ * i << "\n";
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipforeach (auto element , values_ [i])
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfile << element .first << "\t";
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfor(auto value : element . second . values ())
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip{
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfile << value << " ";
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfile << "\n";
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip}
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip}

Listing 6.3: Loop used to write simulation values on the output file.

This concludes the description of the technology independent core. In the next
chapter, the iNML and MolQCA implementation of the simulator will be presented.
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Chapter 7

Technology specific
implementations

The simulator structure was proved with two different technologies: iNML and
MolQCA. Among the presented ones, these technologies were selected because are
based on different physical phenomena. Anyway, it is shown how the simulator
could be easily adapted to handle those differences. Few methods have been re-
implemented and they will be clearly described in the following sections. Further-
more, the model and the interaction defined for the simulation process are analyzed.

7.1 iNML
The first technology that will be discussed is iNML. Two different solver was

developed for this technology: behavioral and physical. The two models are used to
show the flexibility of the proposed simulator. The classes used in both approaches
are very similar. For each approach the Simulation controller, the Element and Edge
classes was developed. Furthermore, the same class was used to represent the clock
sources for the physical and behavioral model. The different implementations are
described in the following sub-sections, focusing on the model adopted to compute
the new values and the specific methods developed. Here, a description of the iNML
clock class is presented.
Each technology can use different models for clock sources. In iNML technology,

the clock zones are rectangular shaped, with a fixed width and height equal to the
circuit vertical dimension. Therefore a rectangular prism geometry was developed.
Class Geometry was sub-classed to define the rectangular prism. The constructor
of the new class, Fig. 7.1, receives as input six points. These points define the
three segments (x, y, and z) of the rectangular prism as shown in Fig. 7.2. In the
constructor, the points are used to compute and then store as members of the three
axes. The interaction among these axes is used to define the center of the geometry.
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+ Contains(p : Point) : bool
+ GetVolume() : double
+ Geometry(position : Point)

- position_ : Point

Geometry

- zAxis : Segment
- yAxis : Segment
- xAxis : Segment

+ RectangularPrism(X1 : Point, X2 : Point, Y1 : Point, Y2 : Point, Z1 : Point, Z2 : Point)

RectangularPrism

Figure 7.1: Class diagram of the rectangular prism and the base class Geometry.

Y1

Y2

X1 X2

Z1

Z2

Pos

Figure 7.2: Geometrical representation of the rectangular prism. Segments and
points stored in the correspondent class are highlighted.

Furthermore, the axes are used to compute the volume of the prism and also in
the contains function. This function is used to evaluate the clock’s influence on
the different elements. As described before the clock source class needs a function
called GetValueInPos. Currently, the iNML clock sources are influencing all the
elements placed in the region of space delimited by the clock x and y dimension.
Fig. 7.3 shows an example of elements that are influenced by the clock element.
Therefore, the contains function returns true if the position received as parameter,
projected on the x and y axis of the prism, belong to the axis itself. Inside the
clock element, an if-then-else statement is used to establish the value in a given
position. In fact, the clock is considered ideal. The actual value of the clock source
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is returned if the element is “contained”, which means it is influenced by the specific
clock. Otherwise, a default value, set to zero is returned. The iNML clock element
is a magnetic vector, and the three components (x, y, and z) are present. However,
the clock is active when the X component of the vector is different from 0. This is
true also for the behavioral simulation: in this way the same testbench can be used
for both the approaches.
In the following, the elements, edges, and controllers specific to the two approaches

Clock1 Clock2

1

2

3

Clock1 Clock2

1

2

3

TOP View

Figure 7.3: 3D and top view of an example where three elements are placed in a
region with two clock zones. In this case, element 1 and element 2 are influenced
by Clock 1 while element 3 is influenced by clock 2.

are described.

7.1.1 Behavioral Algorithm
The first simulation engine developed inside FCNS was the iNML behavioral

algorithm. This approach is very fast, but it does not consider the physical quan-
tities involved. Every interaction is simplified to the logical level. Nevertheless,
complex circuits with a huge amount of elements are resolved in few seconds. The
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simulation controller, in this case, receives a list of QCAItem and the technological
settings. The Max Distance parameter is set to one for this solution. In this way,
only the “touching” elements are considered during the evaluation of the interac-
tions. A new structure is defined in the iNML Behavioral Simulation Controller,
called Physical Parameters. The information included in the technological settings,
that is a hash map, are extracted and used to populate the struct. They are:

X Distance Distance on the X axis among two neighboring elements in nanome-
ters.

Y Distance Distance on the Y axis among two neighboring elements in nanome-
ters.

Z Distance Distance on the Z axis among two neighboring elements in nanome-
ters.

X Axis Width of the magnets.

Y Axis Height of the magnets.

Z Axis Thickness of the magnets.

Offset Quantity added to the position of the elements in order to avoid negative
coordinates.

Clock zone number Clock mechanism expressed in number of different clock
signals.

Magnets per clock zone Width of a clock zone in number of magnets.

Layout width Width of the layout expressed in number of elements.

Layout height Height of the layout expressed in number of elements.

The element dimensions, the spacing, and the offset are used to define the layout
structure. In the behavioral algorithm, the dimensions of the elements are not
used. Each magnet present in the layout is translated to an iNML Behavioral El-
ement. The geometry used for behavioral elements is the basic interface already
presented. Furthermore, the coordinates used are the ones read from the layout.
Since coordinates are integer values, in the MagCAD layout file, the geometries of
the behavioral elements will be on an integer grid. therefore, diagonal distances
will be larger than the minimum interaction distance, leading to a maximum of
four neighboring elements (up, down, left and right). Input pins of the layout are
treated as simple magnets, and the input flag is set to true. In the case of layout
elements that are associated with multiple magnets, specific functions are used.
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3.5 4.5 5.5 6 7

Figure 7.4: (A) wire and an inverter with the vertical grid; the vertical lines are
associated with the middle among the integer coordinates. Each element is trans-
lated into the corresponding object and placed in its position. This configuration
results in a nonworking inverter: an even number of elements is not inverting the
information. In the other case, an extra element (the red one) is added and the
position of two elements is changed. In this way, each element is influenced only
by one neighbor as highlighted in the graph shown in (B).

The AND and OR gates are translated into three magnets. Furthermore, the cen-
tral magnets is different from the normal ones. The Preferred Magnetization is set
according to the logic function. The inverters are instead handled with another
approach. In iNML, the inverters are achieved placing an odd number of elements
in a clock zone. Inside MagCAD an inverter is a special element with an additional
parameter called length. This parameter is used to add the element to the simulator
system. Fig. 7.4.a shows the inverter as it is represented in MagCAD and the grid
where the elements are placed, while Fig. 7.4.b shows the elements actually added
to the graph with the resulting edges. The picture shows how the real coordinates
available in the simulator are used to modify the structure and handle the inverter.
Considering an inverter length of four magnets and placed in coordinate (4,0), the
final element is in position (7,0). However, an odd number of elements has to be
placed. Therefore, an additional magnet is inserted, and real coordinates are used
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to avoid superposition. The first magnet is moved in coordinate (3.5,0): it will
be influenced by the magnet in position (3,0) since their distance is less than one.
The second is moved to position (4.5,0) in order to be logically separated from the
previous one. The additional element is placed in the middle of the last two. The
remaining elements are placed by a for loop until the length is reached. When all
the elements are translated and the Build Interaction function is called. In the
behavioral simulation the Edges are not sub classed. The only information needed
in this algorithm is the distance, which has to be lower than one to create an edge
and the direction. The direction is used to understand the relative position among
two interacting elements: ferromagnetic or antiferromagnetic coupling is applied
during interaction evaluation.

The clock elements are defined taking into account the technological properties.
The number of clock sources is computed dividing the layout width by the clock
zones width. The result of the division is rounded-up in order to cover all the
layout. The width and height of the rectangular prism are set equal to the number
of magnets per clock zone and the circuit height respectively. A for loop is used
to define the clock sources. For each element, the six points needed to define the
prism are evaluated. All the numbers are integer in this version of the simulator.
Therefore, the offset is added to the prism border and the elements geometries will
be included in the clock element. The offset value is set to 0.5. The names for
the clock sources are assigned using the integer reminder of the loop index and the
number of clock sources. Fig. 7.5 shows an example of clock zones. The testbench
is then loaded. Inside the testbench logic values for the inputs and clocks should
be defined. It is possible also to perform logic simulation providing a physical
testbench. In this case, the physical quantities are translated to logic values. At
this point, the simulation can start.

The simulation loop was already described in the previous chapter. In the
behavioral simulation the possible values for the elements are represented in table
7.1.

Table 7.1: iNML behavioral values.

Logic
value

Number
value

Meaning

Reset 0 Magnet is in the unstable state
Weak 0 −1 Magnet is going to “logic 0” but it is not yet stable
Strong 0 −2 Magnet’s value is “logic 0”
Weak 1 1 Magnet is going to “logic 1” but it is not yet stable
Strong 1 2 Magnet’s value is “logic 1”
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4 5 6 7 80 1 2 3 9 10 11

Clock1 Clock2 Clock3

4.5 5.5-0.5 1.5 2.5 3.50.5

Figure 7.5: Example of three clock zones spanning over four vertical lines of the
grid. Each zone is four positions wide but an offset of 0.5 is applied. Zone 1 starts
from −0.5 and ends in 3.5 where the new zone begins.

This values are used in the Compute New Value function. In the behavioral
version of this function, the clock influence is considered as dominant. The first
check performed is on the clock value. For each clock source in the System the
value in the position is retrieved: if it is different from zero the element New
Value is set to “reset” and the function returns. If no clock source is influencing
the element it is checked for stability. These properties were introduced for the
behavioral elements: a magnet is considered stable if its value is “strong”. A stable
magnet can not be influenced by surrounding elements: the behavioral simulation
considers ideal elements. However, the “weak” version of the values is available.
This idea was introduced because the visit algorithm is completely independent
of the circuit layout. Therefore, information propagation direction is not known a
priori. To overcome this problem, the value resulting from the interaction evaluation
is always set to its “weak” version, and a specific algorithm is used to set the stable
one. This algorithm is applied during the Advance Step function. Before entering
in the details of this function, the actual new value evaluation is described. An
integer value is used during interaction evaluation. It is set to the magnet preferred
magnetization, and then all the incoming edges are evaluated. For each edge, the
direction is considered to discriminate among ferromagnetic or antiferromagnetic
coupling. Furthermore, only stable neighbors are used to compute the new value.
The neighbors’ values are accumulated in the integer value defined before. In the
case of antiferromagnetic coupling, the opposite of the neighbor state is used. When
all the neighbors are evaluated and the resulting magnetization is different from
zero, the total number of surrounding elements (stable and not stable) is used to
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Figure 7.6: Examples of interaction evaluation in the behavioral simulation. (A)
shows a simple wire. The central magnet is evaluated: the one on the left is stable,
the one on the right is in reset. Preferred magnetization is zero and antiferro-
magnetic coupling is present, resulting in total interaction equal to −2. Since the
number of neighbors is equal to two, the new value will be directly −2. (B) shows an
OR gate. The central slanted magnet is evaluated: ferromagnetic coupling and pre-
ferred magnetization sums up to −2. Given three neighbors the value is normalized
to −1.

distinguish two situations. If there are more than two neighbors, it is not a simple
wire, the magnetization is set to the accumulated value divided by its absolute
value. Otherwise, the normalization is not performed and the next value will be
a stable one. Fig. 7.6 and 7.7 shows some examples of interaction evaluation. In
the Advance Step function, the stability of each element is checked before and after
performing the update of the values. If none of the elements of the circuit became
stable in the step, another function is called on every element. This function, called
Promote, is used to update “weak” values to their stable counterpart. The idea is
that if no changes happen in a step, the values computed will not change in future
steps. Therefore, also the “weak” values can be considered as fixed. Fig. 7.8 shows
an example of a step-by-step evolution on a small portion of a circuit. The elements
are starting from a reset condition and a random visiting order is considered.
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Figure 7.7: Examples of interaction evaluation in the behavioral simulation for MV
layout. (A) shows an example where the sum of the neighbors is 0. Therefore
the new value will be equal to the previous one. (D) is similar to the previous
configuration but here the neighbors’ influence sums up to −2. In this case, this
value is normalized due to the number of interacting elements.

7.1.2 Physical Algorithm
The Physical simulation engine for iNML technology was also developed. It

proves the possibility to define different types of simulation engines for the same
technology, using the same core. The model adopted in this simulation engine has
been described in [13]. The approach is the same described for the micro magnetic
simulator. Differently from those applications, here the basic elements evaluated
are not cubes of a mesh grid, but the single magnets. Therefore the LLG equation
is solved for each element in the layout. This simulation engine can be used to per-
form simulation of circuits in a reasonable time, taking into account the physical
properties of the elements. The classes and methods specifically developed for the
iNML physical simulator are now presented.

The simulation controller, in this case, receives exactly the same parameters
as the behavioral one. Furthermore, the interaction distance can be modified by
the user. The physical parameter structure is defined as the one presented in the
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Figure 7.8: Example of evolution of an MV in iNML behavioral simulation. The
elements in the circuit start from a reset condition(all zeroes). The input values
are placed on the left of the elements. The first step the magnets near the inputs
(red values) switch with antiferromagnetic coupling. Since the number of neighbors
is 2 they assume immediately a stable value. In step number two, top right and
bottom right elements reach a new stable value, while the central one will assume
value equal to 1 (“weak 1”) since its number of neighbors is greater than 2. In the
next step other two magnets, in red, get the new stable value. The central one is
in the same condition. In the final step, the central magnet is the only one that is
evaluated, and therefore it is promoted to its stable version.

previous case. Three more members are available in this version of the struct:

X Grid Size X axis length of the layout grid.

Y Grid Size Y axis length of the layout grid.

Z Grid Size Z axis length of the layout grid.

These three values are used to easily calculate the actual coordinates for the ele-
ments. Each of them is equal to the magnet size on that axes plus the inter magnet
distance along the same direction. In fact, the physical elements are associated
with a geometry with real coordinates. The offset is set to 200 nanometers, to
avoid negative coordinates. The center of the elements are placed on the layout
grid. Also, input and output pins are associated with a rectangular prism. Further-
more, the output pins are fixed in the reset state, simulating a magnet belonging to
the next hypothetical clock zone. During element translation dimensions of the sin-
gle element are modified based on the layout. In MagCAD it is possible to modify
the physical dimensions for each magnet independently. These changes are saved
in the layout file, and the simulator can read the new sizes and define the correct
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geometry. When the geometry is defined the constructor of the iNML element is
called. Each element is associated with its demagnetization tensor. This property,
that is a matrix, depends on the geometry and is saved as a member of the element.
The elements of the matrix are computed following the method described in [1].
Currently, the tool supports only rectangular shaped nanomagnets. It is possible to
define new geometry and therefore calculate the demagnetization tensors for those
magnets. The edges used in the physical simulation was sub classed in order to add
the coupling matrix. This three by three matrix is used to compute the coupling
value of the magnetic field of neighboring elements. The constructor of the iNML
physical edge receives as parameters distance and direction as usual, plus the ma-
trix relative to the interactions of the elements. The matrix is constructed using
the following formula:

C(i→j) ≈ V (i)

4πr3
ij

⎡⎢⎣3r̂2
x − 1 3r̂xr̂y 3r̂xr̂z

3r̂yr̂x 3r̂2
y − 1 3r̂yr̂z

3r̂z r̂x 3r̂z r̂y 3r̂2
z − 1

⎤⎥⎦
The formula defines the generic matrix of the coupling effect of element i referred
to element j. The scalar part is composed by the ratio between the volume of
element i and distance. The elements of the matrix are computed using the unit
vectors of the distance. The direction stored in the edge is divided by the distance
resulting in the unit vectors used to compute the matrix elements. This matrix will
be used during Compute New Value function. The clock sources are computed as
in the behavioral case, but the physical dimensions are considered. The resulting
clock elements are rectangular prism with dimensions in the order of nanometers.
Finally, the default values for some quantities, like active clock field, are defined.
Currently, this quantities are hard coded in the simulator executable, but the user
will be able to change them from the ToPoliNano GUI. After loading the testbench
the simulation can start. In order to increase the flexibility, logic values present
in behavioral testbenches are translated to the corresponding physical value. It is
also possible to assign directly physical values in the testbench.

The Compute New Value function implemented for the physical engine solves an
ODE (ordinary differential equation). The equation is solved for each element and
is the same presented in 5.1. In order to solve the differential equation a stepper
available in the Boost libraries were used. It is possible to select among different
steppers because they are based on common API. In order to work with a Boost
stepper a class needs to be defined. This class is the so called right-hand side
of the equal sign in the equation. The class, RhsLLInteraction, needs to override
the ()operator. It is called by the stepper in the do_step function. Furthermore,
the operator has to be defined with three parameters: the state of the system,
its derivative and the time. State type can be defined depending on the target
phenomenon while time is a double. Since the simulator solves the equation for
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the magnetization vector, the state type is a three element vector, representing
the three components of the magnetization. The differential equation can be also
written as:

∂M
∂t

= −γ (M×Heff )− αγ

Ms

(M×M×Heff )

Inside the RhsLLInteraction class the values of γ, α and Ms are saved as member
variables. The ()operator code is shown in listing 7.1.

belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipstate_type first_term = cross_prod <state_type >(M_ , Heff_);
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipstate_type second_term = cross_prod <state_type >(M_ ,
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipfirst_term );
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskip
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdMdt_ [0] = -gamma_ * first_term [0] -alfa_* gamma_ /Ms_*
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipsecond_term [0];
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdMdt_ [1] = -gamma_ * first_term [1] -alfa_* gamma_ /Ms_*
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipsecond_term [1];
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipdMdt_ [2] = -gamma_ * first_term [2] -alfa_* gamma_ /Ms_*
belowcaptionskipbelowcaptionskipbelowcaptionskip belowcaptionskipsecond_term [2];

Listing 7.1: Code of the ()operator in the RHS class.

In the code the ccross_prod function is called to compute the cross product showed
in the formula. Then, the derivative term is composed. The Heff is received in the
constructor of the RhsLLInteraction. Actually, the Compute New Value function
is used to compute the Heff , effective magnetic field, of the element. This term
embeds all the influencing fields, both from neighboring elements and clock sources.
The Heff is computed according to the following equation:

H(i)
eff = −N(i)M(i) +

∑︂
j=neighbors

C(i→j)M(j) + H(i)
ext

In this formula N(i) is the demagnetization factor, obtained by multiplying the
demagnetization tensor by the value of the element. H(i)

ext is the external field influ-
encing the magnet. In the simulator only the clock field is considered as external
influence. The last part of the effective magnetic field represents the interaction of
the other elements: it is obtained multiplying their value by the coupling matrix.
After the evaluation of Heff , the solver is called. The solver class provides the
stepper selected, and the step is executed. Each time the do_step is called, a new
object of type RhsLLInteraction is instantiated with the current values. Further-
more, the simulation time and simulation step are needed by the stepper.

The operation here described are repeated for all the elements of the System at
every step of the iteration. Differently from the behavioral simulation engine, the
stepper needs to perform a huge amount of calculation, resulting in longer sim-
ulation time. To overcome this situation the simulation engine was modified to
implement multithreading and speed up the simulation process. Taking advantage
from the Qt libraries the QtConcurrent class was adopted, in particular the map
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Figure 7.9: Schematic view of the multithreading approach present in the sim-
ulator. The QtCOncurrent::Map functions launches a thread, depending on the
number available on the system, and assign to each thread the Compute New Value
operation of a single element. Each thread evaluates the Heff and calls the step-
per for the ODE resolution. The QFuture waits that all the threads finish their
operation and then the simulator moves to the next step.

method. This method is specifically designed to execute in parallel the same com-
putation on an iterable container. Furthermore, the QFuture, another class of the
Qt libraries, was used to correctly implement the parallel computation. In fact, the
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QtConcurrent Map will launch new threads for each element, but the main thread
will continue its execution. This would lead to a problem in the synchronization
and the step update. The Qt framework provides a way to stop the main thread
and wait that all the elements of the iterable list are processed. In order to use
the QtConcurrent Map the evaluation structure needed some modification. The
Map function needs to specify the operation to be performed on every element.
This operation can be a static method that receives a reference to the object iter-
ated. Otherwise, the mapping process works with a member function of the class
stored in the sequence iterated. The previous approaches were not compatible with
the structure already developed of the simulator. Therefore, another solution was
adopted: using Function Objects. This solution is very flexible. A new struct
was defined, and the ()operator implemented. The struct holds a reference to the
System and all the parameters used during the value computation. Furthermore,
the ()operator is the same code defined for the Compute New Value function. It
computes the interactions of all the neighboring elements and the clock sources
and finally calls the stepper for the ODE. QtConcurrent manages autonomously
the thread pool and the execution, but it is possible to limit the number of thread
used simultaneously to avoid problems during the execution. The multithreading
approach led to a great improvement of performances that will be discussed in the
next chapter. Fig. 7.9 shows a schematic view of the multithread approach.

The Advance Step function performs the update for the values of each element.
Differently from the behavioral case, there is no need for checking the stability: the
values calculated solving the differential equations are updated and a new step is
started.

7.2 MolQCA
Another technology is supported by FCNS. An engine for MolQCA was devel-

oped. This interesting technology is also useful to prove the possibility to handle
completely different physical phenomena in the tool. Furthermore, the simulation
engine for molecules is not based on the time evolution of the molecule but on
equilibrium state simulations. In fact, a general model for the molecule dynamic
is not yet available. Therefore, a physical simulation based on the time-dependent
evolution was not possible. The circuit state evolution is evaluated until the equi-
librium is reached, then it is possible to change the input values and search the
new equilibrium point. The Element, Edge and Simulation Controller classes were
sub-classed for the molecular engine. Furthermore, a new class, handling the molec-
ular characteristics, was defined: Molecular Parameters. This class stores all the
physical parameters of a molecule available for the simulation. Furthermore, the
trans-characteristics of the molecule are stored in this class. Fig. 7.10 shows the
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general structure adopted to store the different molecule trans-characteristics. The
molecule behavior is described using a set of different curves. Each curve describes
the charge value of an aggregate charge with a fixed clock value and dependent on
the input value: each aggregate charge is associated with the same number of curves.
In the figure, four curves are available for each charge. These curves are quantized
and stored inside the Molecule Parameter as objects of a specific developed class,
called MolecularTranscharacteristic. The charge values are stored in a vector with
size equal to the number of charges. The bottom-left part of Fig. 7.10 shows an
example of three vectors associated with different values of Vin. In particular, the
first vector is referred to as VMin and the last one refers to VMax. The resulting
vector of vectors is then associated with the clock value used to extract the curve.
The extreme voltages, the number of charges and the number of elements in each
vector are saved inside the MolecularTranscharacteristic. Furthermore, the voltage
distance among two adjacent values in the vectors is saved in the step variable. It
is computed with the following formula:

step = Vmax −Vmin

#values− 1

where #values is the size of each vector. The step is used to compute the inter-
polation when the charges are requested. An instance of this class is used for each
defined clock value. The final data structure, top-right of the image, is an hash-
map. This hash map is used to store the trans-characteristic objects associated
with the clock values. The keys of the map are the possible clock values and a null
charge is retrieved if the clock value is not defined. Another information stored in
the molecular parameter class is the relative position of each charge with respect
to the center of the molecule.

The clock elements used for MolQCA technology are completely different from
the iNML ones. A rectangular-shaped clock zone is not sufficient to define correct
circuits and a new approach was adopted. The new clock item, called Amorphous
Clock Element, is based on the principle of adding influenced position to a set stored
inside the clock element. In this way, the Get Clock In Position will check if the
given position is present in the set, and use this information to discriminate among
influenced and not influenced elements.

The simulation controller starts reading the molecular parameters. An ad-hoc
functions was developed: Read Molecules. It receives a list of strings, where each
string is the name of a molecule. All the files which name starts with the molecule
name are read. The files are searched in a user-defined folder and each file is a
trans-characteristic associated with a clock value. A simple reader was developed.
It parses the source file and reads from the header the parameters like VMax and
VMin. Furthermore, the charge values are stored in the same structure used inside

93



7 – Technology specific implementations

Sampled
Input
Voltages

Vck1

Vck2

Vck3

Vck4

Vin1 Vin2 Vin3

Vin

Q
Cl
oc
k

Vin

Q
Cl
oc
k

Vin

Q
Cl
oc
k

Vin

Q
Cl
oc
k

Q1 Q2 Q3 Q4

Q1 Q2 Q3 Q4

Vin2

Vin3

Vin1

VinN

Figure 7.10: Representation of the data structure used to store the molecules
trans.characteristics. In this example, the molecule has four dots. For each dot
a set of curves, one for each clock value, is available. The curves give the charge
over the input voltage. In order to store the curves, the same input voltage is
used to sample all the characteristics and define a vector: the size is equal to the
number of charges and each element is a charge value. All the vectors resulting
from this sampling are named with the corresponding input voltage and stored in
an hash-map. The keys of the map are the clock voltages. Each key is associated
with a vector where all the input voltages grouped charges are stored.

the MolecularTranscharacteristic. When the file is completely parsed the new entry
is added to the map of trans-characteristics. All the available molecules are stored
in another hash-map, using their name as key of the map.

After loading the molecules, the technological parameters are read from the
settings. The MolQCA settings are composed of the following parameters:

Inter molecular distance MagCAD grid dimension in pm.

Inter cell distance Double of the previous quantity since MagCAD cells contain
two molecules.

94



7.2 – MolQCA

Clock zone number Number of different clock signals.

Layout width Width of the layout expressed in number of cells.

Layout height Height of the layout expressed in number of cells.

Differently from the other technologies, in MolQCA the clock elements are created
before the elements. This is needed by the fact that when an element is created,
it has to be assigned to a clock zone. To avoid further loops on the elements,
clock sources generation was moved before element definition. The number of clock
sources is used to instantiate the right number of Amorphous Clock Element. Each
of them is placed in a non-physical position and saved in the clock list of the Sys-
tem. The QCAItem List is then processed and every item is translated in the
corresponding molecules. As stated before, each item corresponds to two differ-
ent molecules, excepting the pins that are treated as single molecules. A for loop
is used to translate the molecules. Each QCAItem holds different properties for
the two molecules and the index of the loop is used to access them. If the single
molecule is not disabled, its shift values, one for each axis, are read from the item
properties and used to define the actual position of the molecule. This position will
be considered as the center of the molecule. The Geometry class was subclassed in
a new geometry, called MultiPoint. As per the clock elements, molecules are not
defined with a geometrical shape, instead, a single point for each aggregate charge
is defined. The new class holds a vector of points where the aggregate charges
position is stored. The constructor receives only the size of the vector and the
central position (a center is needed it being a Geometry). The Molecular Element
is defined and the first method called after the constructor is Define Charge Posi-
tion. In this method, each point of the geometry is assigned with its actual position
in space. The relative positions for the aggregate charges are retrieved from the
Molecular Parameters class using the molecule type, and then the actual positions
are calculated. Before adding the element to the System a final operation is per-
formed. In MagCAD it is possible to set a rotation of the molecule on the “Z”
axis. In the Boost::Geometry libraries the 3D rotation is not defined. Therefore a
new function was defined to handle molecule rotation. Using the principle for com-
position of geometrical transformations and the functions available in the libraries
the functions 8 were developed. The Rotation and Translation classes are available
in the Boost libraries. The former is defined with an angle, while the latter with
x and y displacement values. In order to rotate the molecule around its center a
composition of translation and rotation is needed. The rotation is defined around
the origin, therefore the molecule has to be translated in the origin, rotated, and
finally moved back to its original position. The transformation composed in this
way is then applied to each aggregate charge in the molecule. Since the transfor-
mation is 2D, the points are projected on the x-y plane. Then the transformation
is applied and finally the z coordinate is restored. The new point is replaced in the
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Algorithm 8 Molecule rotation algorithm.
Precondition: angle is the rotation angle in degree, Geometry is the molecule

MultiPoint object. Translation and Rotation are classes of the Boost libraries.

1: Translation1 ← (−Geometry.x(),−Geometry.y())
2: Rotation ← angle
3: Translation2 ← (Geometry.x(), Geometry.y())
4: FinalTransformation ← Translation2 ∗Rotation ∗ Translation1
5: for each Point ∈ Geometry do
6: point2d ← (Point.x(), Point.y()) ◃ Project on x-y plane.
7: FinalTransformation(point2d)
8: Point ← (point2d.x(), point2d.y(), Point.z()) ◃ Restore z coordinate.
9: Geometry.replacePoint(Point)

10: end for
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geometry to perform the actual rotation.

The operation above described are performed also on the input and output pins,
even if only one molecule is defined and the IsInput flag is set. Finally, the Build
Interactions function is called and the edges of the graph are defined. Also for the
molecular simulation engine the interaction distance is defined and used to set an
influence radius around the molecule. The edges defined for this technology are
defined with a vector of vectors of double: each element stores the distance among
two aggregate charges: element 1,2 in edge i, j refers to distance from charge 1 of
molecule i to charge 2 in molecule j. Fig. 4.13 shows how distances are stored in
the edge class. This solution could impact the memory usage of the system, but
it was selected in order to improve the simulator performance. The testbench is
then loaded from the disk. Input and clock values for MolQCA are voltages. The
voltages are used to read the trans-characteristic and derive the actual values. Once
the testbench is loaded the simulation loop can be started.

The simulation process is different from iNML technology. In MolQCA, the
simulation step can be changed when the equilibrium is reached. Therefore, an-
other loop is needed to perform the simulation. The inner loop will run until the
equilibrium is reached. Fig. 7.11 shows the flow chart of the simulation. The Eval-
uate Interaction function visit all the elements of the layout and calls Compute
New Value on each of them. The new value of the element is computed using the
following interaction model.

NewValue = State + ξ ∗ (CurrentValue− State)

Where ξ is the damping factor used to lower the effective variation of the molecule
state. It is used to improve the convergence of the method even if it increases the
number of steps to reach an equilibrium condition. CurrentValue and NextValue
are the values of the aggregate charges before and after the interaction evaluation
respectively. Finally, State is the value obtained from the trans-characteristic.
This value is the actual result of the interaction evaluation. In fact, the neighboring
elements are used to define the voltage applied to the element. The voltage and
the clock value are used to get the data from the trans-characteristic. The two
contributes are evaluated as follows. The Get Value In Position is called for each
clock source and the value accumulated into a variable. Currently, only one clock
element is influencing each molecule, but this can be modified in future versions of
the simulator. The neighbors instead are used to compute the influencing voltage.
This voltage is computed as the difference among the electric potential present
on the logic dots of the molecule. In case of bis-ferrocene molecule, only “Dot1”
and “Dot2” are considered as showed in Fig. 7.12. For each neighbor the resulting
potential is evaluated and then accumulated into a variable using the formula of
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Figure 7.11: Flow chart of the molecular simulation engine. The main simulation
loop is composed of a nested loop that is used to evaluate the stability. A new set
of inputs and clock values is loaded only after reaching the stability..

the electric potential due to a point charge:

V = e

4πϵ0
∗ Charge

d

The e in the formula is the electron charge and it is needed since in the trans-
characteristics the charges are stored as normalized charges. The remaining terms
are the vacuum permittivity, ϵ0, the value of the considered aggregate charge and
the distance retrieved from the edge data structure. When the two actual po-
tentials have been evaluated the new aggregate charges values are read from the
trans-characteristic. This process accesses the right Molecule Parameter object
using the molecule name. The clock value and the input voltage, obtained with
V1 − V2, are used to get the charges. The clock access the map of characteristics
and the correct one is returned. The Get Charges performs the interpolation of the
data in order to compute the actual values of the charges. The function pseudocode
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Algorithm 9 Trans-characteristic interpolation algorithm.
Precondition: inputV oltage is the voltage considered during interpolation, Vmin

and Vmax are the limit of the trans-characteristic. step is the voltage distance
among two values in the Charges vector.

1: if inputV oltage ≤ Vmin then
2: return Charges [0]
3: end if
4: if inputV oltage ≥ Vmax then
5: return Charges [last]
6: end if
7: index ← ⌊|(inputV oltge− Vmin)|/step⌋
8: correction ← |(inputV oltge− Vmin)|/step− index
9: return Charges [index] + correction ∗ Charges [index + 1]
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Figure 7.12: Example of interaction of two molecules. The one on the left is
evaluated considering the effects of the one on the right. Each dot of the influencing
molecule generates a potential on each of the logic dots of the influenced one. The
difference among these potentials is used as the input voltage of the molecule.

is shown in 9. These operations are repeated for each element in each step.

In order to determine the equilibrium condition, the Advance Step function was
modified. In MolQCA the difference among previous and next values is used to
determine stability. Each element is compared with the Stability Threshold. It is
enough that only one difference is greater than the threshold and the step is not
considered as stable. The input and clock values are not changed until a stable step
is detected. Finally, it is possible to select two modes for output data availability.
If the Complete flag is set to true, all the steps are sent to the Data Manger. Only
the stable ones are saved to the file otherwise.

This description concludes the analyses on the technological implementations.
In the following chapter the performance of the simulator and the results are pre-
sented.
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Chapter 8

Results and Performance Analysis

The simulator was tested with different layouts of the supported technologies.
Furthermore, it was compared with the ToPoliNano current simulation engine for
what concerns the iNML behavioral algorithm. Mumax3 was used as a reference
for the physical version of the iNML, while SCERPA for the MolQCA. The results
produced by the simulator are text files. In order to analyze the results, different
Python scripts were developed. One script is used to plot the simulation results.
It is capable of reading the file generated by the different engines and plot the

Figure 8.1: Waveforms obtained with the behavioral engine. Each waveform is the
logic value of an element in the different time steps.

corresponding significant charts. For example, the iNML behavioral elements are
placed in the same chart. Each element is assigned to a color and has a different
Y (computed adding an offset proportional to the signal number), while the X
coordinate is the simulation time expressed in the number of steps. A legend helps
the inspection of the results that are square waves in this case, Fig. 8.1. In the
script, it is possible to specify a reduced number of signals: the selected ones will
be plotted while the others are omitted from the graph. By doing so it is easier to
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verify the behavior of the layout visualizing only input and outputs. In the Physical
simulation three charts are used to plot the three components (X, Y, and Z) of the
magnetization vector of each element. The resulting module of the vector is equal
to the saturation magnetization. Also in this case, each magnet is associated with a
color and the legend is present as shown in Fig. 8.2. Finally, the MolQCA is divided

Figure 8.2: Each graph represents one of the components of the magnetization
vector. Each magnet is associated with the same color in all the graphs. The
legend is used to identify the magnets. The number of steps is present on the
X-axis.

into one chart for each aggregate charge (Fig. 8.3). The color scheme and the legend
are present to simplify the inspection. Also, the clock sources are added to the plot
as additional elements, in the fourth charge plot. This representation is not the
final one: a data visualizer is planned as future work. Another script was developed
to perform the characterization of some structure in the physical iNML engine.
This script defines the circuit names and other parameters and executes several
simulations in series. Finally, a verification script is used to test the simulation
outputs against expected values for the layout. After defining the truth table for
all the magnets the last step is compared. It is also possible to define a threshold and
check if the obtained magnetization vector is compliant with the predicted value.
The threshold will be clarified in the next section. Furthermore, the simulation
time is extracted and used to evaluate the performance of the different simulation
engines. The results presented in this chapter are obtained using an Intel Core-
i7 7700, equipped with 16GB of RAM running Centos operating system. The
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physical simulations for iNML technology were performed on an NVidia TITAN V
GPU consisting of nearly four thousand of CUDA cores and equipped with 12 GB
of RAM.

Figure 8.3: Each graph is associated with the charge of an aggregate charge. The
charges are expressed in atomic units. on the fourth graph also the clock sources,
square waves ranging from −2 to 2 volts, are showed.

8.1 iNML Behavioral
In this section, some layouts simulated with the behavioral model are reported.

The first layout presented is a horizontal wire composed of four magnets, Fig. 8.4.
The input is set initially to “0” and then changed to “1” after 20 ns. A three-
phase clock mechanism is used: the clock phases mus be partially overlapped to
ensure information propagation. Therefore, each clock will be active for 6 ns and
inactive for 9 ns. A step equal to 1e − 10 is adopted in this case. The X-axis of
the plot represents the number of steps: step number 200 corresponds to 20 ns. In
Fig. 8.5 the resulting waveforms are presented. When the “Clk1” is active all the
magnets are in reset, therefore their value is “0”. When the clock source becomes
inactive, the magnets will align themselves in an antiparallel way. The first magnet
(labeled with zero) will have a value opposite with respect to the input as the
second will be the opposite of the first and so on. After 20 ns the input value is
flipped, and the successive evaluation of the magnets will be the opposite of the
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Figure 8.4: Horizontal wire composed of four magnets. Each element is associated
with an index that will be used in the simulation graph.

previous one. The simulation of the discussed configuration for a total time of 50
ns results in a simulation time of 33 ms. Fig. 8.6 shows an AND and OR layout.
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Figure 8.5: Waveforms obtained simulating the horizontal wire.

In this figure, the elements are numbered as they will be plotted in the simulation
results. The input value are set to “11” for the first evaluation of the AND gate.
Then one of the inputs is flipped to “0” and the second clock cycle is evaluated.
Finally, the opposite values are applied in the third clock cycle. The OR case is
similar, however, bot the inputs are set to “0” at the beginning, successively the
two combination “10” and “01” are applied. Fig. 8.7 shows the waveform resulting
from the simulation. The circles highlight the first evaluation of the central magnet,
where the preferred magnetization is normalized and the magnet is still considered
unstable. In fact, the value was wrong and the correct evaluation is then performed
in the next step. The central magnet does not have the expected magnetization.
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Figure 8.6: Layouts of the iNML logic gates obtained with the slanted edge magnets.
(A) OR gate. (B) AND layout.

When both the inputs are equal to “1” it assumes the opposite value. However,
this is correct since it is the first magnet of the clock zone and its value will be
inverted by the other elements. It is clear that the function of the circuit is correct:
element “5” is equal to “1” in the first clock zone and then goes to “0” in the
others. A similar behavior is visible in Fig. 8.8. In fact, the circle highlights the
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Figure 8.7: Waveforms obtained with the behavioral simulation of the AND gate.

same thing happening in the AND gate. Also in this case, the function of the
logic gate is verified. The simulation time for both the circuit is 35 ms. An MV
is then used as a benchmark.The layout is depicted in Fig. 8.9. The magnets are
numbered to simplify the result inspection. The clock signal applied is the same
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Figure 8.8: Waveforms obtained with the behavioral simulation of the OR gate.

as the previous circuits, while the inputs are set initially to “000”. After 20 ns
inputs A and C are changed to “1” and at 35 ns also the input B is changed. The
resulting waveforms are presented in Fig. 8.10. Magnet number five is the central
one, the actual voter. In the circles, the principle of the behavioral simulation is
highlighted. This magnet feels a stable input immediately (element one is directly
influenced by the input) while the other neighbors need few more evaluation steps
before reaching a stable value. When all the neighbors are stable the correct value
is assigned and the final output is present in magnet nine. The simulation time for
the majority voter structure is 50 ms. A circuit spanning along two clock zones is
now presented. An inverter is placed at the output of the wire shown in Fig. 8.4
and assigned to clock zone two. The circuit is depicted in Fig. 8.11. This layout is
used to demonstrate how the simulator handles different clock zones. The applied
testbench is the same as the first circuit. Furthermore, the clock zone number two
is present. The magnets in the waveforms are numbered as in Fig. 8.11, and the
resulting elements of the inverter are named Inv plus an incremental index from one
to four. The extra element is called Extra and the resulting waveforms are available
in Fig. 8.12 This figure shows the inverter evaluation, that happens in the second
clock zone. The vertical lines highlight the release of the reset for the two clock
zones: firstly the clock one is released and the wire is evaluated. Then, the clock
two goes to “0” and the inverter is evaluated. The clock one is then activated and
the wire magnets reset before loading the new input. The simulation time for this
structure was 52 ms. It is possible to see the latency due to the clock sequence:
input sampled when the first clock is switched off are available after the second one
is released. This aspect is clarified in the last example of behavioral simulations.
A relatively complex architecture was simulated: a 2-to-1 multiplexer, Fig. 8.13.
This layout is composed of more than fifty magnets, organized in four clock zones
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Figure 8.9: Layout of the majority voter.
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Figure 8.10: Waveforms obtained with the behavioral simulation of the majority
voter gate.

(three different clock sources are available). The complete set of waveforms is not
reported, but in Fig. 8.14 the clock sources, inputs pin, and the output magnet
were selected and plotted. In the figure, the inputs-outputs relation is circled. The
inputs sampled in the colored circles result in the corresponding output available
in the successive clock cycle. In the same cycle, new inputs are sampled and this is
repeated every time clock one is released. This proofs that after the first clock cycle,
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INVERTERa o1 320

Figure 8.11: Layout of a wire followed by an inverter. The background of the
inverter is different since it belongs to another clock zone.
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Figure 8.12: Waveforms resulting from the simulation of the wire followed by the
inverter. The magnets resulting from the inverter expansion and the extra one
inserted are visible.

the actual latency, the throughput is one output for each clock cycle. Considering
the performance, the simulation of the mux for 100 ns lasts 300 ms. This confirms
that the behavioral simulation engine can be used also for big layouts. Simulation
results are available in a very small amount of time.

8.2 iNML Physical
In order to verify the correctness of the model adopted in the physical iNMl sim-

ulation engine, several simulations were performed. In particular, building blocks
normally used in iNML layouts were characterized changing the distance among
the elements. This characterization was compared against Mumax3 in order to have
reference results for the different structures. For every circuit, horizontal and ver-
tical distance ranged from 5 to 25 nm and all the possible input combinations were
tested. This approach led to fifty simulations for the circuit with one input and two
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Figure 8.13: Final layout of the 2-to-1 multiplexer: input and output pins are the
light blue elements with the name superimposed. Magnets of different colors belong
to different clock zones. Logic gates are differently colored and it is possible to see
the slanted edge of the central magnet.

hundred simulations for the MV. The characterizations were performed with the
clock signal present in Fig. 8.15. This shape is compatible with the Virtual Clock:
smaller magnets will be kept in reset during the falling part of the signal shape,
behaving as if they were in the next clock zone. The clock is composed by a ramp
from 0 to the maximum value (130e3 A

m
) that last 1.5 ns. This value is kept for 5

ns and then an opposite ramp towards 0 is present. Finally, the elements are left
for 2 ns without the clock field. All the simulations were performed with a step of
1e− 13 seconds, export interval set to 1e− 12 and export step equal to 1000. This
configuration results in saving one step every 1e − 12 seconds. Furthermore, the
interaction radius is set to the maximum available: all the magnets interactions are
considered. The magnets’ dimensions are 60x90x10 nm. The structure considered
for the characterization are the following:

Horizontal Wire four magnets horizontally aligned, plus an input and an output.

Vertical Wire 2 two magnets vertically stacked, an input and an output.
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Figure 8.14: Waveforms of the mux simulation. Inputs and clock sources are shown,
together with the output magnet. The circles are used to highlight the latency due
to the clock mechanism.

t [ns]1.5 5 1.5 2

Figure 8.15: Shape of the clock signal applied to all the circuits here described.
The duration of the different portions is reported in the figure.

Vertical Wire 3 three magnets vertically stacked, an input and an output.

“L” Shaped Wire 2 two magnets vertically stacked followed by three magnets
horizontally aligned, an input and an output.

“L” Shaped Wire 3 three magnets vertically stacked followed by three magnets
horizontally aligned, an input and an output.
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“Coupler” an input aligned with the central magnet of a three elements stack.
Top and bottom elements are followed by three magnets and an output.

Majority voter circuit composed of ten magnets where three inputs surround a
central magnet. This magnet performs the voter functions and two elements
are added to emulate a complete clock zone.

The structures here presented have at least an output magnet: in the behavioral
simulation, the magnets in the other clock zones influence every element. Further-
more, the coupling not directed among the vertical and horizontal directions with
a reset magnet is very important to determine if a circuit is behaving properly.
The output pin was translated in magnet always in reset state placed in the same
coordinates. These magnets are not influenced by the other elements of the circuit.
For each circuit, an example of waveforms is presented and a table is used to show
the characterization results.

The first circuit analyzed is the horizontal wire. The circuit simulated is the
same depicted in Fig. 8.4. The waveforms obtained with horizontal distance equal
to 15 nm are reported in Fig. 8.16. It is possible to notice that during the reset
phase the X component of the magnetization vectors goes up to the saturation mag-
netization, while the other components almost get equal to zero. When the reset is
removed the Y component increases and reaches the saturation magnetization with
the opposite direction with respect to the previous magnet. Tables 8.1 summarize
the results of the simulations verified with the dedicated script. The threshold used
id 50%, meaning that the simulation is marked as correct if each magnet value is
a half of saturation magnetization in the correct direction. Only the Y component
is measured by the script. The same circuits were simulated using Mumax3. The
mesh used in Mumax3 was 5x5x5 nm. After performing the simulations, the result
were compared. The first two tables refer to the result obtained by the FCNS with
the different input values, while the other two are the result of the same circuit
obtained with Mumax3. In the case of the horizontal wire, the two simulators give
the same results.

Similarly, the vertical wire with two stacked magnets was simulated. Fig. 8.17.A
shows the MagCAD layout for the circuit. The simulation details for input equal
to “0” are depicted in Fig. 8.18. Vertical and horizontal distances are 15 nm.

Also in this case the script was used to verify the simulation. The threshold was
set again at 50%. The results are summarized in table 8.2. All the combination of
horizontal and vertical distance give positive results. In the same table the result
obtained with Mumax3 are reported. The results are the same for bot the simulators.

The next circuit under test is again a vertical wire, but three magnets were
aligned in this case. Circuit view with the labeled magnets is reported in Fig. 8.17.B.
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Figure 8.16: Graph of the physical simulation of the horizontal wire.

Table 8.1: Horizontal wire results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

The visual inspection of simulation results shows directly problems in the circuit. In
fact, none of the distances combination is working for input equal to “0”. Fig. 8.19
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Figure 8.17: (A) Vertical wire with two magnets. (B) vertical wire with three
magnets.

Figure 8.18: Graph of the simulation of the two magnets vertical wire. Both the
elements assume the opposite value with respect to the input.

shows the output for both the distances equal to 15 nm. It is possible to see that the
magnet labeled with “1” changes its magnetization as soon as the reset is removed
towards the wrong direction. This is mainly due to the coupling with the output
magnet that is in reset state. In fact, its influence is enough to push the central
magnet in the opposite direction before the first magnet near the input acquires the
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Table 8.2: Vertical wire two stacked magnets results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

correct magnetization. The top magnet propagates the wrong information present
in the central one. The verification script was used and the results are summarized

Figure 8.19: Simulation results of a non working configuration of the three elements
vertical wire. Two out of the three elements have wrong direction.
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in table 8.3. As mentioned before, all the simulations with input equal “0” are
wrong. However, the remaining ones are correct but an additional fact needs to
be considered. The central magnet is always getting the same value independently
from the input, therefore the simulation can not be considered correct, but it is a
coincidence.

Table 8.3: Vertical wire three stacked magnets results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✖ ✖ ✖ ✖

15 ✖ ✖ ✖ ✖ ✖

20 ✖ ✖ ✖ ✖ ✖

25 ✖ ✖ ✖ ✖ ✖

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✖ ✖ ✖ ✖

15 ✖ ✖ ✖ ✖ ✖

20 ✖ ✖ ✖ ✖ ✖

25 ✖ ✖ ✖ ✖ ✖

The next structures extend the vertical wire to cover an entire clock zone. Each
one is the combination of a horizontal wire and the corespondent vertical wire. The
MagCAD layouts for the two structures are reported in Fig. 8.20. As expected, the
first circuit works correctly with all the inputs and distances. A graph for input
equals “0” and distances equal to 15 nm is reported in Fig. 8.21. The results of the
verification script are available in table 8.4.

The other circuit instead shows the same critical issues of the vertical wire with
the same amount of vertical stacked elements. Also in this case, the magnet labeled
as “1” is wrongly influenced by the diagonal elements. In this circuit, the coupling
with the element “3” is the one that causes the error. A positive outcome from this
simulation is that the output in reset used to simulate the element in the next clock
zones is a good choice. In fact, the behavior is the same as the previous condition.
Furthermore, the other elements of the circuit are behaving correctly: from element
“2” to element “5” the coupling is correct and an antiparallel orientation is present.
Fig. 8.22 shows the outputs values for the wrong configuration. The simulation
script was used to extract the results that are reported in table 8.5. Also here the
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Figure 8.20: (A) “L” shaped wire. Two vertical stacked magnets and other three in
order to get length equal four. (B)“L” shaped wire. Three vertical stacked magnets
and the remaining to complete the horizontal wire.

Figure 8.21: Working simulation of the two magnets “L” shaped wire.

correct simulation for input equal to “1” is due to the preferred direction of the
wrong element and is not to be considered as actual correct results. In fact, in the
tables are reported the simulation performed with Mumax3. The structure has the
opposite behavior in this case. This is due to the initial conditions of the solver
that lead to a different magnetization direction for the magnet number one. This
comparison confirms that the structure is not working and should not be adopted
in iNML circuits.
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Table 8.4: “L” shaped wire with two vertical stacked magnets results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Figure 8.22: Wrong simulation of the three magnets “L” shaped wire.

The next circuit simulated is the “Coupler” structure. This circuit is used to
split an input signal in two, doubling the fan-out of a wire. The adopted structure,
composed of nine magnets is presented in Fig. 8.23. Two output pins are present,
one at the end of each branch of the structure. The circuit was simulated and the
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Table 8.5: “L” shaped wire with three vertical stacked magnets results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✖ ✖ ✖ ✖

15 ✖ ✖ ✖ ✖ ✖

20 ✖ ✖ ✖ ✖ ✖

25 ✖ ✖ ✖ ✖ ✖

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✖ ✖ ✖ ✖

15 ✖ ✖ ✖ ✖ ✖

20 ✖ ✖ ✖ ✖ ✖

25 ✖ ✖ ✖ ✖ ✖

resulting values for distances equal to 15 nm and input equal “1” are reported in
Fig. 8.24. From the graph it can be notice that the first magnet to change after
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Figure 8.23: Coupler structure used to double the fan-out.

the reset is released is the central one. It assumes value opposite with respect to
the input. Then the two magnets above and below the central one (“1” and “5”)
align themselves in the same direction. The remaining elements behave like in the
horizontal wire. Furthermore, the input information is doubled. The simulation
script with threshold at 50% was utilized and the results are reported in table 8.6.
Every combination of input and distances gave good results. Furthermore, the
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Figure 8.24: Simulation waveforms of the coupler. All the magnets are oriented
correctly.

results obtained with Mumax3 are reported in the table. It can be noticed that two
configurations are not working correctly using the other simulator. Considering
that the physical simulation engine is an approximate model of the one used by
Mumax3, it is possible that some corner cases are not correctly evaluated.

Finally, the last structure analyzed is the majority voter. The circuit is pre-
sented in Fig. 8.25. This structure is the most complex due to the high number of
diagonals couplings. In fact, the virtual clock mechanism was adopted to ensure
the correct evaluation of the voter magnet. In the figure it it possible to notice
that some magnets are smaller than the others. These elements, due to their di-
mensions (60x70x10), need a smaller reset field. This means that they will evaluate
their value when the bigger ones are already stabilized. However, magnets placed
too near the others avoid the correct behavior of the circuit. Fig. 8.26 shows an
example of simulation where the correct information is retrieved at the output pin.
Horizontal and vertical distance are set to 25 and 15 nm respectively and inputs
are equal to “010”. In the graph can be noticed that the central magnet, labeled
with number five, begin to switch some steps later with respect to the bigger ones.
Furthermore, its direction is the same of the one on its left (magnet number one):
an antiparallel coupling should be present but the other neighbors “vote” in the
opposite direction. Finally, the two magnets on the right (labeled with eight and
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Table 8.6: “Coupler” results.

FCNS

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 0 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✖ ✔ ✔ ✔ ✖

Input = 1 Vertical Distance
5 10 15 20 25

H Dist

5 ✔ ✔ ✔ ✔ ✔

10 ✔ ✔ ✔ ✔ ✔

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✖ ✔ ✔ ✔ ✖
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Figure 8.25: Majority voter structure with magnet dimension changed in order to
implement the virtual clock principle.

nine) are the last ones that exit from the reset condition. With smaller distances
among the elements the diagonal coupling is stronger and the smaller magnets feel
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an external field too strong, behaving therefore in the wrong manner. Different

Figure 8.26: Simulation waveforms of the MV. Inputs are equal to “010”.

threshold values were used in the verification script in order to evaluate correctly
the results. In fact a value of 50% is too restrictive: after 10 ns the magnets are
not yet completely evaluated. In particular, the smaller magnet near the output
magnets feel a strong external field directed on the X axis, resulting in a smaller
component on the Y direction. In complete circuits, the magnets of the surrounding
zones are reset and released in order to improve the propagation. For these reasons
a threshold at 10% was used in this case. In order to reduce the number of tables
only the results for the input “111” are reported. The other tables (Input = all)
are used to have an overall representation of the circuit behavior. These results
are in table 8.7. In these tables the ✔ means that every input combination was
correct. A ✖ is present otherwise, even if only one input pattern was wrong. The
tables show that the two simulators give slightly different results. However, the
main differences are for vertical distance of 5 nm. This very small distance among
the elements is a corner case that can be wrongly interpreted by the FCNS engine.
However, the main scope of the developed tool is to give an alternative where the
correctness of the result is trade for simulation time: FCNS is in fact faster than
mumax3 even if it runs on a CPU instead of a high parallel GPU. Table 8.8 shows
the average execution time of the presented characterizations for each circuit. The
table shows that FCNS outperforms Mumax3 for every considered circuit. The mesh
grid used in those simulations could be refined, leading to bigger simulations time.
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Table 8.7: MV results.

FCNS

Input = 111 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✔ ✔ ✔ ✖

15 ✔ ✔ ✔ ✔ ✔

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = all
Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✖ ✖ ✖ ✖

15 ✔ ✔ ✔ ✖ ✖

20 ✔ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Mumax3

Input = 111 Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✔ ✔ ✖ ✖

15 ✖ ✔ ✔ ✔ ✔

20 ✖ ✔ ✔ ✔ ✔

25 ✔ ✔ ✔ ✔ ✔

Input = all
Vertical Distance
5 10 15 20 25

H Dist

5 ✖ ✖ ✖ ✖ ✖

10 ✖ ✔ ✖ ✖ ✖

15 ✖ ✔ ✔ ✔ ✖

20 ✖ ✔ ✔ ✔ ✖

25 ✖ ✔ ✔ ✔ ✔

Table 8.8: Simulation time, in seconds, comparison among FCNS and Mumax3.

FCNS Mumax3
Horizontal wire 6.14 112

Vertical wire 2 magnets 5.45 126
Vertical wire 3 magnets 5.82 119

L shaped wire 2 magnets 6.48 110
L shaped wire 2 magnets 6.87 106

Coupler 8.43 106
Majority voter 9.15 195

However, the number of elements is small, and the parallel computation on the
GPU possible in Mumax3 is not exploited completely. A complexity analysis was
performed using different benchmarks.

In order to make a comparison of the execution times among the two simula-
tors, different structures were simulated. These structures are not used to verify
the correctness of the engine, it was already demonstrated before, but only as “big”
layouts capable of stressing the simulators. The circuit’s inputs and outputs are
not considered in this case. The selected structures are squares composed of an
increasing number of elements. Starting from a 4x4 block, doubling each time both
the dimensions up to a 32x32 square of magnets. The magnets are just placed one
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near the other: Fig. 8.27 shows the 4x4 version. These structures give the com-
plexity analysis of the simulation engines. The simulation times over the number of
elements are reported in Fig. 8.28. This figure shows the simulation times obtained
by Mumax3 and FCNS. Two curves are referred to the first simulator. Different
mesh grid dimensions were used. The red curve refers to a 2x2x5 grid, while the
green one to a 5x5x5 grid. FCNS was simulated with an infinite interaction radius
(solid blue curve) and fixing the interaction radius to 2e−6 m (dashed blue curve).
The last value of the radius is enough to include all the neighbors up to the 16x16
circuit, but it limits the number of neighbors in the bigger circuit. For the smaller
circuits (up to 8x8) FCNS is faster than the other simulator. The more refined
grid needs longer simulation time also on the GPU architecture. The 16x16 circuit
shows similar execution times for FCNS and the coarse grain grid. The trend is
inverted and FCNS is outperformed by Mumax3 using the 5x5x5 grid. However, the
fine-grain grid still requires a longer time. The blue curve highlights the quadratic
complexity O(n2) of FCNS. Fixing the interaction radius the complexity is reduced
and a linear complexity is achieved. Mumax3 performance, presented in [43], results
in linear time for the fine mesh grid, while an exponential complexity that saturates
in the coarse grain case. This is due to the GPU architectures: the high parallelism
available is not completely exploited in the 5x5x5 case. On the contrary, the higher
number of cells in the finer mesh results in a higher complexity.

a

o

Figure 8.27: Example of circuit used to test the performance of the simulator.

The graph here reported shows the worst-case scenario for FCNS. In normal
circuits, the area occupation is not as dense as in these examples. For example, the
multiplexer circuit (bounding box 16x8) has only 52 elements. FCNS considers an
element for each magnet while Mumax3 needs to define the entire circuit area and
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Figure 8.28: Performance graph comparing FCNS and Mumax3. Different mesh grid
dimensions are used in Mumax3. The dashed line shows the performance of FCNS
fixing the interaction radius at 2e − 6 m. On the X-axis, the number of elements
is reported. It can be computed multiplying the dimensions of the circuits: 4 ∗ 4
results in 16 elements, while 16x16 is associated with 256 elements. The “x” marks
on the chart refer to the measured circuit. On the Y-axis the elapsed time in
seconds.

have a huge number of mesh elements. Furthermore, it is complex to describe the
circuit in order to be simulated by Mumax3, while it is possible to use MagCAD or
ToPoliNano to produce a file compatible with FCNS, reducing also the preparation
phase.
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8.3 MolQCA
The last simulation engine was tested with the three main components of a

MolQCA circuit: wire, inverter, and MV. The circuit behavior was verified by in-
spection and a MatLab version of the algorithm (SCERPA) was used to compare
the simulation performance. Finally, a wire composed of five hundred molecules
was simulated for one step in order to extract simulation time for complex circuits.
The settings used for the molecular simulations are the following: stability thresh-
old is set to 2e − 7, the damping factor to 0.6. and the interaction radius is set
to infinite. The reset is applied and a step is evaluated, then the clock is raised
and the information is propagated in the second step. The two steps are repeated
changing the value of the inputs.

The first circuit analyzed is the molecular wire. It is composed of twelve
molecules, belonging to the same clock zone as shown in Fig. 8.29. The simu-

oa
0 1 2 3 4 5 6 8 9 10 117

Figure 8.29: Molecular wire structure. Twelve molecules are placed in the same
clock zone.

lation was performed, input initially is “0” and then it is set to “1” in the second
part of the simulation. In Fig. 8.30 the waveforms are reported. The input equal
“0” means that the charge fo the input molecule is completely located in Q1. When
the charge is in Q2, the molecule is equal “1”, finally, the molecule is said in re-
set if the charge is missing from the two logic dots. In the figure, it is possible
to see the sequence of the molecules assuming their values. This figure plots all
the intermediate steps evaluated by the simulation engine. In fact, the portion of
the simulation where the clock is active (molecules are being evaluated) requires a
higher amount of steps while the ones in reset are limited at a few of them even
if the clock signal is a square wave. Fig. 8.31 shows the same simulation but only
the stable steps are present in the plot. The graph is similar to a behavioral sim-
ulation, where all the molecules behave like square waves. Even if this last picture
is easier to understand, the other one is more interesting. Furthermore, from the
second image, it is not clear the values of the first molecules of the wire. The first
picture, instead, shows clearly that the molecule near the input is the first one that
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Figure 8.30: Simulation results of the horizontal wire.

is stabilized, and then it is followed by the remaining molecules. It can be noticed
that the charge of the last molecule of the wire is never placed entirely in one of
the two logic dots. This is due to the fact that the last molecule feels a lower effect
from the other molecules: in fact, there are no more molecules on the right that
will “help” the charge to move completely to one of the logic dots. The simulation
time for the wire is 432 ms.

The inverter was then simulated. In MolQCA the inverter structure is more
complicated than iNML. The simulated inverter is presented in Fig. 8.32. Input and
output are doubled and two-molecules buses are used instead of wires. This design
was preferred because doubling the number of molecules increases the stability of
the circuit. The resulting circuit is composed of 64 molecules and two inputs.
Three clock sources are available and also in this case, this condition results in
latency from inputs to outputs. The clock signals are partially overlapped in order
to guarantee the information propagation. The simulation results are reported in
Fig. 8.33. If all the molecules’ values were present in the plot it would have been
impossible to understand the circuit behavior. Therefore, only few molecules are
selected and plotted in the figure. Furthermore, the charges of the last two dots
were summed and plotted together to increase the readability of the plot. “Q1”
and “Q2”, the logic dots, are more interesting. At the beginning the inputs are set
to logic “0”, so the charge is in the first logic dot. The charge in molecule zero and
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Figure 8.31: Simulation results of the horizontal wire. Only the stable step are
used in the plots.

one is completely localized in the first dot, the same as the input. The same thing
happens for molecule two and three. However, these molecules are in the second
clock zone and the evaluation begins when the corresponding clock signal is high.
Finally, the last two molecules show the opposite localization of the charge. This
confirms the inverter behavior. The inputs are then flipped and the same process
is repeated with the new values. The simulation of the inverter considering the
stability of three clock zones with the two inputs last 17 seconds.

Finally a majority voter was tested. Fig. 8.35 shows the MagCAD layout of this
circuit. Also in this case the wire are replaced with two-molecules buses and three
clock zones can be identified. In particular, the central block where the majority
function is performed is placed entirely in a different clock zone. Input and output
wires are placed in clock zone one and three respectively. This choice is need to
reduce the interactions from other molecules during the majority evaluation. Every
inputs combination was tested but only three of them are here reported: “111”,
“010” and “001”. Furthermore, only few elements are placed in the plot and the
charges of Q3 and Q4 are placed in the same graph. The plot of the simulaion is
reported in Fig. 8.34.

As expected the molecules labeled with “0”, “1” and “2” are evaluated in the
first clock zone, and they are oriented as the input pins. In the third clock zone,
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Figure 8.32: MagCAD layout of the inverter based on MolQCA technology.

Figure 8.33: Simulation results of the molecular inverter. Both input values are
showed. Solid and dashed lines are used to show the couples of molecules. In
each couple, the molecules have the same logic value but the charges are slightly
different. This is due to a non symmetric behavior of the molecules.

two molecules are reported. This shows that one of the two can have all the charge

128



8.3 – MolQCA

Figure 8.34: Simulation results of the molecular MV. One molecule per input wire
is plotted. Two molecules, solid and dashed, are used to show the final output.

in one of the logic dot, but not in the other. The other molecule, on the contrary,
shows the opposite behavior. This is due to the fact that the molecules in the bus
are not completely symmetric. The inputs pattern is then changed and the correct
new value is present at the output. The simulation of the MV for the three input
pattern lasts roughly 30 seconds. The figure shows that more than four thousands
of convergence step were evaluated.

FCNS molecular engine was compared with SCERPA [3], a Matlab script imple-
menting a similar version of the simulation algorithm. Unfortunately, also SCERPA
is in the development phase and a complete comparison is not reported. However,
the simulation correctness can be visually verified from the waveforms. To evaluate
the performance of the two tools a very long wire of 500 molecules in the same clock
zone was simulated for only one convergence step. SCERPA took almost eighteen
hours to complete the simulation. FCNS, on the contrary, was able to complete the
same computation in only sixty-two minutes. This result could be even improved
inserting the multithreading approach also in the molecular engine.
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Figure 8.35: MagCAD layout of the MV based on MolQCA technology.
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Chapter 9

Conclusion and Future Works

The contributions described in this thesis were developed in order to improve
the analysis and the development of beyond-CMOS technologies. The framework
covers the design and the simulation phase. Furthermore, the possibility of studying
the effect of parameters variation in the technologies is a key point. Every part of
the framework was developed with a “general” approach. Starting from the support
of different technologies and how the modularity of the tools is able to adapt to the
different needs. The user can select different values for the technological settings
in the layout. Furthermore, change the constraint during the automatic generation
of the circuits. The new simulator defines a general structure, independent of the
selected technology. Furthermore, it is possible to define different approaches for
the simulation: the definition of the interaction is enough to define a new simula-
tion engine. The simulator principle is adaptable to all the FCN technologies.

The possibility of varying physical parameters, like element position and ro-
tation, in the simulation phase can be a huge help in the study of the manufac-
turability and reliability of the technologies. With the ToPoliNano framework it
is possible to take into account manufacture defects and process variations also in
this stage of the research.

ToPoliNano and MagCAD are available online and used by the scientific com-
munity. The simulator will become part of the ToPoliNano tool. During my Ph.D.,
the tools were firstly released online and then updated frequently to include the
developed functionality.

Future works are planned on the entire framework. Focusing on the simulator,
new technologies are being studied and could be supported in the future. pNML
technology is among them. However, pNML is different from the other field-coupled
technologies. It is based on the same principle but also on the domain walls prop-
agation inside the magnets needs to be modeled and evaluated.
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The performance of the simulator could be still increased. Moving the evaluation
part on a GPU could reduce even further the simulation time also for the iNML
physical simulation engine.
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