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Abstract We propose a theory of remodelling in fibre-reinforced biological7

tissues, in which the fibre orientation follows a given probability density. The8

latter is characterised by variance and mean angle. We claim that the fibres9

may change their orientation in time, thereby triggering a remodelling process10

that can be described by the spatiotemporal evolution of the mean angle.11

This is determined by solving a balance of external and internal generalised12

forces. We assign the latter ones by establishing a constitutive theory capable13

of resolving the spatial variability of the fibre mean angle, and featuring a14

free energy density of the Allen-Cahn type. Through numerical simulations,15

we compare the predictions of our model with the results of another model16

available in the literature. Finally, we interpret the evolution of the mean angle17

as the consequence of a symmetry breaking that occurs in the tissue both18

spontaneously and due to the coupling between remodelling and deformation.19
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1 Introduction22

Following Cowin’s terminology [1], a biological tissue is “a collection of cells”23

embedded in an extracellular matrix (ECM). Among the constituents of the24

ECM, elastin and collagen fibres play an essential role in determining the25

mechanical properties of tissues.26

In order to understand how a tissue is generated, how it works, and how it27

adapts itself to external stimuli, it is necessary to know the internal structure of28

the tissue itself and the mechanical behaviour of its constituents. Of particular29

relevance is the study of the ECM, whose properties are tightly related to the30

presence of elastin and collagen fibres, and to their spatial orientation. In the31

case of blood vessels, several mathematical models of the tissue’s mechanics32

have been elaborated, in which a discrete number of families of fibres is con-33

sidered (see, e.g., [2–6]). Moreover, models that consider statistically oriented34

fibres have been proposed for various tissues, for example, in [7–10]. To account35

for the fibres in the constitutive description of biological tissues, the structure36

tensor is included in the determination of stress through the introduction of37

suitable invariants of the Cauchy deformation tensor [2,11,12].38

When the ECM is permeated by an interstitial fluid, the pattern of fibre39

orientation influences the motion of the fluid by either facilitating or hindering40

its flow. For instance, this is the case of articular cartilage, whose permeability41

in the superficial zone should be higher than it actually is, based solely on con-42

siderations on the proteoglycan volumetric fraction, as observed by Maroudas43

and Bullough [13]. Maroudas and Bullough [13] also inferred that this be-44

haviour was likely due to the collagen fibres, which, in the superficial zone, are45

oriented parallel to the surface and therefore constitute a further obstacle to46

fluid flow. A possible explanation of this occurrence has been presented in [9].47

Subsequently, by putting together the non-linear elasticity model presented in48

[14], and extending to large deformations the permeability model developed in49

[15], a general, finite-deformation model was introduced in [16]. In this series50

of papers, the fibres are assumed to be oriented statistically according to a51

probability density capable of mimicking the histological pattern observed by52

other authors [17,18].53

When a tissue deforms, its mechanical properties evolve in time. The de-54

formation, indeed, drives the reorientation of the fibres, thereby modulating55

the mechanical behaviour of the tissue also in response to the changes in its56

internal structure. If the deformation is the only responsible for this structural57

reorganisation, the evolution of the fibre pattern may be said to be a passive58

consequence of the deformation. If, however, as suggested in [19], a tissue is59

supposed to possess also structural degrees of freedom, which exist indepen-60

dently of deformation, then the reorientation of the fibres becomes part of the61

tissue dynamics, and it interacts with the deformation and stress. This interac-62

tion, in turn, may manifest itself in several ways, among which a relevant one63

is given by the identification of a stress-driven pattern of fibre arrangement.64

Motivated by the aforementioned considerations, the scope of this work65

is to propose a model of structural adaptation in fibre-reinforced biological66
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tissues. In the present framework, the “structural adaptation” is assumed to67

consist of a variation of the material properties that determine the local ori-68

entation of the fibres in a fibre-reinforced soft tissue [20,21]. More specifically,69

we consider a simplified theoretical setting, in which the only interactions ex-70

perienced by the tissue arise due to mechanical stimuli, and the tissue itself is71

hyperelastic. Moreover, no inelastic distortions are considered. Hence, the re-72

orientation of fibres is assumed not to be accompanied by growth, resorption,73

or any other process of this kind. Still, dissipative entities yielding the vari-74

ation of the tissue’s internal structure are taken into account. Following the75

line of thought put forward in [22,23], a probability distribution of the fibre76

orientation is prescribed, whose functional law features a family of parameters77

depending on the material points and on time. These parameters shall be re-78

ferred to as remodelling variables in the sequel. While the dependence of the79

remodelling variables on the material points is related to the inhomogeneity80

of the tissue, their dependence on time is introduced here in order to allow for81

their evolution, which is understood as a manifestation of the tissue’s struc-82

tural adaptation. On this footing, we present a theory of remodelling that,83

starting from the setup outlined in [22,23], relies on the introduction of a free84

energy density of the Ginzburg-Landau [24,25] or Allen-Cahn [26] type, and85

accounts explicitly for the spatial resolution of the remodelling variable1.86

As done in [27,22,23], the hypothesis is made that the remodelling vari-87

ables are indeed “kinematic variables”, for which suitable balance laws should88

be introduced in conjunction with the balance laws typically adopted in the89

continuum mechanics of simple bodies. In this respect, this vision of structural90

adaptation takes large inspiration from the models of Cermelli et al. [28] and91

DiCarlo and Quiligotti [19], in which the concept of a “two-layer dynamics” is92

thoroughly explained.93

Previous studies on remodelling have been conducted by many other au-94

thors. For example, the interplay between the fibre alignment in fibre-reinforced95

media and other aspects of the tissue mechanics has been highlighted in [29],96

while remodelling in collagen gels and tissues with collagenous reinforcement97

has been studied in [30]. In a slightly different context, a possible coupling98

between fibre reorientation and growth has been proposed in [31], in conjunc-99

tion with the Bilby-Kröner-Lee decomposition. Furthermore, the remodelling100

of the collagen fibres has been addressed also in [32], and the compaction of101

collagen gels has been studied in [33]. Recently, the influence of the collagen102

fibres on the mechanics of the aorta has been studied in [34–36].103

The remainder of this work is organised as follows. In Section 2, we intro-104

duce the dynamics of remodelling. In Section 3, we establish the constitutive105

framework. In Section 4, we study in detail the remodelling equation, and dis-106

cuss its asymptotic behaviour. In Section 5, we comment the results of the107

numerical simulations. Finally, in Section 6, we summarise the key-points of108

our work, and propose an outline for future research.109

1 The idea was suggested by Prof. Gaetano Giaquinta to S. Federico, S.-K. Han, and A.
Grillo during the visit of S.-K. Han to the University of Catania, in 2004, while discussing
about the histology of articular cartilage.
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2 General mathematical model110

We consider a fibre-reinforced porous medium, in which the reinforcing fibres111

are oriented statistically according to some suitable probability density. To112

formalise the mathematical description of media of this type, we refer to the113

works [37,16,38–40], which we briefly summarise here. Within the present114

theoretical framework, the tissue is regarded as a biphasic medium comprising115

a fluid and a solid phase. The solid phase is the representation of a porous116

medium, which is assumed to consist of a matrix of biological polymers (e.g.,117

proteoglycans in the case of articular cartilage) and a network of collagen118

fibres.119

2.1 Theoretical background120

At the scale at which our theory is formulated, the matrix and the collagen121

fibres constitute a mixture, in which they are present with volumetric fractions122

φ0s and φ1s, respectively. The sum φs = φ0s+φ1s defines the volumetric fraction123

of the solid phase as a whole and, since the saturation condition is assumed124

to apply, the volumetric fraction of the fluid phase coincides with the porosity125

of the medium and is given by φf = 1− φs.126

The portion of the three-dimensional Euclidean space, S, occupied by the127

tissue at time t is said to be the current configuration of the tissue. We also128

introduce a reference configuration, B. For x ∈ S and X ∈ B, we consider129

the tangent spaces TxS and TXB, and the co-tangent spaces T ∗xS and T ∗XB.130

Moreover, we denote by TS = tx∈STxS and TB = tX∈BTXB the tangent131

bundles of S and B, and by T ∗S = tx∈ST ∗xS and T ∗B = tX∈BT ∗XB their132

co-tangent bundles, respectively [41]. Finally, the space S and the reference133

configuration B are endowed with the metric tensors g and G, respectively.134

In the present framework, matrix and fibres are assumed to share the same135

motion. This hypothesis allows to describe the motion of the solid phase by136

means of a one-parameter family of smooth embeddings. At each time t, the137

embedding χ( · , t) maps the points of B into S (see [37,38] for details), i.e.,138

χ( · , t) : B→ S, X ∈ B 7→ x = χ(X, t) ∈ S. (1)

The tangent map Tχ(X, t) = F (X, t) : TXB → Tχ(X,t)S is the deformation139

gradient tensor of the solid phase [41], while C = FTgF and b = FG−1FT
140

denote the right and the left Cauchy-Green deformation tensor, respectively. In141

order for χ(X, t) to be admissible, F (X, t) is required to have strictly positive142

determinant, J(X, t) = detF (X, t), at all points and at all times.143

To complete the kinematic description of the considered porous medium,144

we introduce the velocities of the solid and fluid phase, vs and vf , the filtration145

velocity q = φfw, with w = vf − vs being the relative velocity of the fluid146

with respect to the solid motion, and the backward Piola transformation of q,147

Q = JF−1q, which is referred to as the material filtration velocity.148
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2.2 Directional averages149

At the scale of a single fibre, the fibre appears as a curved cylinder whose150

length is much larger than the diameter of the cross section. This allows to151

model the fibre as a curve. Furthermore, in a sufficiently small neighbourhood152

of a given point X ∈ B, a fibre can be approximated by its tangent line [15],153

which defines the local direction of fibre alignment. Such direction can be154

associated with a unit vector, MX , emanating from X. Since the orientation155

of the fibres is assumed to be statistical at each point, we need to define156

the probability density that a fibre passing by X is oriented along a given157

direction. To this end, we introduce the set of all unit vectors of TXB, i.e.,158

S2
XB = {MX ∈ TXB : ‖MX‖ = 1}, and the function ΨX : S2

XB → R+
0159

such that, for a given MX ∈ S2
XB, ΨX(MX) is the probability density that160

a (rectified) fibre passing from X is locally aligned along MX . Since ΨX is161

assumed to be a continuous probability density, it has to be normalised.162

Given a physical property (e.g., a scalar one) depending on the direction of163

the fibres at X, and expressed thus as FX : S2
XB→ R, the directional average164

of FX is defined by (see, e.g., [16] and references therein)165

〈〈FX〉〉 =

∫
S2XB

FX(MX) ΨX(MX)

=

∫ 2π

0

∫ π

0

FX(M̂X(Θ,Φ)) ΨX(M̂X(Θ,Φ)) sin(Θ)dΘdΦ, (2)

where, for (Θ,Φ) ∈ [0, π]× [0, 2π[,166

MX = M̂X(Θ,Φ) = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3, (3)

and {EI}3I=1 is an orthonormal vector basis of TXB. The second equality in167

(2) stems from rephrasing the integral over S2
XB as a surface integral and ex-168

pressing it in spherical coordinates, granted that eachMX ∈ S2
XB corresponds169

univocally to a point on the surface of the unit sphere centred at X.170

In this work, we assume that the matrix of the solid phase is isotropic and171

that a fibre aligned along MX at X ∈ B is transversely isotropic with respect172

MX . Thus, FX must satisfy the symmetry condition FX(HMX) = FX(MX),173

for all proper rotation tensors H such that HMX = ±MX . If there exists a174

direction of symmetry for the whole tissue, i.e., if there exists M0 such that175

for all X ∈ B, for all MX ∈ S2
XB, and for every proper rotation tensor H0176

with the property H0M0 = ±M0, the invariance condition ΨX(H0MX) =177

ΨX(MX) holds true, then the probability density is transversely isotropic178

with respect to M0. Consequently, the directional average 〈〈FX〉〉 turns out to179

be transversely isotropic with respect to M0, while FX(MX) is transversely180

isotropic with respect toMX . Further restrictions descend from the hypothesis181

that the physical quantities depending on the orientation of the fibres are182

invariant under the transformation MX 7→ −MX , for all MX and for all183

X ∈ B. To fulfil this property, the generic physical quantity FX has to depend184

on MX through AX = MX ⊗MX , which is referred to as structure tensor,185
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and fulfils the identity HAXH
T = AX . Accordingly, the probability density186

must comply with the invariance condition ΨX(MX) = ΨX(−MX).187

When MX ∈ S2
XB is expressed as in (3), the transverse isotropy of ΨX188

implies that ΨX(M̂X(Θ,Φ)) is independent of Φ, whence the possibility of in-189

troducing a function ℘X : [0, π]→ R+
0 such that ℘X(Θ) = ΨX(M̂X(Θ,Φ)), for190

all Φ ∈ [0, 2π[. To be compatible with the restriction ΨX(MX) = ΨX(−MX),191

℘X must respect the constraint ℘X(Θ) = ℘X(π − Θ), for all Θ ∈ [0, π]. This192

property is also satisfied by all the physical quantities studied in this work,193

and allows thus to determine the directional averages in (2) by computing the194

integrals over the hemisphere S2+
X B = {MX ∈ S2

XB|MX .M0 ≥ 0}, i.e.,195

〈〈FX〉〉 = 2

∫
S2+X B

FX(MX)ΨX(MX)

=

∫ 2π

0

∫ π/2

0

FX(M̂X(Θ,Φ))℘̄X(Θ) sin(Θ)dΘdΦ, (4)

where ℘̄X : [0, π/2] → R+
0 is a re-definition of ℘X . Very often, the von Mises196

probability density is used when spherical data are concerned [8,10,38]. Here,197

however, for our purposes, we employ the pseudo-Gaussian density198

℘̄X(Θ) =
γX(Θ)

2π
∫ π/2

0
γX(Θ′) sin(Θ′)dΘ′

, (5a)

γX(Θ) = exp

(
− [Θ −Q(X)]

2

2 [ω(X)]
2

)
, (5b)

where Q(X) and [ω(X)]
2

represent the mean angle and variance of the prob-199

ability density, respectively. The choice of the pseudo-Gaussian distribution is200

corroborated by the fact that it modelled satisfactorily the orientation of the201

collagen fibres in articular cartilage [9], as determined in the X-ray diffraction202

experiments carried out in [18].203

With a slight abuse of terminology, we call S2
XB unit sphere attached at204

X and, in analogy with the definition of TB, we call bundle of unit spheres205

the set S2B = tX∈BS2
XB. When the point X ∈ B is not specified, we adopt206

the notation Ψ : S2B → R+
0 and F : S2B → R, thereby defining both Ψ and207

F over S2B. In this case, we introduce the vector field M : B → S2B such208

that M(X) = MX ∈ S2
XB ⊂ S2B, and we set Ψ(M(X)) =ΨX(MX) and209

F(M(X)) = FX(MX). Hence, we denote the directional average of F by210

〈〈F〉〉 :=

∫
S2B

Ψ(M)F(M), (6)

with the understanding that, when 〈〈F〉〉 is evaluated at X ∈ B, one obtains211

〈〈F〉〉(X) = 〈〈FX〉〉. Sometimes, since F depends on the fibre orientation through212

the structure tensor, we also use the notation 〈〈F(A)〉〉 = 〈〈F〉〉.213
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2.3 Dynamics214

From this point onwards, we employ the symbols “Grad” and “Div” for the215

gradient and divergence operators in the reference configuration (or, more216

generally, the body manifold) B, and the symbols “grad” and “div” for the217

gradient and divergence operators in the physical space S. This notation is218

standard in modern Continuum Mechanics (e.g. [41]) and allows us to be219

consistent with our previous works, to which we constantly make reference220

(for some remarks about the notation used in this work, see Appendix A).221

We formulate the dynamics of the considered system under the hypoth-222

esis that its constituents (e.g., matrix, fibres, and fluid) have constant mass223

densities, and no mass exchange processes occur. These assumptions permit224

to write the mass balance laws of matrix and fibres as Φ̇0s = 0 and Φ̇1s = 0,225

where the material volumetric fractions Φ0s = Jφ0s and Φ1s = Jφ1s are the226

backward Piola transformations of the spatial volumetric fractions φ0s and227

φ1s, respectively. Clearly, Φ0s and Φ1s are independent of time, but they may228

depend on material points. Moreover, in the material formalism, the balance229

law of the fluid phase reads230

J̇ + DivQ = 0. (7)

We recall that our formulation assumes that matrix and fibres undergo the231

same motion.232

Hereafter, we consider the limit of negligible inertial forces and the action of233

no body forces. Moreover, we assume the validity of Darcy’s law. Consistently234

with this assumption, the Cauchy stress tensor of the fluid phase reduces to235

σf = −φfp g
−1, where p is called pore pressure, and the filtration velocity q236

is expressed as q = −k grad p, with k being the tissue’s permeability tensor.237

Analogously, the material filtration velocity is given by Q = −K Grad p, where238

K = JF−1kF−T is the material permeability tensor.239

The employment of Darcy’s law allows to consider only one momentum240

balance law for the medium as a whole. By introducing the Cauchy stress241

tensor of the solid phase, σs = −φsp g
−1 + σsc, where σsc is said to be the242

constitutive part of σs, and since the system is assumed to be closed with243

respect to momentum, the momentum balance law reads divσ = 0, where244

σ ≡ σf + σs is the overall Cauchy stress tensor of the medium in the limit245

of negligibly small relative velocity w = vf − vs. To express the balance of246

momentum in material formalism, we introduce the first Piola-Kirchhoff stress247

tensors of the fluid phase and of the solid phase, i.e., P f = JσfF
−T and248

P s = JσsF
−T, respectively, and we obtain249

Div
(
−Jpg−1F−T + Psc

)
= 0, (8)

where the term between parentheses is the overall first Piola-Kirchhoff stress250

tensor of the system, i.e., the sum of P f and P s, and P sc = JσscF
−T is the251

constitutive part of P s.252
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Equations (7) and (8) model the deformation of hydrated soft tissues and253

the flow of their interstitial fluids, but they cannot describe the dynamics of the254

internal structure of such tissues. These dynamics, indeed, involve also other255

processes, which generally occur at different time and length scales, and have256

distinct biological features. Typical examples of these processes are given by257

growth, resorption, damage, and reorientation of the network of collagen fibres.258

A more detailed tissue model should thus consider all these processes and the259

interactions among them. Nevertheless, we assume here that it is possible to260

select a modelling range in which one of the aforementioned phenomena can261

be studied independently of the other ones, at least conceptually [39]. On the262

basis of this assumption, we propose a theoretical setting in which, besides263

deformation and fluid flow, we account for the reorientation of fibres in a264

fibre-reinforced tissue. Moreover, although we present a mathematical model265

originally conceived for articular cartilage, our results can be extended also to266

other fibre-reinforced tissues.267

We claim that remodelling manifests itself through an evolution in time268

of the mean angle, Q, which has been introduced in the probability density269

defined in (5a) and (5b). Thus, we call Q remodelling variable from here on.270

Also ω could be taken as a remodelling variable. However, as done in [39], we271

prefer here to keep the theory as simple as possible. Thus, we choose ω as a272

prescribed function of the material points. The remodelling angle Q, instead,273

evolves starting either from a histological distribution or from a “test” distri-274

bution. In the latter case, one aims to see under which conditions the system275

remodels towards histological patterns. To emphasise that the probability den-276

sity depends on time through Q (which is now viewed as a function of time277

and material points), we re-define γX and ℘̄X [cf. (5a) and (5b)] as follows:278

℘̄X(Θ) = ℘̂(Θ,X, t) =
γX(Θ,X, t)

2π
∫ π/2

0
γX(Θ′, X, t) sin(Θ′)dΘ′

, (9a)

γX(Θ) = γ̂(Θ,X, t) = exp

(
− [Θ −Q(X, t)]

2

2 [ω(X)]
2

)
. (9b)

Equations (9a) and (9b) imply that also the probability density ΨX depends279

on time through Q and, consequently, the directional average 〈〈FX〉〉 must be280

regarded as a functional of the remodelling variable, Q. To highlight this de-281

pendence, we use the notation 〈〈FX〉〉 ≡ 〈〈FX〉〉(Q) from here on.282

We remark that the picture of remodelling discussed here and in [22,39]283

features some similarities with the framework presented Baaijens et al. [42],284

of which we were unfortunately unaware at the time we wrote the papers285

[22,39]. Thus, we take the occasion of this work to state that a description of286

remodelling based on the evolution of the mean angle characterising the fibres’287

pseudo-Gaussian probability density can also be found in [42] (cf. Equation288

(20) of [42]). However, the approach proposed in [22], subsequently developed289

in [39], and further extended in our work, differs from the one presented in [42]290

due to the different definition of the generalised forces that drive remodelling,291
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and due to the different methodological framework within which the theory of292

remodelling is established.293

Following the theory outlined in [19], and subsequently adopted in [27,23],294

we embrace the line thought according to which the structural evolution of295

a tissue calls for the introduction of suitable “structural descriptors”. These296

add themselves to the descriptors associated with the standard kinematics of a297

tissue, namely the velocities of the solid and the fluid phase (or, alternatively,298

the velocity of the solid phase, vs, and the velocity w of the fluid relative to299

the solid). Within the present framework, we identify the tissue’s structural300

descriptor with the time derivative of the remodelling variable, Q̇, and we call301

“remodelling forces” the mechanical entities power-conjugate to Q̇ [19,27,23].302

We distinguish these forces into “internal” and “external”, we denote them303

Rint and Rext, respectively, and we postulate the force balance [27,22,23]304

Rint = Rext. (10)

In conclusion, our theory of remodelling is based on the set of equations305

(7), (8) and (10), along with (the material counterpart of) Darcy’s law Q =306

−K Grad p. We emphasise that we are not regarding Q as an internal variable.307

Rather, Q is a kinematic variable, having the same “dignity” as the solid phase308

motion χ, and being determined by solving the balance law (10) associated309

with it.310

Remodelling and deformation couple with each other and, together with311

fluid flow, drive the overall evolution of the tissue. Such evolution is known312

after the set of equations (7), (8), and (10) is solved, and the motion χ, pressure313

p, and remodelling variable Q are determined. To this end, the remodelling314

equation (10) must be rewritten in such a way that it is explicitly solvable for315

Q. This, in fact, requires to find admissible constitutive laws for the generalised316

force Rint. To check for thermodynamic admissibility, we exploit the dissipation317

inequality.318

We remark that, since our remodelling variable is a scalar parameter, non-319

planar remodelling directions cannot be taken into account by our theory. Our320

choice, however, is meant to keep our model as simple as possible. The model,321

indeed, can be generalised by introducing two independent remodelling angles,322

having the meaning of co-latitude and longitude, respectively, and being suf-323

ficient to determine univocally the unit vector along which the fibres tend to324

be aligned.325

3 Constitutive theory326

To close the mathematical model, constitutive laws for K and P sc must be327

supplied. Moreover, whereas the functional form of Rext has to be prescribed328

from the outset, Rint must be determined constitutively. In order to do that,329

a suitable constitutive theory has to be formulated.330
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3.1 Permeability tensor331

Following [43], the permeability tensor of a fibre-reinforced porous medium can332

be determined by invoking the Representation Theorem for functions valued333

in the space of symmetric second-order tensors [44,45]. Here, we consider the334

results presented in [43] for the case of a medium exhibiting transverse isotropy335

with respect to M and, in particular, for the permeability tensor associated336

with the single fibre, we take the simple expression337

kfibre = k0g
−1 + J−2k0a, (11)

where k0 is the scalar permeability of the matrix, and a is defined by338

a =
1

I4
FAFT, (12)

where I4 ≡ I4(C,A) = C : A is the fourth invariant of C. Note that the339

original model of Ateshian and Weiss [43] is expressed in terms of the push-340

forward FAFT of the material structure tensor A, whereas (11) features the341

normalised spatial structure tensor a. In (11), we assume for k0 the Holmes342

and Mow constitutive law [46]343

k0 = k̂0(J) = k0R

[
J − Φs

1− Φs

]κ0

exp
(

1
2m0[J2 − 1]

)
, (13)

where k0R, κ0, and m0 are model parameters. Note that kfibre is a function of344

F and A, i.e., kfibre = k̂fibre(F ,A). Moreover, the spatial permeability of the345

tissue, k, is obtained by computing the directional average of kfibre, i.e.,346

k = k̂(F , Q) = 〈〈k̂fibre(F ,A)〉〉(Q)

= k̂0(J)g−1 + J−2k̂0(J)FẐ(C, Q)FT, (14)

where we introduced the notation347

Ẑ(C, Q) =

〈〈
A

I4(C,A)

〉〉
(Q). (15)

Finally, the material permeability K = JF−1kF−T takes on the form348

K = K̂(C, Q) = Jk̂0(J)C−1 + J−1k̂0(J)Ẑ(C, Q). (16)

3.2 Free energy density349

Our constitutive theory relies on the assumption that the tissue can be asso-350

ciated with a free energy density consisting of the sum of two contributions,351

i.e.,352

W := Wstd +Wrem. (17)
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The first summand, Wstd, is the strain energy density introduced in [16] to353

model a transversely isotropic biphasic medium with statistical orientation of354

the fibres. The subscript “std” means that it is regarded as standard in the355

present framework. We write explicitly the expression of Wstd with the purpose356

of highlighting its dependence on the remodelling variable:357

Wstd = Ŵstd(C, Q) = ΦsÛ(J(C)) + Φ0sŴ0(C) + Φ1sŴe(C, Q). (18)

Here, Φ0s and Φ1s are the volumetric fractions of matrix and fibres in the358

reference configuration, respectively, while Φs = Φ0s + Φ1s is the volumetric359

fraction of the solid phase as a whole in the same configuration. The term360

Û(J(C)) is a penalty enforcing the intrinsic incompressibility of the solid phase361

at compaction [16], Ŵ0(C) is the isotropic strain energy density of the matrix,362

and Ŵe(C, Q) is referred to as “ensemble potential” [14], and constitutes the363

anisotropic contribution to Wstd, i.e.,364

Ŵe(C, Q) = Ŵ1i(C) + 〈〈Ŵ1a(C,A)〉〉(Q). (19)

The energy densities Û(J(C)), Ŵ0(C), Ŵ1i(C), and Ŵ1a(C,A) are given by365

Û(J) = α0H(Jcr − J)[J − Jcr]
2q[J − Φs]

−r, (20a)

Ŵ0(C) = Ŵ1i(C) = α0
exp (α1[I1 − 3] + α2[I2 − 3])

[I3]α3
, (20b)

Ŵ1a(C,A) = H(I4 − 1) 1
2c[I4 − 1]2, (20c)

where H is the Heaviside function (here, H(s) = 0 for all s ≤ 0, and H(s) =366

1 for all s > 0) [38], and we used the short-hand notation J = J(F ) =367

detF for the volume ratio, I1 = I1(C) = tr(C), I2 = I2(C) = 1
2{[tr(C)]2 −368

tr(C2)}, I3 = I3(C) = detC for the three principal invariants of C, and369

I4 = I4(C,A) = C : A for the fourth invariant of C. In (20a), Jcr ∈ ]Φs, 1]370

is a “critical” value of J below which the penalty term is switched on to371

prevent J from approaching the lower physical bound Φs, while q ≥ 2 and372

r ∈ ]0, 1] are model parameters. In (20b) and (20c), α0, α1, α2, α3, and c are373

model parameters and, in particular, α0 and c have the same physical units374

as the strain energy density and determine the energy scales characterising375

the isotropic and anisotropic contributions of Ŵstd. The term Ŵ1i(C) is the376

isotropic contribution of the fibres to the tissue’s overall strain energy density,377

and Ŵ1a(C,A) is the anisotropic contribution, which depends on the fibre378

alignment through A = M ⊗M . The fact that Ŵ1i is taken here to be379

equal to Ŵ0 is just a model assumption [38]. We remark that the directional380

average of Ŵ1a(C,A), i.e., 〈〈Ŵ1a(C,A)〉〉, depends on the remodelling variable,381

Q, through the probability density.382

The idea underlying the definition of the energy density given in (18) can383

be found in several works on composite materials [47–49]. In these papers,384

a given composite material is modelled within the theory of linear elasticity,385

and the elasticity tensor of the material is written as the weighted sum of386

the elasticity tensors of its constituents, each multiplied by the corresponding387
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volumetric fraction. In this sum, however, the weights depend on the strain388

concentration tensor [49,50] and, thus, on Eshelby’s fourth-order tensor [51].389

In the non-linear framework, instead, the Eshelby-like formulation is not di-390

rectly applicable and, if the constituents of a composite material are assumed391

to be hyperelastic, the elastic potential of the composite as a whole can be con-392

structed by weighing the elastic potentials of the constituents. In some cases,393

e.g. [2,27], the elastic potentials contain the volumetric fractions in their own394

definition, whereas we put them in evidence in our formulation. In (18), in-395

deed, apart from ΦsÛ(J(C)), Wstd is the weighted sum of one contribution396

due to the matrix and one due to the fibres, the weights being the volumetric397

fractions Φ0s and Φ1s.398

Moreover, in the present work, the isotropic energy densities Ŵ0(C) and399

Ŵ1i(C) depend on I3, thereby describing a compressible behaviour of the400

modelled material, while the anisotropic contribution, Ŵ1a(C,A), is assumed401

to depend on C through I4 only. In fact, the tissue described by (18), (19),402

and (20a)–(20c) is compressible and anisotropic, which requires its elastic en-403

ergy density to depend both on I3 and —at least— on I4. However, the way404

in which compressibility and anisotropy are modelled is not unique and, in405

this respect, the additive decomposition of the energy density performed in406

(18) and (19), in which the compressible effects are attributed solely to the407

isotropic terms, is only one among other possible choices. To give an example,408

indeed, in the work by Almeida and Spilker [52] on articular cartilage, the409

elastic energy density is anisotropic and compressible, but the decomposition410

presented in (18) and (19) was not enforced. We would like to emphasise,411

however, that decompositions of this kind are rather customary in the study412

of fibre-reinforced hyperelastic materials (see e.g. [2,27] for the case of blood413

vessels). Moreover, strictly speaking, since I4 can be further decomposed mul-414

tiplicatively as I4 = I
1/3
3 Ī4, with Ī4 = C̄ : A and det C̄ = 1, the anisotropic415

part of the energy density still models a compressible material.416

The second summand of (17), Wrem, is the part of the free energy density417

that is directly related to remodelling. This term is the main novelty of our418

constitutive theory, which is based on the requirement that Wrem admits the419

representation420

Wrem = Ŵrem(C, Q,GradQ) = Ŵstr(C, Q) + Ŵgrad(C,GradQ). (21)

The energy densities Ŵgrad(C,GradQ) and Ŵstr(C, Q) are given by421

Wgrad = Ŵgrad(C,GradQ) = 1
2D̂(C) : GradQ⊗GradQ, (22a)

Wstr = Ŵstr(C, Q) = Â(C)P̂(Q) exp (α̂W (C)Q) , (22b)

where the subscript “grad” indicates that Ŵgrad depends on the gradient of422

the mean angle, while the subscript “str” means that Ŵstr is directly related423

to the internal structure of the tissue. The quantity D̂(C) is a symmetric,424

positive semi-definite, second-order tensor-valued function of C, Â(C) is a425

non-negative coefficient with physical units of energy per unit volume, P̂(Q)426
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is a dimensionless, non-negative function of Q, and α̂W (C) is a dimensionless,427

non-negative coefficient. In the absence of deformation, i.e., when C equals428

the material metric tensor G (which serves here as the “covariant identity429

tensor”), we set D̂(G) = D0, Â(C) = A0 ≥ 0, and α̂W (G) = 0.430

The term Ŵgrad(C,GradQ) is introduced to explicitly account for the431

spatial resolution of the remodelling variable, Q. Physically, it represents the432

contribution to the overall energy that is set off by the first-order spatial433

variations of Q at each material point. To keep the proposed theory at a434

minimal level of complexity, we assume that Ŵgrad(C,GradQ) is quadratic in435

GradQ. As is the case for other theories based on energy densities that depend436

on the gradient of an angular variable (for example, the energy of the Sine-437

Gordon model [53]), D̂(C) could be thought of as a measure of the system’s438

“angular stiffness per unit length”. Indeed, it determines the response of the439

system to the spatial variations of Q. We remark that, by its own definition,440

D̂(C) is modulated by C, which means that, in general, the tissue’s angular441

stiffness varies with the deformation. If, on the one hand, the evolution of442

the remodelling angle Q influences the elastic response of the tissue through443

the term Ŵe(C, Q) [see Equation (18)], the tensor D̂(C) couples the global444

changes of shape of the tissue with its structural transformations, which are445

represented by the variations of Q in time and space.446

Before providing a term-by-term explanation of Ŵstr(C, Q) [see (22b)], we447

discuss the logical steps that lead to its functional form. First, we remark that,448

since in this work the kinematics of the tissue is described by χ and Q, the449

configuration attained by the tissue at time t is determined by both χ(X, t)450

and Q(X, t), for all X ∈ B. Second, we claim that each such configuration451

can be associated with an energy that depends on the deformation and the452

distribution of the fibre mean angle throughout the tissue. Third, by exploiting453

the fact that the deformation and the mean angle are independent on each454

other, we also claim that there exist distributions of the fibre mean angle that455

endow the tissue with non-trivial energies even in the absence of deformation.456

Indeed, even though Wstd reduces to the unessential constant Ŵstd(G, Q) ≡457

Ŵ
(0)
std (Q) = α0 in such cases [see (18) and (20a)–(20c)], Wstr and Wgrad become458

Ŵstr(G, Q) ≡ Ŵ (0)
str (Q) = A0P̂(Q), (23a)

Ŵgrad(G,GradQ) ≡ Ŵ (0)
grad(GradQ) = 1

2D0 : GradQ⊗GradQ, (23b)

thereby yielding459

Wrem ≡ Ŵ (0)
rem(Q,GradQ) = Ŵ

(0)
str (Q) + Ŵ

(0)
grad(GradQ),

= A0P̂(Q) + 1
2D0 : GradQ⊗GradQ, (24a)

W ≡ Ŵ (0)
std (Q) + Ŵ (0)

rem(Q,GradQ)

= α0 + Ŵ (0)
rem(Q,GradQ). (24b)

If D0 is positive definite and A0 strictly positive, Ŵ
(0)
rem(Q,GradQ) is zero460

only for those distributions of the fibre mean angle that are spatially uniform461
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and solutions of P̂(Q) = 0. In the jargon of [53], a time-independent field Q462

satisfying these conditions is said to be a “classical vacuum” configuration for463

Ŵ
(0)
rem(Q,GradQ), since it determines the lowest energy of the system under464

study (zero, in the considered case). In general, however, when Q is not a465

vacuum configuration, Ŵ
(0)
rem(Q,GradQ) is greater than zero and consists of466

the contribution due to the spatial variability of Q, i.e., Ŵ
(0)
grad(GradQ), and467

of the contribution due to the potential energy density associated with Q, i.e.,468

Ŵ
(0)
str (GradQ). Thus, up to α0, Ŵ

(0)
rem(Q,GradQ) is the energy density that469

characterises the tissue for a given Q, and the integral470

W(0)
rem[Q] =

∫
B

Ŵ (0)
rem(Q,GradQ)

=

∫
B

{
A0P̂(Q) + 1

2D0 : GradQ⊗GradQ
}

(25)

is the tissue’s energy corresponding to Q. In conclusion, and consistently with471

what we claimed above, our interpretation of (25) is that any conformation of472

the tissue’s internal structure, which is described by selecting an appropriate473

distribution of the fibre mean angle, yields an energy. This energy, in turn, is474

nonzero as long as the distribution of the fibre mean angle is not a vacuum475

configuration.476

As explained in Section 4.1, we assume that the information on the internal477

structure of the tissue is supplied by the histological pattern with which the478

fibres are oriented in the undeformed tissue and, thus, by the distribution of479

the fibre mean angle associated with it. Such distribution, denoted by Qh,480

can be determined experimentally. In fact, as shown in Fig. 2, it features a481

sigmoidal shape and takes on the values Q0 = 0 rad and Q1 = π/2 rad at the482

lower and upper boundary, respectively, of the cylindrical samples of tissue483

adopted in the study [54].484

Although a functional form for Qh can be obtained by fitting experimental485

data [54], we follow here a rather different approach. First, since the sigmoidal486

profile of Qh goes from Q0 to Q1, we invoke a formal analogy with the theory of487

phase transitions, and we claim that Ŵ
(0)
str (Q) should be a double-well energy488

density of the Allen-Cahn type, with Q0 = 0 rad and Q1 = π/2 rad being489

its global minimum configurations. Thus, with reference to the undeformed490

configuration of the tissue, we set491

Ŵ
(0)
str (Q) ≡ Ŵ (0)

AC(Q) =
A0

(π/4)4
Q2
(
Q− π

2

)2

, (26)

where Ŵ
(0)
AC(Q) is the Allen-Cahn energy density [26]. We notice that Equations492

(23a) and (26) allow to identify P̂(Q) with493

P̂(Q) =
1

(π/4)4
Q2
(
Q− π

2

)2

, (27)
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i.e., with a polynomial of degree four in Q that vanishes for Q0 = 0 rad and494

Q1 = π/2 rad, and whose global maximum over [0, π/2] is attained at Qmax =495

π/4 rad.496

We emphasise that the zeroes of P̂(Q) are the vacuum configurations of the497

Allen-Cahn energy density defined in Equation (26), for which it holds, thus,498

Ŵ
(0)
AC(Q0) = Ŵ

(0)
AC(Q1) = 0. Accordingly, the sigmoidal profile of Qh describes499

a transition from Q0 to Q1, and the quantity A0, which is equal to the global500

maximum of Ŵ
(0)
AC(Q), defines the height of the energy barrier separating Q0501

from Q1.502

When the deformation is considered, the height of the energy barrier, A0,503

is generally allowed to be modulated by the deformation, and becomes Â(C).504

Moreover, whereas Ŵ
(0)
AC(Q) is symmetric with respect to Q = π/4 rad, the505

coefficient α̂W (C) destroys this symmetry for C 6= G. In conclusion, by using506

the expression of P̂(Q) given in (27), we can interpret the structural part507

of the energy density, Ŵstr(C, Q), as a generalised, deformation-dependent508

energy density of the Allen-Cahn type, i.e.,509

ŴAC(C, Q) ≡ Ŵstr(C, Q) = Â(C)P̂(Q) exp(α̂W (C)Q). (28)

Although all the results presented in this work have been obtained by510

employing Ŵ
(0)
AC(Q) and ŴAC(C, Q), these energy densities may have to be511

replaced with more appropriate constitutive choices in the case of different512

histological distributions of the mean angle, or for tissues other than articular513

cartilage. However, if the spatial resolution of the mean angle has to be ex-514

plicitly taken into account, a “gradient-part” of the remodelling energy, like515

the one defined in (22a), may still be employed.516

Once the Allen-Cahn energy density (28) is introduced, we claim that Qh517

can be determined as the solution of a variational problem. To this end, indeed,518

we require that the first-order variation of the functional W
(0)
rem, defined in (25),519

is zero for arbitrary variations of Qh.520

In Section 4.1 it will be shown that Qh is computed by solving a differential521

equation equipped with the Dirichlet boundary conditions Qh(X) = Q0, for522

all X ∈ (∂B)L, and Qh(X) = Q1, for all X ∈ (∂B)U, where (∂B)L and (∂B)U523

denote the lower and upper boundaries of B, respectively. In this case, the524

magnitude of D0 influences the tendency of the fibre mean angle to become a525

straight line connecting Q0 with Q1. This trend, in fact, is obtained in the limit526

in which the magnitude of D0 goes towards infinity. On the other hand, if the527

boundary data are changed in such a way that one of the two Dirichlet condi-528

tions is replaced by a homogeneous Neumann condition, then the magnitude529

of D0 measures the tendency of Qh to distribute itself uniformly throughout530

the sample. When this is the case, indeed, the uniformity of Qh increases with531

the magnitude of D0. Finally, when the deformation is considered, and the532

evolution in time of the fibre mean angle, Q, is studied, D̂(C) influences the533

rate at which Q approaches a stationary solution.534
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3.3 Dissipation Inequality535

In the present context, the dissipation inequality can be cast in the form [22]536

(see Appendix B for details)537

D = DI + DII + DIII + DIV ≥ 0, (29)

where D is the residual dissipation per unit volume of the reference configu-538

ration, and the summands on the right-hand-side of (29) are given by539

DI =

{
−F

(
2
∂Ŵ

∂C

)
+ Ps + Φsp g

−1F−T

}
: gḞ

+
{
Pf + (J − Φs)p g

−1F−T
}

: gGradvf , (30a)

DII = −J
[
πf − pg−1gradφf

]
.w, (30b)

DIII =

{
−

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
+ Rint

}
Q̇, (30c)

DIV = Div

[
−TQ̄η − ∂Ŵ

∂GradQ
Q̇

]
. (30d)

Here, Q̄
η

is the entropy flux vector, and Ŵ is expressed constitutively as540

Ŵ (C, Q,GradQ) = Ŵstd(C, Q) + Ŵrem(C, Q,GradQ), (31a)

Ŵrem(C, Q,GradQ) = ŴAC(C, Q) + 1
2D̂(C) : GradQ⊗GradQ. (31b)

Also the constitutive part of the mechanical stress depends —at least in541

principle— on the same list of variables. However, to account for the dissi-542

pation related to the exchange of momentum between the fluid and the solid543

phase (which is represented by DII ≥ 0, and leads to Darcy’s law) as well as544

for the dissipation associated with remodelling (i.e., DIII ≥ 0), the complete545

list of independent constitutive variables is given by F , Q, GradQ, Q̇, and546

w. Furthermore, we study the dissipation inequality (29) by requiring that547

DI, DII, DIII, and DIV are all non-negative, one independently on the others.548

Within the present theoretical framework, in which the free energy density549

Ŵ features the gradient of the remodelling variable among its arguments, the550

entropy flux vector does not necessarily reduce to the ratio between a heat551

flux vector and the absolute temperature [55]. Rather, Q̄
η

is defined by552

Q̄
η

= − 1

T

∂Ŵ

∂GradQ
Q̇, (32)

thereby establishing that DIV vanishes identically. Moreover, since Ḟ and553

Gradvf are not independent constitutive variables, and DI depends linearly554

on them, the sums between braces in (30a) must be zero to ensure that the555
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inequality DI ≥ 0 is fulfilled for arbitrary choices of Ḟ and Gradvf . Hence, DI556

vanishes identically. This yields the conditions557

Ps = −Φsp g
−1F−T + F

(
2
∂Ŵ

∂C

)
, (33a)

Pf = −(J − Φs)p g
−1F−T, (33b)

P = Ps + Pf = −Jp g−1F−T + F

(
2
∂Ŵ

∂C

)
, (33c)

so that the constitutive part P sc of P s and P is given by558

P sc = F

(
2
∂Ŵ

∂C

)
. (34)

Note that, if the free energy density is given as a function of F , Q, and the559

spatial gradient of Q, i.e., as V̂(F , Q, gradQ) = Ŵ (C, Q,GradQ), Psc admits560

the two equivalent expressions561

Psc = F

(
2
∂Ŵ

∂C

)
= g−1 ∂V̂

∂F
+ PK, (35a)

PK = −g−1

(
gradQ⊗ ∂V̂

∂ gradQ

)
F−T, (35b)

where PK is the Piola transform of the Korteweg stress tensor [55]. We em-562

phasise that the presence of PK, which is explicit in (35a) and hidden in (34),563

is a consequence of the fact that our theory employs a free energy density564

depending on GradQ.565

Finally, we define the dissipative generalised forces πfd and N, i.e.,566

πfd ≡ πf − pg−1gradφf , (36a)

N ≡ −

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
+ Rint, (36b)

so that the residual dissipation reads567

D = −Jπfd.w + NQ̇ ≥ 0. (37)

While the first term on the right-hand-side of (37) is rather standard and is568

assumed to lead to Darcy’s law in the present framework, the term NQ̇ is569

“new”, in the sense that it is generated by the presence of remodelling [27,570

22,39]. Since the remodelling equation is given by Rint = Rext, and since571

Rint comprises a dissipative part, N, as well as a non-dissipative part (which572

coincides with the terms between brackets in (36b)), we write573

Rint ≡ N +

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
= Rext. (38)
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Hence, we obtain574

N = −

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
+ Rext. (39)

Following [22,39], we prescribe N to be defined through a particular simple575

constitutive law that is linear in Q̇, i.e.,576

N = N̂(C, Q, Q̇) = Γ̂ (C, Q)Q̇, (40)

with Γ̂ (C, Q) ≥ 0, so that the remodelling equation becomes577

Γ̂ (C, Q)Q̇ = −

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
+ Rext

= −

[
∂Ŵ

∂Q
−Div

(
D̂(C)GradQ

)]
+ Rext. (41)

Equation (41) is the remodelling equation that rules the evolution of the re-578

modelling variable Q. With respect to other pictures of remodelling (for in-579

stance, those put forward in [27,22,23]), the theory proposed here contains580

the additional internal remodelling force581

−Div

(
∂Ŵ

∂GradQ

)
= −Div

(
D̂(C)GradQ

)
. (42)

We remark that the terms in brackets in (41) are not the functional derivative582

of Ŵrem. Indeed, also Ŵstd depends onQ and, thus, contributes to the evolution583

of the remodelling variable. Before going further, we mention that similar584

constitutive frameworks, based however on the Cahn-Hilliard model, have been585

proposed in studying tumours in [56–58].586

3.4 Summary of the model equations and simplifying assumptions587

The model equations are given by (7), (8), and (41). These have to be solved588

by providing boundary conditions, as well as initial conditions for χ and Q. In589

this work, we consider a sample of tissue of cylindrical shape in its reference590

configuration, B. We denote by L = 1 mm and R = 1.5 mm the initial thickness591

and initial radius of the sample, respectively, and we write the boundary of B592

as the disjoint union ∂B = (∂B)L t (∂B)U t (∂B)B, where (∂B)L, (∂B)U, and593

(∂B)B represent the lower, upper, and lateral portions of ∂B, respectively. The594

sample is assumed to be transversely isotropic with respect to the direction595

M0, which coincides with the geometric symmetry axis of the cylinder.596

The sample is subjected to an unconfined compression test characterised597

by the boundary conditions (BCs)598

On (∂B)U,

{
χ3 = g,
(−KGrad p).N = 0,

(43a)
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On (∂B)L,

{
χ(X, t)− χ(X, 0) = 0,
(−KGrad p).N = 0,

(43b)

On (∂B)B,

{
(−Jpg−1F−T + P sc).N = 0,
p = 0,

(43c)

where χ3 is the axial component of the solid phase motion, N is the field of599

unit normal to ∂B, and g is the compressive loading history600

g(t) =

{
L− t

Tramp
uT, for t ∈ [0, Tramp],

L− uT, for t ∈ ]Tramp, Tend].
(44)

The target displacement uT = 0.2 mm is reached by (∂B)U at Tramp = 20 s,601

and then maintained up to Tend = 100 s. The BCs (43a) and (43b) indicate602

that (∂B)U and (∂B)L are impermeable, with (∂B)U being displaced axially603

according to g, and (∂B)L being kept fixed. The BCs (43c), instead, imply that604

(∂B)B is permeable and free of applied surface forces. A schematic description605

of the considered benchmark test is given in Fig. 1.606

Fig. 1 Schematic description of the considered loading history. The sample is compressed
along the axial direction by means of a loading ramp up to t ≤ Tramp = 20 s, and the load
is then maintained up to Tend = 100 s.

In addition to (43a)–(43c), we also prescribe the BCs for the remodelling607

variable, Q, i.e.,608

On (∂B)U, Q(X, t) =
π

2
rad, ∀ t ∈ ]0, Tend], (45a)

On (∂B)L, Q(X, t) = 0 rad, ∀ t ∈ ]0, Tend], (45b)

On (∂B)B, (−D̂(C)GradQ).N = 0, ∀ t ∈ ]0, Tend] (45c)

Finally, the initial condition on χ is expressed by requiring that the reference609

configuration, which coincides here with the initial one, is undeformed, while610

the initial condition on Q can be either obtained by fitting experimental data611

or computed via preliminary calculations, as explained in Section 4.1.612

We remark that the boundary conditions imposed on Q are necessary to613

solve the partial differential equation governing its spatiotemporal evolution.614

Among various possible choices (i.e., boundary conditions of Dirichlet, Neu-615

mann, or mixed type), we chose Dirichlet boundary conditions because they616
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are easier to handle from a numerical point of view, and because they are617

consistent with the histological information on the pattern of fibre alignment618

within the tissue. Clearly, imposing these conditions on the upper and lower619

boundary of the sample prescribes the values of the remodelling variable on620

these surfaces. This, in turn, amounts to restrict the remodelling process only621

to the internal points of the sample, and, in the case studied in Section 4.1,622

guides the distribution of the fibre mean angle towards the expected result.623

However, this requirement seems to us weaker, and therefore more general,624

than prescribing the histological profile a priori, or selecting an ad hoc remod-625

elling force Rext. Moreover, the use of boundary conditions of different type,626

and their impact on the solution describing the distribution of the fibre mean627

angle is part of our current investigations.628

Before going further, it is important to analyse the explicit expression629

of 2(∂Ŵ/∂C) and ∂Ŵ/∂Q. For this purpose, we invoke the constitutive laws630

(18)–(26), (31a) and (31b), and we enforce the simplifying assumptions Â(C) =631

A0, D̂(C) = D0G
−1 (the inverse metric G−1 here serves as the “contravariant632

identity tensor”), and Γ̂ (C, Q) = Γ , where A0, D0, and Γ are assumed to be633

constant. Moreover, we set634

α̂W (C) = 1
2a[I1(C̄)− 3]2, (46)

with a being a non-negative scalar constant, and C̄ = J−2/3C. We need to635

clarify, however, that, since D0 and A0 must vanish in the absence of fibres,636

both D0 and A0 should be expressed by means of continuous functions of the637

volumetric fraction of the fibres, Φ1s, that tend to zero when Φ1s tends to zero.638

Furthermore, since Φ1s is a function of the material point, D0 and A0 should639

depend on the material point too. Therefore, the assumption of constant D0640

and A0 means that these coefficients correspond to averaged values of Φ1s. In641

the cases in which this hypothesis in invalid, D0 and A0 should be reformulated642

as D0 = Φ1sD̃0 and A0 = Φ1sÃ0, where D̃0 ≥ 0 and Ã0 ≥ 0 may also depend643

on the material point, in general.644

The assumptions done so far imply that the free energy density used for645

simulations is given by646

Ŵ (C, Q,GradQ) = Ŵstd(C, Q) + Ŵrem(C, Q,GradQ), (47a)

Ŵrem(C, Q,GradQ) = ŴAC(C, Q) + 1
2D0‖GradQ‖2, (47b)

ŴAC(C, Q) = A0P̂(Q) exp (α̂W (C)Q) , (47c)

with α̂W (C) being defined in (46). Hence, we find647

P̂sc = F

(
2
∂Ŵ

∂C

)
= F

(
2
∂Ŵstd

∂C

)
+ F

(
2
∂ŴAC

∂C

)

= F

(
2
∂Ŵstd

∂C

)
+ ŴACQF

(
2
∂α̂W
∂C

)
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= F

(
2
∂Ŵstd

∂C

)
+ 2ŴAC(C, Q)Qa

[
I1(C̄)− 3

]
J−2/3F Dev∗G−1,

(48a)

∂Ŵ

∂Q
=
∂Ŵstd

∂Q
+
∂Ŵrem

∂Q
=
∂Ŵstd

∂Q
+
∂ŴAC

∂Q

=
∂Ŵstd

∂Q
+ A0

∂P̂

∂Q
eα̂WQ + A0P̂eα̂WQα̂W , (48b)

where Dev∗G−1 := G−1− 1
3 (G−1 : C)C−1 is the deviatoric part of G−1 with648

respect to the deformed metric tensor C. In particular, it holds that649

∂Ŵstd

∂Q
=
Φ1s

ω2
cov

(
Θ, Ŵ1a(C, Â(Θ,Φ))

)
= Φ1s

〈〈ΘŴ1a(C, Â(Θ,Φ))〉〉 − 〈〈Θ〉〉〈〈Ŵ1a(C, Â(Θ,Φ))〉〉
ω2

, (49a)

∂P̂

∂Q
=

4

(π/4)4
Q
(
Q− π

2

)(
Q− π

4

)
, (49b)

where the notation A = Â(Θ,Φ) means that the structure tensor has to be650

rewritten as a function of the angular coordinates Θ and Φ. The right-hand-651

side of (49a) is the covariance between Θ and Ŵ1a(C, Â(Θ,Φ)) and, since it652

involves the computation of directional averages, it has to be understood as a653

function of Q. In summary, the model equations are given by654

Div

[
−Jpg−1F−T + F

(
2
∂Ŵ

∂C

)]
= 0, (50a)

J̇ = Div (K Grad p) , (50b)

ΓQ̇ = −

[
∂Ŵ

∂Q
−Div

(
D0G

−1GradQ
)]

+ Rext, (50c)

where the constitutive results reported in (48a)–(49b) have to be used. For655

the numerical computations we use the assumption that the model parameters656

depend only on the axial normalised coordinate ξ = X3/L ∈ [0, 1], with X3
657

being the axial coordinate of the point X ∈ B. In particular, the volumetric658

fractions Φ0s, Φ1s, and Φs are given by659

Φ0s ≡ Φ0s(ξ) = −0.062 ξ2 + 0.038 ξ + 0.046, (51a)

Φ1s ≡ Φ1s(ξ) = +0.062 ξ2 − 0.138 ξ + 0.204, (51b)

Φs ≡ Φs(ξ) = −0.100 ξ + 0.250. (51c)

We also introduce the void ratio eR(ξ) = (1−Φs(ξ))/Φs(ξ), which is completely660

defined by (51c). Then, we prescribe the reference scalar permeability k0R used661
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in (13) to be [59,38]662

k0R ≡ k0R(ξ) = k
(0)
0R

[
eR(ξ)

e
(0)
R

]κ0

exp

 1
2m0

(1 + eR(ξ)

1 + e
(0)
R

)2

− 1

 , (52)

with k
(0)
0R = 0.003 mm4N−1s−1, κ0 = 0.0848, m0 = 4.638 [46], and e

(0)
R = 4.0663

[60]. For the “standard” part of the free energy density, Ŵstd, we adopt the664

parameters α0 = 0.1250 MPa, α1 = 0.7778, α2 = 0.1111, and c = 7.5 MPa665

[61] for Ŵ0, Ŵ1i, and Ŵ1a (see [38] and the reference therein), and q = 2,666

r = 1/2, and Jcr(ξ) = Φs(ξ) + 0.1 for the penalty term Û . For the remodelling667

part, Ŵrem, we use several pairs of D0 and A0 (an example of such values is668

D0 = 1.0 · 10−4 N/rad and A0 = 154 Pa) and we let a take the values a = 0669

or a = 103 (clearly, also other values may be chosen). Finally, although in a670

previous paper [54] we took the function671

ω(ξ) = 103[(1− ξ)ξ]4 + 0.03 (53)

to compute the variance [ω(ξ)]2, in the simulations performed for this work,672

we set ω(ξ) = ω0 = 0.3 for all ξ ∈ [0, 1].673

4 The remodelling equation674

In this section, we study two limit cases of the remodelling equation. The first675

case shows that a stationary solution of the remodelling equation recovers the676

profile taken from [54], which mimics the histological pattern of fibre orien-677

tation. In the second case, we search for those stationary solutions to (50c)678

that may represent admissible target profiles of the remodelling variable. The679

existence of these solutions depends on the choice of the boundary conditions.680

4.1 The histological profile681

As anticipated in Section 3.2, the reason for choosing the functional forms (21)–682

(27) is histological. To see this, let us assume that the reference, undeformed683

configuration of the sample coincides with the region of space that it occupies684

at time t = 0. In this configuration, the pattern of the fibre orientation can685

be observed experimentally, and an expression of the mean angle fitting the686

histological data is given by [54]687

Qfit(ξ) =
π

2

{
1− cos

(
π

2

[
−2

3
ξ2 +

5

3
ξ

])}
, (54)

where ξ is the normalised axial coordinate. The coordinate ξ is zero at the688

bone-cartilage interface (also known as “tidemark”), which coincides with the689

sample’s lower boundary (∂B)L, and is equal to unity at the articular surface,690

represented by the upper boundary (∂B)U. Note that, in this configuration,691
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the fluid is assumed to be at rest and the pore pressure is taken equal to zero692

everywhere in the tissue. The function Qfit takes the values Qfit(0) = 0 rad693

and Qfit(1) = π/2 rad, thereby meaning that the fibres are almost perfectly694

parallel to the specimen’s symmetry axis at the tidemark, and almost perfectly695

orthogonal to it at the articular surface. Thus, by construction, Qfit mimics696

the histological profile of the fibre mean angle.697

0.2 0.4 0.6 0.8 1.0
Ξ

0.5

1.0

1.5

QHΞL

-0.5 0.5 1.0 1.5 2.0
Q

1

2

3

4

W HQL

Fig. 2 (a): Comparison between Qfit(ξ) and Q(ξ) for a given set of parameters A0, D0,
and specimen height L. For the chosen parameters, the two curves deviate appreciably from
each other only for values of ξ close to zero, i.e., in the deep zone of articular cartilage.
(b): The Allen-Cahn free energy density in (26) is represented. The dashed parts lie outside
of the considered range [0, π/2]. In fact, the two minima correspond to Q(0) = 0 rad and
Q(1) = π/2 rad, respectively.

We take inspiration from the aforementioned experimental observations698

to claim that the angles Qfit(0) = 0 rad and Qfit(1) = π/2 rad are “critical”699

values of the fibre mean angle and, more importantly, that the histological700

profile is the result of a “structural phase transition” occurring in articular701

cartilage at some stage of its formation (thus, prior to any mechanical test702

performed on the tissue either in vitro or in silico). In our view, this phase703

transition consists of a structural reorganisation of the tissue, and leads to704

the histological fibre distribution observed in the undeformed configuration.705

To see whether our interpretation is compatible with experimental evidence,706

we endow the tissue with a free energy density of the Allen-Cahn type, which707

we assume to exist independently of deformation, and we suggest that the708

histological profile is the solution of a variational problem formulated in the709

undeformed configuration. In fact, we choose Ŵ
(0)
rem(Q,GradQ) as specified710

in (24a), with Ŵ
(0)
str (Q) = Ŵ

(0)
AC(Q) as in (26), and we require the functional711

derivative of W
(0)
rem [see Eq. (25)] to be zero. This amounts to solving the partial712

differential equation713

∂Ŵ
(0)
rem

∂Q
−Div

[
∂Ŵ

(0)
rem

∂GradQ

]
= 0 ⇒ (55a)

∂Ŵ
(0)
AC

∂Q
−Div

[
D0G

−1GradQ
]

= 0 ⇒ (55b)
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4A0

(π/4)4
Q
(
Q− π

2

)(
Q− π

4

)
−Div

[
D0G

−1GradQ
]

= 0. (55c)

Let us now focus on a particularly simple case in which the sample is a714

cylinder (as specified in section 3.4), and Q depends only on the normalised715

axial coordinate ξ. The coefficient D0 is set equal to zero from the outset when716

the spatial resolution of the remodelling variable is not explicitly taken into717

account, and is greater than zero otherwise. According to these hypotheses,718

when D0 6= 0, (55c) becomes719

4A0L
2

(π/4)4D0
Q
(
Q− π

2

)(
Q− π

4

)
− d2Q

dξ2
= 0, (56)

with the boundary conditions Q(0) = 0 rad and Q(1) = π/2 rad. Comparing720

the solution of (56), Qh(ξ), with the function Qfit(ξ) assigned in (54) allows721

to estimate the combination of parameters A0 and D0 that minimises the722

distance between Qh(ξ) and Qfit(ξ) (see Fig. 2). This result seems to suggest723

that, after the model parameters are calibrated on the basis of experimental724

observations, and the histologically based boundary conditions Q(0) = 0 rad725

and Q(1) = 0 rad are enforced, the functional form of the histological profile726

need not be prescribed by fitting experimental data, since it may be computed727

as the extremum of the remodelling energy (25).728

As anticipated in Section 3.4, the Dirichlet boundary conditions imposed729

on the values taken by Q at the lower and upper boundary of the sample730

enhance the convergence of the solution towards Qfit. This behaviour, however,731

manifests itself only at (∂B)L and (∂B)U, where the conditions (45a) and732

(45b) comply with the minimum configurations of Ŵ
(0)
AC(Q). In general, instead,733

when the evolution of the fibre mean angle is studied in conjunction with the734

deformation of the tissue, our model can produce a profile that is far from735

the histological one (see e.g. Fig. (8)). Moreover, other boundary conditions,736

which may depend on time, deformation, or stress, could also be considered737

to better describe other physical occurrences.738

We remark that the profile reported in Fig. 2(a) has been obtained for739

L = 1 mm and the ratio (A0L
2)/D0 = 1.54. A pair of model parameters740

A0 and D0 complying with this ratio is given by D0 = 1.0 · 10−4 N/rad and741

A0 = 154 Pa.742

4.2 “Target fields” and stationary solutions743

An essential issue in the mechanical theories of remodelling is the identification744

of the generalised forces that drive the structural evolution of the considered745

system. Before studying this problem within our theoretical framework, we746

review the case in which the free energy density does not feature terms of the747

type Ŵrem(C, Q,GradQ). In such a setting, the remodelling law (50c) reduces748

to the ordinary differential equation749

ΓQ̇ = Rext −
∂Ŵstd

∂Q
(C, Q), (57)
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and the evolution of Q is entirely driven by the difference between Rext and750

∂Ŵstd/∂Q. More specifically, while ∂Ŵstd/∂Q is dictated by the choice of Ŵstd,751

Rext characterises the coupling between Q and the other mechanical variables752

of the system. For example, following Hariton et al. [62], Rext may be related753

to stress by claiming that the direction along which the fibres tend to align754

themselves is driven by the eigenvalues of Cauchy stress tensor. To account755

for this requirement, it is possible to prescribe Rext as [27]756

Rext ≡
∂Ŵstd

∂Q
(C, QT), (58)

where QT is a suitably constructed target angle, i.e., a “privileged” distribution757

of the mean angle entirely determined by stress. We emphasise that, since the758

principal stresses are time-dependent, the target angle varies in time [27].759

Thus, Q̇ is generally non-zero until Q is not equal to QT. If, however, (57) and760

(58) are studied in the limit in which QT tends to some stationary distribution761

Q∞T , the remodelling process ceases asymptotically when Q approaches one of762

the stationary solutions of the evolution equation763

ΓQ̇ =
∂Ŵstd

∂Q
(C, Q∞T )− ∂Ŵstd

∂Q
(C, Q). (59)

In particular, if the dependence of Ŵstd on Q implies the uniqueness of the764

stationary solution to (59), then Qst ≡ Q∞T is the stationary mean angle765

towards which the system remodels.766

We remark that the existence of solutions of the type Qst = Q∞T is closely767

related to the introduction of the target angle and the external remodelling768

force, Rext. In a previous work [39], however, we searched for stationary so-769

lutions to (57) in the limit case of vanishing, or negligibly small, Rext and770

with Ŵstd defined as in (18)–(20c). Consequently, we solved the remodelling771

equation772

ΓQ̇ = −∂Ŵstd

∂Q
, (60)

and we found that Q̇ tended asymptotically towards zero because the condition773

0 = −∂Ŵstd

∂Q
= −Φ1s

ω2
cov

(
Θ, Ŵ1a(C, Â(Θ,Φ))

)
(61)

applied for large values of t. This result was respected because the deformation774

obtained for large values of t implied the asymptotic fulfilment of the inequality775

I4 ≤ 1, even though (61) admitted no roots in the variable Q. We remark a776

posteriori that, if Rext had been considered in [39] in the form given in (58),777

the presence of the Heaviside function H(I4−1) in the definition of Ŵstd would778

have made it tend asymptotically towards zero for the deformations attained779

in the tissue for large times.780
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The theoretical setting developed in this work is conceived to improve781

the results obtained in [39]. To this end, it proposes to describe remodelling782

through (50c), which introduces two novelties: It accounts for the spatial res-783

olution of the fibre mean angle, and it defines the remodelling part of the sys-784

tem’s free energy density, Ŵrem, where exp(α̂W (C)Q) describes a non-trivial785

coupling between Q and the deformation [see (31b) and (28)]. By enforcing786

the simplifying assumptions done in Section 3.4, and neglecting Rext from the787

outset, the remodelling equation (50c) becomes788

ΓQ̇ = Div
[
D0G

−1GradQ
]
− ∂ŴAC

∂Q
− ∂Ŵstd

∂Q
. (62)

Note that, similarly to Rext in (57), also the term−∂ŴAC/∂Q plays a “driving”789

role in the evolution of the fibre mean angle and, in fact, we switch off Rext with790

the purpose of focussing on the implications of −∂ŴAC/∂Q on remodelling.791

In this case, since no stress-driven target angle is considered a priori in the792

model, −∂ŴAC/∂Q modulates the evolution of Q through the deformation.793

In this framework, however, a “target angle” is —if it exists— a stationary794

solution to (62), i.e., a function obtained by solving795

−

[
∂Ŵstd

∂Q
+
∂ŴAC

∂Q
−Div

(
D0G

−1GradQ
)]

= 0, (63)

together with (50a), (50b), and the boundary conditions prescribed in Section796

3.4. For example, in the case of articular cartilage, we impose Q(X) = 0 rad797

for X ∈ (∂B)L and Q(X) = π/2 rad for X ∈ (∂B)U, thereby requiring the798

congruence of Q with the initial histological data for all the points of the799

lower boundary, (∂B)L, and for all the points of the upper boundary, (∂B)U,800

of the cartilage specimen taken for benchmarking (note that the dependence801

of Q on time has been suppressed here, because we are looking for stationary802

solutions). We notice that, notwithstanding their similar form, (63) is quite803

different from (55c). The differences are essentially due to two facts. Firstly, in804

(63), both the contribution to remodelling stemming from the standard strain805

energy density, Ŵstd, and the Allen-Cahn contribution, ŴAC, are accounted806

for. Secondly, in (63), ŴAC takes into account the coupling between deforma-807

tion and remodelling, since it depends both on C and on Q. In particular, the808

introduction of the factor exp(α̂W (C)Q) shifts, for a given C, the maximum809

configuration of ŴAC(C, Q) from π/4 to the deformation dependent value810

Qmax ≡ Qmax(C) =
−8 + πα̂W (C) +

√
64 + π2[α̂W (C)]2

4α̂W (C)
, (64)

for α̂W (C) 6= 0. In the limit of vanishing α̂W (C), the value Qmax = π/4 rad811

is recovered.812

In the following, we speak of “standard remodelling” when we refer to (60),813

and we call “non-standard remodelling” the process described by (62).814
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5 Numerical Tests815

In this section, we report the results of the Finite Element implementation816

of the unconfined compression test described in Section 3.4. To this end, we817

consider the weak form of the model equations (50a)–(50c) associated with818

the BCs (43a)–(43c) and (45a)–(45c), i.e.,819

F(χ, p,Q) = Fχ(χ, p,Q) + Fp(χ, p,Q) + FQ(χ,Q) = 0, (65)

where the functionals Fχ, Fp, and FQ are defined as820

Fχ(χ, p,Q) =

∫
B

[
−Jp g−1F−T + P̂ sc(F , Q)

]
: gGrad ũ, (66a)

Fp(χ, p,Q) =

∫
B

[
J̇ p̃+ (Grad p̃)K̂(C, Q)(Grad p)

]
, (66b)

FQ(χ,Q) =

∫
B

[
D0G

−1GradQ
]

Grad Ω̃

+

∫
B

[
ΓQ̇+

∂Ŵstd

∂Q
(C, Q) +

∂ŴAC

∂Q
(C, Q)

]
Ω̃. (66c)

Here, ũ and Ω̃ are the test velocities associated with the solid phase motion,821

χ, and the mean angle, Q, respectively, and p̃ is the test pressure.822

Equations (66a)–(66c) are discretised in time and, at each time step, they823

are solved with the aid of a linearisation method. This requires to compute824

the directional averages that define P̂ sc, K̂, and ∂Ŵstd/∂Q, along with their825

derivatives (such derivatives, indeed, appear in the linearisation scheme). In826

fact, the evaluation of these averages is accomplished by having recourse to the827

numerical procedure known as Spherical Design Algorithm (SDA) [63]. Since828

presenting the whole procedure is rather lengthy and out of the scope of our829

work, we show here only the construction of ∂Ŵstd/∂Q (see algorithm A1).830

5.1 Remodelling in the absence of deformation831

In this section, we solve (62) independently of deformation. Such a situation832

occurs when no load is applied to the tissue (i.e., g(t) is zero for all times),833

the pore pressure is null at all times and at all points of the tissue, and no834

external force (such as the gravitational force) is considered. Hence, the sample835

is assumed to lean on the support beneath and its lower surface can be assumed836

to be free of surface forces. In this case, the balance laws (50a) and (50b) are837

trivially satisfied, and the term ∂Ŵstd/∂Q vanishes identically, so that the838

remodelling equation (62) becomes839

ΓQ̇ = Div
[
D0G

−1GradQ
]
− ∂ŴAC

∂Q
, (67)
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with840

∂ŴAC

∂Q
(G, Q) = A0

∂P̂

∂Q
(Q) =

4A0

(π/4)4
Q
(
Q− π

2

)(
Q− π

4

)
. (68)

We solve now (67) with the BCs (45a)–(45c) and under the hypothesis that,841

at the initial time of observation, the fibre mean angle Q(X, 0) is a random842

function of X. Hence, the tissue finds itself in a disordered configuration at the843

initial time. We make this assumption in order to show that the Allen-Cahn844

model, along with the BCs (45a)–(45c), is capable of describing a change of the845

tissue’s material symmetry, which converts from the disordered configuration846

towards the ordered configuration that renders it transversely isotropic.847
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Fig. 3 Stationary profiles of the remodelling variable for different values of D0, with A0 =
247 Pa (a), and for different values of A0, with D0 = 1.0 · 10−4 N/rad (b). The grey circled
curve in the plot on the left represents the initial profile of Q, which is set to be random.

The results of the initial-boundary value problem specified by (67), (68),848

and (45a)–(45c) are shown in Fig. 3 for varying values of the parameters D0 (cf.849

Fig. 3a) and A0 (cf. Fig. 3b). Starting from a random profile (grey circled curve850

in Fig. 3a), which might represent the orientation of the fibres in an engineered851

tissue [64], Q(X, t) evolves towards a stationary solution that is remnant of852

the histological profile reported in Fig. 2a. This behaviour is a consequence of853

the introduction of the Allen-Cahn energy density, ŴAC, whose two minimum854

configurations coincide with the boundary values imposed on Q, and manifests855

itself through the tendency of the remodelling variable to acquire a stationary856

solution interpolating between the imposed Dirichlet boundary conditions at857

the top (cf. (45a)) and at the bottom (cf. (45b)) of the sample. We remark that858

the free energy ŴAC generates a profile that is comparable with the histological859

one. In this respect we say that, in principle, the remodelling may occur also860

in the absence of deformation, and may be understood as a structural phase861

transition. Indeed, the system passes from a “phase” in which it appears to862

be disordered to a “phase” in which it is ordered in such a way that it is863

transversely isotropic. This loss, or breaking, of the system’s symmetries is due864

to the introduction of Ŵrem.865



An Allen-Cahn Approach to the Remodelling 29

5.2 Asymptotic “standard remodelling”866

We launch a first set of simulations in which Rext = 0 and the free energy867

density is equal to the standard one only, i.e., Ŵ = Ŵstd. In this case, the868

remodelling equation is given by (60) rather than (50c) and, as anticipated869

in Section (4.2), Q̇ tends towards zero for large values of t because (61) is re-870

spected asymptotically. To see why this occurs, it is necessary to determine I4871

and construct the derivative ∂Ŵstd/∂Q. The latter, in turn, requires to evalu-872

ate the directional averages reported in (49a) and, thus, to use the Spherical873

Design Algorithm [63]. Indeed, for a given C, ∂Ŵstd/∂Q, is approximated as874

∂Ŵstd

∂Q
(C, Q) =

Φ1s

ω2
cov

(
Θ, Ŵ1a(C, Â(Θ,Φ))

)
=
Φ1s

ω2
〈〈(Θ − 〈〈Θ〉〉) Ŵ1a(C, Â(Θ,Φ))〉〉

=
Φ1s

ω2

∫ 2π

0

∫ π/2

0

(Θ − 〈〈Θ〉〉) Ŵ1a(C, Â(Θ,Φ))℘̂(Θ) sin(Θ)dΘdΦ

≈ Φ1s

ω2

2π

N

m∑
i=1

n∑
j=1

(Θi − 〈〈Θ〉〉) Ŵ1a(C,Aij)℘̂(Θi), (69)

where N = mn is the total number of quadrature points used for the numerical875

solution of the integral in (69), I×J ⊂ [0, π/2]×[0, π] is the set of all quadrature876

points, and, for each (Θi, Φj) ∈ I×J, we write Aij = M ij⊗M ij (no sum with877

respect to i and j), with M ij = M̂(Θi, Φj). Hence, Ŵ1a(C,Aij) is rewritten878

as879

Ŵ1a(C,Aij) = H (I4(C,Aij)− 1) 1
2c [I4(C,Aij)− 1]

2
. (70)

Note that I and J are sets of points suitably chosen in [0, π/2] and [0, 2π],880

respectively [40].881

As prescribed in lines 21 and 22 of the pseudo-code of Algorithm A1, the882

summand of (69) with indices i and j contributes to ∂Ŵstd/∂Q only if ℘̂(Θi)883

is greater than a given threshold value, tolΨ , and I4(C,Aij) > 1. The first884

control is, in fact, on the probability density that a fibre is aligned along the885

direction specified by (Θi, Φj) ∈ I×J. The second condition, instead, represents886

the algorithmic formulation of the Heaviside function in (70).887

To have indications about these restrictions, we study the time evolution888

of I4(C,Aij) and ℘̂ at two selected points of the sample, for different values889

of Θ. The results are reported in Fig. 4, where the black curves represent890

constant values for I4 and ℘̂, taken as reference (here, we choose I
(0)
4 = 1891

and ℘̂(0) = tolΨ ). Moreover, the point of coordinates XL = (0, 0, L/4) finds892

itself in the deep zone of the sample, in which the fibres tend to be parallel893

to the symmetry axis of the cylinder and, thus, perpendicular to the lower894

boundary (this corresponds to the bone-cartilage interface when the tissue is895

in vivo). The point of coordinates XU = (0, 0, 3L/4), instead, is situated in896
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Algorithm 1 –A5– Spherical Design Algorithm (SDA) for the evaluation of
(49a) and (69) within the pth time step and the `th linearisation iteration
1: procedure SDA
2: for k = 1, . . . ,M do (M is the number of grid nodes)

3: Initialise
(
∂Ŵstd
∂Q

)p`k
= 0, and Zp`k = 2π

∫ π/2
0 γ̂p`k(Θ) sin ΘdΘ = 0 (partial sums)

4: Load the point set {(Θi, Φj)}N=mn
i,j=1 ⊂ I× J

5: Load Qp`k = Q`(Xk, tp) and ωk = ω(ξk)
6: for i = 1, . . . ,m do (inner cycle to evaluate the normalisation factor)

7: Evaluate γ̂p`k(Θi) = exp

(
−
(
Θi−Q

p`k
)2

2[ωk]2

)
8: Zp`k = Zp`k + 2π

N γ̂p`k(Θi)
9: end for

10: Calculate ℘̂p`k(Θi) =
γ̂p`k(Θi)

Zp`k
, i = 1, . . . ,m

11: for i = 1, . . . ,m do inner cycle to determine 〈〈Θ〉〉p`k

12: if ℘̂p`k(Θi) > tolΨ then

13: 〈〈Θ〉〉p`k = 〈〈Θ〉〉p`k + 2π
N Θi℘̂

p`k(Θi)
14: end if
15: end for
16: Given Cp`k:
17: for i = 1, . . . ,m do
18: for j = 1, . . . , n do
19: Evaluate I4(Cp`k,Aij) = Cp`k : Aij , and

20: Aij = Mij ⊗Mij , with Mij = M̂(Θi, Φj)

21: if ℘̂p`k(Θi) > tolΨ then

22: if I4(Cp`k,Aij) > 1 then
23: Evaluate

24: Rp`k(Θi, Φj) =
Φ1s(Xk)

[ωk]2
(Θi − 〈〈Θ〉〉) 1

2 c
[
I4(Cp`k,Aij)− 1

]2
℘̂p`k(Θi)

25:
(
∂Ŵstd
∂Q

)p`k
=
(
∂Ŵstd
∂Q

)p`k
+ 2π

N Rp`k(Θi, Φj)

26: end if
27: end if
28: end for
29: end for
30: end for
31: end procedure

the superficial zone, in which the fibres are parallel to the upper boundary897

(which corresponds to the articular surface of the tissue in vivo).898

Looking at the left column of Fig. 4, obtained for XU = (0, 0, 3L/4), we see899

that the curves corresponding to I4(C, Â(2π/5, Φ)) and I4(C, Â(π/2, Φ)) are900

above 1 for all the duration of the experiment, and tend to unity from above901

for large times. Thus, at least in principle, the fibres aligned along M̂(2π/5, Φ)902

and M̂(π/2, Φ) contribute to ∂Ŵstd/∂Q. However, the corresponding probabil-903

ity densities become smaller than tolΨ as times goes by, thereby ruling out the904

fibres oriented parallel to M̂(2π/5, Φ) and M̂(π/2, Φ). The curve correspond-905

ing to I4(C, Â(π/3, Φ)) is above 1 up to a certain instant of time subsequent906

Tramp, and goes below 1 afterwards. Thus, the fibres aligned along M̂(π/3, Φ)907

do not contribute to ∂Ŵstd/∂Q. Finally, all other curves are below 1 for all908

the duration of the experiment and give, then, no contribution to (69).909

The right column of Fig. 4, which refers to XL = (0, 0, L/4), shows that910

the curve I4(C, Â(π/2, Φ)) is the only one that remains above 1, even though911

it tends to unity for large values of t. The corresponding probability density,912
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however, goes below tolΨ after Tramp, thereby nullifying the contribution to913

(69) stemming from the fibres oriented along M̂(π/2, Φ). In conclusion, Fig. 4914

indicates that, for sufficiently large values of t, ∂Ŵstd/∂Q tends towards zero915

because the deformation established in the sample and the values taken by the916

probability density switch off all the contributions of the sum (69).917
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Fig. 4 Time evolution of I4(C, Â(Θ,Φ)) and ℘̄X(Θ) at Θ ∈ I = {0, π
6
, π

4
, π

3
, 2π

5
, π

2
}. Note

that, for the computed deformation, I4(C, Â(Θ,Φ)) is independent of Φ. The figures in the
left column correspond to the point of coordinates XU = (0, 0, 3L/4); those in the right
column to the point of coordinates XL = (0, 0, L/4).

5.3 “Standard” versus “non-standard” remodelling918

It is worth to remark that, as long as it holds that Ŵ = Ŵstd, the parameter Γ919

determines the stationary value of Q for a given loading time. Once this value920

is reached, if no additional compression is applied to the sample, then Q̇ = 0921

applies and no further evolution is observed. On the contrary, when the free922

energy density is given by Ŵ = Ŵstd + Ŵrem, with Ŵrem specified in (31b),923

remodelling continues even when ∂Ŵstd/∂Q becomes negligibly small. This924

further evolution of the mean angle is induced by Wrem only. The described925

behaviour is represented in Figs. 5 and 6, where the evolution of Q and −ΓQ̇926

over time is shown both in the case of “standard” and in the case of “non-927

standard” remodelling. Note that Figs. 5 and 6 are obtained by evaluating Q928

in XL = (0, 0, L/4) and XU = (0, 0, 3L/4), respectively.929

“Standard” remodelling predicts that both Q(XL, t) and Q(XU, t) decrease930

monotonically towards asymptotically constant values (see Figs. 5a and 6a).931

This behaviour is consistent with the trend of −ΓQ̇ shown in Figs. 5b and932

6b. Indeed, since −ΓQ̇(XL, t) and −ΓQ̇(XU, t) are both non-negative for all933

times, and Γ is strictly positive, the derivatives Q̇(XL, t) and Q̇(XU, t) are934

non-positive for all times. “Non-standard” remodelling, instead, destroys the935
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Fig. 5 (a): Time evolution of the mean angle Q. (b) Time evolution of −ΓQ̇ (note that,
in the label, the notation Qt ≡ Q̇ has been used). The dashed curves with asterisks refer to
“standard” remodelling. The solid curves refer to “non-standard” remodelling for a = 0. All
curves are obtained by evaluating both Q and −ΓQ̇ in XL = (0, 0, L/4). The units of Γ are
J s m−3.
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Fig. 6 (a): Time evolution of the mean angle Q. (b) Time evolution of −ΓQ̇ (note that,
in the label, the notation Qt ≡ Q̇ has been used). The dashed curves with asterisks refer
to “standard” remodelling. The solid curves refer to “non-standard” remodelling for a = 0.
All curves are obtained by evaluating both Q and −ΓQ̇ in XU = (0, 0, 3L/4). The units of
Γ are J s m−3.

monotonicity of the curves Q(XL, t) and Q(XU, t), and slows down the rate936

by which they approach a stationary value.937

From Fig. 5 we see that, in the case of “standard” remodelling, the variation938

of both Q(XL, t) and −ΓQ̇(XL, t) is markedly smaller than it is in the case939

of “non-standard” remodelling. This behaviour is mainly due to the fact that940

the initial preferential direction of the fibres is close to the one that is parallel941

to the symmetry axis of the sample. Thus, for almost all fibres it holds I4 ≤ 1.942

In other words, the term −ΓQ̇ in (60) (“standard” case) is much smaller than943

−ΓQ̇ in (62) (“non-standard” case). In addition, we remark that, when the944

free energy density Ŵrem is introduced, the quantity −ΓQ̇(XL, t) is different945

from zero at t = 0 s. This is due to the fact that, at t = 0 s, Ŵstd is equal to946

the unessential constant α0, while Ŵrem is non-trivial, because the gradient of947

Q is not null at X = XL, and the value Q(XL, 0) ≈ 0.265 rad is sufficiently948

far away from the zeroes of ∂ŴAC/∂Q (at t = 0 s, they are Q = 0 rad, Q =949

π/4 rad, and Q = π/2 rad). For t ≥ 0, −ΓQ̇(XL, t) grows during the first950

instants of time of the loading ramp, thereby leading to a decrease of Q,951
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and reaches an absolute maximum. Then, it goes below zero and tends again952

towards an asymptotic value. This trend, however, seems not to be followed for953

Γ = 5.0 ·105 J s m−3 (see Fig. 5b), even though both Q(XL, t) and −ΓQ̇(XL, t)954

converge to stationary values for sufficiently long times.955

In contrast to what is observed in Fig. 5, we see in Fig. 6 that Ŵrem does956

not affect appreciably the trend of the remodelling variable in the course of957

the loading ramp, i.e., for t ∈ [0, Tramp]. For t ≥ Tramp, instead, the “standard”958

remodelling predicts a final value of Q that is constant in time and lower than959

the initial one, whereas Ŵrem drives the growth of Q up to an asymptotic960

value that comes nearer to the initial one, with a rate of convergence ruled by961

Γ . We remark that, in “standard” remodelling, the parameter Γ is the only962

quantity that controls the stationary value of Q.963

Finally, the strongest differences between the two compared models are at964

the final time of observation and in the relaxation times. Indeed, in the case of965

“non-standard” remodelling, the energetic contribution Ŵrem is predominant966

in ruling the behaviour of the remodelling variable after the loading ramp,967

thus when ∂Ŵstd/∂Q tends towards zero, thereby mainly affecting the final968

state of the system.969

In Fig. 7a, we report the axial profile of the circumferential component of
the second Piola-Kirchhoff stress tensor due to the fibres, i.e.

Sa = 2Φ1s(∂〈〈Ŵ1a〉〉/∂C),

evaluated at Tend = 100 s. As expected, the occurrence of remodelling lowers970

the stress in the tissue in comparison with the case of no remodelling. We971

remark, however, that in the case of “non-standard” remodelling the stress972

behaviour is related to the choice of the boundary conditions imposed on Q.973

Indeed, the fact that in this work Q is constrained to be equal to π/2 rad at974

the upper boundary of the sample (see also Fig. 7b) produces in that zone a975

value of stress equal to the one obtained in the absence of remodelling. The976

“standard” remodelling, instead, for which no boundary conditions on Q are977

required, reduces the stress everywhere in the sample. The deviation is evident978

in the superficial (upper) zone of the sample, where the mean angle evolves979

the most (cf. Fig. 7b), and is barely visible in the deep (lower) zone, in which980

almost no remodelling occurs (see also the trend of Q shown in Fig. 7b).981

In Fig. 8, we report the axial profile of the mean angle for t ≥ Tramp. In982

particular, by expressing Q as a function of the normalised axial coordinate983

and time, and recalling the parameter a introduced in (46), we compare the984

shape of Q(ξ, t) computed for a = 0 with that obtained for a 6= 0. For a = 0985

(Fig. 8a), the plot of the mean angle tends to recover its initial shape for986

t > Tramp. For a 6= 0 (Fig. 8b), instead, the curves obtained for t > Tramp987

evolve in time while maintaining a shape similar to the curve determined988

for t = Tramp. Since the profile of the mean angle is a representation of the989

pattern of fibre orientation in the sample, we conclude that, as expected, the990

introduction of a non-vanishing parameter a brings about structural changes991

that are more pronounced than in the case a = 0. This may be due to the fact992

that the condition a 6= 0 activates the term A0eα̂W (C)Qα̂W (C)P̂(Q) on the993
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Fig. 8 Axial profile of Q for t ≥ Tramp in the case a = 0 (a) and a = 103 (b). For both
cases, we set Γ = 1.0 · 104 J s m−3.

right-hand-side of (48b), which gives rise to an additional remodelling force.994

This, in turn, may be responsible for the marked change of the mean angle995

also in the deep zone of the tissue (i.e., for values of ξ closer to zero), where996

otherwise only small changes of the mean angle are observed for a = 0. Indeed,997

when a is set equal to zero, the right-hand-side of (48b) reduces to998

∂Ŵ

∂Q
=
∂Ŵstd

∂Q
+ A0

∂P̂

∂Q
, (71)

and, since ∂Ŵstd/∂Q goes to zero for large times, the remodelling force ∂Ŵ/∂Q999

that remains active also in the limit of large t, i.e., A0∂P̂/∂Q, is independent1000

of deformation. This means that, for a = 0, the remodelling becomes asymp-1001

totically decoupled from deformation.1002

6 Summary of results and further research1003

The remodelling considered in our work consists of the reorientation of the col-1004

lagen fibres of a fibre-reinforced, hydrated soft tissue (e.g. articular cartilage),1005
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in which the fibres are aligned according to a prescribed probability density.1006

The remodelling process is described through the spatiotemporal evolution of1007

the mean angle associated with the fibre probability density. The mean angle1008

is determined by solving the balance of generalised forces presented in (10), in1009

which the generalised forces Rext and Rint are said to be external and internal1010

remodelling forces, respectively. The force Rint is assigned constitutively. To1011

this end, and motivated by histological observations, we proposed a constitu-1012

tive theory based on the introduction of the remodelling free energy density1013

Ŵrem. This takes the spatial resolution of the mean angle explicitly into ac-1014

count, and features the Allen-Cahn term ŴAC, whose minimum configurations1015

coincide with the mean angles at the lower and upper boundary of the sample.1016

Our first result is that our model determines the histological profile of the1017

mean angle as the solution of a partial differential equation, rather than by1018

fitting experimental data (see Fig. 2). This result, however, follows also from1019

the choice of the boundary conditions, and a histologically based calibration1020

of the model parameters D0 and A0. We interpreted this result as the mani-1021

festation of a spontaneous symmetry breaking, which makes the system pass1022

from a randomly distributed to a non-randomly distributed fibre mean angle.1023

A comparison between the theory proposed in this work with that of “stan-1024

dard” remodelling is reported in Figs. 5, 6, and 7, in which we highlighted the1025

influence of Ŵrem on the evolution in space and time of the mean angle and1026

of the stress distribution within the considered sample of tissue.1027

Finally, we studied the influence of the parameter a, which features in1028

the definition of α̂W (see (46)), on the spatiotemporal evolution of Q. We1029

remark that, for a = 0, the free energy density ŴAC becomes a function1030

of Q only, i.e., ŴAC(Q) = A0/(π/4)4Q2(Q − π/2)2, and is thus invariant1031

under the discrete symmetry transformation Q 7→ π/2 − Q. Such symmetry1032

manifests itself through the shape of the curves in Fig. 8a. On the contrary,1033

for a 6= 0, ŴAC loses this discrete symmetry because of the coupling with1034

the deformation (see (28)). We conclude that our theory of remodelling is1035

capable of describing the histological profile of the mean angle as the result of1036

a spontaneous symmetry breaking, which occurs in the tissue independently on1037

deformation (perhaps, when the tissue is generated) and proposes to interpret1038

the coupling between the evolution of Q and the deformation as a further1039

symmetry breaking (this time, however, a non-spontaneous one).1040

A last remark should be made in regards of the time scales involved in the1041

considered remodelling process. Such time scales, indeed, are dictated in this1042

work by the loading history imposed from the outside and, for this reason, they1043

may appear unnatural. In fact, they represent a situation that is different from1044

the more natural one in which the characteristic time scale of remodelling is1045

the result of the coupling of this phenomenon with other processes, like e.g.1046

growth, and with the deformations and stresses induced by those. Introducing1047

growth in the description of remodelling presented in this work, and therefore1048

determining the natural time scales of these phenomena, is one of the objectives1049

of our studies.1050
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Our long term goal is to employ the approach proposed in our work for1051

characterising the structural evolution of fibrous tissues also in pathological1052

situations. For example, collagen orientation in articular cartilage varies due1053

to several reasons: It has been observed that, in a damaged or aged tissue [65,1054

66], the fibre orientation is quite far from that in the healthy tissue. In Fig.1055

9, the numerical results obtained in an unconfined compression test have been1056

qualitatively compared with the experimental outcomes shown in [65]. The1057

horizontal lines in the experimental figures mark each of the three zones of1058

articular cartilage (deep, middle, superficial). We see that, in a stressed and1059

damaged tissue, these three zones sensibly change, and in particular the deep1060

zone becomes more extended along the depth of the tissue, while the middle1061

zone shifts towards the top. A similar axial distribution of the remodelling vari-1062

able can be obtained, by means of the remodelling law (62) presented in this1063

work, at the end of a loading ramp in an unconfined compression. Naturally,1064

this result should be enriched by accounting, for example, for the concurrent1065

mass changes of both the collagen and the matrix, and for the reorganisa-1066

tion of the cells surrounding the fibres during realistic (either physiological or1067

pathological) loading conditions borne by the tissue. Also this topic is subject1068

of our current investigations.1069

Fig. 9 Numerical simulations of an unconfined compression, in the unloaded initial config-
uration (left) and in the loaded condition at t = Tramp (deformed cylindrical shape on the
right), have been qualitatively compared with the experimental results shown in [65]. The
experimental observations (reported in the four columns featuring in the figure) correspond
to a FT-IRIS image and a polarised light microscopy image (from left to right) directly
taken from [65] (open access article). The four columns in the figure are reprinted from [65],
Copyright (2005), with permission from Elsevier

Appendix A1070

To recall the relation between the operators in the physical space and those1071

in the reference configuration of a body, we select an open subset C ⊂ B of1072

the reference configuration and we consider the map χt : C → χt(C) that, at1073

each time t, embeds C into the open subset χt(C) ⊂ S of the physical space1074

S. Clearly, it applies that χt(X) = χ(X, t) for all X ∈ C and for all t (cf.1075
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Equation (1)). Then, let sf : χt(C) → R and su: χt(C) → TS be a scalar and1076

a vector field, respectively, and let f = sf ◦ χt: C → R and u = su ◦ χt: C →1077

TS denote the counterparts of sf and su defined over C. Thus, the identities1078

f(X) = sf(χt(X)) = sf(x) and u(X) = su(χt(X)) = su(x) hold true, with1079

x = χt(X) ∈ χt(C) and X ∈ C. Hence, if all the partial derivatives of f and sf1080

exist in C and χt(C), respectively, enforcing the chain rule yields1081

Grad f = [FT grad sf ] ◦ χt ⇒ grad sf = [F−TGrad f ] ◦ χ−1
t , (72a)

Gradu = [(grad su) ◦ χt]F ⇒ (grad su) ◦ χt = (Gradu)(F−1 ◦ χt).
(72b)

The divergence of su is given by1082

(div su) ◦ χt = tr[(grad su) ◦ χt]
= tr[(Gradu)(F−1 ◦ χt)] = (Gradu) : F−T. (73)

Note that in (72a), (72b), and (73) the explicit dependence of F on time is1083

omitted but understood, and that, in the definitions of f and u, time t plays1084

the role of a parameter.1085

Given a differentiable material vector field U : C → TB, the divergence of1086

U in C reads1087

DivU = tr[GradU ]. (74)

If su is the flux vector associated with some scalar physical quantity, then1088

the material counterpart of su is defined through the Piola transformation1089

U = J(F−1 ◦ χt)u, with u = su ◦ χt, and the divergences div su and DivU1090

are related through [41]1091

J (div su) ◦ χt = DivU . (75)

In the sequel, the compositions with χt and χ−1
t will be omitted for the sake1092

of a lighter notation.1093

The definitions reported above can be generalised to the computation of1094

the gradient and divergence of tensor fields of any order (see e.g. [41] for de-1095

tails). If, for example, st is a second-order tensor field defined over χt(C) ⊂ S1096

and characterised by contravariant components, its gradient, grad st, is a third-1097

order tensor field with two contravariant indices (i.e., those corresponding to1098

the first pair of indices) and one covariant index (i.e., that individuated by the1099

direction along which the covariant differentiation is performed), while its di-1100

vergence, div st, is the unique vector field satisfying div(stT.h) = (div st).h, for1101

all constant spatial vectors h. In components, div st reads (div st)a = (st)ab;b,1102

where the semicolon “;” stands for partial covariant differentiation.1103

Often, the notation grad sf and div su is replaced by grad sf ≡ ∇ sf and1104

div su ≡ ∇· su (accordingly, for the material description, one writes Grad f ≡1105

∇Rf and DivU ≡ ∇R ·U , the subscript “R” meaning that the differentiation1106

is done in the reference configuration). In this paper, however, for the sake of1107

consistency with the notation adopted in previous works, we prefer to use the1108
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symbols “grad” and “div” for the operators in the physical space and “Grad”1109

and “Div” for the operators in the reference configuration. Moreover, in the1110

differential geometric approach that we follow, the symbol nabla, ∇, is usually1111

reserved to a connection, i.e., a covariant derivative. While ∇ and grad could1112

be used interchangeably, the use of “∇·” for div becomes cumbersome as it1113

relies on the traditional abuse of notation according to which ∇ is a “vector”,1114

which does not fit with covariant differentiation.1115

Appendix B1116

Within a purely mechanical framework (i.e., in the absence of thermal effects),1117

and under the hypothesis that the mass densities of the solid and the fluid1118

phase are constant, the dissipation inequality, written per unit volume of the1119

tissue’s reference configuration, can be cast in the form1120

D0 =− Ẇ + P s : gḞ + P f : gGradvf − Jπf .w

+ RintQ̇+ Div(−TQ̄η
) ≥ 0. (76)

Equation (76) is obtained by specialising the theoretical framework developed,1121

for example, by Hassanizadeh [67], Bennethum et al. [68], and Grillo et al. [22]1122

to the setting presented in our work. In the definition of D0, W is the overall1123

energy density of the solid phase, expressed per unit volume of the reference1124

configuration and defined in (31a), P s : gḞ and P f : gGradvf are the internal1125

mechanical power densities produced by the agency of the first Piola-Kirchhoff1126

stress tensors P s and P f on Ḟ and Gradvf , respectively, Jπf .w is the power1127

density related to the interaction force between the fluid and the solid phase,1128

i.e., πf , which is conjugate to the relative velocity w = vf − vs, RintQ̇ is the1129

internal power density associated with remodelling, T is absolute temperature,1130

and Q̄
η

is the entropy flux vector. We remark that, since thermal effects are1131

excluded from the present context, T is here understood as a constant reference1132

temperature, which provides TQ̄
η

with the physical units of energy flux vector.1133

We notice that, in the Classical Thermodynamics of Irreversible Processes,1134

the entropy flux vector is usually defined by dividing the heat flux vector1135

by the absolute temperature [69]. Therefore, if this hypothesis is accepted,1136

there can be no entropy flux vector in a theory in which thermal effects —and,1137

consequently, the heat flux vector— are disregarded from the outset. However,1138

within a more general setting, the entropy flux vector of a thermodynamic1139

theory need not be related a priori to the heat flux vector [55]. In fact, this is1140

the case studied in our work, which is non-classical in the sense that the free1141

energy density of the solid phase depends on the gradient of the fibre mean1142

angle, Q, as well as on Q itself. Hence, if the approach outlined by Jamet1143

[55] is adopted, one might introduce the entropy flux vector Q̄
η

even in a1144

purely mechanical framework, in which, thus, the heat flux vector is absent,1145

and determine a constitutive representation for it. This is, in fact, the path1146

followed in our work.1147
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To show the calculations leading to the definitions of the terms reported1148

in (30a)–(30d), i.e., DI, DII, DIII, and DIV, we modify (76) as1149

D = D0 + p

[
ΦsF

−T : Ḟ + (J − Φs)F
−T : Gradvf

+ (Jg−1gradφf).w

]
≥ 0, (77)

where p is pressure, and the sum of the terms in brackets expresses the mass1150

balance law for the system as a whole, i.e.,1151

ΦsF
−T : Ḟ + (J − Φs)F

−T : Gradvf + (Jg−1gradφf).w = 0. (78)

We recall that (78) is obtained by adding together the mass balance laws for1152

the solid and the fluid phase, which, in the case of constant mass densities,1153

can be written as1154

Dsφs + φsdivvs = 0, (79a)

Dsφf + (gradφf)w + φfdivvf = 0, (79b)

and computing the backward Piola transform of the result.1155

In writing (77), the mass balance law of the mixture as a whole is treated1156

as a constraint of the theory, and the pressure p is thus the Lagrange multiplier1157

associated with it. Moreover, since the terms between brackets in (77) add up1158

to zero, D and D0 are numerically equal to each other, although they acquire a1159

rather different meaning. For a discussion on the subject, the Reader is referred1160

to [68].1161

By substituting the expression of D0 in (77), the dissipation inequality1162

becomes1163

D =− Ẇ +
[
P s + Φspg

−1F−T
]

: gḞ

+
[
P f + (J − Φs)pg

−1F−T
]

: gGradvf

− J [πf − pg−1gradφf ].w

+ RintQ̇+ Div(−TQ̄η
) ≥ 0. (80)

Then, we expand the time derivative of W , thereby obtaining1164

Ẇ =
∂Ŵ

∂C
: Ċ +

∂Ŵ

∂Q
Q̇+

∂Ŵ

∂GradQ
˙GradQ

=
∂Ŵ

∂C
: Ċ +

∂Ŵ

∂Q
Q̇+

∂Ŵ

∂GradQ
GradQ̇

= F

(
2
∂Ŵ

∂C

)
: gḞ + Div

[
∂Ŵ

∂GradQ
Q̇

]

+

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]
Q̇. (81)
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Finally, by replacing the right-hand-side of (81) into (80), and grouping to-1165

gether all the terms that multiply the same generalised velocity, we find1166

D =

{
−F

(
2
∂Ŵ

∂C

)
+ P s + Φspg

−1F−T

}
: gḞ

+
{
P f + (J − Φs)pg

−1F−T
}

: gGradvf

− J [πf − pg−1gradφf ].w

+

{
Rint −

[
∂Ŵ

∂Q
−Div

(
∂Ŵ

∂GradQ

)]}
Q̇

+ Div

[
− ∂Ŵ

∂GradQ
Q̇− TQ̄η

]
≥ 0. (82)

Thus, the terms DI, DII, DIII, and DIV can be identified by comparing (82)1167

with (30a)–(30d). In principle, DI accounts for the dissipative stresses asso-1168

ciated with the solid and the fluid phase, respectively. However, since in our1169

work the solid phase is assumed to be hyperelastic, and the fluid is assumed1170

to be macroscopically inviscid, neither the solid nor the fluid phase feature1171

a dissipative stress. Hence, DI must vanish identically. The term DII is the1172

dissipation due to the solid-fluid interactions. In fact, the brackets multiplying1173

w define the dissipative part of the interaction force density πf , which leads to1174

Darcy’s law. Analogously, DIII consists of the dissipation related to the process1175

of remodelling, and the coefficient of Q̇ determines the dissipative part of the1176

internal remodelling generalised force Rint. Finally, DIV is assumed to vanish1177

in the present context, thereby defining the entropy flux vector Q̄
η
.1178

We emphasise that the framework within which the dissipation inequality1179

is studied in our work is based on the hypothesis of validity of Darcy’s law for1180

the description of the fluid filtration velocity. Moreover, neither the dissipa-1181

tive effects related to the mixture viscosity [70] nor those connected with the1182

microstructure viscosity of the considered medium [70] are taken into account.1183

These, however, can be relevant in the poroelastic approach to bone structure1184

developed in [70]. In addition, for increasing magnitude of the tissue’s per-1185

meability, also a possible deviation from the flow regime predicted by Darcy’s1186

law can be appreciable. Indeed, when this is the case, the Brinkman correction1187

should be included into the model [70].1188
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