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Summary

The Global Navigation Satellite System (GNSS) has been mostly considered as an ubiqui-
tous and reliable positioning and navigation technology characterized nowadays by consider-
able precision and accuracy but weakened by critical limitations due to the intrinsic nature of
radio navigation systems. Indeed, GNSS positioning in harsh environment has been intended
as one of the major challenges in the field of Positioning and Navigation Technologies (PNT)
due to several impairments affecting the quality of the received signals, thus the positioning
estimation performed by the receivers. The quality of GNSS absolute positioning can be
enhanced through the integration of further information about the state of a given agent
(i.e. position, velocity, heading) or exploiting additional data from the surrounding environ-
ment, which can be directly obtained through sensors (i.e. UWB, Lidar, Sonar), or through
the network connectivity. In parallel with the advances in satellite-based and network-based
augmentation systems, sensor fusion and complementary positioning systems, in the last
decades, Cooperative Positioning (CP) has been addressed as a further paradigm for im-
proving localization of networked users relying on the exchange of independent information.
The basic approach has leveraged the estimation of relative measurements and the sharing of
these data through ad-hoc communication channels or permanent network infrastructures.
In light of this, this work considers the exploitation of redundant visible satellites among
interconnected users (i.e. generic agents equipped with networked Global Navigation Satel-
lite System (GNSS) receivers) as a powerful resource for the improvement of GNSS-based
solutions. Such a redundancy can be effectively exploited to determine relative distances
between receivers through opportunistic usage of the network connectivity, thus leading to
the collaborative estimation of the baseline length.

The discussed approach has been indeed investigated to overcome the Line-of-Sight (LoS)
limitation in the sensing of the surrounding environment through direct measurements among
GNSS users. In the proposed framework the focus is on collaborative techniques, which
uniquely exploit the exchange of data typically used for GNSS-based positioning, without the
need of additional sensors. The problem of a profitable usage and integration of redundant
and correlated inter-agent information exchanged within a network of GNSS receiver has
been named GNSS-based Cooperative Positioning (CP).

Within such a context, this thesis aims at investigating the paradigm of GNSS-based
CP according to a bottom-up approach: from the theoretical bounds of a hybridized tight
integration of collaborative measurements up to the development of a real-time Proof of
Concept (PoC) for networked mobile devices. First a proper framework will be defined for
the analysis and investigation of GNSS-based ranging among networked receivers. Then
the paradigm of GNSS-based CP is explored through numerical and controlled-environment
simulations, and eventually, the PoC is presented along with an on-field analysis of feasibility
and a performance assessment of the technology.
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Chapter 1

Introduction

Up to 10 billions of electronic devices with localization capabilities will populate the
world by 2025 to satisfy the booming request for Location-Based Service (LBS)[75]. While
professional GNSS receivers will keep dominating the market of highly-precise, accurate and
reliable positioning and navigation, mass market products will demand for smart solutions
to obtain the best performance at the minimum cost. A considerable number of LBS such
as vehicle pooling, vehicle sharing and remote control of Unmanned Aerial Vehicle (UAV)s
are mostly based on the positiong solution provided by mobile mass market devices (e.g.
smartphones) [209].

In the last decades a remarkable research effort has been broadly spent in the field of
navigation and positioning by mostly addressing sensor integration to GNSS [72, 174]. As
depicted in Figure 1.1, a growing set of subsystems is nowadays responsible of the provisioning
of localization and navigation data. As an example, modern vehicular navigation systems
can exploit proprioceptive sensors such as Inertial Navigation System (INS) to improve the
quality of absolute positioning solutions [88, 138]. These components are devoted to the
measure of values internal to the system (e.g. angular rate, wheel rotations, accelerations).
GNSS/INS integration schemes benefit from the accurate measurements provided by INS and
periodically compensate for their typical drifts through GNSS solutions. Such an approach,
known as dead reckoning is conceived on top of absolute positioning, thus position estimation
based on loose sensors integration can always benefits from improved GNSS performance
[187]. Advanced integration schemes such as tight and ultra-tight GNSS/INS offer promising
performance in harsh environment where standalone GNSS is typically weak [52, 27, 210, 26]
but they require reliable sensors and challanging implementations such as in mobile devices
where they still show relevant issues [211, 173]. In fact, in many devices such as smartphones
and smartwatches or in limiting conditions (e.g. off-road driving, urban canyon, forest), the
integration of INS can be challenging due to the uncorrect modelling of the dynamics of the
object itself [157, 22].

In parallel, the sensing of the surrounding environment has become a relevant aid to the
navigation and it can be accomplished through cameras ot through several exteroceptive
sensors such as Ultra Wide Band (UWB), LiDAR and many others. Indeed, when inertial
sensing is not available or sufficiently reliable, other kinds of measurements can be used to
retrieve information about the surrounding environment such as the distances from anchor
points whose position is known a-priori [167, 93, 207] or by considering peers as anchors
of opportunity relying on their position estimates [158]. Therefore, the contribution of ex-
teroceptive sensors to improve absolute and relative localization has been deeply explored
in literature [73].For instance, Charge-Coupled Device (CCD)/complementary metal-oxide
semiconductor (CMOS) camera can be used as a complementary heading sensor through the
computation of vanishing points [26].
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1 – Introduction

Although GNSS is a fundamental source for geolocalization, the applications related to
relative positioning were typically referred in literature and real implementations to carrier-
phase ambiguity resolution [11, 86] for Real Time Kinematic (RTK) and Differential GNSS
(DGNSS) applications.

Hovewer, recent advances in communication networks are going to enable the integration
of such relative measurements among connected GNSS receivers thus addressing the field of
CP. CP gathers several techniques through wich a set of agents (also referred as nodes in
network domain) requiring for a positioning solution collaborate with others to determine
their own location. The paradigm of CP also known in literature as network localization,
cooperative localization or collaborative localization has been hence addressed to guarantee
positioning capabilities to specific nodes which may be not equipped with positioning systems
or connectivity to other nodes within the same network [17]. Furthermore most of the
early contributions addressed CP to provide positioning and navigation in GNSS-denied
environment and they were mostly focused on sensor networks. A misleading classification
was attributed in the field of GNSS to peer-to-peer Assisted GNSS (AGNSS) solutions.

A deep investigation on the optimality of CP for network applications has been also pro-
vided in [172, 122]. The interest in CP strategies was first raised in the field of robotics by
several contributions [133, 134, 161],then leading to Simultaneous Localization and Mapping
[95, 168]. Later, other works faced the problem of localization in wireless sensor networks
[170] and afterwards towards vehicular navigation [116, 28, 3]. A novel approach to range-
only localization has been also proposed in [191] where terrestrial range measurements re-
trieved from occasional anchors allow to approximate the position estimate. The most of the
contributions related to these fields concerned Maximum Likelihood Estimation (MLE) ap-
proaches which is not suitable to exploit prior knowledge about the dynamics of the receivers
effectively. Differently, another approach named belief propagation has been deeply explored
in the field of indoor positioning contemplating mostly static or low dynamic agents [97, 19].

As an example, interesting results about the superiority of collaborative strategies with
respect to Differential GPS techniques [6, 4, 130, 129] have been presented. This trend justi-
fied the fusion of DGNSS and collaborative navigation techniques for a further improvement
of the performance [73, 151] oriented to the future generation of GNSS receivers.

Previous works investigated the computation of distance among GNSS receivers. For
example in [203], the authors presented a technique to compute inter-vehicular range mea-
surements through weighted GNSS double differences. .

Pioneering works on the tight integration of DGPS and INS in an Extended Kalman
Filter (EKF)-based positioning algorithm were proposed to improve accuracy and availability
of GPS positioning [73, 151, 154]. A two-steps positioning algorithm has been proposed to
refine the GNSS-only position estimates through a Maximum Likelihood (ML) approach
constraining the positioning solution by means of inter-vehicle ranges obtained by weighted
double differentiation of shareable pseudorange measurements [109]. The approach foresees a
distributed computation of the locations of all the agents by each agent. A final estimated was
then performed as a weighted mean of the different estimates provided by the collaborating
agents. The scheme proposed in [109] does not exploit the dynamics of the agents, thus
being suboptimal in dynamics applications. Recent works such as [103, 180] demonstrate
how timely and appealing is CP in the field of GNSS.

According to the taxonomy presented in [17] the proposed architecture was developed
as distance-based, distributed, sequential and probabilistic positioning estimation. First we
addressed the cooperative determination of the distance among the receivers, namely inter-
agent distance to provide additional information to the positioning problem. Such a compu-
tation is conceived to be carried out by each agent independently in a distributed fashion.
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1.1 – Research motivation and objectives

The collaborative position update of each receiver is not used as a reference for other re-
ceiver to avoid error propagation and the estimation is locally performed with a probabilistic
Bayesian approach which guarantees also the estimation of uncertainty on the output.
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Figure 1.1: Reference architecture of a modern positioning system providing data channel for posi-
tioning applications.

1.1 Research motivation and objectives
Provided the fundamental role of positioning and navigation technologies and the growing

attention to the new generation of telecommunication networks, this thesis aim at developing
an innovative framework for the cooperation of networked GNSS receiver for the improvement
of positioning and navigation performance. The algorithms which will be presented in the
context of the proposed GNSS-based CP, are conceived to exploit GNSS measurements as
they are provided by professional as well as by Ultra-low Cost receivers GNSS. It comes out
that the proposed framework can be intended as an auxiliary layer which can be implemented
in any receivers architecture and it can be adapted to different grades of Positioning and
Navigation Technologies (PNT), from high-end products to smartphones. Although the
aforementioned works has brought significant contribution to the integration of auxiliary
measurements, they were conceived in more general frameworks. The proposed study is
tightly linked to GNSS and it exploits natively both satellite-to-user range and Doppler
measurements for the improvement of the positioning in kinematics systems.

Therefore, this thesis aims in parallel at defying theoretical aspects about the use of non
independent measurements in the positioning estimation. The identification of a theoretical
background is addressed to the cooperation of GNSS receiver sharing GNSS measurements
for the improvement of their positioning estimation. Provided that the proposed paradigm is
conceived on top of GNSS as a refinement of GNSS-only positioning solutions, sensor fusion
will as well as network differential corrections will not be investigated in this work. This work
addresses the computation and the analysis of distance measurements among peer receivers
and their integration in the computation of the receiver status and the position, specifically.
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1.2 Main Contributions
The main contributions of this thesis can be summarized as follows:

• Definition of the problem of GNSS-based cooperative positioning according to the
hybridized architecture present in literature.

• Analysis, development and performance assessment of state-of-the art differential rang-
ing algorithms for the collaborative estimation of the inter-agent distances.

• Definition and development of a theoretical framework for of a novel method for the
estimation of the baseline length in limited visibility conditions.

• Study and design of a tight-integration scheme for Bayesian estimation integrating
correlated measurements.

• Definition, study and implementation of the concept of GNSS networked receiver
through asynchronous instances of a GNSS software receiver.

• Real-signal simulation test campaigns through professional signal generator

• Design and development of a smartphone-based mass-market PoC of GNSS-based CP.

• Analysis of the feasibility and effectiveness of the framework through 4G network car-
ried out through on-field test campaigns of the proof-of-concept.

Part of the work included in this thesis was presented through several contributions in
international conferences renown in GNSS community [125, 123, 130, 126, 129, 67, 124] and
peer-reviewed journal [127, 68]. A side work concerning positioning investigation under geo-
magnetic storm was also published in further peer-reviewed journal [135]. Some contribution
were instead part of the HANSEL European Space Agency (ESA) project deliverables and
technical reports [60, 24, 25]. Eventually, further side contributions were published about
GNSS anomalies in magazines [45, 44].

Some research contributions included in this work were acknowledged by the international
GNSS community with a Best Student Paper Award at the 32nd Internation Technical
Meeting of the Satellite Navigation Division of the Institute of Navigation (ION GNSS+
2019)[123] and with the Francesco Carassa Award 2018 by Gruppo Telecomunicazione e
Tecnologie dell’Informazione (GTTI). Furthermore, the innovative cooperative framework
developed within the HANSEL project won the Italian Prize of the Galileo Master sponsored
by the Italian Space Agency, was selected among the finalists of the University Challenge
and reached the top ten of the Galileo Masters 2019 in Helsinki.

1.3 Outline of the thesis
Chapter 2 first provides an overview on radio-positioning systems among which GNSS

is described in detail. It describes the overall system architecture and the basic theoretical
principles which allow positioning solutions and navigation.

Chapter 3 describes the architecture of a GNSS receiver by providing the fundamental
knowledge and definitions for the computation of GNSS raw measurements. Eventually, the
concept architecture of a networked GNSS receiver for the implementation of CP is discussed
as a guideline of the proposed research.
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Chapter 4 presents the differential techniques at the state of the art for the estimation
of the distance among two receivers through GNSS measurements, namely GNSS-based
ranging methods. It also introduces a novel method, named IAR to determine the same
measurements in non-ideal satellite visibility conditions.

Chapter 5 presents a detailed investigation about the methods presented in Chapter 4.
A formal assessment of the proposed IAR is discussed through a proper theoretical framework
and experimental results are presented to assess the theoretical behaviour. A comparison of
the different GNSS-based ranging techniques is eventually provided by means of simulated
GNSS signal.

Chapter 6 first recalls a set of popular navigation filters conceived for linearized and
approximated Bayesian positioning estimation. The hybridization of the filters is proposed
proposed and eventually the analysis of theoretical bounds are investigated for the exploita-
tion of collaborative measurements.

Chapter 7 gives a detailed discussion about implementation aspects related to GNSS-
based CP. Different application are presented and the benefits of the approach are discussed
in terms of accuracy and precision of the positioning solution. Eventually a trade-off analysis
is also provided by comparing the computational complexity and accuracy of two Bayesian
filters.

Chapter 8 presents a PoC of GNSS-based cooperative positioning implemented on An-
droid Smartphones. The context of the project which funded the research is first introduced.
Afterwards, a background on hardware and software is reported. Eventually the system
architecture is explained in detail and feasibility and effectiveness of the proposed paradigm
are discussed through on-field tests. Selected results are discussed in details while the whole
test campaign is commented according to a given set of performance metrics.

Chapter 9 aim at summarizing the research presented in this thesis and it provides a
discussion about future activities about the topic.
Appendixes recall a set of theoretical aspects fundamental to the complete understanding
of the proposed approach.
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Chapter 2

Global Navigation Satellite Systems
and Cooperative Positioning

GNSS is nowadays a consolidated technology to determine positioning and timing infor-
mation of a receiver w.r.t. an absolute reference frame with good accuracy, precision and
availability [90]. The space segment of each system is based on a set of spacecrafts, namely
a satellite constellation, orbiting the Earth at a distance of more than 20 000 km and contin-
uously broadcasting a set of RF electro-magnetic signals. Despite of the popularity of such
a paradigm, the use of satellites can be considered a relatively recent achievement in the
history of navigation. In light of this it is worthy to recap the relevant milestones of radio
navigation within this chapter. It is remarkable that the age of GNSS started a massive
revolution of our daily habits after 30 years from the birth of the first Satellite Navigation
System, the GPS. About 20 years later the availability of inexpensive microelectronics led to
miniaturized receivers, thus moving GNSS into highly-integrated devices and getting closer
to other ground-breaking technologies such as the broadband cellular networks. The synergy
of these technologies is going to naturally enable new paradigms such as the GNSS-based
CP proposed in this thesis. In order to provide a proper timeline of the history of radionav-
igation, a brief summary of the techniques developed for positioning and navigation is given
in Section 2.1. A brief summary of the current Global and regional Navigation Satellite
System is then provided in Section 2.2 highlighting focus to GPS and Galileo systems. The
fundamentals of GNSS PVT computation are eventually recalled in Section 2.1.1 to describe
the mathematical background on top of which this thesis has been conceived.

2.1 From the Observation of the Stars to Radio Navigation
In this section, the main milestones of the navigation technologies are introduced to pro-

vide an historical overview about radio navigation and satellite navigation systems. First,
some historical details are given about the evolution of navigation technologies and an
overview of current satellite navigation systems is then presented. Accurate historical detail
and extended technical data about these system are our of the scope of this work and they
can be retrieved by the reader through introductory chapters of [141, 90, 131, 17], to which
this content is inspired.

2.1.1 Brief history of navigation technologies

With the term PNT we collect findings and technologies which supported the mankind
by providing the answer to an age-old need: the orientation. The need of reliable reference
markers and landmarks guided the whole history of navigation starting from the observation
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2 – Global Navigation Satellite Systems and Cooperative Positioning

of the sky up to the design of modern satellite navigation systems. The orientation entails
two fundamental aspects which can be identified as positioning and navigation. The first is
defined as the ability of determining the location of an object w.r.t. to a conventional refer-
ence system while the latter implies the capacity to describe the motion (speed, direction)
of an object along a path.

Geodesy, timekeeping and astronomy

The need of estimating position and travel directions led first to an accurate mapping of
the stars, used as celestial markers by Phoenicians to cross the Mediterranean sea and by
Polynesians to navigate across the Pacific Ocean for thousands of kilometres. In parallel,
the interest towards the study of the size and shape of the earth grew rapidly along with the
mapping of its surface. However the position and dynamics of the stars remained for a long
time the most reliable tool draw accurate maps. Early navigators were able to determine
both time and position on the earth surface by relying on celestial observations and exploiting
relative angular measurements. The accuracy of such estimations was remarkably poor thus
turning long travels into dangerous challenges. To support these activities, a conventional
reference frame was conceived by Greeks more than two thousands years ago w.r.t. to the
equator; the latitude was hence defined and measured according to the elevation of the Pole
star w.r.t. to the point of observation. Despite the advances in the field, early explorers
navigated by keeping track of direction and distance travelled w.r.t. a reference point.

After more than 2 thousands years of star-based navigation, the intrinsic limitation of this
methods such as the unavailability due to non favourable weather conditions were overtaken
by the technological findings of the 13th century. Astrolabes and sextants allowed to easily
identify latitude thus enabling and supporting maritime treading over the centuries. Compass
was then introduced for the first time in Europe in the 12nd century.

In 1519, Magellan tried the circumnavigation of the globe estimating the speed, direction
and latitude of the ship but he was still not able to determine the longitude. The relationships
between longitude and difference in local times was in fact known by navigators but errors of
few minutes in the evaluation of local time w.r.t. to the reference clock lead to several degrees
in longitude. In light of this, in the seventeenth and eighteenth indeed, maritime trading
and the consequent need of accurate navigation pushed the development of accurate clocks.
Key advances in time measurements were provided by Christiaan Huygens around 1657, and
John Harrison who built in 1726 a pendulum clock having an error of about 1 second a
month. The Harrison no. 4, also known as H-4, was awarded with £20.000 according to
the Longitude Act of the British Parliament for discovering the longitude at sea [176]. The
innovation introduced by Harrison’s first sea watch enabled secure navigation in open see
and turning navigation from being an art into a scientific and technological discipline.

Terrestrial Radionavigation System

The advent of radionavigation was fuelled by military needs during and after the World
War II, provided the consolidated knowledge on radio-wave propagation already used in
communications. The radionavigation relies generally on a set of different techniques all
based on distances, angle or Doppler measurements w.r.t. known reference landmarks. Such
quantities are measured through electro-magnetic RF signals lying in the range from 10 KHz
up to 300 GHz.

A set of one-way techniques have been exploited in the last century to passively determine
the position of a receiver according to different geometrical solutions. Provided that navi-
gation was initially related mostly to maritime applications, the following techniques were
used mainly for 2-D estimation. However, further advances in following decades required
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extended solutions to provide 3-D positioning and navigation capabilities to avionics and
aerospace systems. An exhaustive analyses of radionavigation and GNSSs is out of the scope
of this thesis, therefore the content of this list aim at summarizing the main aspects of each
of them.

TDoA - The first radio positioning and navigation systems were based on the TDoA,
a hyperbolic determination of the position exploiting the ranging signals broadcasted by
three transmitting stations, as shown in Figure 2.1. The computation of the position is
based on the difference in the ToA of the signals, thus implying synchronous transmitters
but not-necessarily synchronous receivers. As an example, LOng-range Aid to Navigation
(LORAN) and Omega were extensively used during the Wolrd War II, especially for maritime
applications [90].

  

  
  

          

          

          

  

  
  

          

          

          

  

  
  

          

          

          

Figure 2.1: Hyperbolic positioning solution using three transmitter and TDoA measurements.

DoA - A further technique is known as DoA or Angle of Arrival (AoA) and foresee the use of
antenna arrays to determine the direction of the incoming signals. Besides a DoA system does
not necessarily require clocks synchronization among transmitters and receivers, it implies
higher costs, computational complexity and power consumption w.r.t. other techniques [17].
Given the dependency of technique on the measurements of angles, DoA localization is often
referred in literature to as triangulation, as shown in Figure 2.2.

  

  

          

            

  

  

  

          

            

  

  

  

          

            

  

Figure 2.2: Triangulated positioning solution using two asynchronous transmitter and DoA mea-
surements.
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Doppler Navigation . A different approach in radionavigation foresees the observation
of the Doppler effect which turns in an apparent change of the frequency of the received
signal. Doppler positioning was considered less intuitive despite it provided the baseline for
the development of modern satellite navigations systems in the early 1960s.

ToA - Differently from the previous approaches, current GNSSs are based on a measure-
ments paradigm named ToA also known in literature as Time of Flight (ToF). As for the
other techniques, the early adoption of ToA positioning system were addressed to 2-D po-
sitioning. In 2-D, the position of a ToA receiver can be hence obtained unambiguously as
the intersection of a minimum of three circumferences as shown in Figure 2.3, namely tri-
lateration. As far as it was conceived, ToA positioning required accurate synchronization
of transmitter and receiver clocks which turned to be feasible only in GNSS with an addi-
tional computational cost. Time misalignment of the receiving clock was hence considered
as a further unknown in the positioning problem, thus increasing the number of minimum
transmitter to four, as it is foreseen by modern GNSS.

  

  
  

          

          

          

  

  
  

          

          

          
Transmitter
Receiver
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Transmitter
Receiver
Range

Figure 2.3: Trilaterated positioning solution using three transmitters and ToA measurements with
synchronous transmitters and receivers.

Early Satellite Navigation Systems

The early intuition about satellite-based positioning came through a non-trivial observa-
tion: it appeared evident that the Doppler shift affecting the signals transmitted by Sputnik
I was enough to determine its orbit when it was observed from a known location. The
reversed problem led to the born of Satellite Navigation Systems [131]. The first opera-
tional satellite navigation system was developed by Defense Advanced Research Projects
Agency (DARPA) and the Johns Hopkins Applied Physics Laboratory in 1959 and named
Transit (a.k.a. NAVSAT or Navy Navigation Satellite System (NNSS)). It was designed to
be used by U.S. Navy to provide accurate location information to UGM-27 Polaris missiles.
The system provided continuous navigation service from 1964 to 1996 employing overall 41
satellites and becoming obsolete with the advent of modern GPS. Few years later URSS
developed a system transmitting on the same carrier frequencies and known as Tsikada,
which was operational from 1978 to 2008. These systems can be considered the ancestors
of modern GNSSs such as GPS and GLobal NAvigation Satellite System (GLONASS) al-
though they allowed two-dimensional positioning computation (at the see-level) with severe
limitation due to satellites visibility and complexity of the position estimation algorithm.
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Differently from modern ToA navigation systems, these previous ones provided positioning
and navigation capabilities relying on Doppler measurements.

2.2 Navigation Satellite Systems
The active satellite-based navigation systems are listed along with a summary of their

main features in Table 2.1. They are distinguished according to their coverage in global and
regional systems. The evolution of such systems has been conditioned by a certain degree of
interoperability (i.e. GPS+Galileo multiconstellation approach) therefore navigation signals
are all transmitted in the same bands for all the systems [80]. In the following, a short
description of each system is provided.

2.2.1 GPS

The knowledge acquired with Transit pushed U.S. Navy and the Air Force to the devel-
opment of a modernized space-based navigation system in the late 1960s. The Department
of Defense (DoD) approved the basic system architecture in 1973: It was the birth of GPS.
Initially it included a constellation 24 Medium Earth Orbit (MEO) satellites, named Navi-
gation System with Time and Ranging (NAVSTAR) to provide a passive positioning system
based on trilateration. The MEO orbit was chosen to achieve the best compromise in terms
of satellite design, global coverage and lunching costs. L-band (1 − 2 GHz) was selected
within Ultra High Frequency (UHF) for the carrier frequency of the transmitted signals and
a bandwidth of 20 MHz was designed to host the Code Division Multiple Access (CDMA)
spreading codes implemented to allow simultaneous transmission and discrimination of the
satellites [90]. Satellites payloads were hence capable to transmit two L-band navigation
signals at 1575.42 MHz (L1) and 1227.60 MHz (L2). With the launch of first spacecraft,
Navstar 1, the first generation (Block I) of GPS satellite was completed in October 1985.
The full operational status of GPS was declared in 1995 [136]. The third generation of GPS
satellites is expected to be fully operational in 2023 [159, 121] with substantial updates.
Satellites belonging to Block III are designed to broadcast modernized L1 and L2 navigation
signals named L1C and L2C, respectively [65]. The military code, known as P(Y) in the
previous generations, will be replaced with a modernized M-code. A further signal referred
to as L5 1176.45 MHz, already available on all the satellites launched from 2010 (Block IIF)
is expected to be declared fully operational by 2024 [80]. At the time of writing a total of 31
operational satellites in the GPS constellation, not including the decommissioned, on-orbit
spares.
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2.2 – Navigation Satellite Systems

2.2.2 Galileo

Galileo is a GNSS developed by the ESA by means of the Global Navigation Satellite
Systems Agency (GSA). The early development stage of Galileo can be identified in the
1990s when the European Union discussed the need for an independent satellite navigation
system mostly conceived for civilian use. The first operational satellite, GIOVE-A, was
launched in 2011 and in 2016, 26 of the 30 satellites foreseen for the system were actively in
orbit. In october 2012 four Initial Operational Capability (IOC) satellites were availbale by
transmitting L1 ranging signal allowing our Research group, NavSAS, to perform one of the
first Galileo fixes worldwide [119]. Starting from December 2016, Galileo provides its Early
Operational Capability (EOC) and its full operational Capability is expected by 2019 [54]. A
total of 26 first-generation Galileo satellites have been deployed to date, including In-Orbit
Validation (IOV) units. In 2025-2026 is expected the beginning of the transition between
first and second generation of Galileo satellites. According to the European Radio Navi-
gation Plan (ERNP) the system transmits three signals: E1 (1575.42 MHz), E5 (1191.795
MHz) consisting of E5a (1176.45 MHz) and E5b (1207.14 MHz), and E6 (1278.75 MHz), as
documented in Table 2.1. According to the agreement with U.S. in 2004, European Union
designed the payload using Binary Offset Carrier (BOC) modulated-signal allowing both an
easier coehexistence with GPS signals and future interoperability.

2.2.3 Other global and regional systems

Although this thesis mainly addresses GPS and Galileo signals, the proposed methodol-
ogy can be generalized to other systems and potentially extended to a multi-constellation
approach. Therefore, it is worth mentioning other important GNSSs and regional satellite
systems.

The Globalnaya navigatsionnaya sputnikovaya sistema (GLONASS) is the sec-
ond satellite navigation system being able to provide global navigation capabilities. Its
development was pushed by the Soviet Union in 1976 up to the complention of the first
operational constellation in 1995. Differently from GPS, the initial architecture provided
Frequency Division Multiple Access (FDMA) signals but new CDMA signal have been de-
signed (e.g. L1OC, L1SC, L2OC, L2SC) both for restricted and civil services. The new
CDMA signals uses L1 and L2 frequencies to be interoperable with legacy GPS and Galileo
signals.

The BeiDou Navigation Satellite System (BDS), also known as Beidou-2 or COM-
PASS is a global evolution of the previous system Beidou-1 (decommissioned at the end of
2012) which was conceived as a regional system. BeiDou-2 was designed to be an indepen-
dent satellite navigation system owned by Chinese government and it became operational in
China in 2011 with an initial constellation of 10 satellites.

The Quasi-Zenith Satellite System (QZSS) is an integrated Japanese regional satel-
lite system based on 1 geostationary satellite and 3 satellites travelling on geosynchronous
orbits. It was conceived to provide augmentation to GPS but it will be updated as an
independent satellite navigation system by 2023 [98].

The Indian Regional Navigational Satellite System (IRNSS), a.k.a. NAVIC is a
regional satellite navigation system developed by the Indian Research Organization (ISRO)
and owned by the Indian Government. The constellation consists of 7 satellites among which
3 satellites are located in geostationary orbit. At the time of writing, IRNSS only provides a
restricted service conceived for military purposed but the system is expected to be available
for civilian use by 2020 [ganeshan2005indian, 162].
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2 – Global Navigation Satellite Systems and Cooperative Positioning

2.2.4 Augmentation Systems and DGPS

At the early development stages, GNSS offered a positioning accuracy which is suitable for
navigation in wide-open space [131] such as maritime applications in open sea and aircraft
navigation in open sky. GPS did not meet the requirements for the precision landing of
aircraft thus not representing a valuable alternative to the consolidated Instrument Landing
System (ILS). However, the nominal accuracy guaranteed by GNSS could be insufficient
for vehicular applications [145] as well as for precise surveying activities. A set of ground
infrastructures were designed for providing Differential corrections supporting first GPS and
afterwards new GNSSs, namely DGNSS.

Similarly to terrestrial DGNSS, new satellites systems has been conceived to support
GNSS positioning and navigation by providing additional integrity data and differential
corrections over defined service areas. Such augmentation systems are indeed referred to
Satellite-based Augementation System (SBAS) and, starting from the 1990s, they provided
a complementary infrastructure to support improved accuracy in GNSS.

• European Geostationary Navigation Overlay System (EGNOS) was designed
to support GPS and it reached its operational capabilities in 2005, thus guarantee-
ing an accuracy within 2 m and an availability greater than 99%. The third version
of the system was natively capable to supplement Galileo. It is composed by 3 geo-
stationary satellites and a ground-segment of 40 Ranging and Integrity Monitoring
Stations (RIMSs) stations [61] to serve a wide area including Europe and the northern
coastal region of Africa. Additional ground stations are operational in Kourou (KOU),
Montreal (MON), Hartebeesthoek (HBK).

• Wide Area Augmentation System (WAAS) was developed by the Federal Avia-
tion Administration to support aircraft navigation, thus enabling the use of GPS for
precise approaches to airports [REF]. The current constellation is composed by 3 geo-
stationary satellites but additional satellites will be lunched in 2020 [192]. Satellites
included in WAAS are designed to provide legacy GPS signals to improve the geometry
of the standalone GPS constellation [113].

• Multi-functional Satellite Augmentation System(MSAS) is a Japanese SBAS
operated by Japan’s Ministry of Land, Infrastructure and Transport and Civil Aviation
Bureau (JCAB). By exploiting two geostationary satellites launched in 2005 and 2006,
MSAS provides supplement to GPS to achieve better accuracy.

• GPS Aided Geo Augmented Navigation (GAGAN) is the implementation of a
civil SBAS by the Indian in 2008 government[148]. It foresees a set of 3 geostationary
satellites and more than 15 ground stations to provide an improved accuracy of GPS
up to 3 m.

Errors in satellite clocks, inaccurate orbit determination, ionospheric and tropospheric
impairments and other sources of uncertainties contribute to the inaccuracy of the positioning
solutions. In the field of precise surveying, most of the applications rely on differential
positioning to effectively compensate for such biases, namely DGNSS. The principle of
DGNSS foresees a base receiver located at a known location which is capable to receive GNSS
signals similarly to a further receiver whose location is unknown. Post processing of the data
such as Precise Point Positioning (PPP) [13] allows to determine accurate coordinates of
the unknown location. Nowadays the most common approach utilizes receivers installed on
reference stations providing correction signals to the GNSS users by means of data link (i.e.
over internet, radio signal, cell-phone) and they are often suitable in real time.
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2.3 Fundamental of PVT computation in GNSS
By assuming ideal synchronization of the clocks carried by GNSS satellites, ToA mea-

surements can be performed locally by each receiver. The whole process for the construction
of satellite-to-receiver pseudorange measurements will be provided in Chapter 3, while at the
moment let us consider the availability of unbiased measurements.

In order to determine the positioning solution in the ECEF three-dimensional reference
frame (see Appendix A for details) and the clock bias bu(tk) w.r.t. to GNSS time scale,
a minimum set of four pseudorange measurements is needed. Despite the four unknowns
of the receiver position and time state vector the need of four satellites is justified by a
simple geometrical assumption: differently from the 2-D trilateration which relies on the
intersection of 3 coplanar circumferences, 3-D trilateration (or multilateration) deals with
the intersection of a set of spheres. Once the receiver knows the distance from s1, its location
is assumed to lie on a sphere with radius ρ1. When a further distance is measured,

The first satellite locates the receiver on a sphere. The second satellite narrows the
receiver position to a circumference created by the intersection of the two spheres. The
third satellite reduces the choice to two possible points. Finally, the fourth satellite uniquely
identifies the location of the receiver.

Neglecting all additional error affecting the measurements, a pseudorange measurement
retrieved by the receiver can be modelled as

ρs
u(tk) = ||xs(tk) − xu(tk)|| + bu(tk)c (2.1)

where xs(tk) and xu(tk)are the receiver and satellite positions, respectively. Equation
(2.1) can be expanded in a minimum set of four equations which model the trilateration
problem shown in Figure 2.4.

  

  
  

  

          

          
          

          

Satellite
User
Range

  

  
  

  

          

          
          

          

Satellite
User
Range

Figure 2.4: Trilateration in GNSS position and time solution based on pseudorange measurements.
Size and distances are not scaled to real ratio.
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ρ1(tk) =
√︂

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + c · bu(tk)

ρ2(tk) =
√︂

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + c · bu(tk)

ρ3(tk) =
√︂

(x3 − xu)2 + (y3 − yu)2 + (z3 − zu)2 + c · bu(tk)

ρ4(tk) =
√︂

(x4 − xu)2 + (y4 − yu)2 + (z4 − zu)2 + c · bu(tk)

(2.2)

where xs,ys and zs denotes the position of the satellites in ECEF reference frame. The
non-linear equations in (2.2) can be solved for the position state by implementing approx-
imated closed algebraic solutions [90], iterative methods operating through linearization or
by means of classic optimal Bayesian filtering such as for example KF or Particle Filter (PF).

According to the linearized methods, the solution can be solved iteratively by determining
the offset ∆xu = (∆xu, ∆yu, ∆zu, ∆bu) of the positioning solution w.r.t. an approximated
state x̂u = (x̂u, ŷu, ẑu, b̂u), each pseudorange equation can be formally expressed as a function
of the user position as ρs(tk) = f(xu, yu, zu, bu). Assuming a known position and bias state,
an approximation of the pseudorange equation can be rewritten as

ρs(tk) ≃
√︂

(xs − x̂u)2 + (ys − ŷu)2 + (zs − ẑu)2 + c · bu(tk) = f(x̂u, ŷu, ẑu, b̂u) (2.3)

The positioning problem can hence be represented according to

f(xu, yu, zu, bu) ≃ f(x̂u + ∆xu, ŷu + ∆yu, ẑu + ∆zu, b̂u + ∆bu). (2.4)

Equation (2.4) can be then expanded through the Taylor expansion w.r.t. the approxi-
mation point as

f(x̂u, ŷu, ẑu, b̂u) ≃ f(x̂u + ∆xu, ŷu + ∆yu, ẑu + ∆zu, b̂u + ∆bu)

+ ∂f(x̂u, ŷu, ẑu, b̂u)
∂x̂u

∆xu + ∂f(x̂u, ŷu, ẑu, b̂u)
∂ŷu

∆yu

+ ∂f(x̂u, ŷu, ẑu, b̂u)
∂ẑu

∆zu + ∂f(x̂u, ŷu, ẑu, b̂u)
∂b̂u

∆bu

(2.5)

The truncation of the Taylor expansion at the first order of the partial derivatives cor-
responds to a planar approximation of the spherical intersection expected for the multi-
lateration. The partial derivatives are computed as

∂f(x̂u, ŷu, ẑu, b̂u)
∂x̂u

= xs − xu

||xs − x̂u||
(2.6)

substituting the partial derivative in (2.5), the following holds

ρs ≃ ρ̂s − xs − x̂u

||xs − x̂u||
∆xu − ys − ŷu

||xs − x̂u||
∆yu − zs − ẑu

||xs − x̂u||
∆zu + c∆bu (2.7)

Equation (2.7) can be rearranged as

ρ̂s − ρs ≃ xs − x̂u

||xs − x̂u||
∆xu + ys − ŷu

||xs − x̂u||
∆yu + zs − ẑu

||xs − x̂u||
∆zu − c∆bu (2.8)

In order to simplify the notation, the differential terms will be referred to
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2.3 – Fundamental of PVT computation in GNSS

∆ρ = ρ̂s − ρs (2.9)

hs
x = xs − x̂u

||xs − x̂u||
(2.10)

hs
y = ys − ŷu

||xs − x̂u||
(2.11)

hs
z = zs − ẑu

||xs − x̂u||
(2.12)

The coefficients hs
x,hs

y and hs
z in 2.12 denote the Cartesian components of the unitary

steering vector pointing towards the s − th satellite. We define a steering vector towards the
s-th satellite according to

hs = (hs
x, hs

y, hs
z) (2.13)

such as the (2.8) can be rewritten as ∆ρ = hs
x∆xu + hs

y∆yu + hs
z∆zu − c · ∆bu

The component of such linearized equations can be now expressed in matrix notation as

∆ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆ρ1

∆ρ2

∆ρ3

∆ρ4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
x h1

y h1
z 1

h2
x h2

y h2
z 1

h3
x h3

y h3
z 1

h4
x h4

y h4
z 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∆xu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆xu

∆yu

∆zu

∆bu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.14)

.
The set of pseudorange equations can be written as

∆ρ = H∆xu (2.15)

and eventually the unknown vector, ∆xu, can be hence computed solving for

∆xu = H−1∆ρ. (2.16)

By substituting the result of (2.16) in the fundamental relationship

xu = x̂u + ∆xu

and iterative solutions can be applied to improve the convergence of the algorithm ac-
cording to a pre-defined threshold [79].

2.3.1 Determination of the velocity

The same approach can be implemented for the determination of the velocity of a receiver.
In this case, simple pseudorange measurements do not provide a proper information about
the dynamics of a receiver and their variation must be considered in form of pseudorange
change rate or equivalently Doppler shift.

Every GNSS receiver estimates the Doppler shift of each received satellites signals w.r.t.
the nominal carrier frequency at the acquisition stage in order to feed the tracking and
to guarantee a proper data demodulation of the navigation message, as it will be clarified
in Chapter 3. Furthermore, modern GNSS receivers are capable to perform carrier-phase
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2 – Global Navigation Satellite Systems and Cooperative Positioning

measurements and can produce precise Doppler shift estimation which must be compared to
satellite velocity provided through ephemeris data [90].

When a GNSS receiver, u, is considered, the received signal frequency from a generic
satellite s, can be modelled by

fs
r = fc

(︃
1 − vs

u · hs
u

c

)︃
(2.17)

where fc is the nominal carrier frequency associated to the transmitted signal (i.e. 1575.42
MHz for GPS L1), vs

u is the user-to-satellite relative velocity and hs
u is the steering vector

directed along the LoS, as determined previously. The dot product between the relative
velocity and the steering vector provides the radial projection of the relative velocity along
the LoS. By considering a common ECEF reference frame, the relative velocity, vu

s , is
computed as

vs
u = ẋs − ẋu =

[︂
ẋs − ẋu ẏs − ẏu żs − żu

]︂⊤
. (2.18)

The Doppler shift can be hence computed as

∆fs
u = fs

r − f s
c = −fs

c

(ẋs − ẋu) hs
u

c
(2.19)

The carrier frequency fs
c is not stable and proper corrections are forwarded in the naviga-

tion message to compensate for satellites on-board instrumental drift of the local oscillators.
These corrections can be applied to the nominal transmitting frequency as fs

c = f0 + ∆fs
u.

The received signal is not centred at fc + ∆f but is affected by a bias due to the drift
of the receiver clock. The received frequency, fs

r is hence obtained as fs
r = f s

c

(︂
1 + ḃu

)︂
. For

the generic s-th satellite, the following relationship can be defined for the Doppler shift

fs
r = fs

c

{︃
1 − 1

c
[(ẋs − ẋu) · hs

u]
}︃

(2.20)

By manipulating 2.20, the relationships

c
(fs

u − f s
c )

fs
c

+ vs · hs
u = ẋu · hs

u − cfs
uḃu

fs
c

(2.21)

can be expanded in the basic elements of each vector, leading to

c
(fs

u − fs
c )

fs
c

+ ẋshs
ux + ẏshs

uy + żshs
uz = ẋuhs

ux + ẏuhs
uy + żuhs

uz − cfs
uḃu

f s
c

(2.22)

where the left elements of vs are obtained from the ephemeris, the elements of hs
u are

computed along with the positioning solutions. The right part of (2.22) can be associated
to a dummy variable for the sake of simplicity which contains the derivatives of position and
clock bias of the GNSS receiver

du = (fs
u − fs

c )
fs

c

+ ẋshs
ux + ẏshs

uy + żshs
uz (2.23)

Provided that generally fs
u/fs

c ≃ 1, a simplification on the right term can be applied
to simplify the problem at the cost of small error in the computation [90]. Being ds

u the
unknown vector, the (2.23) can be solved through
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du =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋu

ẏu

żu

ḃu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
x h1

y h1
z 1

h2
x h2

y h2
z 1

h3
x h3

y h3
z 1

h4
x h4

y h4
z −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋu

ẏu

żu

cḃu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.24)

.
Provided that H is the same Direct Cosine Matrix obtained in 2.3 and that is invertible,

the solution of the first order derivative terms is obtained as g = H−1du.

Position, velocity and time constitute the fundamental set of information which can be
autonomously computed through GNSS only and which is included in the receiver state
vector. Such a state vector can be arbitrarily extended with further information about the
motion of the receiver such as linear and angular accelerations.
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Chapter 3

Receiver architecture and
satellite-to-receiver measurements

This chapter addresses the conventional architecture of a GNSS receiver which constitute
the main element of the GNSS user segment. A receiver is in charge of acquiring the satellites
signals crossing the atmosphere and reaching the earth with a remarkably low power level.
A GNSS receiver is designed to extract the pseudorange and Doppler measurements required
for the estimation of the PVT, according to the process introduced in Chapter 2.

While mass-market single frequency receivers exploit code pseudoranges, computed start-
ing from the estimation of the signal code delay, professional multifrequency receivers make
use of carrier phase measurements. Code measurements are unambiguous but noisy; on the
contrary, carrier phase measurements are much more precise but inherently ambiguous, and
the process to solve for the integer ambiguity is hardly affordable by mass-market receivers
[131].

The chapter first introduces the structure of the navigation signal in Section 3.1. Then,
the receiver architecture is presented in Section 3.2 up to the construction of the pseudorange
measurements to recall the useful nomenclature used in this thesis. It is worth remarking
that most of the analysis included in this work are referred to the use of Software GNSS
receiver whose architecture will be briefly summarized at the end of Section 3.2. The concept
of networked receiver is eventually introduced as the reference architecture of the current
research.

3.1 Signal structure and frequency plans
As introduced in Chapter 2, healthy GNSS satellites continuously broadcast navigation

signals from their orbits towards the earth. Before being received by the users, a navigation
signal is typically referred to as Sequential Importance Sampling (SIS) and is designed to
provide accurate estimation of its ToA and accordingly of the related satellite-to-receiver
distance, namely the pseudorange measurement. The SIS is also conceived to be resilient
to intentional and unintentional interferences encountered in the crossing of the atmosphere
and troposphere, multipath reflection, scattering and all the potential sources of disturbance
[90]. The payload of each GNSS satellite generates the components of the SIS which are
mixed prior to the transmission over a selected carrier frequency, according to the systems
signal plan[136].

A SIS transmitted over a specific carrier frequency is identified as a channel and is com-
posed by two parts defined accordingly to the In-Phase (I) and Quadrature (Q) components
of an original baseband complex signal, as
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3 – Receiver architecture and satellite-to-receiver measurements

SX =
√

2PT [sX−I(t) cos(2πfct) − sX−Q(t) sin(2πfct)] (3.1)

where PT is the transmitted power associated to the given channel and fc, the carrier
frequency, characterizes the fundamental RF sinusoidal signal (e.g. L1=1575.42 MHz) which
mostly condition the RF properties in the free-space propagation. The baseband signal sX

can be instead defined as

sX =
√

2A(sX−I + jsX−Q). (3.2)

I and Q components in 3.2 are typically independent real signals which can carry four
main components each, as shown in Figure 3.1. Such components are multiplied as

sX−Y = sY (t)cY (t)c̄Y (t)dY (t) (3.3)

where Y indicates I or Q components and

• cY , named spreading sequence, is the binary PRN ranging code designed both to
guarantee CDMA capabilities and the spectral spreading over the specific bandwidth.

• dY , named navigation message, is a sequence of bits including information about
satellites clock correction, ephemeris and health.

• c̄Y , named secondary code, has been included in modernized GNSS signals to improve
acquisition performance.

• s, named subcarrier, is a periodic sequence resulting from the combination of an
arbitrary number of binary offset carriers [9].

Carrier at 1575.42 MHz (L1)
1227.60 MHz (L2)

1176.45 MHz (L5)

19.03 cm (L1)
24.42 cm (L2)

25.48 cm (L5)

300 m (C/A)

6000 Km (CA)

Navigation data at 50 bps

Code rate at  1.023 Mcps (C/A)
   10.23 Mcps (P(Y))

Subcarrier (if present)

Figure 3.1: GPS navigation signal components: RF carrier signal (top), subcarrier(second), spread-
ing code (third), navigation data (bottom). The signals are not in scale.

Sofisticaded modulation schemes, named Multilevel Coded Spreading Symbols (MCS)
can be applied at the sub-carrier level to improve performance in modernized SIS such as
for BOC and AltBOC schemes used in Galileo [58]. MCS sequences are indeed a promising
field since well selected configurations offer clear performance advantages as well as the
possibility to control spectral properties in a more efficient way. This aspect has been of
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3.1 – Signal structure and frequency plans

crucial importance during the design of Galileo in order to be compatible and interoperable
with GPS, and could show us the way to proceed in the future when new signals are planned
to be placed in the already crowded RNSS bands[9].

Lower L-Band Upper L-Band

RNSS RNSS

ARNSARNS

E1E5bE5a E6

L1L5 L2

GPS Navigation Bands Galileo Navigation Bands

Figure 3.2: Galielo and GPS frequency plan fitting the bands reserved to RNSS. Reproduced from
[58].

The accurate description of the signal plan is out of the scope of this work but further
details are available about GPS and Galileo in the respective Interface Control Document
(ICD)s [136, 58] and excellent references can be found in GNSS literature, as well. For the
sake of completeness the updated signal plans of GPS and Galileo are summarized in Figure
3.2 and detailed in Table 3.1 and Table 3.2, respectively.
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MHz chip/s bit/s dBW

L1 C/A C BPSK(1) 2.046 1.023e6 50 -158.5 T
L1/L2 P M BPSK(10) 20.46 10.23e6 50 -161.5 T
L1 L1C C TMBOC(6,1,4/33) 4.092 CP 1.023e6 no data -158.25 F
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L2 L2C C BPSK(1) 2.046 CM 511.5e3 25 -158.5 P

CL 511.5e3 no data
L1/L2 M M BOC(10,5) 30.69 5.115e6 N/A N/A T
L5 L5 C QPSK(10) 20.46 I5 10.23e6 50 -157 P

Q5 10.23e6 no data -157
REMARKS:
(*) C = civil signal

M = military signal
(**) null-to-null bandwidth

For BOC modulations, only the two main spectral lobes are considered
(***) T = transmitted (full operation capability);

P = pre-operational broadcast;
F = foreseen signal.

Table 3.1: Current (2019) and modernized GPS signals [63], [64], [62]. Taken from [41].

24



3.1 – Signal structure and frequency plans

Band

Service

Channel

Modulationscheme

Spectraloccup.(*)

Subcarrierfreq.

Coderate

Sec.coderate

Nav.data

Multiplex.tech.

Min.Rxpower

Status(**)

M
H

z
M

H
z

M
ch

ip
/s

ch
ip

/s
sy

m
b/

s
dB

W
E1

PR
S

A
BO

C
co

s(
15

,2
.5

)
35

.8
05

15
.3

45
2.

55
75

-
N

/A
N

/A
T

O
S

B
C

BO
C

(6
,1

,1
/1

1)
14

.3
22

1.
02

3
/

6.
13

8
1.

02
3

-
25

0
C

on
st

.
en

v.
-1

57
(B

+
C

)
T

Pi
lo

t
C

C
BO

C
(6

,1
,1

/1
1)

14
.3

22
1.

02
3

/
6.

13
8

1.
02

3
25

0
no

da
ta

T
E6

PR
S

A
BO

C
co

s(
10

,5
)

30
.6

9
10

.2
3

5.
11

5
-

N
/A

N
/A

T
H

A
S

B
BP

SK
(5

)
10

.2
3

-
5.

11
5

-
10

00
C

on
st

.
en

v.
-1

55
(B

+
C

)
V

Pi
lo

t
C

BP
SK

(5
)

10
.2

3
-

5.
11

5
10

00
no

da
ta

V
E5

a
O

S
I

BP
SK

(1
0)

20
.4

6
15

.3
45

10
.2

3
10

00
50

-1
55

(I
+

Q
)

T
Pi

lo
t

Q
BP

SK
(1

0)
20

.4
6

15
.3

45
10

.2
3

10
00

no
da

ta
A

ltB
O

C
(1

5,
10

)
T

E5
b

O
S

I
BP

SK
(1

0)
20

.4
6

15
.3

45
10

.2
3

10
00

25
0

-1
55

(I
+

Q
)

T
Pi

lo
t

Q
BP

SK
(1

0)
20

.4
6

15
.3

45
10

.2
3

10
00

no
da

ta
T

R
EM

A
R

K
S:

(*
)

nu
ll-

to
-n

ul
lb

an
dw

id
th

Fo
r

BO
C

m
od

ul
at

io
ns

,o
nl

y
th

e
tw

o
m

ai
n

sp
ec

tr
al

lo
be

s
ar

e
co

ns
id

er
ed

(*
*)

T
=

tr
an

sm
itt

ed
(in

iti
al

se
rv

ic
es

);
V

=
un

de
r

te
st

an
d

va
lid

at
io

n.

Ta
bl

e
3.

2:
C

ur
re

nt
(2

01
9)

G
al

ile
o

sig
na

ls
[4

9]
,[

50
],

[5
1]

.
Ta

ke
n

fro
m

[4
1]

.

25



3 – Receiver architecture and satellite-to-receiver measurements

3.2 Receiver Architecture
In order to accomplish this core functionality, the architecture of a GNSS receiver is made

of several stages concerning specific tasks: acquisition, tracking, decoding of the navigation
message, and post-processing. An analog stage is typically conceived to constraint signals
features (i.e. bandwidth, amplitude) fitting the input requirements of the Analog-to-Digital
Converter (ADC). Once the signal is digitalized acquisition and tracking stages aim at
estimating delay and Doppler shift to align the incoming signal and the local replica of the
spreading code [131]. While the acquisition stage identifies the signals coming from any
visible satellite by roughly estimating code delay and Doppler shift, the tracking stage is in
charge to refine such estimates to provide accurate information to the post-processing stage,
thus reliable pseudorange and Doppler shift measurements.

3.2.1 Received signal

An active or passive antenna is in charge of capturing the GNSS signals to feed the
receiving chain of the front-end. In real scenarios, the received signal yRF(t) is composed
by the independent contributions of all the S visible satellites at a given time, t. The
resulting signal is in fact the superposition of S signals, denoted as ys,RF and an additive
noise component. For the sake of simplicity, the terms related to the subcarriers are omitted
hereafter. Each signals is transmitted on a independent channel which alters delay, Doppler
shift and noise differently for each satellite. The overall SIS reaching the antenna is hence

yRF =
S∑︂

s=1
ỹs,RF + η(t) (3.4)

where ỹs,RF is the signal contribution provided by the s-th satellite and η(t) is the additive
noise. Such term can be due both to in-band interferences, or due to the thermal noise
injected by electronics component such as Low Noise Amplifier (LNA) or power-line supplying
the antenna. The noise contribution, η(t), is typically modelled as Additive White Gaussian
Noise (AWGN) and characterized by a uniform power spectral density assuming a value of
N0/2 W/Hz where N0 = kT and k and T are the Boltzmann constant and the temperature
of the system in Kelvin, respectively.

The noise is considered as a Gaussian process which is distributed as

η(t) ∼ N (0, σ2). (3.5)
Considering the (3.5), the σ2 = N0/2BT where B is the bandwidth of the receiving

front-end.
Supposing to receive a single component transmitted from one single satellite, the received

signal can be formalized as

yRF(t) =
√︁

2PRc(t − τs)c̄(t − τs)d(t − τs)cos(2π(fRF + fds)t + ϕ) + η(t) (3.6)
where PR is the received power, τ is the propagation delay of the signal to reach the

receiver antenna, fds is the Doppler shift and ϕs is a phase shift.

3.2.2 Front-end

The architecture of usual GNSS receivers is composed by two distinct parts: analog and
digital stages. We identify the analog part as the front-end of the system, which is in charge
of filtering the received signal and provide a suitable signal to the subsequent ADC, thus the
following signal processing. The first task concerns the amplification of the signal by means
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3.2 – Receiver Architecture

of a LNA. Typically, the LNA is also the main contributor to the noise figure of the receiver
[90]. The signal is then filtered via band-pass filter to exclude out-of-band contributions and
is down-converted to a proper Intermediate Frequency (IF) or to baseband, according to the
selected architecture.

AGC

Low-pass filter

Band-pass filter

ADC

LO
GNSS

antenna

QQ SS

  

   

   

                   
      

  

Figure 3.3: Front-end architecture for the Analog-to-digital conversion of GNSS RF signals.

Multiple Local Oscillator (LO)s can be used along with RF mixers to properly down-
convert the RF signal to IF, thus optimizing harmonics suppression and amplification stages
when present. The amplified and filtered signal yRF(t) is hence down-converted to a given
IF using LOs. A mixer simply multiplies the incoming signal by a sinusoidal tone locally
generated by the LO. Neglecting the Doppler frequency shift fd and the code delay τ , then
the output signal smix(t) can be written as

smix(t) = yRF (t)⏞ ⏟⏟ ⏞
RF signal

· 2 cos(2πfLOt)⏞ ⏟⏟ ⏞
LO

=
√︁

2PRc(t)c̄(t)d(t) cos

⎛⎜⎝2π (fRF − fLO)⏞ ⏟⏟ ⏞
IF

t + φ

⎞⎟⎠+

√︁
2PRc(t)c̄(t)d(t) cos(2π(fRF + fLO)t + φ) + η(t) (3.7)

where fLO term is the local oscillator frequency, which depends on the overall frequency plan
and on the desired IF. It is chosen to obtain (fIF = fRF − fLO). The signal smix(t) (3.7) is
made by two terms: one with frequency centered at (fRF − fLO = fIF ) and the other one
with frequency centered at (fRF + fLO). Since only the term at IF is desired, the higher
order harmonics are filtered out. At the end of the filtering process, the component yIF (t)
can be written as:

yIF (t) =
√︁

2PRc(b)(t)c̄(b)(t)d(t) cos(2πfIF t + φ) + ηIF (t) (3.8)

where c(b)(t) represent the filtered version of the in-phase transmitted PRN code, c̄(b)(t)
represent the filtered version of the subcarrier, ηIF is the filtered noise at the output of the
IF filter which is still a white Gaussian noise with the same variance. The subscript (b) on
the code and the subcarrier denote the fact that the pulses could be actually be modified
by the IF filtering. On the other hand, the data are almost unaffected by the filtering effect
due to their very low rate in GNSS systems.

Finally, the frequency down-conversion allows the ADC, which is the last component
of the front-end chain, shown in Figure 3.3, to digitalize the signal at a suitable sampling
frequency and quantization depth. ADC conversion indeed allows to transform the analog
signal to a digital format and it is made of two steps: the discrete time conversion of the
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3 – Receiver architecture and satellite-to-receiver measurements

signal (sampling) and the quantization. An Automatic Gain Control (AGC) can be used to
automatically adjust the signal dynamics to fit the input requirements of the ADC.

The digital signal yIF (nTs) after the ADC converter can be written as

yIF (nTs) =
√︁

2PRc(b)(nTs)c̄(b)(nTs)d(nTs) cos(2πfIF (nTs) + φ) + ηIF (nTs) (3.9)

Note that, in the following, the notation y[n] = y(nTs) will indicate a discrete-time sequence
y[n], obtained by sampling a continuous-time signal y(t) with a sampling frequency fs = 1/Ts.
The digital signal yIF [n] finally becomes:

yIF [n] =
√︁

2PRc(b)[n]c̄(b)[n]d[n] cos(2πfIF [n] + φ) + ηIF [n] (3.10)

3.2.3 Acquisition

The acquisition strategy is adopted by GNSS receivers to estimate the ToA, τ , (which
contains the information required for computing pseudorange measurements, thus user posi-
tion and clock offset) and the Doppler frequency fd (which contains the information required
for computing the user velocity and the clock drift). Therefore, acquisition is exploited, after
signal conditioning, to first detect which satellites are in view and estimate approximate
value of τ and fd. These values are therefore passed to the tracking block, that performs
a local search for their accurate estimates. In this stage also the estimation of the carrier
phase may be included. The acquisition system is made of a number of functional blocks
that conceptually operate independently.

According to the estimation theory, it is possible to show that the ML estimate of the
vector p = (τ, fd), whose elements are two unknowns of yIF [n], is obtained by maximizing
the function

p̂ML = arg maxp̄

⃓⃓⃓⃓
⃓ 1L

L−1∑︂
n=0

yIF [n]r̂IF [n]
⃓⃓⃓⃓
⃓
2

(3.11)

where L is the number of samples representing the incoming signal yIF [n], p̂ = (τ̂ , fd̂) is a
vector of test variables τ̂ , and f̂d = fc + f̂d,v is the estimate of the true Doppler f̂d,v plus
the frequency shift fc, defined in a proper support Dp which contains all the possible values
which can be assumed by the elements of p = (τ, fd). r̂IF [n] is a locally generated signal

r̂IF [n] = c[n − τ̂ ] exp(j2π(fIF + fd̂)n) (3.12)

where c[n − τ ] is the local replica producing the PRN code, the subcarrier and potentially
the secondary code.

The inner product of (3.11) is the CAF which is a two-dimensional cross-correlation
function between the incoming code and a local replica of the desired signal to acquire.
Therefore the CAF can be defined in the discrete time as

R(τ̂ , fd̂) =
N−1∑︂
n=0

yIF [n] c[n − τ̂ ] exp(j2π(fIF + fd̂)n) (3.13)

where yIF [n] (3.10) is the received signal and r̂IF [n] (3.12) is the local generated signal.
In order to decide whether a specific satellite is in view or not, detection is usually per-

formed on the squared envelop of the CAF. This choice is adopted in order to be insensitive
to the phase of the incoming signal and also to the sign of the bits in case a data channel is
acquired

S(τ̂ , fd̂) = |R(τ̂ , fd̂)|2. (3.14)
According to a Pearson’s hypothesis problem, S is compared with a predetermined thresh-

old (V ) in order to decide which hypothesis between H0 (S < V ) and H1 (S > V ) is true,
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3.2 – Receiver Architecture

where H0 and H1 respectively represent the absence or presence of the desired peak. Once
the decision is taken, the parameters τ̂ and fd̂ are taken. Such parameters are estimated
within a lattice (or discrete mesh grid) named search space, as shown in Figure 3.4. The
resolution of the code delay is usually a fraction of the code chip (i.e. 0.5 · Tc). On the
other hand, the Doppler frequency typically ranges from 5 to 10 kHz. As an example, in
GPS receivers, the Doppler shift range is estimated in the range ±5 kHz, with respect to the
carrier L1, according to the orbital period of GPS satellites [90].
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Figure 3.4: Simplistic scheme of search space for the rough estimation of Doppler shift and code
delay in the acquisition stage.

In order to keep values like a 0.5 chip delay range, it is possible to compute the frequency
step, as suggested in [89], as

∆f0 = 2
3T

(3.15)

where ∆f0 is the frequency bin width, expressed in Hz, and T coherent integration time,
expressed in seconds. As an example, the CAFs evaluated over the search space on a Galileo
PRN12 and PRN21 real signal are reported in Figure 3.5. The figure shows how the signal
was acquired for PRN12 (left) and not acquired for PRN21 (right) as only noise was present.

Figure 3.5: Example of CAF over the search space evaluated on a Galileo PRN12 (left) and for
PRN21 (right) realistic signal. Image taken from [26].

There are several acquisition techniques reported in literature, that implement different
types of searches which are characterized by a trade-off between computational complexity
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3 – Receiver architecture and satellite-to-receiver measurements

(number of operations) and detection probability: two examples are the serial search and
the parallel search. More details about these acquisition strategies can be found in [15] as
well as in many books such as [89] and [131].

3.2.4 Tracking

The tracking stage is responsible for the refinement of the code delay, τ̂ and Doppler
shift f̂d estimated through the CAF. It has to continuously maintain and correct the best
possible alignment between the two codes by means of closed loop operations.

The coupled loops required to maintain the best possible alignment between the two
codes, are DLL for the code and a PLL for the carrier. The DLL continuously adjusts the
local code replica to keep it aligned with the code of the incoming signal. When the two
codes are perfectly aligned, the PRN code is removed from the signal (code wipe-off ), leaving
just the carrier modulated by the navigation messages. This signal is the input of the PLL,
which estimates the carrier frequency (carrier wipe-off ). After carrier wipe-off the DLL can
synchronize the local carrier and the incoming carrier. This process continuously goes on
during the receiver operations [89]. The generic tracking loop (DLL/PLL) architecture is
shown in Figure 3.6. The two loops are initialized by the outputs of the acquisition phase
(τ̂A, fd̂

A).

Local Code
Generator

Local Carrier 
Generator

Carrier Loop
(FLL/PLL)

Code Loop
(DLL)

    
 

   

    

   

Code
Wipe-off

Input 
signal

      

Carrier
Wipe-off

code
Sync code

Sync carrier

Acquisition

Figure 3.6: Generic tracking loop (DLL/PLL) architecture.

Code tracking loops

The code tracking loop is a feedback loop able to finely estimate the residual code delay
by means of a DLL. Since the information about the relative delay between the incoming and
the local code is contained in the correlation peak, the goal of DLL is to finely estimate the
correlation value. However, GNSS receivers do not search the maximum of the correlation
peak since it is not an effective approach and it would be dependent on the absolute peak
value. They adopt a strategy insensitive to the absolute peak value, based of a discrimination
function that is null only when the incoming and the local codes are synchronized (null-
seeker).
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3.2 – Receiver Architecture

Figure 3.7 shows the block diagram of a tracking system commonly used in digital GNSS
receivers. It is possible to distinguish the code and the carrier tracking loops. Focusing for
the moment on the code tracking loop, it is characterized by the design of the components
of the loop, such as predetection integrators, code loop discriminator and code loop filter
[89]. The first operation to be performed is the correlation between the incoming signal
and different local code replicas, each characterized by a different delay. They are denoted
as prompt (P), early (E) and late (L) versions. These correlation values are integrated to
produce an output which is subsequently used by the discriminator function, denoted also
S-curve. This discrimination function is unambiguous with respect to the delay, contrary to
the normal correlation function. It is proportional to the difference of the values of the early
and late correlators. A comprehensive description about the most common discriminator
functions can be found in [89]. The output of the discriminator is given to the code loop
filter, which combines the present and past values of the error signal. It generates corrections
to the locally generated code in order to maintain the discriminator function output around
zero, according to the null seeker principle. The E, P and L replica codes can be synthesized
by the code generator, a shift register and the code Numerical Controlled Oscillator (NCO)
which generates an accurate code replica of the incoming signal.

DLL
discriminator

PLL (FLL)
discriminator

Int & dump

Int & dump

Int & dump

Int & dump

Int & dump

Int & dump

Code Loop 
Filter

Carrier Loop 
Filter

Carrier NCO

Code NCO

PRN code generator

LLPPEE

90°

I

Q

Figure 3.7: Block diagram describing the architecture of a generic code and carrier tracking loop for
GNSS receivers.

The process performed by the DLL can be seen in Figure 3.8 where the incoming signal
is correlated with the three replicas of the locally generated signal. When the replica code
is aligned, the discriminator does not generate any error since early and late envelopes are
equal in amplitude. On the other hand, if the replica code is misaligned, the early and late
envelopes are unequal by an amount that is proportional to the amount of code phase error
between the replica and the incoming signal [89].

Carrier tracking loops

The carrier tracking loop is a feedback loop able to finely estimate the frequency of a
noisy sinusoidal wave and to track the frequency changes while the satellite is moving. In
the GNSS community, one of the most used scheme is the PLL. It is capable to adjust the
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Figure 3.8: Example of code correlation phases: (a) replica code 1/2-chip early, (b) replica code
1/4-chip early, (c) replica code aligned, and (d) replica code 1/4-chip late. Figure taken from [89].

frequency of a local oscillator to match the frequency of the input signal. Also the phase of
the received signal is estimated. It is worth noticing that, if the receiver is tracking a data
channel, after the code wipe-off has been performed, the PLL would receive a continuous
wave signal still modulated by the navigation data. Therefore, a PLL insensitive to phase
transitions has to be adopted. Costas loop is one of the most used in the GNSS community.
It tolerates the presence of data modulation on the received signal and then provides a carrier
phase reference. Note that if data is not present in the signal, a pure PLL could be used.
Another carrier tracking loop is the Frequency Lock Loop (FLL) which is able to track the
frequency of the signal, ignoring the phase. In this case, PLL could be used to refine the
value of the frequency provided by the FLL. Excellent references about the theory of PLL,
FLL and Costas loops, that can be used in GNSS receives, is provided in many textbooks
[89], [141] and [131].

The block diagram of a generic carrier tracking loop is shown in Figure 3.7. The principle
of PLL is similar as the one of DLL. The local generator generates two sinusoidal signals, a
sine and a cosine, in the two branches of the loop, called In-Phase (I) and Quadrature (Q)
components. The role of the PLL is to align the instantaneous phase of the I component
with the phase of the incoming signal. After the effect of the noise is mitigated by the
integrators, the discriminator extracts the phase difference between the incoming signal and
the local one. A loop filter can be included to further reduce the effect of noise. Once the
phase difference is approximately zero, the PLL reaches a steady-state condition and the
local waveform results aligned with the incoming carrier which is needed for the recovery of
the code delay by the DLL.

After code wipe-off has been performed, assuming an unitary amplitude, the incoming
signal is

y(t) = d(t − τ) cos(2π(fIF + fd)t + φ) + η̃(t) (3.16)
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where η̃ is the amplitude noise altered by non-linear trasformations applied during the track-
ing stage. Costas loop contains two multiplications. The input signal is multiplied by the
local carrier wave as well as by its phase-shifted version by 90°, obtaining two different ex-
pressions for I and Q. After low-pass filtering, the two terms with the double intermediate
frequency are eliminated and the following two signals remain

I = 1
2d(t − τ) cos(φ) + η̃(t − τ) (3.17)

Q = 1
2d(t − τ) sin(φ) + η̃(t − τ) (3.18)

The phase error of the local carrier phase replica can be found as

Q

I
= tan(φ) (3.19)

By using this discriminator, it can be seen how the phase error is minimized when the
correlation in the quadrature-phase arm is zero and the correlation value in the in-phase
arm is maximum. Therefore, it is clear that the goal of the Costas loop is to try to keep
all energy in the I (in-phase) arm. According to [89], which also describes other possible
Costas discriminators the, the arctan discriminator in (3.19) is the most precise of the Costas
discriminators, but it is also the most time-consuming.

The characteristics of a PLL can be seen in Figure 3.9. The phasor A is represented by
the vector sum of IP and QP . It tends to remain aligned with the I-axis. If a navigation bit
transition occurs, it switches 180°. Costas loop is therefore capable to detect the bits in the
data message, despite there is a phase ambiguity of 180°.

Q

I

A

-A

Qps

-Qps

Ips-Ips

Figure 3.9: I, Q phasor diagram[89].

3.2.5 Navigation Message demodulation

Once the tracking loops are locked (i.e. the local code keeps the alignment with the
incoming code and the local carrier is exactly a replica of the received one), the navigation
data bits appear at the output of the Prompt correlator, on the in-phase branch of the
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3 – Receiver architecture and satellite-to-receiver measurements

tracking loops. Considering the GPS L1 C/A code, using an integration time equal to the
code period, we obtain a bit value every ms. However, due to the low signal power, real
receivers usually set the integration time to 20 ms, which is the inverse of the navigation
data rate (i.e. 50 Hz). The same example could be repeated considering the Galileo E1-B
signal: in this case, a proper value of integration time is 4 ms, that corresponds to either the
code period and the inverse of the navigation data rate.

The stream of data bits must be decoded to recover the message broadcast by the satellite.
The navigation data follow the scheme defined in the GPS ICD in case of GPS [136], while
all the information regarding the navigation message of the Galileo Open Service (OS) can
be found in [58]. Since the navigation format is out of scope of this chapter an introduction
is provided by showing the general structure of the GPS message. In Figure 3.10 the overall
navigation data carried by GPS L1 C/A channel is depicted.
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Figure 3.10: Structure of the navigation message included in the GPS civil signal, transmitted on
L1 frequency.

The rate of the navigation data bits is 50 bits per second. The whole message is 12.5
minutes long and is divided in 25 frames. Each frame lasts 30 seconds and is further divided
in 5 subframes, six seconds long. Each subframe of the navigation message always starts
with two special words, the Telemetry (TLM) and the Handover word (HOW). In case of the
Galileo E1 signal, the complete navigation message is transmitted on the data channel (E1-B)
as a sequence of frames. A frame is composed of several sub-frames, and a sub-frame, in turn,
is composed of several pages. The page is the basic structure to build the navigation message.
Fig. 6 shows the structure of the Galileo data and an example of page for the E1-B message.
Prior to the navigation data decoding, the receiver seeks for the preamble, a defined sequence
of n bits, that marks the beginning of a subframe for the GPS L1 C/A, a page for the Galileo
E1-B. A simple, but efficient, way to detect the preamble is to correlate the navigation data
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stream with a local binary sequence equal to the preamble. A maximum is detected when
such a local sequence is aligned with the preamble. Naturally, the bit pattern used for the
preamble can occur anywhere in the received data stream, thus an additional check must be
carried out to authenticate the real preamble (e.g. in case of GPS, only when the maximum
of correlation is found exactly every 6 seconds). When the beginning of the subframe is
identified, the content of the subframe can be decoded. The receiver retrieves all the orbital
parameters (i.e. ephemeris) necessary to compute the satellite position corresponding to the
transmission of the subframe. Through the process used for navigation data decoding, the
receiver is able to understand which subframe and word a certain bit belongs to. In this
way, the receiver can have an exact, precise and real-time understanding of each sample/bit
broadcast by the satellite.

3.3 Pseudorange Measurements
In this thesis, pseudorange measurements will be distinguished according to the level of

correction (i.e. error compensation) which is applied. For the sake of clarity we will refer to
the following three classes:

• raw pseudorange measurements are obtained as a difference between the trans-
mission and the reception time of a navigation signal, obtained with misaligned clocks.
Such a class of measurements is provided by high-end receiver and it has recently
become available in Android devices [75].

• corrected pseudorange measurements are obtained applying error corrections to
compensate for unwanted biases affecting the propagation time of the signal. Corrected
pseudoranges are the input data of the PVT computation.

• smoothed pseudorange measurements are code pseudorange measurements re-
fined through Doppler or carrier phase measurements in order to reduce the variance
of the estimation [135]. They are extensively used in professional receivers and their
analysis within specific application was included in [135]

3.3.1 Raw measurements computation

Even assuming a perfectly synchronous transmission time among the satellite payloads,
the reception time of the preambles will result different due to the different propagation
paths. In order to estimate the pseudoranges, this time misalignment has to be compensated
according to one of the paradigms known as Common Transmission Time and Common
Reception Time. According to the first approach, since the satellites are assumed to be
synchronous, the same preamble is assumed being broadcast at the same time instant, tT X

. The signal is then received by the user at different time due to the propagation delays, as
shown in Figure 3.11. Such time instant is set as common reference time for all the received
signals. Thus, the first received signal will belong to the nearest satellite and the beginning
of its first subframe will be set as reference. For each channel, the receiver has to count the
amount of time elapsed from the reception of the reference subframe and the reception of the
same subframe of each tracked signal. By knowing the relative time difference, the receiver
is able to evaluate the pseudoranges [143].
In the Common Reception Time, instead, the time instant corresponding to the reception
of the first Telemetry word (TLM) is set as common receiving time tR

u over all the channels.
Moreover, the corresponding satellite is set as reference. For each channel, the receiver
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computes elapsed time δtrx,i between frame reception time tR
rx,i and reference tR

u , as expressed
in (3.20).

δtrx,i = tR
u − tR

rx,i (3.20)

For the reference satellite, the receiver reads in the previous subframe the Hand-over word
(HOW), which contains the transmission time tGNSS

tx,i in the GNSS reference time. Due to
the misalignment between the GNSS time scale and the receiver time scale, the difference
between the reception time in the two scales is an unknown bias bu.

tR
rx,i = tGNSS

rx,i − bu (3.21)

At first computation, bu cannot be estimated, so the propagation time τ1 is set to a nominal
expected value between 65 ms and 85 ms and the reference pseudorange is computed as 3.23.

τ1 = tGNSS
rx,1 − tGNSS

tx,1 (3.22)

ρ1 = τ1 · c (3.23)

After this step, the difference between each satellite and the reference one is calculated
as in (3.24) and each pseudorange is written in relation to the first one (3.25). Since the
propagation time at first time is not estimated but only fixed, all the pseudoranges will have
an additional error c · bu due to the time misalignment.

∆ti = δtrx,i − δtrx,1 (3.24)

ρi = ρ1 + +c · bu + c · ∆trx,i (3.25)

In the Figure 3.11, a scheme is proposed to understand how a common reception time is
fixed for all the tracking channels.
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Figure 3.11: Common reception time diagram.

What is obtained at the end of this process is a measure of the distance between the
satellite and the receiver, still affected by several errors and by the receiver clock bias, bu,
namely a raw pseudorange.
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3.3.2 Pseudorange correction and PVT

Pseudoranges are obtained by means of time measurements which can be severely affected
by errors. An overview of such errors and a brief description of the correction process carried
out by the GNSS receiver are contextually explained hereafter.

GNSS satellites are all equipped with atomic clocks which stably discipline timing op-
erations such as signal generation and broadcast [90]. Although their well-known stability,
ground segments of each system are responsible to monitor the offset of on-board clocks w.r.t.
a reference time-scale and to update the clock correction field carried by the navigation mes-
sage. The satellite clock correction is hence independently updated for each satellite. Such
a correction also takes into account the relativistic effect and is computed by the receiver by
means of a second order polynomial including satellite clock bias, clock drift and frequency
drift of the on-board clock [136].

Despite these deterministic biases which are effectively compensated through navigation
data, the signal components are further delayed as they propagates trough the atmosphere
[90] by stochastic quantities. A set of additional delays are then responsible for an overall
time shift, δtD, of the expected reception time, according to

δtD = δtatm + δtr + δtmp + δthw (3.26)

where:

• δtatm delays due to the atmosphere. The propagation velocity of the signal through
this mean changes accordingly to the refraction indexes of the different layers. Indeed,
free electrons released by ionized molecules in the ionosphere influence the refractive
index of this upper layer. Also in the troposphere the refractive index alters phase and
group delays of RF signal with frequency lower than 15 GHz.

• δtr errors due to additive noise and additional, intentional or unintentional interfer-
ences.

• δtmp multipath offset (if only reflected signal is received). Multipath reflections due
to multiple scattering significantly induce highly stochastic errors in the pseudorange
measurements. The unpredictability of multipath phenomena makes such impairments
usually hard to be detected and compensated.

• δthw delay induced by receiver hardware. These errors are typically ignored due to their
smaller impact w.r.t. other contributions. However, electronics components such as RF
and IF filters, LNA, mixers, splitter and other RF interfaces are typically responsible
for huge biases (higher than 1µs). Although this error cannot be neglected for timing
application, it is irrelevant in terms of positioning computation cause it will be included
in the user clock bias obtained as output from the PVT.

Raw pseudorange measurements are always corrected prior to be used within the PVT
according to the scheme in Figure 3.12. It can be noticed that the computation of the PVT
is essential to the effective exploitation of ionospheric and tropospheric error models, thus to
a higher accuracy in the positioning computation [90]. Further details on the pseudorange
error correction and the respective atmospheric models can be found in the ICDs.

3.3.3 GNSS software receivers

In the last decades the increasing interest in satellite navigation fuelled the research to-
wards the development of high-performance GNSS receivers. Provided the lower data rates
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Figure 3.12: Pseudorange correction scheme reproduced from the GPS ICD [136].

involved in GNSS w.r.t. the ones which can be encountered in modern communication tech-
nologies, GNSS receivers can be effectively emulated through Software Defined Radio (SDR)
implementation. An analysis of the SDR approach oriented to GNSS was presented in [112].
A brief recap of the evolution of the GNSS software receiver is instead presented in [201] in
which the main challenges are described along with the technical solutions exploited to cope
with hardware and software limitations. Valuable SDR tools for research and development
in GNSS were designed according to Hardware (HW)/Software (SW) mixed architectures
or fully-software architecture. In the context of this research, a wide usage of SDR-based
fully-software receiver was done to analyse ad-hoc scenarios, thus allowing reproducibility of
the scenario in laboratory and in parallel the access to data at any level of the processing
chain. When used, the fully-software chain was fed by a general purpose front-end, namely
Ettus Research Universal Software Radio Peripheral (USRP) N-210 or B-210 providing dig-
italized signals in form of binary files (.bin). The digitalized signal, yIF [n], was represented
through digital samples with a quantization depth from 2-to-8 bits and a sampling frequency,
fs of 16 Msps within a bandwidth of 5 MHz. The use of a software receiver allowed to ac-
cess all acquisition, tracking and post-processing data, thus providing natively pseudorange
measurements belonging to all the three classes described in Section 3.3

Details about the implementation of the NavSAS MATLAB-based fully-software receiver
and the modifications to its architecture will be discussed accordingly to the content of the
chapters.
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3.4 Networked GNSS Mass-market receiver: a concept
As discussed in Chapter 2, network connectivity has been exploited in GNSS to provide

differential corrections, or alternatively to reduce the Time-to-First-Fix (TTF) by providing
aiding information in peer-to-peer receiver [110, 46, 118, 91, 111, 149]. Differently from these
early approaches, this thesis is focused on a different usage of the network connectivity which
aim at extending the available information to the positioning problem including collaborative
ranging measurements. In order to accomplish this task, GNSS receivers are expected to
provide a network interface enabling the inter-agent communication, as shown in Figure
3.13 which extends the general architecture shown in Figure 1.1. This functional block is in
charge to provide raw pseudorange measurements coming from networked receivers to the
Collaborative Ranging Unit (CRU). The CRU is then responsible of combining local and
external measurements into inter-vehicle ranging measurements to be further integrated in
a hybrid PVT processor.
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Figure 3.13: High-level scheme of the concept of a networked GNSS receiver with a PVT stage aided
by auxiliary measurements retrieved from collaborating receivers.

The high-level scheme shown in Figure 3.13 describes the architecture of a networked
GNSS positioning system designed to implement the proposed hybridization scheme. As
emphasized by the gray boxes in Figure 3.13, the following chapters of this thesis will address
both numerical and experimental analysis of the algorithms suitable for the implementation
in the Collaborative Ranging Unit and in the Hybrid PVT Processor. The proposed approach
foresees a refinement of the PVT solution originally performed by a single agent (referred
hereafter as target , named target agent which acts according to the following work-flow:

• Coarse Position and Time estimation. The target agent iteratively computes a coarse
Position-Time estimation at a given time instant, thus estimating an absolute times-
tamp of the correspondent positioning solution and measurements set. This task was
explored in its basic shape in Chapter 2 discussing about fundamentals on GNSS PVT
solution.

• Measurements synchronization or epochs misalignment compensation. The task is per-
formed by the CRU prior to combine the local and external measurements. In fact,
according to the scheme depicted in Figure 3.14, asynchronous receivers retrieves mea-
surements set and positioning solutions independently.and according to the established
reception time.
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The time-compensation is hence fundamental to ensure the time-consistency of the het-
erogeneous pseudorange and Doppler measurements w.r.t. the satellites and receivers
positions. Being a pre-requisite for the combination of heterogeneous GNSS measure-
ments, this task will be treated accordingly to the baseline computation method.

• Collaborative inter-agent ranging. The target agent retrieves the available observ-
ables from the agents and computes collaborative range contributions after the time-
alignment of the measurements. The algorithms of interest to perform the task will
be discussed in detail in Chapter 4. The collaborative ranging unit exploits external
GNSS measurements provided by the collaborating agents through a network link.

• Fine PVT estimation. The target agent integrates the inter-agent information along
with the coarse estimate of the available agents through a hybrid navigation filters.
Details about the hybrid solution investigated within this thesis will be provided in
Chapter 6.
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Figure 3.14: Asynchronous measurements and PVT epochs in GNSS independent receivers.

Nowadays several mobile devices integrate a considerable number of modules devoted
to both RF transmission and reception. Among these, Wi-Fi™ IEEE® 802.11, Bluetooth®,
GNSS, and cellular modules are all aggregated in portable electronic devices such as smart-
phones and tablet, thus enabling a number of additional, complementary positioning solu-
tions.
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Chapter 4

GNSS-based collaborative ranging
algorithms

As discussed in the introductory chapters of this thesis, the CP algorithms rely on the
exchange of information among networked users with the aim of exploiting such additional
information locally. The estimation of the reciprocal distance among navigating agents is one
of the most relevant information to be carried out by CP algorithms. In GNSS literature, the
problem is typically referred as baseline estimation [90, 83], while it is known as inter-agent
distance estimation [87, 139, 33] or simply ranging in other domains such as in automatic
control, mechanics and robotics [133, 161]. The scope of this chapter is to recall the state-
of-the art of GNSS-based ranging methods which will be analysed and implemented in the
following chapters.

A set of fundamental definitions concerning agent-to-agent distance estimation is provided
in Section 4.1 to define the needed nomenclature. A description about LoS ranging sensors
and GNSS differential methods is discussed to contextualize the research and to define the gap
w.r.t. different sources of ranging information in Section 4.1.1 and Section 4.3.1, respectively.
GNSS-based baseline estimation methods inherited from DGNSS are then presented in detail
through their analytical definitions. Eventually the IAR is presented as an extent of the
state-of-the art of the GNSS-based baseline computation solution.

4.1 Baseline: Fundamental Definitions
This section provides a set of general definitions and a background about state-of-the art

techniques for the estimation of the baseline.
In conformity to the GNSS literature, the term baseline will refer to the distance vector

or displacement vector between the estimated positions of two independent agents.
Let us suppose to know the true locations xA(tk) = [xA(tk) yA(tk) zA(tk)]⊤ and

xB(tk) = [xB(tk) yB(tk) zB(tk)]⊤ of two agents at a given discrete time instant, tk, referred
to a common time scale and a common reference frame. Their true baseline vector at tk can
be expressed through its orthogonal components in a Cartesian frame, as

dAB(tk) =

⎡⎢⎣xA(tk) − xB(tk)
yA(tk) − yB(tk)
zA(tk) − zB(tk)

⎤⎥⎦ =

⎡⎢⎣∆xAB(tk)
∆yAB(tk)
∆zAB(tk)

⎤⎥⎦ (4.1)

and their true baseline length is hence defined through

dAB(tk) ≜ ||dAB(tk)|| =
√︂

(∆xAB(tk))2 + (∆yAB(tk))2 + (∆zAB(tk))2 (4.2)
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4 – GNSS-based collaborative ranging algorithms

which is, by definition, the norm of dAB(tk), obtained by means of the Euclidean distance
between xA(tk) and xB(tk).

While the baseline length, (4.2), is a scalar quantity which is not necessarily defined for
a specific reference frame, the orthogonal components of a baseline vector, (4.1), can vary
according to the selected reference frame, as depicted in 2D in Figure 4.1. The quantity
dAB(tk) is indeed invariant w.r.t. isometric transformations (i.e. translations and rotations)
of any Euclidean reference frames. Therefore, by considering a local frame centred in xA(tk)
and oriented according the heading of agent A, the baseline vector shows a different set of
orthogonal components w.r.t. the one obtained in an absolute reference frame (4.1b).
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Figure 4.1: Baseline vectors shown in different 2D Cartesian reference frames.

However, if the local reference frame in Figure 4.1a is obtained by means of isometric
transformations of the absolute frame in Figure 4.1b, the equivalence dAB(tk) = d

′
AB(tk)

holds besides d
′
AB(tk) = dAB(tk)R, where R is the rotational matrix used to define the local

frame (further details about reference frames are recalled in Appendix A. Despite of the
specific reference frame, it is trivial noticing that knowing the orthogonal components of
dAB, the computation of d is performed through (4.2). However it is worthy to remark that
sensor-based ranging mostly addresses direct estimation of dAB.

4.1.1 Sensor-based baseline estimation

In the last decades, exteroceptive sensors such as UWB, Light Detection and Rang-
ing System (LiDAR) and ultrasonic (i.e. Sound Navigation and Ranging (SONAR)), have
been extensively employed in robotics and vehicular applications for the estimation of (4.2),
providing high accuracy, precision and availability rate of the measurements [34]. These ap-
proaches are based on a ToA estimation, namely on the principles of monostatic and bistatic
RAdio Detection And Ranging (RADAR), thus relying on the sensing of scattered RF sig-
nals. Therefore, several works addressed the ranging problem in many application fields
by exploiting such LoS technologies [137, 198, 195]. A remarkable number of contributions
in robotics and vehicular applications addressed the enhancement of CP by means of such
sensor-based inter-agent measurements [59, 39]. Unfortunately, the operational capabilities
of RF sensors are typically limited by LoS constraint, so that they are mostly implemented
for close objects localization (e.g. pedestrian detection) and for short-range relative posi-
tioning applications addressing proximity awareness (e.g. automatic cruise control, collision
avoidance, park assistance). Furthermore, sensor-based ranging is typically affected by a
degradation of the performance as the magnitude of the measurement increases [34]. In ideal
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conditions in fact, many of these devices can indeeed determine range measurements with
a centemeter-level accuracy [34], [199], thus providing useful additional navigation data to
multi-agent navigation and positioning systems. Single or fixed RF ranging sensors can-
not easily provide information in form of range vector, therefore synchronized arrays (e.g.
SONAR and UWB) or rotating sensors (e.g. LiDAR) are typically implemented in several
fields for proximity awareness as well as for indoor navigation. Similarly, vision-based sys-
tems such as monocular and binocular digital cameras, have been extensively implemented
to the estimation of both baseline length and baseline vector [23, 21, 87]. Besides a less
accurate estimation, these systems enable a further processing stage devoted to object recog-
nition, which is not negligible in LiDAR and UWB in terms of computational complexity
(see for example [96, 184]). As, shown in 4.1, the orientation estimation is fundamental for
the usage of such relative information within absolute positioning framework. To this goal,
the attitude information provided through the integration of INS is essential as well as the
introduction of proper mechanization equations to reliably convert the ranging information
to an absolute frame. It is worth mentioning thath sensor-based ranging typically suffers of
negligible delays in the determination of the baseline length, mainly due to the ToF of the
RF signals and to the processing time of the retrieved measurements. Besides the extensive
literature about sensor-based CP, many theoretical investigations have assumed high avail-
ability of such inter-agent measurements, often over-simplifying their statistical models and
neglecting the cross-correlation among such data [178, 19, 142].

4.2 Absolute Positions Distance (APD)
GNSS receivers are often considered as sensors. Despite of this misleading but frequent

definition, we could state that two GNSS receivers can be used as a passive distance sensor.
As anticipated indeed, the most intuitive way to obtain an estimate of (4.2) is referred to
APD, which needs to consider the fact that the positions xi(tk) and xj(tk) are the solutions
of two disjoint estimation processes such as the multi-lateration foreseen in GNSS. The
baseline length is hence estimated through

d̂
(AP D)
ij (tk) = ||x̂i(tk) − x̂j(tk)||. (4.3)

Equation (4.3) is the baseline length estimated by computing the Euclidean distance
between the estimated positions x̂i(tk) and x̂j(tk) as

d̂
(AP D)
ij (tk) =

√︃
(x̂i − x̂j)2 +

(︂
ŷi − ŷj

)︂2
+ (ẑi − ẑj)2. (4.4)

d̂
(AP D)
ij (tk) is affected by the overall uncertainty of the positioning solutions (i.e. GDOP

and potential biases according to the position error model in Chapter 2). The estimation
error affecting d̂

(AP D)
ij (tk) can be caused by different unexpected effects in the positioning

computation but the specific error contribution cannot be easily discriminated as for other
techniques.

By generalizing the problem according to the retrieval of asynchronous positioning solu-
tions

d̂
(AP D)
ij (tk) ≃ ||x̂i(ti) − x̂j(tj)||. (4.5)

where ti and tj are two different discrete time instants referred to a common time scale.
This time misalignment causes a major issue in the determination of a reliable baseline length
measurement, turning the estimation in non-real-time process. A possible way to compensate
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for this time-inconsistency could be the extrapolation of the positioning solution of the local
receiver i at the time tj but this will provide an outdated solution w.r.t. the actual agents’
positions.

Assuming the mitigation of the time offset, let suppose that agent B transmits to the
agent A its own position estimate at time tk, namely xB(tk). Due to the network delay, δt,
the information is received by A at time tk +δt when the two agents are located at xA(tk +δt)
and xB(tk + δt), respectively. The true baseline vector dAB(tk + δt) cannot be computed and
two approximated distances can be computed:

dAB(tk) = ||xA(tk) − xB(tk)|| (4.6)

d
′
AB(tk) = ||xA(tk + δt) − xB(tk)|| (4.7)

Equation (4.6) refers to outdated information while (4.7) is a time-inconsistent solution.
The two solutions can approximate the true baseline length depending on the dynamic of
the systems.
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Figure 4.2: Geometrical effect of the network delay on the baseline estimation in dynamic scenario.

As shown in Figure 4.2, depending on the dynamics of the agents the actual delay in the
computation of the baseline length can lead to misleading information.

Intuitively, the APD cannot be used to improve the positioning estimation because it
is directly computed through the estimate itself. Although the method is ineffective for
the enhancement of positioning and navigation solutions, its error model involves multi-
variate statistics and it is useful for more advanced GNSS-based solutions such as Single
Difference (SD) and DD, as detailed hereafter.

4.2.1 Error modelling of Euclidean distance in GNSS positioning solutions

The following analysis has been presented in [124] to provide a reference statistical dis-
tributions of the distance between two independent GNSS fixes.

Distribution of GNSS positioning solutions

Considering a scenario not affected by multipath, the independence of the elements of the
position vector estimated by an agent is not verified due to their dependency of the satellite
geometry [193, 100].
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An example of distributions of two static GNSS solutions is shown in the two-dimensional
example of Figure 4.3 along with the visualization of their covariance through error ellipses.
They are obtained by simulating the positioning problem with different sets of satellites and
corrected pseudorange measurements. The measurements are created through true range
values affected by independently generated White Gaussian Noise (WGN) samples. It can
be noticed that Xj presents an evident correlation of its components thus, showing a non-
diagonal error covariance matrix, σxy,i /= 0. On the opposite, Xi is characterized by a
quasi-diagonal covariance matrix (σxy,i ≃ 0) but the errors affecting its components are not
identically distributed, formally σxi > σyi .

Figure 4.3: Example of bivariate Gaussian distributed PVT solutions (Horizontal positioning so-
lution) with a graphical visualization of the error covariance matrices in terms of 95% and 99%
confidence intervals.

According to error model defined in Chapter 2, the elements of the positioning solutions of
two GNSS receivers can be considered pairwise-independent assuming independent residual
noise components on the respective pseudorange measurements. With this in mind, each
differential term in the baseline vector is still a Gaussian random variable resulting from the
difference of independent Gaussian variables.

In a realistic scenario the elements of the baseline vector obtained through the APD
are strongly cross-correlated. Therefore the distribution of d(AP D)

ij in a bi-dimensional frame
follows a generalized Nagakami distribution considering non null covariances of the elements
or a generalized Rice distribution considering correlated non-identically distributed elements.
In the following we aim at inspecting the approximation of this general distribution with
a Gaussian distribution by identifying the validity conditions through the Batthacharyya
distance.

On the generalization of APD error distribution

For readability reasons, the time dependency indicated in the variables will be dropped
without any loss of generality.

By recalling fundamental probability theory, let us consider Xi and Xj as generic random
variables modelling GNSS positioning solutions of two receivers. By assuming potential

45



4 – GNSS-based collaborative ranging algorithms

dependency between the distributions, it can be shown that the distribution of the difference
is defined as

Yij = Xi − Xj ∼ N (xij , Pi + Pj + 2Pij) (4.8)

where xij = xi − xj is the difference of the mean vectors and Pij is the cross-covariance
matrix of the two distributions. By assuming pairwise-independent positioning solutions,
the (4.8) can be approximated by neglecting the cross-covariance terms. Let us remark
that the set of satellites used to compute the PVT solution only affects the Dilution Of
Precision (DOP), thus close receivers could easily experience similar covariance matrices but
this does not imply dependency between pairs of coordinates.

The random variable W = ||Yij(tk)|| models the distribution of the norm of a vector
of correlated Gaussian random variables w.r.t. the selected reference frame. Let us recall
indeed that according to the definition of the baseline vector as in (4.1), given a non diagonal
covariance matrix, the correlation among the elements cannot be neglected.

The purpose of this analysis is to understant the behaviour of W and the conditions
that allow to approximate it to a Gaussian distribution fitting its real counterpart and
being suitable for GNSS applications. The Bhattacharyya distance [12], DB, for multivariate
normal distributions has been observed to provide a heuristic for the validity of such a
Gaussian approximation. It represents a measure of the distance of the two distributions
by considering both the difference between the mean values, and the combined covariance
matrix, thus being independent from the simulated or experimental scenarios.

The Bhattacharyya distance is computed as

DB(Xi, Xj) = 1
8 (µ̄)T P−1 (µ̄) + 1

2 ln
(︄

det P√︁
det Pi det Pj

)︄
(4.9)

where

µ̄ = xi − xj ,P = Pi + Pj

2 (4.10)

A comparison between real and modelled Gaussian distributions was performed by letting
the (4.9) increase. The increment of DB was ensured by increasing the distance between the
mean values of the two distributions or alternatively, by reducing the magnitude of their
covariance matrices.

Figure 4.4a shows the results of Monte Carlo simulations performed to verify the bin-
by-bin matching accuracy of the approximated Normal distribution with respect to the real
one in terms of Mean Square Error (MSE) [14]. The decreasing trend, shown in Figure 4.4b,
allows to conclude that the PDF of the APD between two multivariate Gaussian distributed
random variables is a general distribution which approximates the behaviour of Gaussian
distribution with the increasing of the Bhattacharyya distance.

It can be shown that in case of bivariate variable, a Kolmogorov-Smirnov Goodness of
Fit (GoF) test failed to reject the null hypothesis (baseline length distributed accordingly to
a Gaussian distribution) for DB > 5 at 5% of confidence level.

We found that such a Gaussian approximation is reasonable for the APD computed for
two general positioning solutions when their Bhattacharyya distance grows, in practice when
the magnitude of the elements of the covariance matrix are small, or the distance between
their mean assumes high values.
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Figure 4.4: APD distribution approaching Gaussian distribution with the same mean and variance
with the increase of DB.

4.3 GNSS-based differential baseline computation
Despite GNSS fixes are largely employed in determining the distance among receivers

through APD [140, 200], this solution does not guarantee the best practice to solve for this
unknown. In the following, GNSS differential solutions are presented as methods capable to
provide baseline computation typically relaying on raw pseudorange measurements instead
of the receiver’s positions.
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4.3.1 GNSS-based baseline estimation

To cope with the limitations of sensor-based ranging and to provide a measurements
which is less-dependent on the estimated positions, recent works have investigated a set of
popular algorithms in the field as DGPS/DGNSS methods, addressing the estimation of (4.1)
to improve the quality of the position estimation within a GNSS cooperative framework [183,
109, 144, 125].

    

    
    

    

  
   

  
     

   

  
   

  
   

  
     

   

  
   

  
     

     
   

           

(a)

    

    

    

    

    

    

    

           

  
     

   

  
   

  
   

  
   

  
     

   

  
   

  
   

  
   

(b)

Figure 4.5: GNSS-based ranging: open sky scenarios characterized by the full common visibility of
the satellites (4.5a) and urban scenario with a single satellite in common view (4.5b).

These sensor-less methods rely on the availability of network connectivity and of a number
of GNSS satellites in common view, hereafter referred as shareable satellites.

According to Figure 4.1, the baseline vector (4.1), can be treated as the unknown of
the problem, as it holds for the position vector in the positioning estimation. Besides the
direct use of the position estimates, presented in 4.2 as APD and widely adopted in several
LBS, raw pseudorange measurements provided by the collaborating GNSS receivers can be
combined in a number of fashions to effectively retrieve dAB(tk). The computation can be
pursued according to DGPS observables and the number of shareable satellites, as depicted
in Figure 4.5. Multiple raw pseudorange measurements can be integrated within an iterative
algorithm Pseudorange Ranging (PR) [183] or similarly, combined as single or double dif-
ferences in SD and DD, respectivelty [153]. Also single shareable satellites can be exploited
by a networked GNSS receiver for a novel geometrical solution named IAR. Differently
from ranging sensors, collaborative GNSS-based techniques, which foreseen a network-based
exchange of information, can suffers of poorly predictable delays due to the network infras-
tructure (e.g. latency, network congestion, etc.). Furthermore, while the first are performed
passively by a single agent relying on its on-board local clock, the latter requires additional
adjustments to mitigate time issues enabling consistent merge of the measurements obtained
by other asynchronous receivers, as discussed in Chapter 3.

As introduced in Chapter 3, the following differential techniques have been deeply inves-
tigated in GNSS since the early phases of the development of this technology. The theoretical
approach reported in the next sections has been inspired replacedinto the literature on DGPS
[83] but it will be extended in this thesis to a more general framework. Differently from this
consolidated solutions indeed, in the context of multi-agent CP, it is not assumed to deal
with a static reference base station and the observables from the receivers are not assumed
to be synchronized neither augmented through precise corrections. This aspect differentiates
the approach from RTK and DGPS relative positioning, in which reference stations with
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precisely known positions are used to provide differential corrections or relative positioning
data. The benefits introduced by the use of collaborating agents as anchors of opportunities
has been assessed theoretically and experimentally in set of previous research contributions
[123, 117, 86, 73] and it has recently become appealing in novel transportation paradigms
such as Intelligent Transport System (ITS) [3].

Prior to the description of differential techniques, the section recall a solution to compen-
sate for the time-misalignment of the pseudorange measurements exploiting the pseudorange
rate or Doppler shift [35], thus enabling the whole set of algorithms within a network of
asynchronous GNSS receivers, as presented in the general scheme of Chapter 3.

The performance of the baseline estimation can be improved through a weighting strategy
at the cost of an a-priori knowledge of the error covariance matrices of such differential
measurements. Therefore, a formal derivation of this statistical property is provided for
each technique. It is worth recalling that all the measurements used in this research are
code-based pseudorange measurements but the same approaches can be applied to carrier-
phase measurements with specific solutions to solve for the integer ambiguity [83].

4.3.2 Time-compensation of asynchronous observables (Doppler-based)

When two independent GNSS receivers are considered to retrieve pseudorange measure-
ments, the offset between their reception times induces a partial uncorrelation of the cor-
related errors [35]. This issue limits the effectiveness of differential methods in cancelling
correlated errors. To compensate for this, the two receivers have to share the timestamps of
their pseudorange measurements and the target should be able to measure the Doppler shift
or the pseudorange rate relative to the common satellites. It is fundamental to recall that
the accuracy of the time-stamps also depends on the quality of the clock bias estimation of
previous PVT computation. Knowing the last two estimated timestamps tjk and tik, referred
to the common GNSS time scale, an estimated time offset, ∆tij,k = tik − tjk is obtained.
By exploiting the Doppler measurements collected by one of the receiver it is possible to
compensate for asynchronous pseudorange measurements through the following

ρ̂s
i (tjk) = ρs

i (tik + ∆tij) = ρs
i (tik) + ∆tij,k · λ · ϕs

i (tik) (4.11)

where λ is the wavelength of the carrier frequency of the transmitted signal according to
the GNSS constellation (e.g. λ ≈ 0.190293 m for GPS L1 signals) and ϕs

i (tk) is the estimate
of the Doppler frequency shift at tk for the s-th satellite. The Doppler estimate is hence
converted to a pseudorange change rate that can be used to predict the measurements at a
given time via linear regression. This synchronization solution holds well for static receivers
but it can lose accuracy in case of high relative dynamics between satellites and receivers.
Sudden changes in speed such as receiver acceleration could lead to wrong compensation,
but the resulting error has been shown to be negligible for vehicular applications [35].

In the following, the measurements obtained by two cooperating agents are considered
synchronized through the presented strategy.

4.3.3 Raw Pseudorange Ranging (PR)

This technique has been introduced in [183] in the framework of vehicular relative po-
sitioning. The idea relies on the exploitation of raw pseudorange measurements to jointly
solve for the baseline vector contextually to the positioning solutions.

At each time instant, tk, the position of the agent i is expressed as the true position of
the agent j and the baseline vector dij(tk), as
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xi(tk) = xj(tk) + dij(tk). (4.12)

The PR algorithm computes the baseline vector by means of the linearization of the
pseudorange equations (as modelled in Chapter 2).

ρs
j(tk) = ||xs(tk) − xj(tk)|| + δbj + ϵs

c + ϵs
j,u (4.13)

ρs
i (tk) = ||xs(tk) − xj(tk) − dij(tk)|| + δbi + ϵs

c + ϵs
i,u. (4.14)

Given a set of S shareable satellites between the two agents and defining a linearization
point, a WLS approach can be used to solve for the following equation

∆ρij(tk) =
[︄

Hj 0N×4
0N×4 Hj

]︄⎡⎢⎢⎢⎣
∆xj

∆bj

∆xi

∆bi

⎤⎥⎥⎥⎦ (4.15)

where ∆ρij(tk) = [ρi − ρj ] for the same satellites and Hj is defined as the Direction
Cosine Matrix computed at tk by the agent j, as for the PVT algorithm described in Chapter
2. By inverting the relationship between the two locations (4.12), the (4.15) can be solved
iteratively to estimate the baseline vector

d̂ij(tk) = x̂i(tk) − x̂j(tk) (4.16)

According to (4.15), the error covariance matrix on the baseline vector is derived similarly
as for Section 4.2.1. The difference is that the baseline vector is obtained with a high
redundancy of measurements which typically increases the precision of the solution, thus
reducing the covariance elements.

4.3.4 Single Difference Ranging (SD)

This method computes the baseline vector by exploiting a set of differential observable
known as single differences.

GNSS Satellite 𝑠
epoch 𝑡𝑘

GNSS 
receiver 𝑗

GNSS 
receiver 𝑖

𝜌𝑖
𝑠(𝑡𝑘)𝜌𝑗

𝑠(𝑡𝑘)

𝒅𝑖𝑗(𝑡𝑘)

Figure 4.6: Single Difference principle applied to two GPS receivers. Image taken from [194].

A generic single difference can be defined between two GNSS receivers i, j tracking a
common satellite s as the difference between synchronous pseudorange measurements [83].
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Ss
ij(tk) = ρs

i (tk) − ρs
j(tk)

= ∆rij(tk) + ∆bij(tk) + ∆ϵij(tk)
(4.17)

where ∆bij(tk) is difference between the clock biases of the two agents and the ∆ϵij is
a noise term which aggregates all the non-correlated errors. In fact, provided that all the
measurements are synchronous as expected from (4.11), single differences allow to cancel the
satellite clock bias and correlated bias terms affecting pseudorange measurements. Under
the assumption of close proximity of the receivers, ionospheric and tropospheric delay are
also effectively removed due to their high spatial correlation [90]. Besides the cancellation
of correlated error terms, the variance of the uncorrelated errors, such as multipath, is
increased due to the typical low spatial and temporal correlation. This noise contributions
are hence aggregated in ∆ϵij(tk). The behaviour of multipath errors are indeed caused by
satellite, receiver, reflector or scatter movement which are mainly responsible for its high
time variability [190, 105].

A useful notation for the computation of a set of single differences can be derived in
matrix form, as

⎡⎢⎢⎢⎢⎣
S1

ij(tk)
S2

ij(tk)
...

SS
ij(tk)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 0 · · · . . . 0 0
0 0 −1 1

...
... 0 0

...
... · · · . . .

. . . . . . ...
...

0 0 0 0 · · · · · · −1 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1
i (tk)

ρ1
j (tk)

ρ2
i (tk)

ρ2
j (tk)

...

...
ρS

i (tk)
ρS

i (tk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.18)

The computation of the baseline vector based on SD is performed through⎡⎢⎢⎢⎢⎣
S1

ij(tk)
S2

ij(tk)
...

SS
ij(tk)

⎤⎥⎥⎥⎥⎦ ≃

⎡⎢⎢⎢⎢⎣
h1

j (tk) 1
h2

j (tk) 1
...

...
hS

j (tk) 1

⎤⎥⎥⎥⎥⎦
[︄

dij(tk)
∆bij(tk)

]︄
(4.19)

In order to compute the covariance matrix of the SD ranging, the following relationship
holds

R(SD)
d =

(︂
H⊤H

)︂−1
H⊤RSDH

(︂
H⊤H

)︂−1
(4.20)

where RSD is the error covariance matrix of the single differences and H is the second
term in (4.19). RSD can be a diagonal matrix if the satellites are not repeated among the
pairs (i.e. each difference is independent) [83]. A generic element of the diagonal of RSD is
hence defined as [RSD]ss = (σs

i )2 +
(︂
σs

j

)︂2
.

4.3.5 Double Difference Ranging (DD)

When the same pair of satellites r and s is visible to both the receivers, a double difference
measurement can be obtained as difference of two single differences

Dsr
ij (tk) = Ss

ij(tk) − Sr
ij(tk) = ∆Rsr

ij + Σij (4.21)
where Ss

ij is a single difference computed according to (4.17) while Σij is a random variable
collecting residual error contributions that cannot be cancelled due to the non-correlation
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Figure 4.7: Single Difference principle applied between two GPS receivers.

between the measurements such as multipath, second-order noise components of the receiver
front-ends and additional non-modelled noise contributions [90].

The term ∆Rsr can be expressed highlighting the dependency from the baseline vector
as

∆Rsr(tk) =
[︂
hs

i (tk) − hs
j(tk)

]︂T
dij(tk) (4.22)

where hs
m is a unitary steering vector defined as in Chapter 2.

The computation of DD measurements can be expanded from the linear relationship
Dij(tk) = LDDSij(tk), as

⎡⎢⎢⎢⎢⎣
D12

ij (tk)
D13

ij (tk)
...

D1S
ij (tk)

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Dij

=

⎡⎢⎢⎢⎢⎢⎣
−1 1 0 · · · 0
−1 0 1 . . . 0
...

... . . . . . . ...
−1 0 · · · · · · 1

⎤⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

LDD

=

⎡⎢⎢⎢⎢⎢⎢⎣
S1

ij(tk)
S2

ij(tk)
S3

ij(tk)
...

SS
ij(tk)

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Sij

. (4.23)

Equation (4.22) can be then expanded, neglecting the noise contribution in (4.21), in⎡⎢⎢⎢⎣
D12

ij (tk)
D13

ij (tk)
· · ·

D1S
ij (tk)

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Dij

≃

⎡⎢⎢⎢⎣
[︁
h2

i (tk) − h1
i (tk)

]︁[︁
h3

i (tk) − h1
i (tk)

]︁
· · ·[︂

hS
i (tk) − h1

i (tk)
]︂
⎤⎥⎥⎥⎦

⏞ ⏟⏟ ⏞
HD

dij(tk) (4.24)

collecting S − 1 double difference measurements from a set of S satellites simultaneously
visible to i and j. This set of equations can be exploited to estimate dij(tk) through a Least
Square (LS) algorithm in the form of

d̂ij(tk) ≃ (HD(tk)⊤HD(tk))−1HD(tk)⊤Dij(tk) (4.25)

where Dij(tk) and HD(tk) are respectively the first and the second term in (4.1).
In order to determine the steering vectors, an approximation of the two positions is

needed. A GNSS receiver can solve for the aiding position by using the external pseudorange
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measurements. By means of this approach the exchange of the estimated position is not
necessary since it can be computed autonomously by the target.

As for the previous methods, uncorrelated errors such as multipath, are increased by
differentiation. Furthermore, according to what demonstrated in [35], statistical assumption
of mutual independence can be made on different pseudorange measurements but it cannot
be assessed for the resulting double difference measurement.

In addition, the variance for such a kind of measurements is four times the variance of
each involved pseudorange (assuming i.i.d. pseudorange measurements).

A general algebraic equation can be used to evaluate the covariance of inter-agent collab-
orative measurements relying on the covariance of the LMS estimator in (4.25). It is hence
sufficient to compute

R(DD)
d (tk) =

(︂
H⊤

D(tk)HD(tk)
)︂−1

H⊤
D(tk)RDD(tk)HD(tk)

(︂
H⊤

D(tk)HD(tk)
)︂−1

(4.26)

where RDD is the covariance matrix of the vector Dij(tk) which is in turn computed from
the SD covariance (4.20), as

RDD(tk) = LDD(tk)RSD(tk)L⊤
DD(tk) (4.27)

where LDD is the linear relationship between single differences and double difference
measurements, whose errors are still assumed independent for the two receivers. The use
of a reference satellite for the construction of the double differences implies that RDD is
non-diagonal, cross-correlation terms among these measurements cannot be neglected.

Timing of observables exchange through packet network

The timing of the data transmission could represent a bottleneck in the actual implemen-
tation of the GNSS collaborative approaches. This aspect affects both static and dynamic
applications in terms of time-consistency of the exchanged data but it can induce dramatic
biases in kinematic scenarios when the relative positions of satellites and users change over
the time. However, the feasibility of a GNSS-based time synchronization has been considered
plausible in high-dynamic multi-agent systems such as vehicular networks[78]. A GNSS time
scale can be indeed considered as a reference for the agents, whenever they are capable to
solve for their location and time. Although network-based syncrhonization strategies fall
outside the scope of this research, we remind to the reader that a set of network protocols
have been conceived to the purpose for the synchronization of connected vehicles [78], thus
supporting modern ITS paradigm. The effect of the epoch offset between the agents returns
a time-inconsistency in the measurements in all of the listed cooperative methods.

Despite the misalignment among the measurements epochs of the agents, it is worth
recalling that such a kind of network connectivity adds a transmission delay according to
the throughput and the latency of the network infrastructure as exemplified in Figure 4.8.

Figure 4.8 describes the exchange of GNSS data on a temporal axis, assuming that the
agents A and B are aligned to the GNSS time scale but providing asynchronous positioning
solutions, thus inconsistent set of observables.

Blue dots and orange dots show the measurements epochs for agent A and agent B
respectively, in which each receiver estimates the position and updates the set the pseudor-
anges measurements. The variable ∆t is the time difference between agents’ measurements
epochs, while RTT = τ1 + τ2 is the Round Trip Time, which is mainly determined by the
communication network. The term τ1 is relevant for actual collaborative strategies in which
an aiding request is foreseen. On the contrary, it can be neglected if raw data are available
independently from an active requests.
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Figure 4.8: Timing of the exchange of navigation data for the computation of collaborative mea-
surements between agents retrieving asynchronous measurements and PVT solutions.

In the following, a set of relevant GNSS-based methods addressing the baseline estima-
tion are described in detail according to their input requirements and their computational
complexity. A preliminary discussion is also provided concerning the synchronization issues
of the measurements coming from asynchronous receivers, according to what has been dis-
cussed so far. Eventually the analysis of the uncertainties on the estimation is provided for
each method. A more compact notation will be adopted to distinguish the roles of each agent
within a cooperative framework. For an improved readability indeed, A and B subscripts
will be replaced by i and j to identify generic aiding agent and aided agent in a multi-agent
scenario.

4.4 Inter-agent Ranging (IAR)
This section provides a description of an original technique for the computation of the

baseline length among connected GNSS receivers presented in [124, 126]. The IAR method
exploits the steering vectors computed contextually in the PVT algorithm and the current
pseudorange measurements for the computation of pairwise baseline lengths between two
agents. This method differs from other solutions because the baseline vector is not computed
and the baseline length is the only information provided. The method is based on the
exchange of a part of the Direction Cosine Matrix (i.e. steering vector) and the corresponding
pseudorange measurement to obtain d̂

s
ij(tk), where s identifies the satellite shared for the

computation.

4.4.1 Theoretical Inter Agent Range

A scenario in which the agents i and j observe a common satellite in LoS is addressed in
the following, according to Figure 4.9. The scheme depicts a static scenario or equivalently
the snapshot of a kinematic scenario at a given time instant tk.

In order to discuss the theoretical framework of the IAR, the basic geometry is hereafter
defined with exact distances and positions, assumed as sides and vertices of the aforemen-
tioned geometrical arrangement. The location of the satellite, xs(tk), is obtained from the
computation of the orbit equation at time tk, defined by the ephemeris carried by the broad-
casted navigation message [136].
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Figure 4.9: IAR geometrical scenario. Ranging description with highlighted ambiguity circumference
and ambiguity line.

Given the true satellite-to-user ranges rs
i (tk) and rs

j (tk) and the respective steering vectors
hs

i (tk) and hs
j(tk), the IAR can be computed by solving for the unknown of interest, ds

ij(tk),
by means of the Carnot theorem (or law of cosines). The resulting computation is

ds
ij(tk) =

√︂
rs

i (tk)2 + rs
j (tk)2 − 2 rs

i (tk) rs
j (tk) cos γ(tk) (4.28)

where γ(tk) is the angle included between the two steering vectors w.r.t. the shared-satellite
C and can be computed by means of a dot product as

γ(tk) = cos−1
(︂
hs

i (tk) · hs
j(tk)

)︂
= cos−1

(︂
hs

i (tk)hs
j(tk)T

)︂
.

(4.29)

The equivalence in (4.29) is due to the unitary norm of the steering vectors, by definition.
In real case the joint effect of incorrect satellite-to-user range measurements and the

geometry of the observed constellation characterizes the distribution of the positioning so-
lution, thus the computation of (4.29). Input uncertainties must be discussed according to
GNSS literature, to evaluate the error propagation through the IAR computation steps. The
inputs of (4.28) are hence replaced by the corresponding random variables according to

d̂
s
ij(tk) =

√︂
r̂s

i (tk)2 + r̂s
j(tk)2 − 2 r̂s

i (tk) r̂s
j(tk) cos γ̂(tk) (4.30)

The notation d̂
s
ij(tk) allows to highlight the dependency from the involved agents and

satellite as shown in Figure 4.9. To compute (4.30), a user needs first to establish the
cooperation with an available aiding agent in order to retrieve the quantities involved in the
IAR computation.
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It worth mentioning that when the magnitudes of the range measurements are similar,
the (4.28) implemented in floating point can lead to numerical cancellation, therefore a stable
solution for the IAR is provided in the following.

4.4.2 Numerically-stable Law of Cosines for GNSS applications

The popular law of cosines, a.k.a. Carnot Theorem of triangles, relates the values of the
three side lengths and one angle in a triangle ABC, as

c2 = a2 + b2 − 2ab cos γ (4.31)

where a,b and c are the lengths of the sides and γ is the angle included between the sides
a and b.

 

 

 

 

A B

C

C

 

 

Figure 4.10: Triangular geometry emphasizing the limiting conditions of IAR implementation: a ≃ b
and γ ≃ 0.

According to the knowledge of three of the aforementioned elements, the equation for a
side or an angle can be solved. Equation (4.31) can be straightforwardly implemented in
floating-point arithmetic but it can produce very inaccurate results whether is used under
certain conditions. If the investigated triangle is highly acute, numerical results show high
relative errors due to dramatic numerical cancellation in the subtraction of very similar
quantities. This issue, known as loss of significance is highly impacting when large distance
measurements are involved in (4.31). By rearranging (4.31) it is possible to compute the
value of c according to

c =
√︂

a2 + b2 − 2ab cos γ (4.32)

given that a ≈ b have comparable magnitudes and angle γ is severely close to zero, then
γ ≈ 1 [152].

This is the case of terrestrial IAR computation based on satellites-to-receivers range
measurements, whose order of magnitude can easily reach 6 times the one assumed by the
baseline length. In practical terms

a2 + b2 − 2ab cos γ ≃ a2 + a2 − 2a2 cos(0) ≃ 2a2 − 2a2 ≃ 0 (4.33)

even if c = 10−20 can be still represented in floating points arithmetic. A possible
solution to the numerical cancellation is to exploit the Taylor expansion of the cosine for
angle γ approaching γ ≃ 0, as
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c2 = a2 + b2 − 2ab cos γ = a2 + b2 − 2ab(1 + cosγ − 1) (4.34)

=
(︂
a2 + b2 − 2ab

)︂
− 2ab(cosC − 1) (4.35)

=
(︂
a2 − 2ab + b2

)︂
− 2ab

(︄
−γ2

2! + γ4

4! + o(γ4)
)︄

(4.36)

≃ (a − b)2 + 2ab

(︄
γ2

2! + γ4

4!

)︄
(4.37)

(4.38)

which gives a stable formula to prevent numerical cancellation is then

c =
√︄

(a − b)2 + abγ

(︃
1 − γ2

12

)︃
(4.39)

In (4.39), both the terms of the sum are positive and error cancellation is only possible for
the squared term (a−b)2, which turns to be critical only in case of zero-baseline tests. It has
been shown that in general, the noise affecting the code-based pseudorange measurements
mitigates cancellation phenomena when (4.39) is used.

4.4.3 Time-compensation of asynchronous observables (orbit-based)

As a first step for IAR estimation, a shareable satellite s, has to be jointly identified by
agents i and j.

Let suppose that the agent i sends a request, at time t1. At such a time epoch, i
retrieves the range, rs

i (t1) and computes the steering vector ĥs
i (t1). Agent i is able to send

the timestamped steering vector to agent j. Such a request is received by an aiding agent
at time t2 = t1 + τ1, which can fall randomly between two measurements epochs of the
aiding receiver. The misalignment between the measurement epochs of the agents must be
taken into account to manage the time-inconsistency of the measurements coming from each
receiver. For the aforementioned state-of-the-art methods, this compensation is provided by
means of an estimate of the changing rate of the satellite-to-user range which is typically
measured by the receiver itself relying on doppler measurements [36]. Unfortunately, this
approach does not provide sufficient information to properly predict the associated steering
vector for the IAR computation. However, by knowing the ephemeris and timestamps of the
received data, the aiding agent can compensate for satellite motion properly through (4.40).
The closest measurements in time that j is able to use are the measurements taken at time
t0, that are then compensated for ∆t = t1 − t0 seconds by linear regression to make them as
consistent as possible with the information provided by i. The evaluation of

r̂s∗
j (t1) = r̂s

j(t0)ĥ
s
j(t0) + [xs(t1) − xs(t0)] (4.40)

r̂s∗
j (t1) = ||r̂s∗

j (t1)|| (4.41)

ĥs∗
j (t1) =

r̂s∗
j (t1)

r̂s∗
j (t1)

(4.42)

allows agent j to compute an estimate of the angle γ(t1) in (4.29) using the predicted ĥs∗
j (t1)

and the received ĥs
i (t1).

At time t3 = t1 + RTT , agent i receives γ̂(t1) and r̂s∗
j (t1) and determines d̂

s
ij(t1) through

(4.30).
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Notice that the communication latency affects the ageing of the estimated IAR, which
is computed RTT seconds after agent i measurement epoch t1. The network latency cannot
be bypassed in a cooperative ranging framework, and the value of RTT may limit the set of
possible applications of this paradigm, even for a low-latency DSRC communication link.

In summary, agent j must share partial information on its position, communicating γ̂(tk)
and r̂s∗

j (tk) to the aided agent to allow the latter to retrieve the baseline length estimation
d̂

s
ij(tk). However, even considering the ideal IAR computation (4.28), the position of the aid-

ing agent j at tk cannot be retrieved by i because the direction information is not exchanged.
Indeed, the dot product shown in (4.29) is not invertible such that agent i has only a partial
knowledge of the position of j. It can only assume that its position lies on the circumference
Cj shown in Figure 4.9, which is the locus of the points at distance ds

ij(tk) from the receiver i
and rs

j (tk) from the satellite s. By the aiding side, the only knowledge of the steering vector
hs

i (tk) bounds the uncertainty on the location of agent i to a straight line, Li, which passes
the through points xi(tk), xs(tk) and the center of Cj . This aspect prevents the possibility
to retrieve the position of the aiding agent by inverting the problem, thus its location is not
exchanged neither explicitly such as for APD nor implicitly such as for the other GNSS-only
ranging techniques.

A key point in the analysis of the IAR measurement as a random variable regards the
effects of non-linear operators applied on the well-modelled input random variables (i.e. pseu-
doranges) in (4.30). Although the computation is performed through a non-linear equation,
previous works assess that the error distribution of the IAR can be well approximated with a
Gaussian distribution when Gaussian inputs are considered and the positioning error is neg-
ligible w.r.t. the baseline length [124]. However, statistical moments of the estimated IAR
as a generic distribution are hereafter derived expanding the range terms according to the
pseudorange error model discussed in Chapter 2. Satellite-to-user ranges are characterized
by different standard deviations σs

i and σs
j for each GNSS receiver and shared satellite s. To

limit the notation complexity, all the references to the shared satellite s and time index tk

will be dropped hereafter. Accordingly, the range r̂s∗
j (tk) and the steering vector ĥs∗

j (tk) will
be simply written as r̂j and ĥj , respectively.

4.4.4 Mean and variance analytical derivation

Consider a generic function of n random variables

Y = g(X1, X2, ..., Xn) (4.43)

and its Taylor expansion about the mean values µX1 , µX2 , ..., µXn

Y = g(µX1 , µX2 , ..., µXn) +
n∑︂

i=1
(Xi − µXi)

∂g

∂Xi
+

+ 1
2

n∑︂
i=1

n∑︂
j=1

(Xi − µXi)(Xj − µXj ) ∂2g

∂XiXj
+ ... (4.44)

where all the partial derivatives of g(X1, X2, ..., Xn) are evaluated at (X1 = µX1 , X2 =
µX2 , ..., Xn = µXn), as well.

By truncating the expansion at the first order and applying the expected value it is
straightforward to obtain

E[Y ] ≃ g(µX1 , µX2 , ..., µXn) (4.45)
since the first order terms are canceled by the operator itself. The same operations applied
to (4.30) lead to

E[d̂ij ] ≃
√︂

(ri)2 + (rj)2 − 2rirj cos γ. (4.46)
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which is the definition of the ideal dAB (4.28), assuming zero-mean distribution of the error
affecting the variables r̂A,r̂B and γ̂. According to (4.46), equation (4.30) can be wrongly
thought as an unbiased estimator of dij since E[d̂ij ] − dij = 0. However, the statistical
behaviour of the estimated IAR, obtained through a Monte Carlo simulation campaign,
shows generally non-null values of the bias, whose distribution depends on the considered
geometry. The non-null bias contributions are hence attributed to the terms in the Taylor
expansion which are truncated due to their higher order, but they are small values compared
to the simulated baseline.

The truncation of the Taylor expansion applied to (4.30) is exploited to obtain a closed-
form approximation of the theoretical IAR variance as well. The variance of a function of
multiple random variables is derived as

σ2
Y ≜ E[Y 2] − E[Y ]2

≃
n∑︂

i=1
σ2

Xi

(︃
∂g

∂Xi

)︃2
+

∑︂
i,j=1,...,n

i /=j

αijσXiσXj

∂g

∂Xi

∂g

∂Xj
(4.47)

where αij is the correlation coefficient [56] of two random variables Xi, Xj defined as

αij = cov(Xi, Xj)
σiσj

. (4.48)

As a consequence, the variance of d̂ij can be written as

σ2
d̂

≃ σ2
i

(︄
∂d̂ij

∂r̂i

)︄2

+ σ2
j

(︄
∂d̂ij

∂r̂j

)︄2

+ σ2
γ̂

(︄
∂d̂ij

∂γ̂

)︄2

+ 2 αij σiσj
∂d̂ij

∂r̂i

∂d̂ij

∂r̂j
+ 2 αiγ̂ σiσγ̂

∂d̂ij

∂r̂A

∂d̂ij

∂γ̂
(4.49)

+ 2 αjγ̂ σjσγ̂
∂d̂ij

∂r̂j

∂d̂ij

∂γ̂

which can be easily expressed in a closed-form computing the partial derivatives. Equation
(4.49) will be referred to as generalized theoretical formula for the IAR variance.

In order to simplify (4.49), the random variables involved may be assumed uncorrelated.
With this in mind, we can derive a simpler form of (4.47) by setting αij = 0 for i /= j
obtaining

σ2
Y ≃

n∑︂
i=1

σ2
Xi

(︃
∂g

∂Xi

)︃2
. (4.50)

The variance of the estimated IAR d̂ij can be therefore approximated as

σ2
d̂

≃ 1
d2

ij

[σ2
i (ri − cos(γ)rj)2+

+ σ2
j (rj − cos(γ)ri)2+

+ σ2
γ̂(sin(γ)rirj)2] . (4.51)

where dij is as in (4.28) and highlights the dependency from the true value of the baseline.
Assuming null cross-correlation between estimated satellite-to-user ranges and γ̂ (i.e.

αiγ̂ = αjγ̂ = 0) is a reasonable choice since the angle γ computed from the steering vectors
should maintain a very poor correlation to one specific range among those involved in the
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4 – GNSS-based collaborative ranging algorithms

computation of the position solution. The same assumption becomes less reasonable when
dealing with the coefficient αij . The residual error term ξi(tk) affecting the corrected pseu-
doranges affects in turn the estimated ranges r̂i and r̂j and these User-equivalent Range
Error (UERE) terms tend to be highly correlated for single-frequency users, due to resid-
ual ionospheric errors [90]. Despite this, the experimental validation provided in Chapter 5
supports the removal of cross-correlation terms as an acceptable approximation for the IAR
variance model.

In [126] a simplified equation of the IAR variance was computed for two users lying on
the same LTP, assuming null steering error, i.e. a perfect estimation of the angle γ (4.29).
Under the same assumptions, it can be shown that (4.51) and the solution derived in [126] are
equivalent if and only if ri = rj i.e. when the satellite is equidistant from the two peers. The
characterization provided through this research is therefore coherent with the distribution
presented in [126], considering that the condition σγ̂ = 0 cancels the third term in (4.51).
Moreover, unlike the empirical derivation in [126], the two users are not supposed to lie on
the same LTP.

The variance computed through (4.51) or through the generalized theoretical formula
(4.49) can therefore influence the choice of the satellite, provided that the aiding agent is
able to estimate σ2

j , rj , σ2
γ̂ and γ, while σ2

i and ri can be estimated by the aided agent.
Furthermore, it allows to determine a weighted strategy for the averaging of the estimated
IAR measurements.

4.5 Final remarks
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Figure 4.11: Example of simultaneous GNSS satellites visibility for two agents following an exper-
imental trajectory in urban environment (upper) and practicability of GNSS-only ranging methods
along the time (bottom).

PR, SD and DD methods, require a substantial exchange of pseudorange measurements
between pair of collaborating receivers. When the exchange of at least three pseudorange
measurements, any receiver can solve the position of the other user sharing those data.
Basically, all the classic methods allow implicitly to retrieve and track the position of col-
laborating agent, and they always need three or more shared satellites. The APD method
makes no exception since it requires the explicit exchange of absolute positioning solutions
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thus allowing to any collaborating receiver to know the location of other users. On the other
hand however, it does not require shared satellites thus being suitable even in very poor
common visibility conditions.

Each receiver employs a different set of satellites to compute its own position thus the in-
tersection of the two sets could contain less than three satellites, making the aforementioned
techniques unsuitable in a harsh environment. Indeed, observing less than three shareable
satellites, only APD can be employed to compute the range between the agents. By iden-
tifying a worst-case scenario, only one satellite is assumed shareable due to the presence of
masking obstacles which obstruct LoS. An example of the number of satellites in common
view in a real urban scenario is reported in Figure 4.11, where the variability of the num-
ber of satellites along the time (upper plot) prevents the use of some ranging techniques in
some time intervals (lower plot). Besides its sub-optimality the IAR method is conceived to
require the minimum amount of information to be exchanged between networked receivers,
thus reducing both the need of multiple shared satellites and the network overhead.
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Chapter 5

Simulation analysis and assessment
of GNSS-based baseline length
computation

In the perspective of a tight integration of collaborative ranging measurements as addi-
tional information to the positioning problem, a model of their statistical distribution has
to be accurately known. This hold especially for navigation filters which rely on Bayesian
estimation. The scope of this chapter is indeed to provide a detailed analysis of the base-
line estimation methods presented in Chapter 4 by means of simulation and experimental
analysis specifically designed for this purpose. Although differential techniques have been
widely investigated in geodesy and within the framework of relative positioning and DGPS
[197, 186, 196], few contributions addressed the statistical characterization of the baseline
length between two GNSS receivers. DGPS and RTK typically exploit the baseline mea-
surement to tackle the problem of error mitigation. They aim at providing high-precision
and high-accuracy positioning solutions within specifically-designed infrastructures includ-
ing survey-grade base station and a "radiobeacon" transmitter that broadcasts correction
data (i.e. fixed reference base station and fixed receiver or base-rover) [90]. The statistical
distribution of the baseline length is often ignored or oversimplified and heuristic rules are
used to select the best subset of satellites for the computation of differential corrections. Our
interest in a better understanding of the statistical properties of the baseline measurement
is oriented to a more suitable design of a hybrid navigation filter capable to integrate such
measurements along with GNSS standalone measurements.

An extensive work was pursued in this thesis to characterize the IAR methods which,
differently from the state-of-the-art differential solutions, directly provides the baseline length
without computing the full baseline vector, according to the nomenclature of Chapter 4. This
key-aspect impact on its statistical properties.

Therefore, an assessment of the IAR statistical model presented in Chapter 4 is provided
in this chapter by means of simulation environment in ideal conditions and by means of
experimental campaigns. To the purpose, a geometrical framework for relative distance of
pairwise cooperating receivers was proposed in [126] and it is recalled hereafter.

In order to perform a fair comparison among the different baseline computation methods
which typically exploit multiple satellites weighted measurements, a weighted IAR compu-
tation, named W-IAR is then proposed in Section 5.2. Eventually, differential methods and
W-IAR will be compared in terms of

• measurement statistical distribution and model
• inter-measurements cross-correlation w.r.t. standalone GNSS measurements
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5 – Simulation analysis and assessment of GNSS-based baseline length computation

to properly support analysis and results of the following chapters.

5.1 Analysis and assessment of IAR model
This section provides a statistical analysis oriented to the assessment of the IAR sta-

tistical model presented in Chapter 4. The validity of the model is fundamental to the
aggregation of multiple IAR measurements through weighted strategies and in turn to a
reliable initialization and feeding of the hybrid navigation filters which will be described in
Chapter 6.

5.1.1 Geometrical Model

The collection of results presented in this section highlights the behaviour of the statistical
moments of the IAR equation (4.28), related to the triangular geometry that has been defined
by the cooperating pair composed by i-th and j-th agent and the shared satellite s.
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Figure 5.1: Hemispherical cap lying on the LTP centered in xT .

An exhaustive evaluation of the mean and variance of a single IAR measurement was
performed by varying the position of the shared satellite over the hemispherical surface
depicted in 5.1. The spherical cap in Figure 5.1 was intended to lie on the LTP of the
target agent i, (see Appendix A for details) and it corresponds to the locus of points covered
by any possible satellites orbiting the Earth at a given distance rs

i . It is worth remarking
that although a real satellite-to-agent range changes with the position of satellite along its
trajectory, this aspect is poorly relevant in terms of relative geometry of the two agents.

Let recall (4.49) as generalized equation to compute the IAR variance σd̂ = Var(d̂(IAR))
derived for the IAR as a function of the standard deviations of pseudorange, the angle
formed by the steering vectors and the positions of the agents. In order to investigate the
relationships between σd̂ and the system geometry, the values of the three σ-parameters were
kept fixed while the relative coordinates of the shared satellite varied. Given an intuitive
strong dependency of the IAR accuracy from the uncertainty on the angle γ included between
the steering vectors, the examples reported hereafter are obtained from three representative
variations of this parameter: null (a), small (b) and severe (c) error variance on γ, by acting
on the parameter σ̂γ . The values has been chosen according to their relationship w.r.t. the
position error covariance of the agents. Even neglecting any GDOP-related effects, it can be
shown that the value of σγ̂ also varies according to the position of the shared satellite.
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5.1 – Analysis and assessment of IAR model

5.1.2 Variance behaviour in single satellite IAR

The following sample static scenario includes an aiding agent lying on the LTP centered
in its true location xT and an aiding agent located at a distance of 100 m N-E direction. We
are interested in observing the behaviour of σd̂ varying the position of the shared satellite,
xs.

Figure 5.3 and Figure 5.2 present the inverse relationship between IAR bias and variance
w.r.t. the shared satellite position. All the figures are obtained by Monte Carlo simulations
counting for 100.000 trials for each azimuth-elevation pair with a granularity of 1 degree on
elevation and 2 degrees on azimuth.

(a) IAR bias for σγ̂ = 0 (b) IAR bias for σγ̂ = 1 · 10−7 (c) IAR bias for σγ̂ = 5 · 10−7

Figure 5.2: Simulated evaluation of the bias of the IAR (color-scale) measurements according to the
position of the shared satellite and varying the magnitude of σγ̂ in [0, 1 · 10−7, 5 · 10−7], d = 100 m,
σi = σj = 7.03 m.

(a) σd̂ for σγ̂ = 0 (b) σd̂ for σγ̂ = 1 · 10−7 (c) σd̂ for σγ̂ = 5 · 10−7

Figure 5.3: Analytic evaluation of σd̂ (color-scale) according to the position of the shared satellite
and varying the magnitude of σγ̂ in [0, 1 · 10−7, 5 · 10−6], d = 100 m,σi = σj = 7.03 m.

As it can be observed in the aforementioned plot series, the value of σd̂ intuitively increases
with σγ̂ while the its dynamic range over the skyplot overall reduces with its increment. The
value σγ = 5 ·10−7 was chosen because it is representative of a further inversion phenomenon
of both bias and variance independent behaviours over the hemispherical sample space:
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5 – Simulation analysis and assessment of GNSS-based baseline length computation

higher σd̂ regions tends to turn in region characterized by lower value σd̂ according to the
uncertainty on the angle γ̂.

In order to extend the discussion, the value of σγ = 5 · 10−7 was chosen, and Figure 5.4
shows how varying the position of the aiding agent, the symmetry is maintained w.r.t. to a
direction orthogonal to the LoS between the cooperating agents.

(a) AzB = 90°, ElB = 0° (b) AzB = 180°, ElB = 0° (c) AzB = 220°, ElB = 0°

Figure 5.4: Analytic evaluation of σd̂ (color-scale) varying the azimuth of the aiding agent j, w.r.t.
the aided agent i. Parameters: σγ̂ = 0.5 · 10−6 d = 100 m, σi = σj = 7.03 m.

By changing both and the azimuth of the aiding agent, such as in Figure 5.5, one can
notice that the minimum variance can be observed for satellites roughly located in the same
area of the skyplot nearby the relative location of the aiding agent. We remark that high
values of σγ̂ reduce the range of the standard deviation which is this case approximately
equal to 1 m, meaning the the difference w.r.t. to satellites located in different portion of
the sky might be not remarkable.

(a) AzB = 90°, ElB = 20° (b) AzB = 180°, ElB = 40° (c) AzB = 220°, ElB = 70°

Figure 5.5: Analytic evaluation of σd̂ (color-scale) both the azimuth and elevation angle of the aiding
agent j, w.r.t. the aided agent i. Parameters: σγ̂ = 0.5 · 10−6 d = 100 m, σi = σj = 7.03 m.
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5.1 – Analysis and assessment of IAR model

5.1.3 Analytic formula assessment

A sample comparison of the experimental values and results obtained from the generalized
equation (4.47) is provided in this section.

The skyplots in Figure 5.6 are obtained as the difference between simulated and theoret-
ical σd̂ in the same scenario of Figure 5.3 and Figure 5.2.

As the steering error σγ̂ increases, a non-negligible error can be observed in the areas
characterized by high error standard deviation. This is particularly visible in the skyplot in
Figure 5.6c belonging to a plot series obtained by considering the values of σd̂ considered in
Figure 5.3. This behaviour can be reasonably attributed to the neglected cross-correlated
terms in (4.51), that become more relevant as σγ̂ increases (4.49), as well as to the truncation
of the Taylor expansion. However, in this example the simulated IAR variance showed a
difference which is in this case less than 0.6 m w.r.t. the theoretical value given by (4.51).

(a) σγ̂ = 1 · 10−7 (b) σγ̂ = 1 · 10−7 (c) σγ̂ = 5 · 10−7

Figure 5.6: Estimation error varying σγ̂ in case of an aiding peer relatively located at AzB =
90°,ElB = 0°.

In case of availability of more than one satellite in common visibility, a suitable theoretical
formula allows to make an a priori choice of the shared satellite that will provide the best
trade-off between bias and variance of the error of the estimated IAR. Furthermore, the
formula can be split in three terms which can be estimated without the mutual knowledge
of the explicit positions of the users. Average values and variances of the random variables
involved can be derived by the users to obtain an estimation of the IAR variance which can
be in turn used within further waiting strategies.

5.1.4 Experimental framework in a controlled static environment

A further validation of the IAR statistical model can be performed in a controlled envi-
ronment, exploiting realistic RF signals, but preventing the non-modeled impairments from
affecting the dataset as in an real scenario such as multipath scattering. Two static re-
ceivers have been simulated by means of a professional RFCS IFEN™ NavX®, as shown in
the scheme in Figure 5.7. Such a setup guaranteed a considerable flexibility in the configura-
tion of all the involved parameters. Agents have been simulated with fixed baseline distance
dij = 126.5962 m, as obtained from euclidean distance of LLA coordinates configured at the
RFCS, and reported in Table 5.1.

The same scenario has been scheduled at different times (4-hours step) to collect several
constellation geometries. The RFCS has been configured to generate GPS constellation
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Figure 5.7: Simulation test-bench for IAR performance assessment processing realistic RF signals.

Table 5.1: LLA Coordinates of simulated static agents in a controlled environment.

Agent Latitude (deg) Longitude (deg) Altitude (m)

Aiding 45.065274 7.658969 311.973
Aided 45.064775 7.650414 311.635

according to the scheduled time, thus using realistic geometry and GDOP values at the
receiver. The set of generated signals were affected by ionospheric and tropospheric error as
well as by satellites clock bias. All the correction parameters were carried by the navigation
messages to let the software receiver compensate autonomously for these errors.

Signals have been recorded as digitalized raw samples by means of Ettus Research™

Universal Software Radio Peripheral (USRP) N210 front-end [146]. The samples have been
post-processed through MATLAB® NavSAS GNSS software receiver to get code-based ob-
servables and positioning solutions. The two independent software-defined GNSS receivers
performed the positioning autonomously and asynchronously, both using identical reference
oscillators RFX OS364-13 Oven Controlled Xtal Oscillator (OCXO). The most relevant
signal generation and acquisition settings are reported in Table 5.3.

Output GNSS observables are processed in a CRU, implemented in MATLAB® through
IAR algorithm. Non-synchronized GNSS receivers provided observables and positioning data
at different epochs depending on their signal processing loops (i.e. acquisition and tracking)
and navigation algorithm as referred in Chapter 3. The time misalignment between the
measurements epochs has been compensated through ephemeris to avoid time-inconsistency
between independent measurements, according to ephemeris-based misalignment compensa-
tion (4.40). By considering a relatively short time-span (600 s) for the observation of the
satellites, the de-trended pseudorange measurement have been considered as an ergodic pro-
cess. Their variance has been estimated by means of a second order discrete derivative [42].
Time variance was hence considered as sample variance estimated from such modified time
series and used to evaluate the theoretical formula. Hereafter, for sake of readability, the
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5.1 – Analysis and assessment of IAR model

Table 5.2: Hardware configuration.

Table 5.3: Ettus Research USRP N210.

Parameter Value/Unit

Constellation/Signal GPS/L1
No. of Channels 10
Integration time 20 s
Doppler step 125 Hz
Coherent accumulations 5
Freq. Lock Loop time 10 ms
PVT rate 1 Hz

Table 5.4: NavSAS Software Receiver.

Parameter Value/Unit

Carrier frequency 1575.42 MHz
Intermediate frequency 0 Hz
Sampling Frequency 5 MHz
Quantization bit 16
Sampling mode ’IQ’
Reference clock External
Gain 38 dB

GPS satellites will be identified through the number of their transmitted PRN codes.
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0
20

40

60

80

100

120

140

160
180

200

220

240

260

280

300

320

340

28

23

27

3

15

19

18

14

9

22

1 2 3 4 5 6m

EW

S

90°
80°

70°
60°
50°
40°

30°

20°
10°

(b) Turin, 08:00, 4th April 2018

26

2

1

22

18

17

30

6

21

1 2 3 4m

30°

90°
80°

40°
50°

70°
60°

10°
20°

(c) Turin, 12:00, 4th April 2018

Figure 5.8: Skyplot showing the analytic σd̂ (color-scale) along with the superposition of satellites
azimuth and elevation generated by the RFCS.

Experimental and theoretical values of σd̂ are shown for different satellites and datasets
in Figure 5.9. A good match of the experimental and analytic values is overall present. For
given sets of satellites such as PRNs 21,7,12,11,16 in Figure 5.9a , PRN 28 in 5.9b and PRNs
26,1,22,18,30,21 in 5.9c, the relative estimation error is less than the 15%, such matches are
highlighted in Figure 5.9 with grey circles.

Considering the satellites for which we observe the largest mismatch, we can notice that
they are located nearby the symmetry axis of the skyplot in Figure 5.8.

In fact, Recalling the results presented in Section 5.1.2 and shown in Figure 5.6, this
region is known to lead to inaccurate theoretical estimations when the value of σγ̂ is not
negligible. Although the experimental values of σhatγ was not computed at the time of the
experiment, it can be assumed greater than 5 · 10−6.

5.1.5 Experimental assessment using COTS GNSS Receivers

The results from an on-field experimental test are hereafter exploited to further assess the
validity of the theoretical findings in real environment. The real data were used to obtain an
estimate of the IAR variance considering a real satellite constellation and the real receivers
positions during the experiments. By exploiting raw pseudorange measurements provided by
Commercial Off-the-shelf (COTS) u-Blox® receivers, two different experimental campaigns
have been pursued investigating the IAR computation in real environment:
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Experimental value
Analytic formula

(a) Turin, 00:00, 4th April 2018 (b) Turin, 08:00, 4th April 2018

(c) Turin, 12:00, 4th April 2018

Figure 5.9: Ranking plot of all the shareable satellites based on the STD experimentally observed
and the interpolation of the analytic model.

• a static scenario, where both the aided and aiding receiver performed static positioning
at different baseline lengths.

• a semi-dynamic scenario, in which the aiding receivers was kept static while the aided
receiver was driven in a dense urban scenario.

The tests locations were set in Turin in correspondence of the geodetic coordinates included
in Table 5.5 and 5.6.

The hardware setup of the experiments, shown in Figure 5.10, included two COTS u-blox
M8-T receivers identically configured. The navigation solution rate was set to 5 Hz including
multi-constellation position computation.

The first M8-T receiver was connected to a georeferenced geodetic antenna (whose co-
ordinates are reported in Table 5.5) while the second was installed on-board a car along
with a dual-frequency Swift™ Piksi Multi receiver used as reference. They were both con-
nected to the same Aero Antenna AT1675-382. No clock synchronization was exploited
between the two u-Blox receivers: pseudorange measurements and related positioning so-
lutions were collected according to the independent on-board clocks as performed for the
controlled experiment. The logged raw pseudorange measurements obtained from the M8-Ts
were re-processed offline in order to determine a plain LMS positioning solution considering
only the measurements from GPS satellites. The inter-agent distances were then computed
according to the IAR method (4.30).
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Figure 5.10: Simulation test-bench for performance assessment of GNSS-based ranging methods in
real environment.

Table 5.5: LLA Coordinates of georeferenced geodetic antenna (aiding peer).

Latitude (deg) Longitude (deg) Altitude (m)

45.065277 7.658948 311.804

Table 5.6: Test scenarios for GNSS-based ranging (LLA coordinates of the aided peer).

Name Latitude (deg) Longitude (deg) Baseline (m) Test Duration (s)

S00 45.065407 7.657622 100 565.1
S01 45.066450 7.658056 126 640.2
S02 45.068365 7.656880 360 606.2
S03 45.070769 7.656095 630 622.6

D01 Dynamic Dynamic 200 − 1000 1.3866 · 103

The results presented in this section are obtained by selecting user-to-user output ranges
characterized by a reasonable time difference ∆t between the measurements of the the collab-
orating receivers. By considering high values of ∆t, indeed the correction provided through
(4.40) does not compensate effectively the time-inconsistency of the data. Therefore the
maximum ∆t considered for the IAR computation was 50 · 10−3 s, which guarantees a rea-
sonable margin for the misalignment of different high-rate positioning solutions provided by
popular COTS receivers [163].

Validation of the theoretical model using COTS receiver

Given the positions of the agents and of the shared satellite at a certain time instant, tk,
it is possible to estimate the expected σd̂ by knowing the variances of the random variables
involved in the IAR estimation (4.30) (i.e. σ2

A, σ2
B, σ2

γ̂). The baseline is evaluated through a
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IAR computation based on observations from the experiments and its variance is compared
to the variance predicted by (4.51) in the same conditions. Equation (4.51), used for the
computation of the IAR standard deviation is used in this case with experimentally-estimated
values for the assessment and characterization of STDs of the IAR measurements.

The satellites movement along the tests duration induces a change in the IAR variance
(4.51) as well. However the difference between the minimum and maximum variance resulted
from (4.51) within the test duration is always below 10−5 m in each experiment, thus being
negligible. As a consequence, the variance of the experimental IARs is compared to the mean
of the set of values computed using (4.51) over the observation window. The result is shown
in Figure 5.11, where the theoretical variance reflects the behaviour of the measured variance
for the majority of the satellites. The gaps between the two variances are summarized in
Table 5.7, averaging among all the available satellites.

Figure 5.11: Inter-Agent Range standard deviation estimated from experimental data compared to
theoretical formulas.

Equation (4.51) models the variance of the IAR computed from the experimental datasets
with a good approximation. However, the observations of the random variables (r̂A, r̂B,
γ̂) are collected throughout time and the satellite movement throughout the experiment’s
duration introduces correlation among the random variables. Such a bivariate correlation
can be modelled by the coefficients introduced in (4.47), which can be estimated, on M
observations, as the PCC

α̂ij = 1
M − 1

M∑︂
m=1

(︃
Xi,m − µXi

σXi

)︃(︄
Xj,m − µXj

σXj

)︄
(5.1)

where Xi,m is the m-th observation of the random variable Xi and referes to the pseudorange
measurement observed by the agent i. The correlation coefficients estimated through (5.1)
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Table 5.7: Comparison between theoretical IAR variance and measured variance. The generalized
theoretical formula (4.49) and the theoretical formula with the assumption of null cross-correlation
(4.51) are compared

Experiment
Gap of

theoretical
formula

Gap of generalized
theoretical

formula
Gap reduction

S00 0.362 m 0.322 m 11.1 %
S01 0.749 m 0.698 m 6.8 %
S02 0.151 m 0.099 m 34.4 %
S03 1.049 m 0.698 m 33.5 %
D01 1.683 m 1.094 m 35 %

are employed in the generalized theoretical formula (4.49) to obtain a refined estimation
of the IAR variance. Taking into account the correlation between the measurements, a
better correspondence between the theoretical and experimental values is achieved and this
improvement is quantified in Table 5.7 which highlights a gap reduction between 6.8% and
35%, depending on the experimental conditions.

5.1.6 Weighted IAR measurements

Considering a network A proper variance estimation can be hence reliably obtained for
each IAR contributions through (4.49). If the set of shareable satellites includes more than
one satellite, an effective weighting of the measurements can be applied.

Let suppose that vector d(k)
j = [ d

1(k)
j d

2(k)
j · · · d

s(k)
j ]⊤ includes a set of IAR measure-

ments computed combining local pseudorange measurements with measurements retrieved
from a generic j-th agent with respect to all the shareable s satellites, R(k)

d is the covari-
ance matrix estimated for d(k) and J = [ 1 1 · · · 1 ]⊤ is a design vector, the minimum
variance estimate of d(k) according to the Gauss-Markov theorem is

d̂
(k)
j = σd̂

(︂
J⊤Wd

)︂
(5.2)

where σd̂ = J⊤WJ and W =
(︂
R(k)

d

)︂−1
. Equation (5.2) allows to account for correlations

among collaborative contributions. In the following the IAR method will be always referred to
its weighted version, W-IAR, thus being more suitable for a comparison with the differential
techniques.

5.2 Statistical analysis of baseline estimation techniques
By means of a set of examples obtained for a number of analytical trajectories and Monte

Carlo simulation, this section provides an overview of the statistical properties of collabora-
tive baseline measurements obtained in semi-dynamic environment through the combination
of independent pseudorange measurements affected by WGN. Statistical distribution and
cross-correlation among the whole observables set will be discussed for the methods presented
in Chapter 4 for a single dynamic agent computing multiple collaborative contributions from
independent agents.
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Figure 5.12: Baseline length estimation in simulated vehicular scenario in close proximity assump-
tion.

MATLAB Simulation Environment

A MATLAB®-based simulation environment was conceived to allow a full control over
the simulation parameters characterizing the baseline estimation in dynamic scenarios (i.e.
vehicular). In the following, each simulation step is described in detail by addressing a
dynamic target vehicle moving along a predefined trajectory and collaborating with fixed
agents used as anchors of opportunity, as reported in Figure 5.12.

Figure 5.13: Example of satellite and aiding agent visibility experienced by a dynamic agent trav-
elling on a predefined trajectory.

• Analytic trajectory generation: A set of analytical trajectories were analysed within
the proposed simulation environment. A library of elementary geometrical trajectories
such as the Bernoullian lemniscate reported in Figure 5.14 were used for the analysis.
The trajectory were defined according to the typical test paths used in literature and
available in RFCSs settings.
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Figure 5.14: Example of a path based on a Bernoullian lemniscate of 1046 7m travelled at an average
speed of 26 15m/s. The dashed lines depict the collaborative range measurements retrieved at different
time instants.

• Analytic Dynamic Scenario: The generated trajectory was travelled by a predefined
vehicle within the MATLAB® Driving Scenario Toolbox. An average tangent speed v⃗
can be defined for each node of the trajectory thus providing accurate control over the
time evolution of the motion.

• Satellites generation: satellite constellation can be dynamically generated applying a
pre-defined azimuth and elevation mask to simulate limiting visibility conditions.

• Aiding network and agents position: The aiding agents can be generated according to
their relative position in terms of azimuth and elevation.

5.2.1 Cross correlation among standalone GNSS measurements and col-
laborative baseline length estimation

With the aim of integrating collaborative measurements as a complementary source of
information, it has to be remarked that potential cross correlation will reduce the amount
of information carried by each observable to the positioning problem. This aspect will be
investigated in detail in Chapter 6 while in this section, the evidence of the cross-correlation
among collaborative and standalone measurements is provided for the different GNSS-based
baseline computation techniques.
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5.2 – Statistical analysis of baseline estimation techniques

Let us consider a composite measurement vector defined as

z(k) =
[︂
d⊤

(k) ρ⊤
(k)

]︂T
(5.3)

where d(k) is a row vector of collaborative inter-agent distances while ρ(k) is a row vector
of standalone pseudorange measurements.

The cross correlation among the terms of z(k) is defined by means of PCC computed
through Monte Carlo trials in a finite set of instants tk identified along the whole simulation
timespan. Within a Monte Carlo framework, the pairwise bivariate correlation among two
measurements can be determined by means of PCC. Given a set of S satellites and C
collaborative contributions, a squared PCC (C+S×C+S) matrix can be built and visualized
by means of correlation matrix, as shown in the example of Figure 5.15. This example
shows the correlation matrix of the measurement vector z(k) composed by S = 5 satellites
measurements combined with the same measurements provided by C = 5 agents to retrieve
the respective baseline length measurements, at a generic time instant tk. The correlation
coefficients are obtained from the observation of 100.000 realizations of the WGN samples
affecting the pseudorange measurements.

The correlation matrix in Figure 5.15 does not provide an evident information along dif-
ferent time epochs, therefore a simplistic visual representation of such coefficients is provided
by means of a different correlation plot, according to scheme in Figure 5.16. In this plot the
absolute values of the correlation coeffiecients are determined according to

r
(k)
ij =

⃓⃓⃓⃓
⃓⃓⃓⃓ ∑︁N

n=1
(︂
z

(k)
i,n − z̄

(k)
i

)︂ (︂
z

(k)
j,n − z̄

(k)
j

)︂
√︃∑︁N

n=1
(︂
z

(k)
i,n − z̄

(k)
i

)︂2
√︃∑︁N

n=1
(︂
z

(k)
j,n − z̄

(k)
j

)︂2

⃓⃓⃓⃓
⃓⃓⃓⃓ (5.4)

where N is the number of Monte Carlo trials and measurements zi,zj are respectively the
i-th and j-th measurements of the composite measurement vector z(k), including standalone
and collaborative measurements. Being a normalized coefficient, the values assumed by the
generic r

(k)
ij are mapped in the interval (0,1). Such coefficients are hence visualized by means

of a colorscale.

Figure 5.16: PCC plot scheme for hybridized measurement vector (Compact representation of the
correlation matrix).
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5 – Simulation analysis and assessment of GNSS-based baseline length computation

With respect to the correlation matrix used in 5.15, this compact representation provides
a qualitative overview of the dependency among the measurements dropping the visualiza-
tion of their statistical behaviour. Indeed, the analysis of the PDF of the collaborative
measurements will be separately provided in Section 5.2.2. Each PCC in the correlation
matrix varies along the time as it can be observed in the sample time series of the PCC
matrix shown in Figure 5.17.

Figure 5.17: Sample PCC matrix time series scheme for hybridized measurement vector including 5
IAR and 4 satellites. Colorscale black (0) - white (1).

Recognizable patterns along subsequent time instants show that cross-correlation among
the measurements is time-dependent and this is attributed to the slow geometrical changes
due to the reciprocal motion of agents and satellites. In the example reported in Figure 5.17,
the PCCs related to standalone measurements are close to zero (black) since the pseudorange
measurements are affected by independent WGN samples. On the contrary, the PCCs related
to collaborative measurements show non-negligible cross correlation (grey) with standalone
measurements in t0,t1,t2 and strong cross correlation within the collaborative subset in t3
and t4. All the diagonal terms, rii, namely the autocorrelation coefficients, are obviously
equal to 1.

Let analyse a simulation example in selected time instants. The correlation plots are
shown in Figure 5.17 are recomputed for each baseline estimation methods and shown in
Figure 5.18. Along the rows it can be noticed that time-dependent changes in correlation
coefficients are visible for all the analysed methods.

PCCs evolution in time appears similar for all the differential techniques at rows b,c and
d while IAR shows different values. It is worth noticing that the left-bottom (5 × 5) subma-
trix highlight the uncorrelation among standalone pseudorange measurements which were
independently generated affected by Gaussian noise. Differently, cross correlation among
collaborative measurements become strong (about 0.5 at t4 and t5 for all the methods. For
this upper-left submatrix the IAR measurements show a slight lower correlation on both
collaborative and mixed PCC.

5.2.2 Statistical Distribution of the Baseline Length Error considering in-
dependent Gaussian inputs

In this section, the variation of the statistical distribution is observed along the time for
dynamic agents and different computation methods. A set of simulation data is reported
hereafter showing the behaviour of the error of collaborative measurements w.r.t. to the true
baseline length.

As discussed in Chapter 4 and shown in the sample correlation matrix of Figure 5.15, the
PDF of the baseline length error obtained through differential methods can show a strong
skewness. A snapshot of the baseline length error PDF is provided in Figure 5.19 for the pro-
posed techniques. The plot shows similar behaviour for the legacy approaches (i.e. PR,DD
and SD) for which the error PDF assumes non-Gaussian behaviour. On the contrary, such
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5.2 – Statistical analysis of baseline estimation techniques

Figure 5.18: PCCs over a selected set of time instants tk for the measurements set of a dynamic
agent travelling over a Bernoullian lemniscate trajectory. Methods: IAR (a), PR(b), SD(c), DD(d).
Colorscale black (0) - white (1).

qualitative analysis shows that the IAR method offers a reduced variance and a Gaussian-
like probability distribution. A BIC has been used within the Monte Carlo simulation to
classify the error PDF of the baseline length estimations. The output occurrences along the
simulation timespan were normalized by the total number of simulation epochs to provide
the percentage of occurrence of each tested distribution. The true distance was subtracted
to the estimated quantity for 3 different aiding agents. For each aiding agent, histograms
were generated showing the percentage of occurrences of the most representative distribu-
tions for each baseline estimation technique. According to the plots in Figure 5.20, W-IAR
measurements showed a Gaussian distribution for the most of the simulation time while dif-
ferential techniques behave according to more skew statistical distributions such as Rayleigh
and Generalized Extreme Value (GEV)). It is worth mentioning that PR and SD showed
identical statistics thus being equivalent in terms of statistical properties.

An analysis of the time-evolution of the statistical distribution of the baseline length was
computed over a Bernoullian trajectory and is presented in the boxplots in Figure 5.21. As
noticeable from the behaviour of the statistics of the baseline length errors, all the methods
show a stable distribution at the beginning of the simulation (static agents). When the target
agent starts moving, the distribution of the baseline length error shows evident variance
fluctuations in the case of the differential techniques. Differential baseline computation
methods are hence more sensitive to the relative dynamics of the agents while the W-IAR
measurements show a higher precision and a stabler behaviour along the simulation time.
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Figure 5.19: Snapshot of the estimated probability distribution over 10000 samples taken at a
random time instant tk.

5.3 Final remarks
It can be shown that the general behaviour which characterize the baseline length es-

timation presented in this chapter is strongly recurrent in different analytic trajectories.
According to the aforementioned statistical analysis, when unbiased Gaussian-distributed
pseudorange measurements are combined in the computation of collaborative baseline mea-
surements, IAR is a powerful method for obtaining low variance and stable measurements
with good cross-correlation properties but on the other side it does not allow to deal effec-
tively with error cancellation as for differential techniques. On the other hand, according
to the theoretical aspects and the example shown in Figure 5.21, the standard deviation of
differential approaches is approximately 4 times the standard deviation of the W-IAR. IAR
is hence suitable for the combination of corrected pseudoranges while differential techniques
still offers the best performances with raw measurements. Despite of the non-linearity of the
IAR equation (4.28), the error distribution has been verified to be mostly Normal [126] so
that the analysis of the first and second order moments is sufficient to reliably describe the
statistical behaviour of the measurements obtained through this technique.
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Figure 5.20: Goodness of fit occurrences for the baseline length error of three independent agents
over a Bernoullian trajectory
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(a) IAR

(b) PR

(c) SD

(d) DD

Figure 5.21: Box plot of the time evolution of the PDF of the baseline length error for the different
methods.

82



Chapter 6

Hybridized Navigation Filters and
theoretical limits on positioning
with correlated measurements

In the last decades, a relevant effort has been spent to investigate the combinations of
GNSS and auxiliary sources of RF signals (e.g. cellular base stations, Wi-Fi™ access points)
from a single receiver perspective. The joint exploitation of these sources has been oriented to
the achievement of a seamless positioning system, with the aim of overcoming the limitations
of GNSS[31, 202].

The combination of multiple signal sources is generally known in PNT as hybridization
and concerns the merge of different localization technologies available at the RF receivers.

The simplest approach for the hybridization of multiple localization technologies consists
in the geometrical weighted averaging of the positioning solutions obtained through each
of them. In the context of proprioceptive sensors integration, this is known as loose cou-
pling. Provided that this approach is highly suboptimal, different solutions were developed
to fuse information at a lower architecture level, thus exploiting tight integration. Further
advances have been recently pursued in sensor fusion through ultra-tight integration which
aim at merging auxiliary information prior to the generation of pseudorange measurements
in GNSS-based positioning systems. Tight and ultra-tight integration schemes have been
deeply investigated in GNSS literature for the integration of inertial sensors [7, 53, 26]

In the following, the inclusion of additional collaborative measurements will be performed
at measurements level by pursuing tightly integrated solution according to which a statistical
approach is preferred rather than a geometrical average (e.g. loose integration). Ultra-tight
schemes are not suitable to integrate such a kind of additional information.

The approach proposed in this chapter aim at providing a subset of potential tight inte-
gration solutions of correlated information according to the architecture of the most popular
navigation filters. Well-known alternatives to the traditional EKF such as the Unscented
Kalman Filter (UKF) will not be analysed in this chapter since they are designed to deal
with strong non-linearity of the target system. Therefore, after the introduction of the
Bayesian estimation theory related to the HMMs associated to the positioning problem, this
chapter provides a formal description of hybridized navigation filters starting from a ba-
sic Minimum Mean Square Error (MMSE) filter such as the Hybrid Weighted Least Mean
Square (H-WLMS), suitable for static systems and for the initialization of Bayesian navi-
gation algorithms. The chapter will continue with the presentation of the hybrid version of
two popular recursive Bayesian estimators, namely Hybrid Extended Kalman Filter (H-EKF)
and Hybrid Particle Filter (H-PF) whose indirect formulations have been implemented within
this work. The last section provides a theoretical analysis based on previous and original
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6 – Hybridized Navigation Filters and theoretical limits on positioning with correlated measurements

contributions about the theoretical limits of the hybrid positioning including the novel IAR
measurements discussed in Chapter 4, as well.

6.1 Modified HMM for correlated measurements
The estimation problem to be solved in positioning and navigation is often referred in

literature to as object tracking, where the object can be indeed a GNSS receiver in the form
of a stand-alone equipment or embedded in a number of possible devices (e.g. vehicular
navigation systems, smartphones, smartwatches). The term tracking can be easily confused
with the signal tracking performed by the receiver, therefore it will be replaced by state
estimation in the following.

𝜽𝑘 𝜽𝑘+1 𝜽𝑘+2 𝜽𝑘+𝑛

𝐳𝑘 𝐳𝑘+1 𝐳𝑘+2 𝐳𝑘+𝑛

𝑝(𝐳k|𝜽k)

𝑝(𝜽𝑘+1|𝜽𝑘)

Observable
Measurements

Hidden
States

Figure 6.1: Hidden Markov Model (HMM) for a single agent retrieving direct observable measure-
ments.

6.1.1 A model of the positioning problem: the HMM

As depicted in Figure 6.1, the problem can be modelled as a discrete-time HMM where the
state space, θk, of the target dynamic system can be known only through a set of observable
measurements, zk[155]. In the following, the state space vector is defined as

θk =
[︂
xk yk zk bk ẋk ẏk żk ḃk

]︂
(6.1)

while the set of s observable measurements

zk =
[︂
z1

k z2
k . . . zs

k

]︂
. (6.2)

Equation (6.1) describes the relevant information about the agent position, xk =
[︂
xk yk zk

]︂
,

and its velocity ẋk =
[︂
ẋk ẏk żk

]︂
, defined in a conventional reference frame. The terms bk

and ḃk are respectively the bias and the drift of the local clock obtained w.r.t. the GNSS
time scale. It is worth mentioning that (6.1) can be extended with higher order terms such
as axial accelerations and axial jerk or with attitude data such as yaw, pitch and roll [53] but
all these additional information cannot be directly retrieved by satellite observables only.

The Bayesian navigation filters are devoted to the joint estimation of the state vector θk

and the associated error covariance matrix
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6.1 – Modified HMM for correlated measurements

Pk = E
[︂
(θk − E (θk)) (θk − E (θk))T

]︂
(6.3)

which describes the uncertainty on the estimated solution[92]. In order to determine Pk,
the error covariance matrix of zk has to be measured or estimated according to

Rk = E
[︂
(zk − E (zk)) (zk − E (zk))T

]︂
(6.4)

as detailed later.
The state transitions, represented by the horizontal arrows in Figure 6.1, are associated to

a transition probability, p (θk|θk−1) which is defined accordingly to a discrete-time stochastic
state transition function

θk = fk−1 (θk−1, vk−1) (6.5)

where fk−1 is a possibly non-linear function of the vector state, and vk is a multivariate
random variable describing the noise affecting the states. A sequence of noisy measurements
is performed by the receiver at each discrete time instant tk and each measurement links the
current state vector to a specific reference point (e.g. GNSS satellites, terrestrial anchors,
etc.). The relationship between state and measurements is hence described by the prior
probability p (zk|θk), according to

zk = hk (θk, wk) (6.6)

where hk is a possibly non-linear function linking the observation vector to θk and wk is
a multivariate random variable describing the measurements noise.

The state estimation is based on the Bayesian rule of conditioned probability given by

p(θ0, · · · ,θk|z0, · · · , zk) = p(z0, · · · , zk|θ0, · · · ,θk)p(θ0, · · · ,θk)
p(z0, · · · , zk) (6.7)

where

p(z0, · · · , zk) =
∫︂

p(z0, · · · , zk|θ0, · · · ,θk)p(θ0, · · · ,θk)δθ0 · · · δθk (6.8)

p(z0, · · · , zk|θ0, · · · ,θk) =
k∏︂

l=0
p(zl|θl) (6.9)

p(θ0, · · · ,θk) = p0(θ0)
k∏︂

l=0
p(θl|θl−1) (6.10)

The relationships mentioned in the previous equations hold if the observables are inde-
pendent at each time instant and if the state vector only depends on the values it assumed at
the previous epoch. The hybridization with additional independent sources of information
simply extends zk but it does not modify the Bayesian estimation problem. On the oppo-
site, when correlated information such as GNSS-based inter-agent distances are integrated
a modification of the HMM has to be considered to model the new set of cross-correlated
observables.
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6 – Hybridized Navigation Filters and theoretical limits on positioning with correlated measurements

6.1.2 Combined Observable Measurements and Implicit Belief Propaga-
tion

In a simple pairwise hybridization, the auxiliary observable measurements are assumed
to be generated by combining the independent observables of two agents in a hybrid mea-
surement vector, as shown in Figure 6.2. The output data can be used as a joint information
about the estimation of the two states θi,k and θj,k in a centralized fashion, or they can be
exploited by one of the two agents as a complementary source of information provided that
the shared observables are reliable [117].

𝛉𝑗,𝑘 𝛉𝑗,𝑘+1 𝛉𝑗,𝑘+2 𝛉𝑗,𝑘+𝑛
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𝐳𝑖,𝑘 𝐳𝑖,𝑘+1 𝐳𝑖,𝑘+2 𝐳𝑖,𝑘+𝑛

𝐳𝑗,𝑘 𝐳𝑗,𝑘+1 𝐳𝑗,𝑘+2 𝐳𝑗,𝑘+𝑛

𝑑𝑖𝑗,𝑘+1𝑑𝑖𝑗,𝑘+1 𝑑𝑖𝑗,𝑘+1 𝑑𝑖𝑗,𝑘+1

Combined
Observables

𝛉𝑖,𝑘
Collaborative 

Ranging Unit (CRU)

Raw Pseudorange 
Estimation Unit

Raw Pseudorange 
Estimation Unit

GNSS 
receiver 𝑖

GNSS 
receiver 𝑗

Network Interface
Card (NIC)

Network Interface
Card (NIC)

⋯

⋯

⋯

⋯

⋯

Figure 6.2: Modified HMM for dual agent state-space estimation with combined, correlated mea-
surement generation. MM referred to the functional scheme of networked GNSS receiver.

In the collaborative techniques relying on belief propagation, the set of observables is
extended by sharing the statistics of the estimated positions (i.e. estimate and estimated
covariance), which are considered independent among the agents [97, 19, 178, 18]. Relying
on the differential techniques described in Chapter 4 instead, the belief is implicitly shared
through the transmission of a sufficient number of observables, according to the size of the
state vector.

When cooperative observables can be computed, the (6.11) can be extended to incorpo-
rate also inter-agent distances, such that

z̄k =
[︂
z⊤

k d⊤
k

]︂T
(6.11)

where dk = (d1,k d2,k . . . dC,k)T , is a (C×1) vector of combined observables obtained by
C independent collaborating agents. For the computation of the collaborative contributions
it holds

dk = g (zi,k, zj,k) (6.12)

where g(·) can identify a collaborative technique such as the ones mentioned in Chapter
4. Equation (6.7) must be updated by including collaborative correlated measurements such
that the probability distribution of the overall measurements vector, z̄k, also depends on the
measurements zj,k of the aiding agent, formally
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p(z̄k|θi,θj) (6.13)

The hybrid measurement vector does not contain only independent measurements such
that the error covariance matrix of zk is no longer diagonal, by definition. Differently from
the hybridization with independent measurements, the amount of information is somehow
reduced by this correlation because

p(dk|zk) /= p(dk)p(zk) (6.14)

Despite of such a reduction, the redundancy of the observables is expected to reinforce
the estimation of the aided agent. The last section of this chapter suggests a theoretical tool
to investigate this reinforcement in terms of CRLB analysis.

6.1.3 Hybrid Measurements Modelling in GNSS

In standalone GNSS positioning, zk consists of a measurement vector composed by (S×1)
satellite-to-receiver pseudorange measurements vector, ρk, and (S × 1) pseudorange change
rates or Doppler shift measurements vector, ϕk [90], measured by the received GNSS signals.
When multiple collaborating agents are available, a set of of inter-agent distances can be
integrated in the measurement vector as additional although correlated information

z̄k =
[︂
ρ⊤

k ϕ⊤
k d⊤

k

]︂T
. (6.15)

Equation (6.15) represents the measurements vector that can be used for the state esti-
mation through the single agent HMM depicted in Figure 6.3.
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Figure 6.3: HMM in GNSS aided system state estimation.

When measurements can be modelled as unbiased pseudorange, the associated covariance
matrix Rk is usually a (S × S) diagonal matrix, with pseudorange variances σ2

s on the main
diagonal, since no correlation is assumed between these quantities [16]. In this cooperative
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framework however, also collaborative ranges are involved in the measurement process and
therefore the hybrid covariance matrix R̄k should include the elements associated to these
quantities. In particular, each collaboratively-derived range may be dependent on several
pseudoranges among those included in z̄k such that cross-correlation terms may have to be
taken into account for the filter design.

To properly model these characteristics, the error covariance matrix designed for the
proposed algorithms is then defined by means of four sub-matrices (and the respective trans-
posed versions):

R̄k =

⎡⎢⎢⎢⎢⎢⎣
Rρ,k Rρϕ,k Rρd,k

R⊤
ρϕ,k Rϕ,k Rϕd,k

R⊤
ρd,k R⊤

ϕd,k Rd,k

⎤⎥⎥⎥⎥⎥⎦ (6.16)

where Rρ,k and Rd,k are the covariance matrices related respectively to the pseudorange
set and the cooperative measurement set as in 6.11, while Rρd,k is a matrix containing the
cross-correlation terms between each element of ρk and each element of dk.

As mentioned, Rρ,k is a diagonal matrix, but the same cannot be said for Rd. In fact in
(6.16), the dependency of cooperative ranges on pseudoranges is responsible of non-zero cross-
correlation terms in both matrices Rd,k and Rρd,k. The correlation between a cooperative
range and the set of pseudoranges from which is derived is defined by the elements of Rρd,k,
while the off-diagonal elements of Rd,k describe the cross-correlation between two different
cooperative measurements. This value is generally non-null for cooperative ranges which
shares one or more pseudoranges employed in their respective computation.

Basically in order to fill R̄k, the variances of the elements in ρk and dk are needed as well
as the cross-correlation values among their entries. They may all be based on pseudorange
variance σ2

s , but a closed expression is dependent on the specific derivation process of the
cooperative ranges [183]. However a bound can be set on the entries of Rρd,k, thanks to the
Cauchy-Schwarz inequality.

The Rρd,k sub-matrix contains the cross-correlation terms which link pseudorange mea-
surements and collaborative ranging contributions. For these terms, the covariance prop-
agation of the LMS estimation (4.26) can be exploited to assign to the proper covariance
terms. The transposed matrix R⊤

ρd can be then defined accordingly. Assigning the maximum
correlation between dk and ρk is a worst-case assumption.

6.2 Hybrid WLS
By referring to the extended HMM model and to the basic positioning solution as in Sec-

tion 2.3, the WLS can be easily modified to tightly integrate the collaborative measurements.
It is worth recalling that besides being a simple algorithm, a generic LMS is preparatory for
the effective initialization of any Bayesian filters such as KF and PF. This Section describes
how the hybrid terms are built in the positioning algorithm and how ill-conditioned set of
equations can be managed for reliable solutions [79].

Let us consider the state vector θk, and the hybrid set of observables z̄k along with its
error covariance matrix R̄k. The linear problem can be expressed as

z̄k = H̄θk + vk (6.17)

where vk is a noise vector whose components are assumed to be normally-distributed
while H̄ is the Direction Cosine Matrix (DCM) and describes the linearized relationship
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among all the measurements collected in z̄k and the state vector θk, at the discrete time tk.
Naming Hρ,k the observation matrix related to the GNSS pseudorange measurements as in
(2.14), the resulting hybrid DCM, H̄ρ,k, is a matrix defined as

H̄k =

⎡⎢⎣Hρ,k 0S×4
0S×4 Hρ,k

Hd,k 0C×4

⎤⎥⎦ (6.18)

where the s-th row of the submatrix Hρ,k can be expressed as

[Hρ,k]s =
[︂

(xs−xi)
||xs−xi|| 1

]︂
=
[︂

his 1
]︂

(6.19)

where xs and xi are the satellite and user coordinates, respectively. hi,s is the unitary
steering vector pointing towards the s-th satellite and the unitary term is referred to the
bias clock term common to all the measurements. Similarly, the set of equivalent steering
vectors points at the collaborating agents so that the c-th row of Hd,k is defined as

[Hd,k]c =
[︂

(x̂c−xi)
||x̂c−xi|| 0

]︂
=
[︂

hic 0
]︂

. (6.20)

While the GNSS satellite position is known with a high accuracy from the ephemeris
data, the measurement equations of the hybridized system (6.6) have to be referred to a rough
estimate, x̂c, of the aiding agent position. This estimation can be performed autonomously
by the aided receiver i through the received measurement data from receiver j.

With the need of approaching a general case in which the measurements in z̄k are not in-
dependent neither identically distributed, the covariance matrix Rk must be considered. The
strong assumption is still a zero-mean Gaussian distribution which can limit the performance
[179]. If this condition is satisfied, the associated ML estimate is expressed as

θk = argmax
θ

1
(2π)N/2|R̄k|1/2 e

1
2 (z̄k−H̄kθk)⊤R̄−1

k (z̄k−H̄kθk) (6.21)

= argmin
θ

(z̄k − H̄kθk)⊤R̄−1
k (z̄k − H̄kθk) (6.22)

The solution is obtained by differencing (6.21) w.r.t. θk, and equalizing the result to
zero, as

θk =
(︂
H̄⊤

k R−1
k H̄k

)︂−1
H̄⊤

k R̄−1
k z̄k (6.23)

The error covariance matrix, Pk, can be easily computed through

Pk =
(︂
H̄⊤H̄

)︂−1
H̄⊤R̄kH̄

(︂
H̄⊤H̄

)︂−1
(6.24)

As mentioned in Chapter 2, iterative solutions such as the recursive WLS can be used to
improve the convergence of the solution.

6.2.1 Weighted SAIA for robust measurement integration in WLS

If multiple collaborative contributions are obtained from a number of aiding agents,
the H-WLMS PVT algorithm can lead to a typical ill-conditioned problem and it shows
high instability of the convergence of the solution [124]. An iterative algorithm can be
implemented to enhance the convergence of each WLS iteration by avoiding the inversion
of the ill-conditioned (H̄kR̄−1

k H̄⊤
k ) product. This optimization is performed by means of a
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6 – Hybridized Navigation Filters and theoretical limits on positioning with correlated measurements

weighted variation of the SAIA algorithm proposed in [38]. For sake of completeness, the
core steps of SAIA method are recalled hereafter with a more familiar notation and extending
the original formalism by considering the covariance of the measurements, R̄k.

Let consider to freeze the time instant tk and the WLS n-th iteration. As a general
assumption, all the measurements expressed in their differential notation ∆z̄n

k (i.e. pseudor-
anges, IARs) are affected by Gaussian-distributed errors as reasonably stated in the previous
section. The Weighted SAIA (W-SAIA) algorithm can be feed by the state estimate ∆θn−1

k

obtained at the previous WLS iteration and two variables can be introduced at the j-th
iteration to split (6.23) as⎧⎪⎨⎪⎩ Nj =

(︂
H̄n

k

)︂⊤
R̄−1

k H̄n
k + ΛjI

Wj =
(︂
H̄n

k

)︂⊤
R̄−1

k ∆z̄k + Λj∆θn
k,j−1

(6.25)

where the perturbation parameter, Λ, is computed before the iterative process and it is
then iteratively adjusted to accelerate the convergence of the solution. Λ must satisfy the
condition 0 ≤ Λ ≤ 1, and it is computed through the following steps⎧⎪⎨⎪⎩λj = min

{︃
|eig

[︃(︂
H̄n

k

)︂⊤
R−1

k H̄n
k

]︃
|
}︃

Λj = λj100.5|log10(λj)|+1
(6.26)

where λj indicates the eigenvalues of the argument and Uj is calculated given the upper
triangular matrix Cj obtained from the Cholesky decomposition of Nj

CjUj = Wj (6.27)

and then θn
k,j is calculated solving the problem

C⊤
j ∆θn

k,j = Uj (6.28)

The algorithm iterates on j trials determining at each iteration the residual error as

ξj = ||Nj∆θ⊤
j − Wj || (6.29)

the self-adaptation is performed according to the relative error, ν = ξj

ξj−1
w.r.t. the

previous iteration. By comparing ν w.r.t. two predefined thresholds, the value of Λ can be
adjusted to increase the convergence. As an example if ν at the j-th iteration is smaller than
0.25 the perturbation parameter can be doubled, otherwise if ν > 0.75, Λj can be divided
by two before the next iteration.

It is worth mentioning that the recursion introduced by the W-SAIA within each iteration
of a WLS PVT routine increases the computational complexity of the positioning problem
by a multiplicative factor which corresponds to the number of inner iterations.

6.3 Approximated Bayesian Estimation
Real scenarios can show critical aspects such as nonlinear, non-Gaussian and non-stationary

target states and measurement. Therefore, optimal filtering is infeasible in such a kind of
situations, and approximated or suboptimal solutions have to be considered for a reliable
state estimation. In the following, two examples of approximated Bayesian filters are pre-
sented. The EKF which exploits an analytic approximation and the PF which approximates
the unknown distributions through a set of particles according to a sampling process.

90



6.3 – Approximated Bayesian Estimation

6.3.1 Hybrid Extended Kalman Filter

The popular KF is an optimal Bayesian recursive filter (in MMSE sense) which is capable
to estimate the state, θk, of a linear dynamic system relying on a set of noisy measurements
according to the following assumptions:

• vk−1 in (6.5) is the realization at time tk−1 of a multivariate Gaussian random variable
of known mean and covariance

• fk−1 in (6.5) is a known linear function of θk−1 and vk−1

• hk is (6.6) is a known linear function of θk and wk.

In GNSS, these conditions are typically too strict to be satisfied. Especially in urban
environment where multipath reflections are frequent and ubiquitous, the noise distribution
of the pseudorange measurements is likely to be modelled as Rayleigh or Rice distributed
according to presence of an actual LoS component. The relationship between subsequent
states can be highly non-linear in case of complex dynamics such as curvilinear accelerated
manoeuvres. The relationship between measurements and states related to multi-lateration
is then non-linear by definition.

From these considerations, it is natural to use a more robust filter such as the EKF or
UKF.

Models equations

The theory of the EKF is based on a linearized system model equation (6.5) and mea-
surement model equation. The system model considered in this framework is described as a
linear equation which is widely applied to estimation problems in vehicular navigation [72].
Hence it describes the relation between past and current state through

θ̄k = Φθ̄k−1 + vk . (6.30)

where

Φ =

⎡⎢⎢⎢⎣
I3×3 Ts · I3×3 03×2
03×3 I3×3 03×2

02×3 02×3
1 Ts

0 1

⎤⎥⎥⎥⎦ (6.31)

is a time-invariant transition matrix depending on the time step Ts; and η is the system
noise such that

ηk ∼ N (0, Qk) (6.32)

with Qk covariance matrix.
The system model is driven by the dynamics of the system and is independent of the

observed measurements. It is in fact defined regardless of the nature of the observations,
whether they are stand-alone GNSS or collaboratively-derived measurements.

The measurement model equation provides a relation between the state θ̄k and a mea-
surements vector zk. For what concerns GNSS this relation is non-linear, thus the equation
is in the form
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6 – Hybridized Navigation Filters and theoretical limits on positioning with correlated measurements

zk = h(θ̄k) + wk (6.33)

where h is a known non-linear function. In (6.32), vk represents the measurement noise and
it is modeled such that

vk ∼ N (0, R̄) (6.34)

with R̄ covariance matrix.
Since the relationship between state variables and measurements cannot be described

by a linear equation [90], the EKF exploits linearization to deal with the multi-lateration
problem. The linearized measurement equation is then

∆zk = H̄k∆θ̄k + vk (6.35)

where ∆zk and ∆θ̄k are the incremental vectors of respectively, the measurements vector zk

and the state vector θ̄k, w.r.t. a linearization point θ̄∗
k = [θ∗

k b∗
k θ̇

∗
k ḃ

∗
k], updated at every time

step k [16]. The observation matrix H̄ contains the coefficients linking the two linearized
vectors, which arise after the linearization of the equations relating measurements and state
variables [90].

Equation (6.35) relates to the observations to the state vector. In standalone GNSS posi-
tioning, ∆ẑk consists of the observables retrieved from the radio navigation signal (i.e. ∆ρk),
the incremental vector of the pseudorange measurements vector and ∆ϕk = {∆ϕs

i (tk)}s∈S
and the incremental measurement vector derived from Doppler measurements.

When collaborative ranges are integrated in the measurement set, the linearized mea-
surement vector is extended to incorporate also incremental inter-agent distances, such that

∆ẑk =
[︂
∆ρk ∆ϕk ∆dk

]︂⊤
(6.36)

where all the variables are vectors of incremental quantities, one for each integrated col-
laborative range, built similarly to ∆ρ. The observation matrix is extended as well once the
coefficients related to cooperative measurements are defined, accordingly to the inter-agent
distance. Naming Hρ the observation matrix related to the standard GNSS measurements
∆ρ the resulting hybrid observation matrix can be built according to the hybridized DCM
as in (6.2).

EKF routine

Following the definition of system and observations models and the related covariances,
the EKF routine applied to collaborative ranging measurements is hereafter reported for
the sake of completeness. The EKF routine starts with a prediction step that involves the
projection of the last state estimation θ̂k−1 on the current instant k by means of the transition
matrix:

θ̂
−
k = Φθ̂k−1 . (6.37)

At each step of the EKF routine, the predicted state estimation θ̂
−
k is chosen as linearization

point θ∗
k, around which incremental quantities are build. The use of the estimated trajectory

θ̂
−
k is a reasonable choice, since it is presumably the best estimate available at time k before

the measurement update. However, a poor choice for θ∗
k could cause the EKF estimate to

diverge if the first-order approximation on which the linearization is based is not enough.
Due to the feedback of measurements into the estimate equations, instability phenomena
may arise in the EKF. Several works have investigated the conditions for EKF stability, but
such requirements are often too restrictive for realistic applications [152].
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Then, the incremental measurements ∆zk and the hybrid matrix H̄k are computed w.r.t.
this reference point. The prediction is performed also on the error covariance matrix Pk−1:

P−
k = ΦPk−1Φ⊤ + Q . (6.38)

Following the prediction phase, the Kalman gain is computed as

Kk = P−
k H̄⊤

k (H̄kP−
k H̄⊤

k + R̄)−1. (6.39)

Notice that the gain is dependent on the measurement matrix H̄k, which, as stated, is
updated according to the approximation point at each time k. Therefore, since x∗

k = θ̂
−
k ,

the gain sequence will depend on the sequence of measurements of a particular realization
of the experiment [16].

Now, considering the incremental state estimate

∆θ̂k = ∆θ̂
−
k + Kk(∆zk − H̄k∆θ̂

−
k ) (6.40)

it should be noticed that, since x∗
k = θ̂

−
k , the term ∆θ−

k is zero. Thus the (6.40) becomes

∆θ̂k = Kk∆zk . (6.41)

Finally the state estimation can be obtained by correcting the approximation state with the
incremental estimate update:

θ = θ∗
k + ∆θ̂k . (6.42)

The error covariance matrix is updated as well. This equation is implemented in a symmetric
form (Joseph form), which is resilient to divergence phenomena [16]:

Pk = (I − KkH̄k)P−
k (I − KkH̄k)⊤ + KkR̄kK⊤

k . (6.43)

A direct EKF is rarely used due to its high computational load and low reliability [25],
for this reason the EKF approach considered and implemented in the following analysis is
known as indirect filtering, also called the error-state EKF.

Error-state EKF indirect routine

Estimated PVT
Solution

Extended Kalman 
Filter (EKF)

Nominal 
Measurements

Current 
Measurements

+
-

Figure 6.4: Indirect KF scheme.

Indirect filtering can be structured as a feed-forward or a feedback KF. In feed-forward
approach, if the errors which enter as input in the filter remain small, the linear dynamics
model is acceptable. While, if they become larger, the errors estimated by the KF will drift
with time. For this reason in navigation applications which integrate INS, a feedback loop is
added to mitigate this drawback [169]. In this thesis, since there are not additional systems
as INS, the error is estimated as the difference between the current measurements exposed
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by the GNSS chipset and the nominal ones, which are evaluated by applying the corrections
found at the previous step, as represented in Figure 6.4. Furthermore, to avoid the error drift
, overconfidence or uncontrolled growth of Pk, a reset is performed periodically, by means of
a WLS PVT evaluation instead of the Kalman routine. The same result can be achieved by
setting the process covariance matrix Qk to infinite.

In the indirect filtering, the prediction step is fed with a zero state vector

θk =
[︂
0 0 0 0 0 0 0 0

]︂
(6.44)

Then a priori error covariance matrix P−
k and the Kalman gain Kk are computed as in

(6.38) and in (6.39), respectively. Differently from the direct formulation, ∆zk is in this case
the difference between current measurements and nominal measurements

∆ẑk =
[︂
∆ρk ∆ϕk

]︂T
(6.45)

where

∆ρk = ∆ρN
k − ∆ρC

k (6.46)

and

∆ϕk = ∆ϕN
k − ∆ϕC

k . (6.47)

Current measurements are the pseudorange measurements vector, ρk, and ϕk, the mea-
surement vector including Doppler measurements. Nominal measurements are instead the
measured pseudoranges and pseudoranges rates with corrections found at state θ̂k−1.

The pseudoranges are corrected by the receiver clock bias, the relativistic correction and
the satellite clock error estimated through the ephemeris data

ρN
k = ρk − bk−1 + dts

k−1 · c (6.48)

while the pseudoranges rates are corrected by the user clock drift

ϕN
k = ϕk − ḃk−1 (6.49)

The approximation state in indirect filtering is the state estimated as

θ∗
k = θk−1 (6.50)

By performing the estimation as in (6.40), the current state θk is found.

6.3.2 Hybrid Particle Filter

The PF is a Monte Carlo approximation of optimal sequential Bayesian state estimation
which performs state updates relying on a sampling procedure often referred to as SIS [71].

The use of PF in PNT, GNSS and CP has been widely investigated in literature [182, 77,
76, 8, 175, 70] and despite its computational complexity, its implementation allows to relax
the constraints mentioned for the EKF:

• vk−1 and wk−1 are drawn from the realization at time tk−1 of generic densities of
known mean and variance

• fk−1(θk−1,vk−1) can be a linear or non-linear function such that θk = fk−1(θk−1) + vk

• hk(θk,wk) can be a linear or non-linear function such that zk = hk(θk−1) + wk.
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Model Equations

PFs have become attractive due to their capability of dealing with non-linearity and
non-gaussian models. For this aspect the model equations used in this case correspond to
the equations of the general model introduced in 6.1.1. Indeed, the state transition function
(a.k.a. system model) is the same as (6.5) and the measurement equation is the same as in
(6.6).

The non-Gaussian posterior probability p(θk|zk) extended in (6.7) is represented by a set
of randomly drawn samples, named particles, with their associated weights

{︂
θ

(i)
k , w(i)

k

}︂I

i=1
.

This set of particles provides a discrete approximation of the (6.7) according to

p(θk|zk) ≈ θ̂k ≜
I∑︂

i=1
w

(i)
k θ

(i)
k (6.51)

The PF approximates the a posteriori distribution of (6.1)

p (θk|zk) ≈
N∑︂

i=1
w

(i)
k δ

(︃
θk − θ̂

(i)
k

)︃
(6.52)

where δ is the Dirac delta function and θ̂
(i)
k is a propagated particle. The approximation

is performed by generating and propagating a set of particles θ̂(i)
k and associated weights w

(i)
k

according to the following steps:

1. Initialization: Generation of a set of N particles θ̂(i)
k according to θ̂k ∼ p(θ̂k−1, Pθ,k−1).

2. Prediction: All the generated particles are propagated according to the dynamic system
model

3. Weights computation: The weights are obtained by relying on a pre-defined likelihood
p

(︃
zk|θ̂(i)

k

)︃
w.r.t. the expected measurements computed for each particle, the weights

are hence defined as

w
(i)
k =

∏︁
i p
(︂
zn,k − z

(i)
n,k

)︂
∑︁N

i=1
∏︁

i p
(︂
zn,k − z

(i)
n,k

)︂ . (6.53)

One of the most relevant aspects of PF is that each class measurement can be treated
independently from the other, such that Gaussian-distributed pseudorange measure-
ments can be processed by means of a Gaussian likelihood, while the likelihood of the
collaborative inter-agent distances can be determined accordingly to the specific error
distribution.

4. Resampling: This step is of prominent importance since it guarantees the algorithm
effectiveness avoiding particle collapse and overoptimistic covariance estimation. A
number of resampling methods can be used to optimize the filter behaviour [106]. As
an example, the Bayesian Bootstrap foresees the selection of N samples from the par-
ticle set

{︂
θ

(i)
k

}︂
with a picking probability w

(i)
k . When a uniform distribution is used

as picking probability, w
(i)
k = 1/N the method is also referred to Sampling Importance

Resampling (SIR). An alternative strategy is named Importance Sampling and it fore-
sees the re-sampling according to the Bayesian bootstrap only if the number of samples
is lower than a threshold
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Nθ = 1∑︁
i

(︁
wi

t

)︁2 < Nth (6.54)

provided that the number of effective particles 1 ≤ Nθ ≤ N [77, 40].

5. Estimation: The bayesian estimation is eventually given by the weighted average of
the generated particles, as in (6.51)

Given a sufficient number of simulated particles, the covariance matrix Pk associated to
the state estimate θk, can be estimated by computing the sample covariance over the set of
output particles

{︂
θ

(i)
k

}︂
.

Similarly to the indirect formulation of the error-state EKF, also the PF has been im-
plemented with an indirect scheme. However for sake of simplicity, such an error-state PF
will be simply referred to as PF or H-PF.

6.4 On the approximation of a CRLB for hybrid navigation
filters

This section provides a theoretical analysis about the information carried by the cor-
related measurements proposed in Chapter 4 when they are used to improve the position
estimation. This original contribution which is published in [123, 127] has been inspired by
a set of research papers and articles about the formalization of the limits of hybrid position-
ing including auxiliary terrestrial measurements [142, 122, 85, 57, 101, 81, 66, 82] and also
by a couple of pioneering works that first identified the profitability of the exploitation of
differential GNSS measurements [166, 99, 154, 6, 5, 102].

The CRLB defined for H-WLMS and H-EKF respectively, allows to emphasize the lim-
iting conditions which guarantee or not a higher precision in the position estimation both in
linear and non-linear estimation.

The amount of information carried by an observed unbiased range measurement w.r.t.
the estimated position is related to the relative position of the reference points and to the
quality of the observable measurements [90]. The goodness of this information is indeed
inversely proportional to the variance of the measurement error itself and on the other hand,
the ranges direction condition the GDOP [131]. As detailed in Chapter 2, the GDOP affects
the positioning solution by altering the shape of the spatial distributions of its realizations,
namely its precision which is evaluated through the position error covariance matrix. The
position error covariance matrix is a subset of Pk related to the spatial coordinates included
in θk. The combination of the variance of such measurements and the GDOP characterizes
the whole positioning error, derived as in [20] from the CRLB of the positioning estimator.

In light of this, the analysis presented in [85] investigates a composite dilution of precision
for cooperative positioning, named Cooperative Dilution of Precision (CDOP), by including
generic terrestrial ranging contributions in the measurements set used for the computation
of the position. The study provides the theoretical and experimental demonstration of a
fundamental result by stating that√︃

Tr
(︂
H̄⊤H̄

)︂−1
≤
√︂

Tr (H⊤H)−1
. (6.55)

where Tr(·) indicates the trace operation and H̄ is the hybrid DCM drawn accordingly
to satellites and terrestrial anchors positions.
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As it has been demonstrated for standalone satellite-based navigation, any additional
range contribution provided w.r.t. terrestrial reference points can only decrease the geomet-
rical dilution factor. However, the variance of the estimated position depends also on the
error contribution affecting the measurements. The analysis of the CRLB for the position es-
timation allows indeed to include the measurements uncertainties along with their correlation
in the evaluation of the profitability of a GNSS-based hybrid collaborative navigation.

6.4.1 FIM and CRLB: definitions

The CRLB is employed to identify the minimum variance that can be reached by a given
unbiased estimator [92]. Indeed, the related CRLB inequality states that this variance is
bounded by the inverse of the Fisher Information carried by a generic set of observable
measurements zk. This fundamental limit can be generalized in its matrix form, as

[Pk]mn ≥ [Fk]−1
mn =

[︄
−E

(︄
∂2

∂θm∂θn
log f (z̄k;θ)

⃓⃓⃓
θk

)︄]︄−1

(6.56)

where the pair (mn) identifies the element of the matrix located at the m-th row and n-
th column, θk =

[︂
θ1, θ2, . . . , θM

]︂T
is a M × 1 vector which defines the target state, and

z̄k =
[︂

z1, z2, . . . , zN

]︂T
is the observed realization of a multivariate measurements vector

which is associated to θk by means of the PDF f (z̄k;θk). The Fk is a M ×M matrix named
FIM and its inverse is namely the CRLB matrix.
Given that both Pk̂ and [Fk]−1 are positive definite, an ordering relation can be defined to
compare two estimators T = T (zk) and T ′ = T (z̄k), as

[FT,k]−1 >
[︁
FT ′,k

]︁−1 → Tr
(︂
[FT,k]−1

)︂
> Tr

(︂[︁
FT ′,k

]︁−1
)︂

(6.57)

where Tr (·) is the trace operand which sums the diagonal elements of a given matrix.
When unbiased estimators are considered, the comparison of the respective CRLB (6.56)
allows to identify the most advantageous solution.

This study, starting from the definition of the CRLB for hybrid positioning obtained
under realistic assumptions, shows how a terrestrial correlated range brings information to
the position estimation process depending on the observation conditions.

Besides the aforementioned definitions have been presented for a generic state vector θk,
the CRLB will be derived for position state only for sake of simplicity and readability.

6.4.2 Range Contributions Modelling

In the framework of this study, two classes of range measurements have been identified
in Section 6.1 as observables belonging to the measurement vector, z̄k, in (6.56). They are
defined w.r.t. the target agent, i:

• ρ̂s
i,k is an estimate of the pseudorange between the agent i and the satellite s at a given

instant tk [90], defined as

ρ̂s
i,k = ||xs,k − xi,k|| + bi,k + wk (6.58)

where bi,k is a bias term due to the clocks misalignment and wk is the noise due to
residual errors affecting the measurements [90]. It is assumed Gaussian-distributed
with zero-mean and variance σ2

is,k.
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• d̂ij,k is an estimate of a pseudo inter-agent distance between the terrestrial agents i and
j

d̂ij,k = ||xi,k − xj,k|| + bij,k + wk (6.59)

where bij,k is a generic bias term due to the ranging technique and wij,k is the additive
noise term affecting the measurements. For simplicity, as for the first class, it is assumed
Gaussian-distributed with zero-mean and variance σ2

ij,k but its distribution can vary
according to the baseline computation method described in Chapter 4.
Inter-agent distances can be distinguished in independent and dependent from (6.58),
according to the implementation of the selected method.

Let consider multiple ranges are expected to be obtained for each class assuming that
measurements coming from the same class are independent. Given that this analysis ad-
dressed the positioning improvement, only the subset of z̄k containing range measurements
(i.e. satellites and collaborative) is considered. According to this assumption their er-
ror covariance matrices are diagonal and defined as Rρ,k = E

[︂
ρkρ

⊤
k

]︂
− E [ρk] E [ρk]⊤ and

Rd,k = E
[︂
dkd

⊤
k

]︂
− E [dk] E [dk]⊤ where ρk and dk are generic measurements vectors com-

posed by a set of S and N range measurements from each class, respectively. A hybrid
positioning solution combines the column vectors ρk and dk in a hybrid measurements vec-
tor,

z̄i(tk) =
[︂
ρi(tk)T di(tk)T

]︂T
(6.60)

and the related measurements noise covariance matrix is hence defined as

Rz̄(tk) =
[︄

Rd,k Rdr,k

Rrd,k Rr,k

]︄
(6.61)

where the sub-matrices Rrd,k = Rdr,k = 0 if and only if terrestrial ranges are obtained
independently from satellite-ranges included in z̄k. This specific case has been heavily in-
vestigated for hybrid positioning with ranging sensors [142, 82] while in this analysis such a
restrictive assumption will be relaxed.

6.5 Fisher Information Matrix in Positioning Estimation

As in (6.56), in order to evaluate the FIM it is sufficient to compute the second order
derivative of the logarithm of the likelihood w.r.t. the vector θk, were

θk =
[︂

xi,k bi,k

]︂T
. (6.62)

In order to focus on the improvement of accuracy and precision of the positioning es-
timate, the bias term, bi,k, will be eventually dropped as it is compensated from previous
solutions θ̂k−1, being functional to the position computation [90]. In the following derivation,
time index will be dropped as well for readability reasons.

6.5.1 Fisher Information Matrix for Satellite-only Contributions

The theoretical log-likelihood for a generic Gaussian random variable is defined as
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L (θ, ρ, σi) = log 1√
2πσi

− 1
2

(x − θ)2

σ2
i

. (6.63)

Consequently, the log likelihood for a Gaussian pseudorange measured from a generic
satellite, s, is obtained as

L (xi, ri,s, σi,s) = log p
(︂
ρ̂i,s|xi, bi

)︂
= C −

|ρ̂i,s − ||xs − xi|| − bi|2

2σ2
i,s

(6.64)

where C is the constant term resulting from the first term of the summation in (6.63),
and σi,s is the standard deviation associated to the pseudorange measurement ρ̂s

i .
As shown in [142], the FIM is computed as

Fi = −E

⎧⎨⎩Hi

⎡⎣ Si∑︂
s

L (xi, rs
i , σi,s)

⎤⎦⎫⎬⎭ (6.65)

where Hi is the Hessian operator of the second order partial derivatives. The FIM is
hence defined as

Fm =
[︄

Fxi fxi,bi

fT
xi,bi

Fbi

]︄
(6.66)

where each submatrix can be computed as

Fxi =
∑︂
s∈Si

1
σ2

i,s

hi,shT
i,s (6.67)

Fbi
=
∑︂
s∈Si

1
σ2

i,s

(6.68)

fT
xi,bi

=
∑︂
s∈Si

− 1
σ2

i,s

hi,s. (6.69)

where Si indicates in turn the set of satellites used by the target agent, i, to compute its
own PVT estimate.

6.5.2 Fisher Information Matrix for Cooperative Contributions

For the sake of simplicity, an estimate of a terrestrial range, d̂ij(tk) = d̂ij(tk) − bi(tk),
is considered by means of IAR algorithm presented in Chapter 4. Given multiple shareable
satellites between the collaborating agents, the d̂ij can be computed as the weighted average
of a set of contributions, as

d̂ij =
S∑︂

s=1
wsd̂

s
ij (6.70)

where the terms ws are the weights attributed to each measurement according to its vari-
ance. Although it has been shown that IAR is characterized by a Gaussian-like distribution,
its statistics is very sensitive to geometrical conditions [126]. By neglecting on purpose this
peculiar behaviour, the same approach discussed for the evaluation of the FIM about satel-
lite range measurements is applied to the likelihood defined for GNSS-only collaboratively-
computed range measurements
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log p
(︂
d̂ij |xi

)︂
= C − |d̂ij − ||xi − xi|| − bij |2

2σ2
ij

. (6.71)

Therefore, (6.65) is applied to (6.71) neglecting any dependency with respect to the other
measurements. Eventually, the Fi for the hybrid system is still computed according to (6.66).

6.5.3 FIM computation in non-linear system estimation

Given that a reduced uncertainty about the computed position is not useful for real-time
applications it is instead intuitive that a refinement of the position at a given instant tk by
means of the proposed integration scheme could lead to an improved estimate of the position
at the following instant tk+1. The update step provided by Bayesian estimation algorithms
can benefit from this early refinement, such as in the case of the proposed modified EKF.
The EKF is a Bayesian estimator widely used in the estimation of system dynamics due to
the capability of constraining the positioning solution according to a model of the dynamics
of the motion and exploiting the relationship of the state at the previous instant with the
current state. Such an estimation typically outperforms LMS estimation both in terms of
accuracy and precision. Furthermore, EKF is a non-linear extension of the plain KF, thus
it allows to integrate non-linear measurements through a linearized model which links state
and measurements such as for LMS estimation. Additional details about EKF fundamentals
and implementation are left to the reader and they can be found in [16].

The CRLB for dynamic systems is modelled by non-linear time-varying state vector dif-
ferential equations with deterministic inputs and non-linear time-varying observations on the
state variables, corrupted by additive Gaussian white noise [185]. It has been demonstrated
that FIM propagates according to the error covariance matrix for an EKF linearized w.r.t.
the true trajectory. For this reason, the FIM can be computed as

Fk =
(︂
Φ−1

k−1

)︂⊤
Fk−1Φk−1 + H̄⊤

k R−1
k H̄k (6.72)

6.5.4 On the Approximation of the FIM for Hybrid Navigation Filters

Actually, the CRLB of the hybrid solution can be used as an estimation of the error
covariance matrix of the hybrid position estimate. As proposed in [142], the hybrid FIM
can be obtained by the sum of the satellite-only FIM and the cooperative FIM if and only if
independent measurements are considered.

In order to deal with measurements correlation the FIM should be instead computed
as Fθ,µ = Fθ,ρ + Fθ,d|ρ, where Fθ,d|ρ is the Fisher information related to the conditional
probability density of the inter-agent range measurements for the given set of pseudoranges
measurements, ρ. The computation of the mutual Fisher information is out of the scope
of this study provided that the likelihood of the inter-agent range measurements must be
derived specifically for any given geometrical conditions [126]. The proposed solution does
not contemplate correlation among the two classes of measurements, therefore the hybrid
FIM is obtained through the computation of (6.67),(6.68),(6.69) for all the available mea-
surements in the hybrid measurement vector, zi. Although it is assumed that Fθ,d|ρ ≃ Fθ,d,
no remarkable losses were observed in terms of covariance estimation accuracy, as it will be
shown in the results in the following chapters.

In the example shown in Figure 6.5, given a pre-defined trajectory and an a-priori knowl-
edge of the measurements variances, the CRLB is expected to identify the profitable time
instants in which cooperative approach guarantees improved precision w.r.t. GNSS stan-
dalone positioning.
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Profitable

Non profitable

Figure 6.5: Example of theoretical computation of satellite-based positioning CRLB vs. hybrid
positioning CRLB for a dynamic trajectory.

Moving from these considerations and from the FIM derivation for the Gaussian-distributed
satellite range measurements recalled so far, the same quantity is computed for correlated
terrestrial range measurements to estimate and compare the overall uncertainty of the com-
puted position estimates.
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Chapter 7

GNSS-based Cooperative
Positioning Implementation and
Performance Analysis

Availability, precision and accuracy are among the key performance parameters for the
evaluation of a positioning and navigation system. This chapter presents a set of fundamen-
tal results concerning the expected performance of the hybridized navigation filters described
in Chapter 6. A preliminary investigation, presented in[124] was performed through H-LMS
integrating IAR collaborative contributions to compensate for GNSS outages in conditions
of poor sky visibility. The fundamental results of such an analysis were obtained exploiting
a further processing stage including a KF acting on the positioning solution as presented
in Section 7.1. A deep analysis was then performed through the computation of the CRLB
for H-LMS and H-EKF to show by means of numerical examples that IAR measurements
can increase the overall amount of information about the positioning problem despite being
correlated to satellite range measurements. Section 7.2 provides indeed a general overview
about the precision improvement in the hybrid GNSS collaborative positioning [127]. A fur-
ther simulation analysis concerning the estimation accuracy is presented in Section 7.3. The
investigation was based on realistic RF signals processed through a fully-software receiver
modified to perform CP. The positioning performance were evaluated for a H-EKF integrat-
ing DD ranging varying the number and the geometry of contributing aiding agents and the
number and position of visible satellites. Therefore, Section 7.3 presents the analysis of the
positioning accuracy in a collaborative multi-agent system, thus integrating multiple collab-
orative measurements at each time epoch. Eventually, Section 7.4 presents the comparative
results of the hybridization of EKF and PF along with a discussion about the applicability
of each filter in a non-parallel architecture.

7.1 Multiagent collaborative IAR measurements for compen-
sation of GNSS outages

GNSS-based CP can be a useful technique to mitigate GNSS outages, thus ensuring im-
proved positioning availability of networked GNSS receivers. The study presented hereafter
extends the preliminary results published in [125] and [124]. The proposed technique allows
to mitigate GNSS service unavailability experienced in urban scenario through the proposed
collaborative ranging measurements and a combination. The solution affords an updated
LMS state solution exploiting KF prediction and collaborative ranging information of, at
least, one collaborating agent with a single satellite in common view. It will be shown that,
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in some specific conditions, the implementation of IAR and the H-LMS induces an improve-
ment of the availability of GNSS-based PVT solutions. It is worth mentioning that as far as
the study was conceived, all the results are referred to simulated data and they aim at as-
sessing the usability of collaborative measurements and their consistency w.r.t. pseudorange
measurements used in the standalone LMS PVT solution.

7.1.1 Pseudo-IAR-based Robust Collaborative Algorithm

The GNSS/IAR integration algorithm introduced in [125] has been redesigned according
to the following conditions:

• at a given instant tk, agent A experiences a lack of pseudoranges measurements due to
harsh conditions. The GNSS failure is due to instantaneous or persistent LoS obstruc-
tion for a given receiver-satellite pair. Therefore, it will be referred as target or aided
agent.

• Agent B does not experience visibility issues and it gets reliable fixes along the time
relying on its GNSS receiver. It can hence be classified as aiding agent.

• both the receivers observe the same portion of the sky but their constellation visibility
is related to different harshness conditions, thus a reduced set of visible satellites is in
common view.

Kalman state prediction as a-priori state estimate

Prior Estimate ො𝐱0
−

Covariance Matrix 𝐏0
−

Kalman Gain Computation

𝐊𝑘 = 𝐏𝑘
−𝐇𝑘

𝑇 𝐇𝑘𝐏𝑘
−𝐇𝑘

𝑇 + 𝐑k
−1

Update Estimate

ො𝐱𝑘 = ො𝐱𝑘
− + 𝐊𝑘(𝐳𝑘 − 𝐇k ො𝐱0

−)

Compute Error Covariance
for estimate Update

𝐏𝑘 = 𝐈 − 𝐊𝑘𝐇𝑘 𝐏𝑘
−

Prediction of the next state
ො𝐱𝑘+1
− = 𝚽𝑘 ො𝐱𝑘

𝐏𝑘+1
− =𝚽𝑘𝐏𝑘 𝚽𝑘
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Hybrid PVT position 
ො𝐱𝑘
∗

Updated PVT position 
ො𝐱𝑘
+

ො𝐱𝑘+1
−

Figure 7.1: KF Loop for the smoothing of hybrid PVT solutions.

Differently from the implementation discussed in Chapter 6 for the tight-integration of
collaborative measurements, this section investigate the use of a direct KF for the smooth-
ing of the positioning solution provided by a H-LMS navigation filter. Supposed to rely
on a warning system which provides information about the stability of the signal tracking
according to visibility condition and the received signal quality, the GNSS receiver of a given
agent should evaluate the level of harshness for the experienced environment asking for col-
laborative aids, if needed. Every instant tk−1, at which a receiver is capable to solve for its
position, it can also propagate such a solution to the next epoch tk exploiting a direct KF
PVT routine [16]. The KF is supposed to rely on a-priori dynamic model, predicting at the
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time tk−1 the next state vector, x−
k and merging further GNSS measurements, zk, at time tk

to update the position estimate xk as show in the block scheme depicted in Figure 7.1.
According to the fundamental theory presented in Chapter 6, the motion of each agent is

modelled and propagated by means of a transition matrix Φk following a standard constant-
velocity model [16]. Motion and velocity noise components will be considered as a process
noise modelled by a process covariance matrix, Qk. The use of a direct KF for the smoothing
of the positioning solutions is generally discouraged in GNSS navigation since it introduces
memory in the process estimation, thus causing potential drifts. To mitigate the memory
effect of the estimation process, KF was implemented only for hybrid PVT relying on pre-
vious estimations and augmenting the measurements through the collaborative inter-agent
distances. This strategy limited the drift of the positioning solution computed along a ran-
dom trajectory. The key point in the implementation of the KF is the estimation of the
measurements covariance matrix R, which jointly considers IAR measurements and all the
available pseudoranges. For this implementation, R is defined as a diagonal matrix including
the variance of each measurement. Given the potential correlation among the measurements,
this solution is highly suboptimal for the position estimation and a more accurate estima-
tion is advisable for a proper cooperative estimation of such a covariance matrix, such as
distributed KF approaches [161].

In practice, the aided agents iteratively smooth the position estimates obtained from the
hybrid GNSS/IAR system. The predicted state x(k+1)

A is used as an approximation of the
future position. In this way, the system has a guard time for the lags introduced by the
Round-trip Time (RTT) and the processing time required by the cooperative solution in
potential real implementation. This solution allows to enhance the robustness of the original
algorithm in terms of time-consistency of the shared measurements, as well as contributing
to the reduction of the drag-back effect of the solutions obtained using previous fixes and
observed in [125].

Displacement vector and pseudo-position as a virtual landmark

In order to grant the privacy of the user and avoid the direct exchange of the position
estimations, a strategy to mask the position of the aiding agent is introduced still preserving
the effectiveness of the cooperative solution. This requires the definition of the ρ-IAR as d̃

s(k)
AB

between agents A and B w.r.t. the satellite s. Each aiding agent generates a virtual landmark
w.r.t. its estimated position by introducing a displacement vector defined as −→

δdB→B̃ for the
agent B. New virtual pseudoranges and angles are generated considering a given satellite
position x(k)

s and the virtual landmark, as

ρ
s(k)
B̃

= ρ
s(k)
B · hs(k)

B + −→
δdB→B̃ (7.1)

α̂AB̃ = cos−1
(︂
hs(k)

B̃
hs(k)

A

)︂
(7.2)

Given α
s(k)
AB , ρ

s(k)
B and x̃

(k)
B , the landmark point can be considered as a virtual pseudo-

satellite with its relative range ρ-IAR w.r.t. the user. The geometrical configuration of
the cooperating system and the GNSS constellation influences the quality of the calculated
ρ-IAR.

CP algorithm implementation and simulation parameters

The actual implementation of the GNSS/INS in the simulation environment followed the
steps listed in H-LMS IAR algorithm
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H-LMS IAR algorithm Basic cooperative positioning algorithms between agents sharing raw
pseudorange measurements

1: A → B : The aided agent A broadcasts to the potential aiding agent B its hs
i related to

the prediction of its KF-based position for the satellite s.
2: B : The aiding agent B generates a virtual landmark B̃ by adding a randomly generated

displacement vector to its position
3: B : B computes αs

A,B w.r.t. B

4: B → A : B replies to A sending αs
A,B̃

, ρB̃
s and its virtual position estimate B̃.

5: A : A estimates ds
(AB) through the IAR method.

6: A : A solves for the hybrid positioning equations according to H-LMS discussed in
Chapter 6.

The random displacement generated by agent B foreseen the generation of a vector
steered towards a random orientation with a reasonable magnitude. The magnitude can be
established according to the specific application.

The simulation parameter are reported in Table 7.1. The simulation scenario includes
a set of agents, C, and a set of visible satellites, S. The ECEF positions of the trackable
satellites are provided each second by a constellation simulator, based on non-synthetic
RINEX files, w.r.t. a given position. From this reference location, the positions of the set
of aiding agents is generated according to a spherical Gaussian distribution centred around
the reference with a pre-defined diagonal covariance matrix.

Table 7.1: Simulation parameters.

Simulation Parameter Variable Value

Number of agents C = ||C|| 30
Number of satellites S = ||S|| 8
Simulation Time T 100s
Visibility Matrix update rate R 3 s
Standard deviation of geographical distribution σgeo 1000m
User Equivalent Range Error σUERE 2 m
Average speed ẋ,ẏ,ż 15m/s
LMS iterations J 20
SAIA iterations L 20
Simulation step dt 1s

7.1.2 Numerical Results

This section discusses the results obtained simulating the aforementioned algorithm and
addressing the case in which the continuity of the GNSS solution is not granted. Therefore,
Figure 7.2a shows a receiver moving on a trajectory along which the GNSS service is not
always available. The red dots represent fixes obtained from a hybrid navigation filter while
green dots are standalone GNSS-only PVT fixes. Satellites visibility from the receivers is
determined by random transition of a binary matrix Vk, every simulation step, dt. Available
aiding agents for each target agent are then determined according to a cross-visibility matrix
which defines the shareable satellite available for the IAR computation at each time epoch
tk. Such matrix is randomly changed along the simulation to simulate changes in satellite
visibility. Thus, collaborative IAR contributions are computed whenever it is needed. Once
the equations are collected and processed, the composite H̄ matrix is defined for each receiver
independently, thus iterating the SAIA algorithm for L iterations within the PVT algorithm
performed for J iterations [38].
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Legacy PVT algorithm (green markers) and IAR-based positions (red markers) are used
depending on either full or partial satellites visibility conditions, respectively. This demon-
strates the good coherence and integrability of IAR with pseudorange measurements for
positioning purposes. The availability of the positioning service is increased along the path
and the hybridized solutions are indeed well-distributed along the trajectory although they
show a higher variance of the error w.r.t. the GNSS estimates. It is visible from Figure 7.2a
that the positioning solution recovered by CP show drifting phenomena and error higher than
10 m. Despite of the drift introduced and referred to as back-drag effect, an absolute posi-
tioning solution is still available, thus confirming the relevance of GNSS-based collaborative
ranging measurements.

It is worth to recall that the set of linearized equations involved in the hybrid PVT,
populated by cooperative and standard measurements, typically leads to an ill-conditioned
configuration. A valuable countermeasure is the adoption of specific PVT algorithm (i.e.
SAIA). Alternatively, a modification of the considered linearization point for the LMS it-
eration should be considered by providing the previous fix as a linearization point fr the
following iterative.

As depicted in Figure 7.2a, the realization of the hybrid PVT solution applied to the
simulation environment shows acceptable axis-related error on the estimated position. The
curve depicts the solution that is pure GNSS-based when enough satellites are available, and
hybridized with the IAR when outages are experienced. Thus, time epochs at which target
agents experience GNSS outages are highlighted by the small blue dots on the time axis
in Figure 7.2b. If compared to the results obtained in [125], on average, the quality of the
positioning was improved.

7.1.3 Remarks on H-LMS smoothed solution

The algorithm previously proposed in [125] has been refined introducing a KF-smoothed
solution, that improves the accuracy of the estimation, and allows roughly compensate for
the time-inconsistency of the exchanged measurements. It is indeed worthy to recall that
time compensation is not foreseen in this preliminary study. The exploitation of CP for the
compensation of outages in GNSS requires a network infrastructure and a properly designed
networked receiver. Despite the scientific relevance of the aforementioned results, similar and
better performances can be obtained through the integration of inertial systems [26] or finely
tuning the KF for reliable dead-reckoning position estimations. Furthermore, it must be
recall the H-LMS estimation often leads to ill-conditioned problems thus requiring a further
iterative solution for each outer iteration of the algorithm. This increases considerably the
computational complexity and suggests to address tight integration schemes which in parallel
guarantee improved precision and accuracy in the positioning estimation.

7.2 Precision GNSS and Collaborative Relative Ranges Inte-
gration

This section presents the results of a deep investigation on the theoretical fundamen-
tals of GNSS-based CP, published in [123]. By keeping in mind the derivation of the FIM
for the Gaussian-distributed satellite range measurements discussed in Chapter 6, the same
quantity is computed for correlated terrestrial range measurements to estimate and compare
the minimum uncertainty achievable for the position estimates. In this section, results from
the aforementioned Bernoullian trajectory are first presented addressing a statistical anal-
ysis of W-IAR measurements according to the methodology presented in Chapter 5. The
determination of the profitability of the H-LMS is then detailed by comparing the values
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(a) Axial position error. Blue dots indicate GNSS-denied instants.

(b) Random motion trajectory. Red dots indicate hybrid fixes in GNSS-
denied conditions.

Figure 7.2: Software simulation in ECEF coordinates along which GNSS outages are compensated
by hybrid navigation solutions.

obtained from numerical simulation and the theoretical bound, namely CRLB. A set of
alternative analytic trajectories is eventually tested to extend the analysis to a wider range
of geometrical conditions for the target agent and relative satellites positions.

7.2.1 Methodology

The proposed numerical simulation aims at analysing the impact in terms of precision of
the positioning solution computed by the target agent which integrates correlated collabora-
tive range measurements with standalone GNSS measurements. Furthermore, the analysis
aim at verifying whether an approximation of the CRLB can still be suitable to identify
the profitability of such an integration, despite the cross-correlation among the full set of
measurements.
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Figure 7.3: Block scheme of numerical simulations. The outputs of the LMS blocks were compared
to assess the positioning performance. Xs indicates the positions matrix of the visible satellites.

A target agent, A, is supposed to travel along a predefined path while a single aiding
agent, B, keeps its static position, xB, thus constituting a static anchor for every instants tk.
In the considered scenario both the agents compute their position estimates, x̂(k)

A and x̂(k)
B ,

by relying on a given set of S visible satellites. The target agent is designed to exploit the
IAR information obtained for each time instant, tk, through the collaboration with the aiding
agent. As depicted in Figure 7.3, the GNSS-only positioning solution, obtained through a
plain LMS, is first performed to obtain a coarse estimate of x̂(k)

A . For the sake of simplicity
of the simulation environment, the pseudorange noise was characterised by the same value
of σUERE for all the available satellites, thus making the LMS solution equivalent to a WLS.
Afterwards, the navigation data are used to determine collaborative ranges d̂(k)

AB which are
integrated in a further hybrid positioning solution, named H-LMS, to refine the previous
outcome, hereafter referred as to x̂+(k)

A . In order to emphasize the effects of collaborative
measurements, limited satellite visibility conditions were investigated and S = 4 satellites
were considered for the simulations. The axial standard deviations were measured from the
numerical simulation and, in parallel, estimated through the CRLB.

The results presented hereafter are based on Monte Carlo simulation by considering W
realizations of the target trajectory. The IAR measurements are expected to vary along with
the time, tk, while satellites are assumed static to limit the variability of the scenario, without
any loss of generality. The measurement and the positioning estimates are performed for each
run at the same time instant, tk. Pseudorange measurements are generated by perturbing
true satellite-to-agent ranges with independent WGN samples. The error covariance matrix
of each positioning solution is estimated as sample covariance, according to

P̂(k)
x = 1

W − 1

W∑︂
w=1

(︂
x̂(k)

w − E[x(k)
w ]
)︂ (︂

x̂(k)
w − E[x(k)

w ]
)︂⊤

(7.3)

In the following, the horizontal components of (7.3) are plotted as information ellipses
according to the eigenvalues of the position error covariance matrix [171]. Further details
about (7.3) and its visual bi-dimensional representation (error ellipses or information ellipses)
can be found in Appendix B. The positioning bias is computed as the mean error w.r.t. the
true position of the target agent
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ξ̂
(k)
x = 1

W

W∑︂
w=1

(︂
x̂(k)

w − x(k)
)︂

. (7.4)

Let consider a set of S pseudorange measurements and C collaborative contributions. In
order to observe the cross-correlation of such elements included in the hybrid measurements
vector µ(k), the PCCs of the measurements are computed according to

C(µ(k)
1 ,µ

(k)
2 ) =

cov
[︂
µ

(k)
1 ,µ

(k)
2

]︂
σ

(k)
µ1 σ

(k)
µ2

. (7.5)

where cov (·) indicates the same covariance estimator as for (7.3) and the generic µ(tk)
is a (S + C) × W matrix collecting a set of W realizations of the measurements vector for
the instant tk. The profitability of the hybrid solution is evaluated by means of the trace
inequality, thus computing the ratio of the time instants tk in which the condition

Tr
(︃[︂

F
(k)
H-LMS

]︂−1
)︃

> Tr
(︃[︂

F
(k)
LMS

]︂−1
)︃

(7.6)

is satisfied w.r.t. the overall simulation time. The profitability percentage of the methods
will be referred to as τexp and τCRLB to describe the advantage of H-LMS computed from
the numerical simulation and from CRLB, respectively.

7.2.2 H-LMS Positioning on Bernoullian Trajectory

The results presented hereafter are referred to the example of collaborative scenario
depicted in Figure 7.4 and obtained by means of a Monte Carlo simulation, using W = 10000
trials for each time instants tk. A set of four satellites was randomly generated with azimuth
ϕ ∈

{︂
π, 3

2π
}︂

and elevation α ∈
{︁

π
24 , π

2
}︁

as in Figure 7.5.

Figure 7.4: Example of a Bernoullian lemniscate path of 1046.7 m travelled at an average speed of
26.15 m/s. The dashed lines represent the collaborative terrestrial ranges provided according to the
W-IAR method.

As depicted in the skyplot of Figure 7.5, the relative position of the aiding agent changes
according to the motion of the target agent. Red dots in Figure 7.5 shows the relative
position in terms of azimuth and elevation of the aiding agent observed at time instants tk

for k ∈ (1,2,3,4,5) which are also highlighted in Figure 7.4.

Statistics of collaborative IAR measurements

In order to use a Gaussian likelihood (6.71) such as proposed in Chapter 6 to model
the W-IAR contributions, an analysis on the statistical distribution of the collaborative
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Figure 7.5: Skyplot of the relative azimuth, ϕ, and elevation, α, of the satellites and the aiding agent
w.r.t. the target agent position at different time instants tk where k ∈ (1,2,3,4,5).

range measurements has been performed. Figure 7.6a shows a time series of the statistical
distributions of the W-IAR error w.r.t. the true distance between the target and aiding
agent.

The qualitative representation of Figure 7.6a was assessed by a full quantitative analysis
based on a BIC, used to classify the error distribution of the W-IAR measurements. In Figure
7.6b, the histogram indicates the normalized occurrences of each fit test. It can be shown
that in this scenario the ranging error is mostly Normally-distributed (95.11% of the overall
simulation time), thus supporting the general derivation of the CRLB for a considerable set
of time instants, tk. Provided that a BIC analysis relies on the maximization of the likelihood
for a set of observations, this result strongly supports the choice of a Gaussian likelihood
in the FIM computation also for the the collaborative contributions. This aspect allows to
treat the collaborative contribution like satellite range measurements without any specific
adjustments in the navigation filter. Other distributions such as T-location and GEV can
be observed fitting the error statistics with a relatively low number of occurrences (≤ 5%).
Non-Gaussian occurrences are expected to induce a mismatch between experimental values
and theoretical bound.

On the comparison of theoretical and experimental limits

In Figure 7.7, the positioning solution of the LMS (left) and H-LMS (right) are presented.
The shape and orientation of information ellipses show a remarkable difference between the
two approaches in terms of error covariance matrix of the positioning solution. The most
significant improvement can be observed between the time instants t3 and t5 (see Figure
7.4). It is evident from these plots that the hybrid solution integrating W-IAR measurements
reduces the uncertainty in some specific portions of the path. The time series of axial biases
and standard deviations are reported in Figure 7.8a and Figure 7.8b, respectively. It is worth
noticing that both the metrics show a higher dynamics for the hybrid solution due to the
fast variations in the relative positions of the agents w.r.t. the slower satellites-to-target
dynamics.

By considering the standard deviation behaviour depicted in Figure 7.8a, it is remarkable
that on y-axis the aforementioned improvement is still well visible between t3 and t5, when
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(a)

(b)

Figure 7.6: Discrete time series of IAR error PDFs evaluated in a set of time instants along the
Bernoullian trajectory (a). Occurrences percentage of BIC best fits of the W-IAR error w.r.t. to a
set of known statistical distributions (b).

the collaborating agent is roughly observed in the opposite direction w.r.t. the satellites
constellation. The z-axis is instead less sensitive to the dynamics of the agents since their
relative elevation does not vary along the trajectory. As shown in Figure 7.8b, also the
bias presents a similar behaviour, showing improved performance according to the same
favourable position of the collaborating agent, xB.

The CDF of the Root Mean Square (RMS) error, computed along the simulation, shows
that the hybrid scheme overall improves the positioning performance for error values included
in approximatively 0 2m and 0 9m w.r.t. the standalone GNSS solution.

The plots in Figure 7.11 shows the Pearson correlation coefficients (7.5) of the measure-
ments at the different time instants tk. The first row and column of each matrix indicates
the correlation coefficients related to the dependent W-IAR measurement. It can be ob-
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Figure 7.7: Estimated positioning solutions according to the scenario in Figure 7.4. The information
ellipses describe the horizontal standard deviation at 90%, 99% and 99.9% of confidence interval,
obtained from the eigenvalues of the matrix P

(k)
x in a subset of time instants, tk. Results from a

Monte Carlo simulation with parameters W = 10000, σ
(k)
sA = 1∀k, max(d(k)

AB) = 200 m.

served that in correspondence to t4, which it has been a-posteriori identified as the most
beneficial time-instant for cooperation, a very low correlation can be observed among the
measurements.

To observe the benefits of H-LMS from the theoretical point of view, Figure 7.10 shows the
comparison of the standard deviation computed via numerical simulation and the estimated
ones obtained for the CRLB estimation of both the solutions. While the quantities match
perfectly in the case of WLS, CRLB is not accurate for H-LMS due to the measurement
correlation among IAR and pseudorange measurements. In correspondence of t4, where
the lowest correlation value has been observed, numerical values and theoretical estimations
tends to match. The profitability percentage in terms of horizontal precision of the H-LMS
is evaluated computing the percentage of the time in which the trace of the covariance
matrices and the CRLB of the H-LMS are lower than the respective values from the LMS.
The profitability percentage computed by means of estimated CRLB is 91.93%, which is
remarkably close to the value obtained from simulated data, 89.73%.
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(a) Standard deviation of the position error in ENU frame.

(b) Mean bias of the position error in ENU frame.

Figure 7.8: Statistical analysis of experimental biases and standard deviations of standalone and
hybrid positioning solutions by means of Monte Carlo simulations.

Figure 7.9: Empirical CDF of the positioning error ξ̂x for each time instant tk.

Provided a coarse knowledge of the position of the collaborating agents and of the uncer-
tainties of their GNSS measurements, an estimation of the uncertainty of the collaborative
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Figure 7.10: Comparison of measured axial standard deviations and estimated standard deviations
from the CRLB for LMS positioning and H-LMS by Monte Carlo simulations.

ranges can be in turn computed [126]. Finally, the approximation of the CRLB for the hy-
brid positioning algorithm can be used to enable hybrid positioning according to (6.57) or
to exclude unprofitable terrestrial contributions through the minimization of the CRLB, as
in [32].

Figure 7.11: Matrices of PCC (7.5) computed for the measurement error covariance Rρ, and observed
at sample time instants tk, where k ∈ {1,5}.

7.2.3 H-LMS Estimation on Other Trajectories

The same scenario in terms of satellites visibility and single aiding agent contribution
is used to analyse a set of different trajectories to identify the profitable behaviour of the
hybrid solution with different geometrical configurations. All the trajectories are centred
around the origin of the simulated scenario. As shown in Table 7.2, the evaluation of the
profitability percentage, τCRLB, through the proposed estimation is more conservative w.r.t.
the actual simulation results. Furthermore, the MSE computed along the trajectory between
simulated and theoretical standard deviation value can be considered negligible for all the
tested trajectories. Figure 7.12 summarizes the horizontal values of the theoretical CRLB
computed for the H-LMS using different geometrical trajectories. The values are compared
to the CRLB computed for H-LMS which is almost constant along all the trajectories due
to the large distance of the satellites from the target at each instant tk.
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Figure 7.12: Horizontal CRLB computed for H-LMS in different elementary geometrical trajectories
vs. horizontal CRLB computed for LMS.

Table 7.2: Comparison of profitability of H-LMS for other elementary geometrical trajectories

Trajectory Shape τexp τCRLB ∆τ MSE (m)

Squircle 72.21 81.90 9.69 0.26
Circular 73.11 79.46 6.35 0.21
Rose lemniscate 74.57 77.50 2.93 0.16
Archimedea Spiral 75.41 80.67 5.26 0.13
Bernoullian lemniscate 89.73 91.93 2.20 0.15

7.2.4 H-EKF Estimation on a Bernoullian Trajectory

Figure 7.13 shows the same Bernoullian path presented in Figure 7.7 along with the
estimated position and associated information ellipses computed through the Monte Carlo
trials of a H-EKF. Differently from the H-LMS solutions, the benefits of the hybridization
are less evident in the H-EKF navigation algorithm. However it is still remarkable to notice
a faster convergence of the covariance in correspondence of the beginning of the simulation
(coordinates (200,0) in the trajectory plots).

The CRLB defined for a H-EKF is less sensitive to the geometry of the system as shown in
the theoretical limit computation in Figure 7.14. This is partially due to the convergence of
the covariance along the trajectory path which masks the dynamics of the CRLB. However,
the example shows that the theoretical advantage between EKF and H-EKF is remarkable.
It can be observed that as far as the trace value converges, the information carried by
collaborative measurements becomes less relevant, differently from what we expect in theory.
It has to be noticed that approaching the time instant t4, the CRLB for H-LMS shows a
faster decrement which matches the analysis performed for the H-LMS algorithm while the
same behaviour is not evident in the experimental values. The profitability analysis of the
integration of auxiliary measurements in EKF scheme provided values of 100% for all the
tested trajectories shown in Table 7.2 but due the peculiar considerations made for the EKF,
the comparison between theoretical and experimental values is not worthy to be reported.
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Figure 7.13: Estimated EKF and H-EKF positioning solutions according to the scenario depicted
in Figure 7.4. The information ellipses describe the horizontal standard deviation at 90%, 99% and
99.9% confidence intervals, obtained from the eigenvalues of the matrix Px in a subset of time instants,
tk. Results from a Monte Carlo simulation with parameters W = 10000, σsA = 1, max(dAB) = 300
m.

Figure 7.14: CRLB computed for EKF and H-EKF compared to the statistical values of the trace
of the error covariance of the position obtained from the Monte Carlo simulation. The ordinate axis
is logarithmic scale for improved readability.

7.2.5 Remarks on hybrid positioning solution

Under proper conditions, the hybridization of satellite-based and dependent terrestrial
measurements can increase the performance of standalone GNSS positioning similarly to
the integration of independent terrestrial ranging contributions. In particular, when the
geometry of the visible satellites is poor, the additional information provided by collaborating
agents mostly compensates for the dilution of precision.

The non-linear formula employed for the computation of single IAR contributions be-
tween the two agents returns non-independent non-Gaussian range measurements whose
distribution does not always match with the estimation model employed in LMS and used to
derive the related CRLB. In these cases the simulated standard deviation can be lower than
the CRLB as shown in the example discussed in Section 7.2.2. This results are supported
by the theory related to biased estimators and stability conditions of the CRLB.

The relevance of the presented results is threefold. On one side it has been shown
that non-independent measurements can bring information to the positioning estimation.
Furthermore, the simplistic usage of the likelihood function for Gaussian distributed variables
with W-IAR measurements shows that their distribution can be non-Gaussian, thus leading
to overoptimistic and over-pessimistic outcomes mainly depending on pseudoranges quality
and geometry of the collaborating agents. In the end, the advantage of the proposed hybrid
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positioning strictly depends on the combined geometry and quality of the terrestrial ranging
information and satellites constellation. Summarizing, relying on a proper knowledge of
the measurements uncertainties, the used likelihoods definition and the related CRLB for
the hybridization of cooperative range measurements can be used as an approximation of
the expected position error covariance matrix to determine whether GNSS-based inter-agent
collaboration can improve navigation and positioning performances.

7.3 Accuracy Improvement of Position Estimation through
GNSS-only Collaborative Navigation Systems

This section includes a set of results obtained by processing realistic GNSS signals through
networked MATLAB-based software receiver. The following results show the effectiveness of
the tight-integration of collaborative measurements up to the definition of a general trend
which relates number of cooperating agents and number of visible satellites. Due to the
analysis of realistic signals affected by ionospheric and tropospheric impairments, the col-
laborative measurements were obtained through DD ranging method that better mitigates
correlated pseudorange errors w.r.t. the IAR methods, according to the theory included
in Chapter 4. The section also describes the scenario and the whole experimental setup
employed to investigate the integration scheme described in Chapter 6.

7.3.1 Simulated scenario and experimental setup

MATLAB
Scenario Generation

RFCS
IFEN NavX

.trj2 files

TARGET AGENT 01

RAW - AGENT 02

RAW - AGENT 04

USRP
Signal ADC

.bin files

NavSAS Rx
Tracking and pseudorange 

computation

RF Signals

Raw Measurements
generation

CRU
MATLAB Collaborative 

Ranging Unit

Coop. Range
measurements

NavSAS Rx
Hybrid LMS/EKF/PF PVT Hybrid Coop. 

Positioning
Standalone GNSS 

Positioning

NavSAS Rx
LMS/EKF/PF PVT

true trajectories

Figure 7.15: High-level block scheme of the experimental setup.

Each agent was simulated as an unspecified vehicle getting independent pseudorange
measurements from the others within the same timespan.

The setup, described in Figure 7.15, was selected to simulate the proposed hybridization
dealing with realistic GNSS signals and dynamic GPS satellite constellation. The other
GNSSs constellations (i.e. Galileo, GLONASS, Beidou) are omitted without any loss of
generality. A vehicular scenario was first generated to extract the reference trajectory and
the states vector of each simulated agent with a position update rate of 10Hz. The generated
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files were then processed through a RFCS IFEN® NavX. The GNSS signals were generated
for a dynamic GPS constellation provided in Figure 7.5.
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Figure 7.16: Snapshot of simulated satellites positions by IFEN® NavX.

They were transmitted by the RFCS and hence sampled by means of the ADC converter
of a USRP N210, disciplined in turn by a compact RFX-OS364 OCXO. The resulting
binary files were then processed through a MATLAB-based fully-software receiver (NavSAS
Rx) to obtain pseudorange raw measurements out from the tracking stage and the epochs
timestamps out from the coarse PVT stage. A further MATLAB script was used to combine
external and own pseudorange measurements. Eventually, a modified EKF PVT stage was
in charge of the position refinement according to the integration scheme proposed in Chapter
6. A detailed description of the relevant simulation aspects is provided hereafter.

7.3.2 Scenario generation

In order to reduce the amount of time-consuming single-agent simulations and with the
aim of preserving a considerable variability of the observable processes, a Bernoullian path
was designed as shown in Figure 7.17. The Bernoullian trajectory was centered at a given
reference location (45.067825◦ Latitude and 7.591147◦ Longitude), over an area of approxi-
mately 0.4 km2.

The seven agents indicated by the dots were kept static while the target moves along the
path according to the dynamics reported in Figure 7.18. The choice of static collaborating
agents has not to be considered as a simplification of the scenario. In fact, the focus of the
study is the behaviour of an hybridized system with a variable relative dynamics among the
receivers, which is fully described in Figure 7.19.

The state vector of each agent was generated trough a Matlab® simulation environment
and stored as .trj2 file to feed the RFCS for the generation of the trajectories. The snapshot
in Figure 7.17 shows a possible realization of the test in which the target agent from the
collaboration of agents 5,6 and 7. In order to cover all the configurations of the scenario,
two parameters are devoted to the identification each simulation:

• S ∈ (4,6,8,10): is the number of channels in tracking. Given a reasonable proximity
among the receivers, it corresponds also to the number of visible and shareable satel-
lites, without any loss of generality. The granularity was chosen equal to 2 to show
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Figure 7.17: Multi-agent simulation scenario. 7 fixed GNSS receivers and a Target agent moving
on a Bernoullian trajectory with lobes of radius rL = 500. Heading information indicates the motion
direction.
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Figure 7.18: Simulated dynamics of the target agent.
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Figure 7.19: Simulated relative dynamics of the agents w.r.t. the target agent.

appreciable difference among the different configurations while the minimum number
of satellites needed for the initialization of the positioning algorithm is set to 4.

• C ∈ (1,2,3,4): is the number of collaborative contributions obtained according to DD.

As shown in Figures 7.18 and 7.19, there was an evident periodicity due to the multiple
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laps on the Bernoullian lemniscate which is the reason why a further distinction were set
based on the dynamics of the target agent. A shorter time span was chosen from 5s to 80s
considering a low dynamic portion of the target trajectory while a longer one was chosen in
5s to 160s, thus including a higher relative dynamics.

7.3.3 Epochs misalignment

As discussed in Chapter 3, the simulated GNSS receivers compute their first fixes at
independent time instants, as shown in Figure 7.20, in which epochs are represented by
squared black markers.

Figure 7.20: Epochs misalignment for 8 asynchronous, independent GNSS receivers observed at 10
Hz w.r.t. to the reference GPS time scale.

We already discussed the importance of compensating for this misalignment both in
Chapter 3 and 4 to preserve a good time-consistency of the measurements. In order to
accomplish this task, Doppler-based alignment is used. It can be shown that an inaccurate
Doppler shift estimation performed by the target receiver leads to large double difference
mean errors. In Figure 7.21 is shown the effect of underestimating the Doppler shift w.r.t.
the value measured by the receiver. The Doppler shift factor reported on the x-axis is
expressed as a fraction of the Doppler value estimated by the target receivers.

Figure 7.21: Mean error trend on a single inter-agent GNSS-based measurement in case of underes-
timation of the Doppler shift by the target receiver.

In order to preserve the effectiveness of the Doppler-based compensation presented in
Chapter 4, available aiding agents are chosen within a pre-defined guard time w.r.t. the
current target epoch. The guard-time value chosen in this framework was 40 ms (before
each tk) and is remarked in Figure 7.20 by means of grey areas. This approach was used to
limit the amount of collaborative contribution by facing a realistic availability which could
depend both on network constraints or on timing issues, as well.
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Figure 7.22: Example of standalone vs. hybrid CDF on the positioning error evaluated on a long
path (280 s) with S = 6 and C = 4 in Earth Centered Earth Fixed (ECEF) reference frame.

7.3.4 Results

This section presents the quantitative results concerning the accuracy improvement pro-
vided by the tight integration of collaborative DD collaborative contributions and standalone
GNSS pseudorange measurements.

Performance metrics for positioning assessment

By fixing the number of available satellite channels, S ∈ (4,6,8,10), and the number
of aiding contributions, C ∈ (1,2,3,4), the positioning error was evaluated as the Euclidean
distance between the reference trajectory obtained from the RFCS and the computed position
for each epoch

ξx(tk) = ∥x̂EKF(tk) − x(tk)∥. (7.7)

A CDF of the positioning error was then evaluated for each parameter combination as
shown in the example of Figure 7.22. A set of percentiles was then extracted from the CDFs
of the position error obtained at each epoch tk, to show the reduction of positioning error
according to the number of aiding contributions. Each plot shows a different number S of
satellites and the granularity was chosen in order to show appreciable quantitative differences.

A comparison between the standalone and hybrid solutions is provided instead by com-
puting the Mean Accuracy Improvement along the time for each scenario. By considering
the number of possible combinations of c aiding agents as the binomial coefficient Pc =

(︁C
c

)︁
,

the index µ ∈ (1,2, . . . , Pc) is used to identify the improvement

νc,µ(tk) = E [ξx,H-EKF(tk)]
E [ξx,EKF(tk)] · 100 (7.8)
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Figure 7.23: Percentiles extracted from the position error CDF.

where the fractional terms are the time average of the (7.7), for the EKF and H-EKF
estimators, where H-EKF is used to identify the hybridized algorithms. An aggregated
metrics is hence conceived as the average among all the possible combinations of aiding
contributions in order to mitigate the effects of the specific geometry of a single set of aiding
agents. The Aggregated Accuracy Improvement is computed as

ν̄c = 1
Pc

Pc∑︂
µ=1

νc,µ. (7.9)

and it gives a direct information on the benefits of the proposed solution.

Experimental results

The results presented hereafter are obtained through the analysis of the two different
timespans of the sample trajectory presented in Section 7.3.1. For the sake of clarity, all the
data refer solely to the target agent. The starting time has an offset of 5 second because a
first LMS positioning stage is used at the beginning of the trajectory. Within this interval
the target agent is static. 7.3.1.
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Figure 7.24: Average Performance improvement varying the number of satellites (available channels)
and the number of aiding agents (color-scale).

The overlap between the time-spans allowed to identify an increase of the positioning
error due to the complexity of the dynamics of the target agents which is not always properly
modelled in the EKF design equations.

The sets of bar plots in Figures 7.23a and 7.23b summarize the values of the CDF of
position error in (7.7) for the selected percentiles. By considering respectively high relative
dynamic and low relative dynamic, the results are obtained varying the number of the col-
laborative range contributions (represented by the color scale) and the available satellites
(through different plots).

On average the positioning solutions always benefits from the proposed integration show-
ing relevant improvement in all the analyzed conditions. It is worth to remark that collab-
orative contributions allow to effectively compensate for a lack of satellites visibility. As an
example, it can be seen in low relative dynamic 7.23b, that the combination of 8 satellites
and 2 aiding agents turns in similar accuracy w.r.t. the unaided position solution obtained
by exploiting 10 satellites. Similarly 1 aiding agent with 6 visible satellites matches the
performance of standalone GNSS positiong of 8 satellites for all the percentiles. Similar
behaviour can be observed in high relative dynamics.

High relative dynamics

Looking at the aggregated metrics in Figure 7.24, it is worthy to notice that the bene-
fits of the integration of new ranging measurements decrease with the number of available
channels when high-relative dynamics is investigated. The average improvement increases
for 6, 8 and 10 channels according to the number of ranging contributions while it shows an
inverse trend when only 4 channels are considered. In spite of the use of an EKF, the over-
all positioning performances with 4 satellites are generally very poor especially considering
the low Gemetrical Dilution of Precision affecting the estimation. However, the minimum
improvement is about 6% (N = 10,C = 1) in the worst case up to the 39% of the best case
(N = 4,C = 4).
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Low relative dynamics

The behaviour in low relative dynamics still shows a remarkable improvement due to
the proposed integration. The maximum error reduction is over the 15%. However the
number of position samples is lower and the performance about the static portion of the
simulation severely affect the whole results. EKF is indeed less effective in estimation when
the target is not moving because it keeps modelling the motion as linear according to the
model in Chapter 6. For this reason, the following analysis will be restricted to the high
relative dynamic dataset in which a large statistics about the trajectory drives the trend of
the accuracy improvement.

7.3.5 Data fitting of Mean Aggregated Improvement

The polynomial fittings shown in Figure 7.25 summarize the benefits of the approach
by analysing the aggregate average improvement versus the number of contributions from
satellites and cooperating agents.

The goodness of fittings related to the figures are evaluated in the Table 7.3.

Table 7.3: Goodness of fit of the average accuracy improvement with SSE and related quality metrics.

Metric 3rd Order Fit 1st order fit

SSE 8.329 288.8
R-square 0.995 0.84
Adjusted R-square 0.989 0.815
RMSE 1.178 4.714

Despite the 3rd order polynomial better approximates the experimental behaviour of the
data, the 1st order fit provides a more readable interpretation of the experiment. As far
as the number of available satellites increases, the improvement in the accuracy decreases
approaching zero in correspondence of 10 satellites in view. This suggests that the additional
information carried by inter-agent contributions is less effective in good visibility conditions
while it is worthy otherwise. Furthermore, it can also be assessed that remarkable im-
provement in terms of accuracy can be provided in good visibility when a high number of
collaborating agents are exploited by the target.

7.3.6 Remarks on the accuracy improvement

Double differencing technique has been used to determine auxiliary inter-agent distances
among the agents by first synchronizing the measurements through a pre-emptive clock bias
estimation and a further Doppler-based compensation. The integration of such measurements
in the navigation algorithm allowed to effectively compensate for inaccurate dynamics model
in EKF-based positioning reducing the error in the position estimates, thus improving the
accuracy of the solution. The method has been applied to a vehicular scenario contemplating
multiple agents in low and moderate relative dynamics conditions. It has been observed
that cooperative tight integration copes with a misleading modelling of the dynamics of the
users (low values in model covariance matrix) used in the EKF. A comparison between a
standalone positioning and a cooperative algorithm based on EKF navigation algorithm was
presented relatively to an experimental realistic using realistic GNSS signals. The behaviour
of the performance improvement showed an increasing trend in low visibility condition while
the benefits of the integration decrease when an high number of shareable satellites are
available. The integration of a small set of DD-based inter agent distances compensate for
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Figure 7.25: X-Y 3rd order data fitting with multi-dimensional polynomial showing the trend of the
average accuracy improvement in high relative dynamics varying the number of satellites and aiding
agents in high relative dynamics.

severe drifts even in good sky visibility conditions. The benefits show an increasing trend
as far as the number of collaborative ranges increases at any available number of channels.
In parallel, the benefits of such an integration slightly decrease as far as the number of
visible satellites increase. Eventually, this work shows a clear improvement in the sharing
of pseudorange measurements among connected receivers especially in contexts in which a
limited amount of satellite is visible for which, the experimental results showed an average
improvement in accuracy of about 39% in the worst sky visibility conditions, by relying on
the collaborative measurements of 4 aiding agents.

7.4 Assessment of the computational complexity of Bayesian
positioning estimation in EKF and PF

This section aim at contributing to the selection of a proper navigation filter for the
hybridization of the PVT computation using collaborative inter-agent measurements. Ac-
cording to the theory presented in Chapter 6, PF is appealing for the superior performance
in terms of estimation accuracy. Despite this, EKF still dominates the real implementations
of positioning and navigation algorithms due to its lower computational complexity. A sub-
optimal implementation of a PF named suboptimal PF (s-PF) is hereafter proposed for a
fair comparison of the positioning estimations performed through the two navigation filters.
All the results presented in this chapter are referred to a single aided agent benefiting from
multiple aiding agents sharing their raw measurements. Due to their relevance in the context
of GNSS-based CP, they have been published in [128].

Suboptimal implementation of a Particle Filter (s-PF)

The strategy of implementing a s-PF (a.k.a. in literature as Extended Particle Filter
(EPF) [120, 2]) aims at providing a fair comparison among the two Bayesian filters. The
proposed implementation does not exploit on purpose the capability of PF of dealing with
non-Gaussian density function but it is worthy to consider that even restricting this condition,
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the accuracy of the estimation is higher than EKF. Furthermore, it is remarkable that an
accurate modelling of the statistics of the measurements is not suitable in practice for an
optimal implementation of the PF and the Gaussian approximation is hence applicable for
a large variety of situations.

If a linear state transition function of the EKF is used for the prediction stage of the PF
and a Gaussian likelihood is chosen for the weights computation (6.53), the PF implemen-
tation turns to be a suboptimal estimation algorithm but the performance can be properly
compared as it will be shown in the results. It is worth mentioning that the step 1 can
be oversimplified by generating Gaussian-distributed particles according to the estimated
covariance matrix at Pk−1 prior to the prediction.

7.4.1 Computational complexity of Bayesian Estimation

A formal analysis about the complexity of the two Bayesian navigation filters presented
in this chapter is summarized hereafter. By comparing the main computational steps pre-
sented in [77], it can be noticed that the most time-consuming computation in EKF regards
the recursion about the matrix Pk which is not required in PF. Let nθ the dimension of the
state vector and N the number of particles used in the PF, the computational complexity can
be approximated to O(2n3

θ) and to O(Nn2
θ) for EKF and PF, respectively [76]. According

to the number of elements of the state vector (6.1), it is worth to consider that the number
of operations is comparable for the two navigation filters when N ≃ 16 [77]. As far as nθ

grows the difference reduces because the measurement update becomes more complex. The
complexity issue is imperative for the implementation of the algorithms in low-power hard-
ware architectures and it can be determinant for the choice of a specific Bayesian navigation
filter. PF/EKF implementations have been discussed in literature to limit the computational
burden of the standalone PF for a subset of state elements [77, 2] but they are out of the
scope of this work.

7.4.2 Test Scenario

The Bernoullian trajectory shown in Figure 7.26 was considered for the generation of
the vehicular scenario. The trajectory was chosen among a set of geometrical paths centred
at the point C1. The four agents indicated by the black dots Cc where c ∈ (1,4), are kept

Figure 7.26: Bernoullian Lemniscate test trajectory. The results are referred to the S-shaped portion
included between instants ts and te and crossing the location of agent C1.

fixed while the target moves along the path according to a predefined uniformly accelerated
dynamics, represented in Figure 7.26 by the small grey dots. The tangent speed of the target
agent spans from 5 m/s to 10 m/s in a timespan of 60 s. The true state vector (6.1) of each
agent was generated with an update rate of 10 Hz trough a Matlab® simulation environment.
The true trajectories were stored as .trj2 file to feed the IFEN NavX for the generation
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of GPS constellation and of the realistic satellite signals. Two different visibility conditions
were considered in which the available satellite set has been randomly changed to observe the
estimation performance of the two navigation filters in different conditions, as reported in
Table 7.4. A set of 4 satellites were considered to satisfy the minimum conditions to initialize
the positioning algorithm [90], while a set of 10 satellites simulates the open sky visibility of
the GPS constellation. These alternatives also affected the quality of the inter-agent ranging
and the overall estimation refinement obtained from the integration.

Table 7.4: Satellite visibility in the simulation scenario.

Visibility No. of Satellites Satellite IDs (PRN)

Good (Open Sky) 10 3,4,7,8,11,12,16,17,27,18
Poor (Urban Canyon) 4 4,7,8,27

A first set of results, shown in Figure 7.27, describes the improved average accuracy of
the s-PF estimation w.r.t. to the EKF. The fact that the same accuracy is not affordable for
an EKF, clearly remarks the benefits of using such a computational expensive algorithm for
the PVT solution. In fact, while PF estimation can be asymptotically improved by increas-
ing the number of particles, EKF already provides the best achievable solution which can
be only improved by better environmental conditions experienced by the receiver. Although

Figure 7.27: CDFs of the estimated trajectory with plain s-PF (N = 1000) and EKF navigation
filters.

the considered implementation of the PF is suboptimal, an average accuracy improvement
of 23.02% for the 50th percentile of the error distribution has been achieved in good vis-
ibility. A reduced improvement of 12.36% at the 50th percentile is instead observable in
poor visibility conditions, as depicted in the right CDF in Figure 7.27. According to the
approximation of the computational complexity discussed in Chapter 6, the usage of 1000
particles requires a considerable computational effort, thus making the PF filter 62.5 times
slower in the estimation routine. By focusing on PF implementation, the results in Figure
7.28 show that a considerable advantage is provided by integrating auxiliary measurements
when a lower number of particle is used for the PF-based estimation (N = 200). On the left
plot, it can be noticed that the hybridization cannot provide a strong improvement, thus dis-
couraging the cooperative effort when a high number of particle is used. On the other hand,
the CDFs provided in Figures 7.29 and 7.30 confirm that the integration of collaborative
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Figure 7.28: CDFs of the estimated trajectory with Hybrid s-PF using different numbers of particles
and varying the number of collaborative contributions.

range measurements can dramatically improve the EKF performance avoiding the increase
of complexity required by the PF. The results show that EKF can be enhanced by integrating
auxiliary correlated information more efficiently than what can be done by PF implemen-
tation. This suggests a trade-off in preferring collaborative solutions w.r.t. high-complexity
navigation filters.

Figure 7.29: CDF of EKF and PF trajectory estimation varying the number of particles and the
number of collaborative contributions in good satellite visibility.

7.4.3 Final remarks

This investigation compares the benefits of the integration of GNSS-only auxiliary mea-
surements to positioning and navigation by proposing the extension of the measurements
vector with collaborative measurements. The analysis were performed along a low-dynamics
portion of a Bernoullian trajectory to properly compare the performance of an EKF and a
suboptimal PF in different satellites visibility conditions. The s-PF reaches better accuracy
and precision performance at a high computational cost while EKF offers practicable compu-
tational complexity although it leads to lower accuracy. The accuracy improvement provided
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Figure 7.30: CDF of EKF and PF trajectory estimation varying the number of particles and the
number of collaborative contributions in poor satellite visibility.

by multi-agents collaborative range measurements is less significant when a high number of
particles is used for PF position estimation. On the other hand, the EKF-based integration
considerably increase the accuracy of the estimation reaching values close to highly-complex
s-PF and by also maintaining a lower computational complexity.
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Chapter 8

Implementation of a Proof Of
Concept

This chapter presents the development of a PoC for the GNSS-based CP approach dis-
cussed in this thesis. A general framework, named CAPS.loc, was conceived to provide a
CP solution for GNSS users experiencing poor positioning and navigation performance, over
general purpose network connectivity1(e.g. Wi-Fi 802.11x or 4G). A preliminary implemen-
tation of such a framework was designed in the context of HANSEL2, a project founded by
the ESA. A demonstrator was contextually developed to assess the feasibility and the effec-
tiveness of a pairwise GNSS-based CP using Google Android™ smartphones. By relying on
the access to GNSS raw measurements provided by the devices, the PoC aimed at assessing
the feasibility of the CP paradigm.

Practically, the implementation concerned the mutual exchange of GNSS raw measure-
ments obtained from integrated ultra-low cost GNSS receivers for a near-real-time compu-
tation of the collaborative inter-agent distances among the agents (5). By operating in such
a collaborative context, the devices were expected to improve their positioning and naviga-
tion performance according to the hybrid scheme proposed in Chapter 6, thus integrating
such asynchronous inter-agent distances. Basically, CAPS.loc was conceived as GNSS-only,
sensor-less and collaborative positioning and navigation framework.

An introductory discussion is provided in Section 8.1 concerning the context of Smart City
addressed by the HANSEL project. Beside this, recent research works about GNSS advances
in ultra-low-cost receivers embedded in smartphones are also discussed as background and
motivation of the proposed contribution about GNSS-based CP. An overall description of
the framework and its real implementation is then provided in Section 8.3 and a set of
metrics for the evaluation of the positioning performance are presented along with a general
classification of the investigated scenarios in Section 8.5.

8.1 The role of GNSS in smart connected environments
The GNSS-based CP defined within this thesis can be considered a general CP framework

which can be potentially implemented in a variety of networked GNSS receivers. Despite
this aspect, CAPS.loc addresses specifically smart devices by focusing on their positioning
and navigation capabilities in urban environment.

1The CAPS.loc framework won the Italian Prize and it was awarded at Galileo Masters 2019, Space Week
3-5 December 2019 Helsinki

2ESA contract number 4000126230/18/NL/CRS
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In fact, smart cities with their urban characterization perfectly combine a consider-
able number of smart devices equipped with ultra-low-cost GNSS receivers and critical
threats to GNSS itself. Indeed, within this context GNSS satellites are often in Non-Line-of-
Sight (NLOS) and their visibility is often limited due to obstruction. Even considering the
integration of auxiliary sensors, the quality of absolute positioning solution can be highly-
compromised or unreliable [55, 43].

The paradigm of Smart Cities has attracted many research works in the last decade,
although a proper definition has not been identified yet. They can be defined as limited
geographic and/or administrative area in which several types electronic devices can pro-
vide and exchange information among themselves within a given network. This exchange
allows improving resource usage, mobility and quality of life by providing benefit to civilian,
governmental and business users.

Furthermore, the ubiquity of such smart technologies, the advent of Internet of Things
(IoT), and the recent advances of the telecommunication networks have actually enabled new
connectivity and technological challanges, among which the cooperative or cloud-based loca-
tion and navigation approaches are readily available examples [108, 114]. In these domains,
such positioning approaches are of high interest for several applications in which size, power
or computational constraints constitute the limiting factors of potential implementations.

In such a smart city context, a relevant aspect is the provision of location and navigation
related services for both the users and within the network itself. This appears immediate
when applications such as traffic management, access control, geofencing, autonomous mo-
bility, precise positioning, public health and safety, critical infrastructure, or security are
among the killer application of the urban scenarios [75]. As the readers know, it comes
naturally that one of the key enablers of such services is GNSS, through its global coverage
and free of charge provision of positioning solution. Together with the growing adoption
and availability of GNSS signals, frequencies and services, user technologies have evolved
and disseminated in a multitude of devices and applications. At the same time, other tech-
nologies have continuously emerged and evolved into the PVT domain, such as 4G/LTE/5G
[204, 29], increasing even further possibilities for positioning solutions and the synergies with
GNSS in providing better location and navigation capabilities to the users.

8.1.1 GNSS advances in mass-market smart devices

In order to support specific applications in the area of GNSS, ad-hoc radio-links have been
used in high-end geodetic receivers for real-time surveys since the mid-1980s when RTK was
first conceived. Legacy radio links in UHF or Very High Frequency (VHF) are implemented
in professional receivers for the exchange of differential corrections. Modern solutions rely on
Bluetooth™ or even on wired/wireless internet connectivity such as for example the products
in [188, 189]. Such solutions were not conceived for a peer-to-peer real-time collaboration
and they cannot be addressed for the target application described in this chapter.

Despite the quality and the reliability of the hardware, an interesting solution to exploit
the synergy between network connectivity and low level processing of GNSS measurements
has been recently offered by Google Android mobile devices [74]. To support and encour-
age the rapid innovation trends involving LBS indeed, in 2016 Google made available raw
GNSS measurements, retrieved from the enabled GNSS chipsets for mobile devices. The
measurements can be retrieved from the on-board GNSS chipset through Android’s Applica-
tion Programming Interface (API) 24 on devices running Android 7+ equipped with enabled
chipsets, thus improving their positioning and navigation performance [206, 74]. Thanks to
this innovation, a number of recent research works successfully investigated GNSS positioning
in smartphones. Preliminary investigation on the measurements quality obtained through
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smartphones GNSS receivers could lead to innovative CP frameworks for ultra-low-cost mass
market GNSS devices.

A controlled scenario analysis was performed on a set of different mobile devices in [68],
Xiaomi Mi 8 positioning solutions has been recently investigated in [156] and the migration
of DGNSS and RTK positioning has been proposed for smartphones in several contributions
[205, 30, 84, 107, 181] as well as PPP [147, 104, 10, 150]. On one hand such analysis often
emphasized technical and technological limits of this market segment such as bad antenna
design and poor quality of code pseudorange measurements while on the other hand they
opened a variety of potential solutions for the improvement of positioning and navigation.

Thanks to the disclosure of such measurements in Android devices, the collaborative
combination of GNSS data can be performed prior to the positioning computation, by ac-
tually increasing the number of measurements available at the PVT stage, as proposed in
Chapter 6. In the past, this challenging approach has been investigated mostly by simula-
tions rather than analysing real implementations, due to the many technical aspects about
the combination of asynchronous and heterogeneous measurements from different receivers,
as presented in Chapter 4.

Therefore, within the definition of an innovative testbed in the framework of the smart
cities, the CAPS.loc framework has been implemented as collaborative solution to generally
improve GNSS navigation performance in urban environment.

8.1.2 The HANSEL project

The HANSEL project addresses the design and test of a set of GNSS-based technologies
appealing in the context of smart cities. In particular, the overall objective was the definition
and provisioning of a conceptual testbed demonstrating the means and tools for exploiting
GNSS techniques and applications in a connected smart environment.

Figure 8.1: HANSEL testbed high-level block scheme.

Figure 8.1 shows two blocks identifying the main components of the testbed, on the left
block we can identify a set of independent services which are expected to run in parallel for
different categories of users. A brief description of each service is provided in Table 8.1.

In the right block of Figure 8.1 three front-end applications which are expected to work
at receiver level are included. The applications included in the testbed are described in Table
8.2.
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Acronym Definition Description

CAC Command and Control Back-end service which provides alerts for assisted navi-
gation when positioning solutions do not match with the
selected trajectory.

SNAP Snapshot processing
relay service Back-end service for the cloud-based snapshot positioning

conceived for sensors networks [115].

CAS Testbed GNSS
NTRIP caster is a back-end wrapper of the BKG caster provided by IGS

at https://igs.bkg.bund.de/ntrip/download

GCS GNSS receivers
monitoring service is a back-end service for the monitoring of GNSS receivers

operational status

CPS Cooperative Positioning
Service is a back-end service for the exchange of GNSS raw mea-

surements among connected smart devices to support
GNSS-based CP

POS Position Relay
Service is a back-end JASON-based positioning relay service.

VIS Visibility service is a back-end service which provides visual information
about the satellite visibility w.r.t. to a predefined location.

WALS Wi-Fi location service is a back-end service which support the GNSS+Wi-Fi po-
sitioning computation.

Table 8.1: GNSS-based back-end services running on the HANSEL testbed

Acronym Definition Description

SNApp SNAP Application is a front-end Python application which interacts with the
SNAP service running on the testbed.

CPA Cooperative Positioning
Application The Collaborative Positioning App interacts with the ac-

CPS to provide to the mobile GNSS users, improved lo-
calization capabilities.

WApp WALS application The WALS app interacts with the WALS service to provide
to mobile users a GNSS+Wi-Fi positioning solution.

Table 8.2: GNSS-based front-end services running on the HANSEL testbed

The project requirements helped to define the main entities in which the CAPS.loc frame-
work could be composed: a back-end service for a peer-to-peer exchange of GNSS measure-
ments and a front-end application for the hybridization of the positioning computation.
Therefore, the contribution of Politecnico di Torino was addressed to the full development
of these two main entities supporting and demonstrating the feasibility of GNSS-based CP,
namely CPS and CPA, respectively. Further technical details about this work will be in-
cluded in the HANSEL project deliverables.

8.2 From smartphones to networked GNSS receivers
A networked GNSS receiver able to support the GNSS-based CP proposed in this thesis

must have access to raw measurements and output GNSS navigation solutions as they are
provided by the Google API with the GNSS measurements class. A functional scheme
of networked GNSS receiver was presented in Chapter 3, in Figure 3.13. The following
description relies on the real implementation of the concept in mass market smart devices.
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Figure 8.2: Network topologies for the CP paradigm among networked receivers.

Such a framework allows to implement all the presented collaborative ranging method and
provides all the needed data for further integration. The CRU can be configured to exploit
the external heterogeneous measurements by compensating for their time misalignment and
applying different algorithms suitable for GNSS-only ranging. The hybrid PVT processor
can implement a proper hybrid navigation filter such as the one described in Chapter 6 of
this thesis.

In order to provide the facilities needed for the measurements exchange, two different
topologies can be chosen: a star topology, represented in Figure 8.2a, or a fully-meshed
topology, as shown in Figure 8.2b. The computational power needed to maintain functional
connectivity among the nodes is distributed according to the chosen topology. In the first
case, the central node of the star topology has to discipline the inter-agent connectivity: it
can be a central server or a super node, so an agent with extra duties. It is the only one
with many interactions to manage, while agents nodes establish a unique connection towards
the central node. In addition, the central node has to store all the data coming from agents
nodes and distribute them according to the aiding requests. In the second case, every node
has multiple connections, each one toward a different agent, but it is in charge of managing
only its own data, sharing them when required. In this case, although the data management
is lighter, but an exponential number of connections has to be established according to the
agents participating to the service. In addition to this, a set of strategies to discover the
other agents has to be designed and implemented in order to join the service. Accordingly
to the evaluation of pros and cons of the different structures, a star topology has been
chosen, with a plain client-server structure. A distributed framework over a general purpose
network connectivity, i.e. 4G/LTE/Wi-Fi, has been exploited to create such infrastructure.
This topology ensures a centralized data collection and independent and distributed PVT
computation. In this way, only the computational load is demanded to the agents nodes,
while the central node is in charge of managing the data distribution and the networking
strategies.

The whole software receiver has been originally designed to run on the user terminals.
This approach moves all the computational complexity to the receiver thus being a scalable
solution in terms of positioning computation. It is indeed preferable to have a terminal-based
solution instead of a server-based centralized computation in which the central node is in
charge of calculating the position for all the users. Such an approach is typically exploited for
snapshot positioning techniques which implement server-based assisted-GNSS strategies but
is hardly scalable to a large amount of users. Furthermore, the distributed terminal based
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solution better copes with the modern architectures of heterogeneous networks, with different
and somewhat variable topologies, which in principles can include also ad-hoc connections
such as Direct Short-Range Communication (DSRC), and local networks connecting close
users (i.e. public Wi-Fi access points). The main API is anyway centralized at the server
level through the available communication network, in order to report the position of the
aided user and to play an active role for the continuous monitoring and assessment of the
exchanged data. This architecture was particularly suitable in the context of the HANSEL
testbed, being the central node relevant for data collection and monitoring purposes of the
implemented technology.

In the following, further details on the designed system will be provided concerning
an overview of the hardware and software architectures proposed for the definition of the
HANSEL testbed.

8.2.1 Hardware selection: Xiaomi Mi 8 Pro and Braoadcom BCM47755

An advisable achievement of the design of the CAPS.loc was to identify a platforms capa-
ble of providing at the same time ultra-low cost GNSS receiver and highly-precise positioning
solution with a reasonable computational power, 4G connection capabilities and access to
multi-constellation and multi-frequency raw GNSS measurements. Different devices were
tested in controlled and real environment [68] and an assessment of their raw measurements
was pursued to identify potential candidates. Despite the best quality of the antenna inte-
grated in the Nexus 9 (Tablet), the Xiaomi Mi 8 Pro, shown in Figure 8.3, was selected as
reference device for the proof of concept of the CAPS.loc within the HANSEL project. The
previous light version, Xiaomi Mi 8, was launched in May 2018 being the first dual-frequency
GNSS smartphone produced by Xiaomi and equipped with a Broadcom BCM47755. The
Pro version natively includes relevant firmware upgrades preserving the capability of re-
ceiving dual frequency L1/E1 and L5/E5 signals from GPS and Galileo, Beidou (B1), and
GLONASS (L1).

Figure 8.3: Xiaomi™ Mi 8 Pro and Broadcom™ BCM47755 Dual-frequency GNSS chip.

The onboard Broadcom® BCM47755 location hub is a single-chip component which com-
bines location awareness capabilities with the typical functions of a sensor hub. The combi-
nation provides synergistic benefits that cannot be achieved with multiple integrated circuits,
such as low power consumption, higher accuracy, and reduced footprint [1].
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According to the technical notes of the manufacturer, thanks to the support of dual-
frequency and multi-constellation navigation, the chip potentially provides lane-level accu-
racy outdoors and higher resistance to multipath and reflected signals in urban scenarios, as
well as higher interference and jamming immunity.

Furthermore, the BCM47755 incorporates numerous technologies that enable ultra-low
power consumption in both the location function and the sensor hub function. The device
features a low-power RF path, a Big/Little Control Processing Unit (CPU) configuration
composed of an ARM-based 32-bit Cortex-M4F (CM4), an ARM-based Cortex-M0 (CM0),
and is built in a 28 nm process. It natively supports for position batching, geofencing, sensor
fusion and sensor navigation (dead reckoning), and the sensors list includes gyroscope, ac-
celerometer, electronic compass and barometer which can be actively integrated to provided
precise and accurate positioning solution. Xioami Mi 8 Pro turns to be a fully integrated
reference receiver for the test of GNSS-based navigation algorithms, thus providing at the
same time raw GNSS measurements and reference solution, as detailed afterwards.

The BCM47755 is equipped with an integrated 12-bit, 2-channel ADC which could be
used in different multiplex configuration for the simultaneous acquisition and tracking of
multiple satellites. The receiver is also equipped with a Real Time Clock (RTC) (42 bits,
32.768 kHz) and with two general-purpose 32-bit microsecond timers. A further 48-bit
microsecond counter is also implemented for better resolution timestamps than the RTC can
provide [1].

Further, details concerning the location provider foreseen by Android in the selected
devices ad how the relative APIs have been used in the development are reported in Appendix
D.

8.3 CAPS.loc: Framework overview
The high-level infrastructure on which the CAPS.loc is based, is a star topology which

relies on a center node (e.g. remote server) implementing the CPS. The CPS is at the same
time a private temporary repository of raw GNSS measurements and a virtual agent-to-agent
channel established between registered applications (CPA) as shown in Figure 8.4.

• the CPS provides registration and authentication facilities to the agents through the
methods of an API and it foresees a database, named db, for the buffering of raw
measurements posted by the registered users. It exposes available and timely raw
measurements coming from the potential aiding agents.

• the CPA constitutes the engine for the collaborative PVT computation. The CAPS.loc
paradigm is indeed centralized for the exchange of the measurements but is distributed
at logical level for the positioning computation. CPA provides the interface for posting
and getting measurements (upload and download via User Datagram Protocol (UDP)
services. Furthermore, it foresees a fully-customizable PVT algorithm which integrates
collaborative baseline length contributions (if available) from registered aiding agents
according to hybridization schemes provided in Chapter 6.

8.3.1 Collaborative Positioning Service

The main components of the CPS are

• the db, which will store raw measurements, coarse position estimates and a set of useful
data provided by the agents registered to the CPS. It also includes records about the
registered agents and their interactions.
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Figure 8.4: High-level configuration of the scalable CAPS.loc client-server topology (exploited in the
real implementation.

• the API, which provides the interface towards the CPA (Android Application at the
agent level) and allows the exchange of information among the registered agents.

Raw Measurements Database (db)

The db is intended as a dynamic, centralized data buffer oriented to a low-latency ex-
change of measurements and navigation data through the network infrastructure. A Mon-
goDB database was implemented following a document data model paradigm [132]. The
data are stored in collections of files which are dynamically allocated whenever an agent
performs the registration to the CPS, and whenever it shares new measurements through
the service. Such a document-oriented paradigm, foresees the storage of data in JSON-like
documents, which is the most suitable solution according to the data the CPS has to deal
with. When a new document is stored, an index is automatically generated by MongoDB as
a unique identifier, referenced as _id. In each collection the data indexes are used as keys
for manipulating data with the CPS APIs. The agents collection stores the data of devices
subscribed to service.

Agents documents have format described Table C.2 and Table C.1 in Appendix C. When
a new agent subscribes to the CPS, a new entry is created and continuously updated by the
CPA running on mobile devices.

The DB structure is based on three non-relational collections of files named agents,
raw_id, db_config and it is worth to mention that the paradigm does not support relation-
ships among the collections.

All the data of interest for localization such as raw measurements, coarse position esti-
mates, time references and cooperative parameters provided by the agents are stored in a
instance of MongoDB database running on the server.

The collection agents includes a set of files (one per each agent) which are continuously
updated with new incoming data. These files are accessible through the CPS API and
they can be visualized in the Graphic User Interface (GUI) of the HANSEL testbed. For
each agent in the collection, a measurement collection, raw_id, is dynamically allocated and
linked to the agent through the field agent_id. The collection db_config hosts a set of
configuration parameters for the maintenance of the db that can be extended if necessary.
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The following tables summarize the structure of the files hosted in the DB, along with a
brief description of each field. All the files are formatted in JSON3 according to the project
requirements.

Cooperative Positioning System API

As shown in Figure 8.4, the CPS API is conceived as a unique entry point of the CAPS.loc
framework for the mobile agent. It is implemented through a Python script and it exploits
the following actions:

• Agent registration: It is provided by the interaction between CPS and CPA instances
running on the Android smartphones and registered users list can be monitored runtime
according to the methods in Table 8.3.

API Description

subscribe_agent Creates a new entry in the file agents and initializes the db data
structures for each new entry.

unsubscribe_agent Removes a specific registered agents from the file agents and deletes
all the related data from the DB.

unsubscribe_all_agents Removes all the registered agents from the file agents and deletes all
the related data structures from the DB.

agents_id Returns a list of identifiers of all the registered agents

Table 8.3: Agent registration API methods.

• Raw measurements download and monitoring: UDP sockets are provided by the
CPS to manage the upstream and downstream of data among the agents. Such data
are encapsulated in UDP messages called Cooperative Raw Message (CRM) which can
be downloaded from the CPS to perform CP, according to the methods in Table 8.4.

API Description

agent_fix returns a set of GNSS data related to the last available fix of a specified
agent, according to the Table C.2.

agent_measurements returns a set of GNSS raw measurements related to the last available
epochs for the specified agent, according to the Table C.1.

Table 8.4: Raw measurement API methods.

• Housekeeping of the database content: The CPS provides a storage-efficient
housekeeping routine in order to delete all the outdated raw measurements collec-
tions. Through the methods listed in Table 8.5 allow to define a refresh time for the
deletion of outdated records (db_upkeep) and to download all the records stored in DB
for further analysis and post-processing (all_db).

• Remote agent configuration: CPS can force agents configuration by restricting the
measurements availability through the method in Table 8.6.

3https://www.json.org/json-en.html
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API Description

db_upkeep allows to refresh the measurements files to ensure updated measurements to the
agents.

all_db downloads all the documents stored in the db in a single file.

Table 8.5: DB housekeeping API methods.

API Description

agents_visibility sets which satellites and aiding agents are used for the PVT/HPVT! com-
putation.

Table 8.6: Agent configuration API methods.

• Data reports and visualization: The API provides callbacks to retrieve update
navigation data from the collaborative agents for the visualization on the GUI of the
testbed.

For security reasons, all the API methods can be used only with a proper API key.
A detailed description and output samples of the methods included in the CPS API v1.0
developed for the HANSEL project are described in Appendix C.

8.3.2 Collaborative Positioning Application - CPA

The CPA is a mobile application developed for Android™ which is mainly in charge of
implementing the EKF-based tight integration of collaborative measurements. It allows an
agents running it locally to interact with other agents through the CPS. Multiple instances
of the CPA (installed in a set of smartphones) are expected to interact through the CPS
by means of the API described so far in order to take advantage on the CAPS.loc. The
application has been developed in Java by using the Android Studio environment. The
CPA requires at least API level 27 (Android 8) to provide full support to the public class
GNSSMeasurements. In the following, the actions and interactions between CPA and CPS
are described in detail along with technical aspects implemented during the development.

The CPA is a multi-thread application which foresees a main script managing a set of
sub-threads running in parallel. They can be seen as microservices producing and consuming
local and external measurements. Beside this, a set of other components among which the
GUI provides general services for such a demonstrator. In Figure 8.5 the overall scheme of
the CPA is provided.

According to the functional scheme presented in Figure 8.5, the following subsections
briefly describe each component in detail.

Main activity

Such a block is the entry point of the CPA and is in charge of managing the GUI and
the lifecycle of the whole application. It runs specific threads according to the incoming
commands from the users.

Agent Subscriber

The registration to the CPS is a prerogative to join the collaborative framework. The
subscription of each agent is made through the method subscribe_agent, but it is mostly
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Figure 8.5: Full CPA functional scheme showing all the threads and the communication processes
among them.

handled by the CPA in order to reduce the workload of the CPS in case of a high number of
concurrent requests. In Figure 8.6, the flow chart of the registration process is presented.

First, the CPA AgentSubscriber retrieves the list of already registered agents, COOP_AGENT.
By scanning the list, the agent finds the first available agent id which will be the smaller
integer not yet assigned (starting from 1). To reduce the probability that the same id is
chosen by other agents, the AgentSubscriber waits for 2 seconds before retrieving again the
list of subscribed agents: if the chosen id is still unused, it will register as a new agent using
that id, otherwise, it will select a new id, sleep for 2s and check again the actual availability
of the new id.

Once the subscription is done, the four main parallel thread are started by the CPA in or-
der to allow to the new agent to provide and get raw measurements: the GNSSContainer, the
CRMcollector, the AgentHandler and the GNSSMeasScript. In addition, a UDP datagram
socket is opened for sending and receiving UDP CRM through the network. The registered
Android agents are hence able to share raw measurements and navigation data being both
aiding or aided agents at the need.

GNSS Container

The GNSScontainer is a data generator. This thread is in charge of reading raw mea-
surements from the on-board GNSS-receiver through the Android GNSS raw measurements
API. It manages the creation of a list named LOCAL_RAW including raw pseudorange and
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Figure 8.6: Agent registration process as it is forseen for the CPA/CPS interaction.

Doppler measurements obtained at the current epoch. Visible and trackable satellites are
also identified as well as their relative position (azimuth, elevation) w.r.t. to the agent lo-
cation. All the data along with their unique identifiers (i.e. IGS standard) are also logged
to know current visibility conditions through the callback android.location.GnssStatus.
In parallel, it collects the last available fix through the Google Fused Location provider to
be used as a ground-truth for the GNSS-only positioning solutions. The list LOCAL_RAW is
eventually sent to GNSSMeasScript to be processed within the PVT algorithm.

Agent Handler

The AgentHandler thread is in charge of keeping coherent and updated the information
between CPA and the db. It is the only thread interacting with the CPS API during the
operational life of the service. This implementation ensures a strong independence among
the components aiming at guaranteeing an effortless portability of the framework.

As first, through the method agents_id it downloads the list of all the potential aiding
agents. It is worthy to remark that this list changes dynamically according to new subscrip-
tions or unsubscriptions. Then, through the method agent_fix it downloads information
about the current agents, in order to verify potential set of shared satellites to be combined
in collaborative inter-agent distances. A list containing the identifiers of all the available
agents, COOP_AGENT, is created and sent to the CRMcollector. Furthermore, if the flag all
mentioned in Table C.2 is equal to false, an override of the satellite visibility has been applied,
thus the subsequent PVT solution will be computed exploiting only the specified satellites.
Otherwise, all the visible satellites can be used. After this operation it uses the method
agent_visibility to update the agent entry on the database in order to keep coherent
the information about number of visible satellites, last available fix and its current status.
The status of the agent will be active (true) when the service is running properly, inactive
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(false) if it is not able to obtain a fix or if the CPA is running in background. All the HTTPS
requests are started as asynchronous tasks, in order to not freeze the thread if internet con-
nection is slow or temporally absent. As shown in Figure 8.5, the agent_handler thread is
also in charge of updating the information exposed on the GUI and to collect a log file for
data collection purposes. Once the task is accomplished, it sleeps for 1s and then it wakes
up again.

As mentioned so far, the agents have access to the data shared by the other agents
trough the CPS by registering to the CAPS.loc service. The registration queries in the API
manages the token-based authentication of the mobile users by providing them a unique
authentication token for further queries along with the registration confirmation.

CRMcollector

If the GNSScontainer can be seen as the interface between the CPA and the GNSS
receiver, the CRMcollector constitutes the interface between the CPA and the network of
aiding agents. Indeed, it receives the updated list of potential aiding agents, COOP_AGENT
from the AgentHandler and is in charge of retrieving the available raw measurements stored
in the db by invoking the method agent_measurements. The download of such data is
performed through the aforementioned UDP socket. The early version of the CPA foresees
a serial CRMcollector which sequentially creates a list of raw measurements and GNSS
standalone fixes from each aiding agent, named EXT_RAW. The list EXT_RAW is then sent to
the GNSSMeasScript to perform the collaborative task.

GNSSMeasScript

The collaborative approach relies on a two-steps refinement of the positioning solution
obtained though GNSS. Agents which experience high variance in their positioning solutions
can retrieve available raw data to improve their navigation performance relying on agents
with good navigation performance. Despite the availability of raw measurements contained in
EXT_RAW, each agent can process local raw measurements included in LOCAL_RAW to perform
its own GNSS standalone positioning solution.

1. Coarse Position-Time Solution: this step is performed to get a coarse positioning
solution which will be used as reference location for the next integration steps. Despite
the estimated clock bias allows to retrieve an accurate time-stamp of the raw data,
the current version of the CPA directly exploits the timestamps provided by the raw
measurements API. The timestamps provided by the GNSS receivers are used to label
each set of raw measurements and related fix included in the CRM with the field epoch,
according to Table C.1.

2. Compensation of time-misalignment of local and downloaded measurements:
This step exploits the local raw Doppler shift measurements provided by the Android
API, to compensate for the time misalignment among the measurements in LOCAL_RAW
and the ones included in EXT_RAW.

3. Computation of collaborative range contribution: Compensated measurements
are combined through DD to determine the inter-agent distances among the target
agent and the aiding ones.

4. Hybridized tight integration for Position-Time-Velocity refinement: The raw
measurements obtained from the GNSScontainer are processed to compute a GNSS
standalone positioning solution, referred to as coarse PVT. Such a solution can be
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Figure 8.7: Hybrid positioning flow chart.

computed both through a H-WLMS or through a H-EKF. Both the navigation fil-
ters are intended to hybridize local GNSS pseudoranges (LOCAL_RAW) and inter-agent
distances to obtain a collaborative positioning solution as discussed in 6. An initial
H-WLMS/WLS solution is mandatory for the initialization of the main navigation filter
and it is forced every N fixes to avoid unexpected drifting phenomena due unmodelled
threats. For the same reason H-EKF/EKF can be disabled when it is not suitable
for the positioning computation in order to reduce fix correlation along the time (i.e.
static scenario).

The functional blocks 2,3 and 4 are highlighted in the scheme of Figure 8.4 since they can
be easily replaced with improved algorithms to accomplish each specific task. As discussed
in Chapter 4 indeed, different theoretical solutions can be used to determine inter-agent
distances. According to the different ranging methods, a proper solution for the compensation
of the epochs misalignment must be defined, as well. The same can be though for what
concerns the hybrid PVT solution which can rely on a wide choice of navigation filters such
as the ones discussed in Chapter 6.

Graphic User Interface and Settings

As a technology demonstrator the CPA provides a simple GUI which addresses mostly
simulation and test needs. The structure of the GUI is shown in Figure 8.8, in which the
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same elements are also labelled in the list on the left. The GUI has been designed to collect
both GNSS standalone and GNSS-collaborative fixes represented by the dark gray and green
dots respectively. The small play button on the upper right corner of the GUI (H) allows
to actively subscribe/unsuscribe to the service while the configuration button (G) opens a
pop-up panel in Figure 8.9 to configure a set of parameters for the computation of the hybrid
solution (Number of satellites, number of aiding agents, weight of the EKF measurements
covariance matrix, navigation filter, variance estimation method for inter-agent distances).
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Figure 8.8: Screenshots of the CPA developed within the HANSEL project.

The two dynamic bars on the left of the screen (E,F) show the instantaneous improvement
provided by CP w.r.t. to the GNSS standalone solution. The improvement is measured as
the error reduction w.r.t. the Google Fused Location Provider. The series of tiles that can
be shown acting on the plus/minus button (D) allows to verify the number of satellites (C)
and aiding agents (B) used in the computation as well as the navigation filter used for the
computation (A), in real-time. They can be modified through the configuration/settings
both locally and remotely through the CPS API. The parameters which can be tuned are
divided in categories and listed according to following:

• GNSS settings

– Constellation type used in PVT (e.g. GPS, Galileo, Beidou, GLONASS)
– Signal frequency for the selected constellations (e.g. GPS, Galileo, Beidou, GLONASS)
– Maximum number of satellites used in PVT

• EKF settings
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– Activate/Deactivate H-EKF for the PVT computation
– Additional weighting to reduce the influence of measurements
– Maximum number of satellites used in PVT

• Cooperative Settings

– Weighting strategies for the collaborative contributions (e.g. trace of the covari-
ance of the displacement vector)

• Ephemeris Configuration

– Ephemeris cache cleaner

The tunable parameters can be updated runtime while the CPA is running though the
configuration panel shown in Figure 8.9. This is helpful to identify peculiar behaviours in the
quality of the positioning when for example reduced satellite visibility cannot be achieved in
real environment.

Figure 8.9: Screenshots of the CPA configuration panel.

After the presentation of the CAPS.loc framework in Chapter 8, its feasibility and ef-
fectiveness are discussed in this chapter through the analysis of preliminary experimental
results. For the sake of conciceness, low-level details about raw measurements quality inves-
tigation (C/N0, multipath detection, etc.) are omitted to better focus on the investigation
of positioning solution at the application layer. Therefore, the chapter includes two main
investigations: a preliminary discussion is provided in Section 8.4 concerning the off-line
combination of smartphones raw pseudorange measurements, as presented in [67] to exper-
imentally assess the feasibility of the proposed collaborative ranging approach. A further
analysis, presented in Section 8.5, collects a set of on-field experiments performed through
the CAPS.loc framework. The CAPS.loc has been conceived for urban applications, there-
fore the most of the tests reported afterwards addresses urban and mild-urban environment
for pedestrian and vehicular use cases. In order to clarify to the reader the features of each
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experiment and of the different investigated scenarios, a classification based on the dynamics
of the agents is detailed in Section 8.5.3. In Section 8.5.2 the performance metrics are for-
malized to provide quantitative results about the feasibility of the approach, its availability
and the accuracy of the cooperative solution when CP was available and profitable. Four
significant experiments are analysed in detail in Section 8.6. Within the same section, the
performance metrics of the overall test campaign are summarized and commented to provide
a general picture of the technology. This preliminary test campaign was oriented to the
feasibility assessment and an overall understanding of the real potential of the CAPS.loc
framework, but a set of optimization strategies is left to the further works (future releases
of the framework) and they are reported in the final remarks, in Section 8.7.

8.4 Offline asynchronous measurements combination
By relying on the log of the raw measurements observed by two devices we first tested an

off-line combination according to the weighted DD ranging method introduced in Chapter 4.
Instead of using a remote server for the exchange of raw measurements as implemented in the
CAPS.loc, a single-hop Wi-Fi 802.11g connection was establish among the device through a
Android-based Robot Operating System (ROS) framework [160]. By means of this approach,
the network contributions in terms of additional communication delay due to further hops
is totally avoided. However, the measurements epochs were still asynchronous due to the
independent processing of the devices.

As presented in Chapter 4, pseudorange rate or equivalently Doppler shift measurements
was used to compensate for asynchronous measurements epochs. Therefore, an effective im-
plementation of this method depends on the goodness of the timestamps which are attributed
to the sets of data by the devices. The accuracy of the timestamps are indeed related to
the stability of their internal clocks. The analysis provided in the following has been pub-
lished in the proceedings of VTC Fall 2019 (Honolulu, USA) within the workshop "Reliable
Ubiquitous Navigation in Smart Cities". The conference contribution [67] is recalled as an
introductory analysis to justify the implementation details of the CAPS.loc framework and
the results which will be presented in the next sections of this chapter.

8.4.1 Baseline length estimation through Android GNSS raw measure-
ments

By dealing with real low-quality code pseudorange measurements from Android smart-
phones, the implementation of DD ranging provided the best solution to cope with correlated
errors in the measurements sets, at least considering two devices in close proximity.

In the following, the results of two basic off-line tests are presented to support the im-
plementation of GNSS differential ranging in the PoC.

Static non-zero-baseline test

A 10-minute static datasets were collected in the Campus of the Politecnico Di Torino (ap-
proximately 45.062099◦ N, 7.663334◦ E), Torino, Italy, with two Xiaomi Mi 8 devices located
with a separation of 20 m, on the 22nd of February 2019 in a sub-urban environment with
moderate sk visibility. Android raw measurements were collected through a IEEE 802.11x
Wi-Fi connection and processed through an internal version of the open source MATLAB
gps-measurement-tools software [94]. The Xiaomi Mi 8 offers the option to turn off the
duty cycle of the device through its developer mode and that was an added consideration
during the data collection. Duty cycle is a power saving function of most smart devices where
commonly, the hardware clock is switched off for a fraction of every second resulting mainly
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in carrier phase tracking discontinuity [74]. Although multi-frequency, multi-constellation
measurements were recorded, only GPS L1 signal measurements were processed for initial
validation. The use of GPS only does not imply a lack of generality since the same proce-
dure can be applied to the other constellations or different multi-constellation solution can
be developed for an improved baseline estimation. Furthermore, multi-constellation imple-
mentation is also possible once the user clock bias with respect to each constellation has
been removed (i.e. a solution has been obtained).

Figure 8.10: 20 m baseline test with DD and APD comparison. GDOP= 2.0 .

Figure 8.11: 20 m baseline test with DD, W-DD and APD comparison. GDOP= 2.5, increased by
filtering bad measurements.

The unreliable quality of smartphone raw measurements is a hindrance due to poor an-
tenna performance, hence a runtime satellite filtering strategy as well as a weighted solution
was adapted based on the parameter ReceivedSvTimeUncertaintyNanos [69]. Three dif-
ferent ranging strategies between the devices were compared; DD and Weighted Double

148



8.5 – Real-time CAPS.loc experiments

Difference (W-DD) (both Doppler compensated) and the Euclidean Range (PVT-R) cal-
culated after standalone-PVT solution computation of the receivers individually. For the
standalone solution, some satellites were excluded for a fair comparison with the filtering
strategy.

Figure 8.10 shows the basic comparison of the ranges without taking into consideration
the quality of the pseudoranges and it is seen that both the ranges are noisy with the PVT-R
being slightly better. On filtering out poor measurements,a significant improvement to the
DDR and W-DD ranges is seen in Figure 8.11 and it is on average better than the simplistic
PVT-range, barring a few outliers which the weighted solution fails to take account of.
The mean GDOP value was around 2 and 2.5 before and after filtering respectively. This
observation is consistent with the other dataset measurements and in dataset 3 (5-minute
observation), the improvement in the mean error is 4-5 times higher. Table 8.7 presents a
comparison of the quality of the GNSS-based ranges in the different datasets with respect
to the standard deviation, σ, and mean error, µ). There is still a significant bias and
noise present in the measurements due to the uncorrelated noise being quadrupled after
double differencing, as shown in [36], but this relatively superior range output produced
taking advantage of Android raw measurements only without the PVT computational burden
confirms the potential of cooperation among Android smartphones.

APD DD W-DD

Dataset 1 σ (m) 19.4 12.2 12.1
µ (m) 10.5 9.9 7.6

Dataset 2 σ (m) 9.5 8.7 8.6
µ (m) 8.4 5.4 5.4

Dataset 3 σ (m) 18.2 10.4 10.2
µ (m) 24.7 6.3 5.8

Table 8.7: Test with two Comparison of the quality of time-compensated GNSS-based ranges with
different optimizations.

8.5 Real-time CAPS.loc experiments
This section describes the methodology and the metrics used during the preliminary test

campaign of the CAPS.loc framework developed within the HANSEL project. An high-level
functional scheme of the system is reported in Figure 8.12.

Differently from the off-line analysis presented in Section 8.4, in this case all the tasks
were executed runtime according to the setup described hereafter in Section 8.5.1.

8.5.1 Setup

All the tests were performed addressing different static and dynamic scenarios to verify
and assess feasibility and effectiveness of CP through the interaction of two Xiaomi Mi 8 Pro
running independent instances of the CPA. GNSS capabilities of both the smartphones were
limited to single constellation (GPS) and single frequency (L1) positioning computation by
further limiting the number of visible satellites to emulate poor sky visibility, if necessary.
The devices were handled by two operators walking or driving vehicles according to the
designed test scenarios. The multiplicative weight described in Chapter 8 was used as a
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Figure 8.12: Experiment setup exploiting 4G connectivity and CPS on a remote server (Amazon
Web Service located in Ireland).

EKF design parameter to reduce the impact of the GNSS measurements in the position
estimation algorithm for both collaborative and standalone solutions.

This preliminary testing phase addressed the peer-to-peer cooperation with ultra-short,
short and moderate baseline conditions. Being independently from the behaviour of the
other agent, both the smartphones tried to improve their accuracy by exploiting GNSS raw
measurements and coarse fixes shared by the others, thus acting simultaneously as aiding
and aided agents.

The two smartphones, referred hereafter as agent SM01 and agent SM02, were indeed
configured in order to continuously exchange GNSS data by exploiting 4G data connectiv-
ity and a general-purpose remote server hosting the CPS. Each device was hence able to
compute collaborative inter-agent measurements independently by combining external and
local pseudorange measurements independently. Such an operational mode was helpful to
observe both benefits and disadvantages of the proposed integration by identifying timespans
in which CP was actually effective and other timespans in which it induced degradation of
the positioning solution. Given that such a peer-to-peer continuous mode could degrade the
positioning performance, such a solution turned to be fundamental to the understanding of
the paradigm although it must be considered not meaningful for a real deployment of such a
technology. Indeed, it is trivial to inhibit CP when a-priori conditions suggest a potentially
degraded performance.

Similar or different paths were travelled by the operators holding the devices as shown
in the example of Figure 8.13 and different effects were hence observed for each smartphone.

All the positioning data were sent to the CPS and logged locally in form of ECEF and
LLA positioning solution. Both cooperative and standalone solutions were then compared
to the reference location foreseen by the Google Fused Location Provider, according to the
metric defined in 8.5.2.

8.5.2 Performance metrics

A set of performance metrics are defined hereafter to evaluate the benefits of GNSS-based
CP within the on-field tests of the CAPS.loc framework.

• CPS availability, ACP: It measures the availability of the cooperative service for
a given agent by assessing the possibility of computing a hybrid positioning solution.
It is an indirect indicator of the of the network status and the overall availability of
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Figure 8.13: Example of pedestrian urban paths with different profitability of the paradigm (greed
dots indicate profitable integration). The cross marker indicates the origin of the local EN frame (Up
direction is omitted for readability).

raw measurements provided by registered aiding agents. It formally counts the ratio
between the number of CP fixes, NCP, and the overall number of available GNSS
standalone fixes, NSA

ACP = NCP
NSA

100. (8.1)

Even considering a full availability of the service, ACP = 100, as known from the theo-
retical analysis presented in Chapter 7, GNSS-based CP could be profitable or unprofitable
according to the quality of the collaborative measurements and to the combined relative
geometry of visible satellites and aiding agents. To asses the advantages of the proposed
technique, the following key metrics have been defined to quantify the accuracy of the posi-
tioning solutions.

Statistically speaking, RMS error is typically used to evaluate the positioning error but
in real experiments we deal with one positioning sample per each epoch, tk. Therefore, the
positioning error can be evaluated as the Euclidean distance of the estimated position from
the ground truth in 3-D

ξ3-D(tk) =
√︂

(∆E2(tk) + ∆N2(tk) + ∆U2(tk)) (8.2)

and in 2-D

ξ2-D(tk) =
√︂

(∆E2(tk) + ∆N2(tk)) (8.3)

where the squared terms in (8.3) and (8.2) are the difference of each component in a East-
North-Up (ENU) reference frame [193, 131]. It is helpful to recall that ENU coordinates are
obtained from linear transformation of ECEF coordinates (refer to Appendix A for details
on reference frames) so that (8.2) can be equivalently computed in ECEF. The ground
truth is provided in this case by the Google Fused Location Provider according to its higher
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accuracy due to inertial sensors integration. For the sake of simplicity, the errors will be
always referred to as ξSA and ξCP for standalone and CP solutions, respectively. Separate
metrics for 3-D and 2-D will be then clearly distinguished in tables and figures reported in
Section 8.6.

• CP profitability (2-D,3-D), PCP(%): It indicates the percentage of CP fixes in which
CP error is lower than standalone positioning error (i.e. GPS-only), formally

PCP(%) =
∑︁k=NCP

k=1 p(tk)
NCP

(8.4)

where p(tk) assumes boolean values according to the following conditions

{︄
p(tk) = 0 ξSA(tk) − ξCP(tk) < 0 − TH

p(tk) = 1 ξSA(tk) − ξCP(tk) > 0 + TH

where TH is a threshold used to perform a conservative classification of profitable/un-
profitable epochs. A further conditions defined according to TH and named hysteresis,
identifies a region of non-significant improvement/worsening in accuracy, as shown in
Figure 8.14.

Figure 8.14: Classification of profitability according to the hysteresis threshold TH .

• CP hysteresis, HCP(%): It counts all the epochs tk in which |ξSA(tk)−ξCP(tk)| < TH ,
as depicted in 8.14.
Profitability and hysteresis of an experiment can be seen through the pie charts of
Figure 8.15 which provide a direct view of the benefits of the CP for each device and
for the whole duration of the experiments. As shown in this experimental example,
the remaining percentage identifies the unprofitable amount of epochs which reveals
degrading effects of the CP over the positioning computation. Nevertheless, it is worth
remarking that this percentage highlights epochs in which CP does not guarantee
benefits and it must be inhibited.

• Mean CP error (2-D,3-D), ECP(m): It computes the mean positioning error of CP
w.r.t. Google Fusion Location Provider over the time epochs in which CP is profitable

ECP = 1
W

W∑︂
k=1

ξ(tk) (8.5)

where W = ∑︁
p(tk) counts the overall amount of profitable epochs, formally ∀k|p(tk) =

1.

• Mean SA positioning error(2-D,3-D), ESA (m): It is equivalent to ECP evaluated
for the GNSS standalone solution
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Figure 8.15: Example of pie charts showing CP profitability/unprofitability for two different smart-
phones.
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Figure 8.16: Example of barplot showing superimposed (3-D and 2-D) of the positioning solution
for profitable CP and GNSS-only (GPS) PVT for dataset 0210219-01.

In Figure 8.16 we can observe a sample comparison of ESA and ECP in which the
advantage of CP is highlighted by the dark arrows showing the mean error reduction
occurring during profitable epochs.

• CP accuracy mean improvement (2-D,3-D), ICP: It provides the percentage of the
improvement in accuracy guaranteed epoch-by-epoch by the CP when the cooperation
is profitable. It can be also seen as GNSS-relative error reduction, formally

ICP(%) = 1
W

W∑︂
j=1

1 − ξCP (tj)
ξSA(tj) (8.6)

ICP immediately provides an indicator of the accuracy improvement of the hybrid
solution w.r.t. the GNSS-only fix. When ICP ≃ 100%, the hybrid solution shows an
appreciable match with the fix provided by the Google Fused Location Provider, while
when I approaches 0, the hybrid fix fairly matches with the GNSS-only solution.
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All the accuracy metrics in (8.6),(8.5) and (8.4) can be computed for 2-D and 3-D by
replacing the equivalent errors (8.3) and (8.2), in the respective equations.

8.5.3 Test Scenarios

Test scenarios were classified according to two main properties: the agents dynamics and
the baseline length. Each experiment was labelled using the format ddmmyyyy-nn-T, where
the first six digits indicate the date of the experiment,nn indicates the experiment identifier
and T classify the dynamics of the agents pair. For each experiment and each device, the
resulting metrics are associated to a given receiver through the identifiers SM01 and SM02.

Agents dynamics

Considering a single GNSS receiver, we are typically interested in observing positioning
performance in static and kinematics conditions. Differently, when multiple GNSS receivers
are involved in CP, four typology of pairwise relative dynamics must be taken into account
despite the behaviour of each single agent, according to the terminology of inertial/non-
inertial systems

(a) Type B (b) Type C (c) Type D

Figure 8.17: Relative dynamics example between two cooperating agents.

• Static (type A): both the receivers are static such that vA(tk) = vB(tk) = −→0 ∀k. No
variations are considered for the respective velocities and the resulting baseline vector,
such that dAB(tk) = dAB(tk+1), ∀k.

• Time-invariant baseline length (type B): both the agents move according to the
same direction and with velocity vectors with the same magnitude, such that vA(tk)
is nearly-parallel to vB(tk) and ||vA(tk)|| ≃ ||vB(tk)||, ∀k, as shown in Figure 8.17a.
Relative speed can be considered null and their baseline length, dAB(tk) is kept nearly-
constant while the baseline vector can change in direction w.r.t. to a reference inertial
system.
Example: GNSS receivers carried on-board the same vehicle (i.e. multiple passengers in a car).

• Anchored variable baseline vector (type C): one of the agent is static (anchor)
and the other moves according to a given dynamics, as in the example of Figure 8.17b.
The origin of the baseline vector is kept static but it is allowed to change both in
direction and magnitude.
Example: Parked and moving cars or pedestrian waiting for a cab ride.

• Fully variable baseline vector (type D): this conditions represents the generaliza-
tion of the previous scenarios. Two receivers move according to independent dynamics
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such that vA(tk) /= vB(tk) and ||vA(tk)|| /= ||vB(tk)||, ∀k, as shown in Figure 8.17c.

Example: Receivers A and B are installed on two bikes travelling in opposite directions with different
speeds.

Baseline length

The distance between the agents was classified according to

• Ultra-short: 0 m to 5 m, suitable for experiments of types A and B including zero-
baseline tests.

• Short: 0 m to 50 m, suitable for kinematic scenario of types C and D
• Moderate: 50 m to 100 m

It is worth remarking that the baseline length, dAB can influence the effectiveness of the
error cancellation provided by differential ranging techniques.

The whole set of experiments pursued within the CAPS.loc Test Campaign in Octo-
ber 2019 is listed in Table 8.8. All the experiment are referred hereafter according to the
nomenclature defined in 8.5.3 and sorted according to the execution date.

Code Date-nn-T Environment SVs dAB Scenario

a-01 02102019-01-B Urban GPS(5) Short Pedestrian
b-01 04102019-01-C Urban GPS(5) Short Pedestrian
b-02 04102019-02-D Urban GPS(5) Short Pedestrian
b-03 04102019-03-D Urban/Open Sky GPS(5) Short Pedestrian
b-04 04102019-04-C Urban/Open Sky GPS(5) Short Pedestrian
c-01 09102019-01-B Urban GPS(5) Ultra-short Pedestrian
c-02 09102019-02-B Urban GPS(5) Ultra-short Pedestrian
d-02 11102019-02-B Open Sky GPS(5) Ultra-short Vehicular
d-03 11102019-03-A Urban GPS(5) Ultra-short Vehicular
d-04 11102019-04-B Urban GPS(5) Ultra-short Pedestrian
d-05 11102019-05-B Urban GPS(5) Ultra-short Vehicular
e-01 13102019-01-B Open-Sky GPS(5) Ultra-short Vehicular
f-01 16102019-01-A Urban/Open Sky GPS(5) Short Pedestrian
f-02 16102019-02-D Urban/Open Sky GPS(5) Short Pedestrian
g-01 30102019-01-A Urban/Open Sky GPS(5) Ultra-short Pedestrian
g-02 30102019-02-A Urban/Open Sky GPS(5) Ultra-short Pedestrian
g-03 30102019-03-D Urban/Open Sky GPS(5) Short Pedestrian
g-05 30102019-05-D Urban/Open Sky GPS(5) Moderate Pedestrian+Bike
g-06 30102019-06-D Urban/Open Sky GPS(all) Moderate Pedestrian+Bike

Table 8.8: List of experiments conducted within the internal CAPS.loc test campaign in October
2019. The blue rows indicate the selected samples detailed in 8.6.

8.6 Results
A set of meaningful experiments have been chosen to discuss the relevant results observed

for suitable use cases and dynamics (Type A,B,C and D). Detailed results are shown for the
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selected experiments according to analyse the CP profitability. Quantitative data are instead
collected in a summary of the whole test campaign and presented in Section 8.6.1.

Experiment f-01 16102019-01-A: Static receivers at zero-baseline

• Description: SM01 and SM02 are statically co-located at centre of a parking lot in the
Politecnico Campus.

• Visibility: urban environment (buildings, trees) with good portion of open sky.
• Constraints: forced to poor visibility using the best 5 GPS satellite in view.
• EKF parameters: multiplicative measurements covariance weight set to 20.

7%

37%
57%

Profitable Hysteresis Unprofitable

14%

38%
48%

41%

37%

22%

45%

 37%

19%

Figure 8.18: Pie charts of CP profitability for the two smartphone in the experiment f-01

This test was helpful to assess the feasibility of CAPS.loc dealing with raw measurements
coming from co-located identical devices, thus in ultra-short baseline length. According to
the profitability results shown in Figure 8.18, it is worth noticing that SM02 benefits from
CP for more than 40% of the data collection. It is reasonable to assume that SM01 did not
benefit from the aids of SM02 during the same epochs.

By the way, the plot presented in Figure 8.19 highlights a fundamental aspects of this
pairwise collaboration: by looking at time tk from 40 s to 140 s we notice indeed that the
collaboration is mostly profitable from SM01 to SM02 (SM01. This behaviour is attributed to
the quality of the raw measurements and consequently to the goodness of the coarse fix of
SM02. It is indeed worthy to recall that the coarse position of the aiding agents is used as ref-
erence for the tight-integration of the inter-agent distance, as detailed in the tight-integration
algorithm defined in Chapter 6. The quantitative comparison of the mean positioning error
shown in the upper-right quadrant of Figure 8.24 confirms that, during profitable epochs,
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Figure 8.19: Time series of profitability/unprofitability of CP in the experiment F-01.

SM01 obtained a non-relevant advantage from cooperation while the opposite is shown for
SM02.

Experiment d-02 11102019-02-B: side-by-side pedestrian walk with variable speed
and baseline

• Description: pedestrian test, SM01 and SM02 moves around a parking area.
• Visibility: urban environment (buildings, trees, open sky).
• Constraints: forced to poor visibility using the best 5 GPS satellite in view.
• EKF parameters: multiplicative measurements covariance weight set to 20.

In this experiment, an evident unbalancing of the profitability can be seen in Figure 8.20.
Neglecting any additional information it is reasonable to conclude that SM02 was experi-
encing good positioning performance providing meaningful data to SM01. This behaviour is
confirmed by the lower-right quadrant of Figure 8.24 where standalone GNSS accuracy of
SM02 was initially better w.r.t. the one experienced by SM01.

Experiment g-05 30102019-05-D: Vehicular (Bicycle) and pedestrian dynamics
with variable speed and baseline

• Description: urban mobility test, SM01 moving on a bike and SM02 walking around a
parking area.

• Visibility: urban environment (buildings, trees, open sky).
• Constraints: forced to poor visibility using the best 5 GPS satellite in view.
• EKF parameters: multiplicative measurements covariance weight set to 20.
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Figure 8.20: Pie charts of CP profitability for the two smartphones in the experiment d-02.
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Figure 8.21: Pie charts of CP profitability for the two smartphones in the experiment g-05.
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The bike agent (SM01) followed a longer path w.r.t. to the pedestrian agent (SM01), by
slightly varying its altitude as well as multipath and visibility conditions along the trajectory.
Furthermore, in this specific scenario the SM02 experienced a lower availability than usual,
caused by temporary network failures which were not affecting SM01.

Pedestrian agent (SM01) showed a considerably higher profitability w.r.t. the bike agent
in 3-D reference frame, as shown in Figure 8.21. SM01 benefited from the moving agent and
its variable quality of the measurements along the trajectory. This is due in particular to ca-
pabilities of the EKF to guarantee better positioning performance in dynamics scenario. The
results appears reversed in 2-D frame, thus underlying that the more evident improvement
was on altitude. This effect of CP has been shown from the theoretical analysis presented
in Chapter 7. As shown in the left-bottom quadrant of Figure 8.24, the error reduction due
to CP is remarkable and ICP ≃ 50% has been reached in the profitable epochs, considering
both 2-D and 3-D frames. Generally speaking, pedestrian experienced a higher accuracy in
the standalone solution w.r.t. the bike agent, so it can potentially provide a valuable aiding.

Experiment c-01 04102019-01-C: Pedestrian relative dynamics with variable speed,
baseline and altitude

• Description: pedestrian test, SM01 moves in an urban canyon with considerable multi-
path effects while SM02 is static on the roof of the building.

• Visibility: urban canyon for SM01 (buildings) and open sky for SM02.
• Constraints: forced to poor visibility using the best 5 GPS satellite in view.
• EKF parameters: multiplicative measurements covariance weight set to 20.

Figure 8.22: Example of pedestrian urban scenario with anchored variable baseline vector (experi-
ment C-01) which exploit the CAPS.loc framework for CP.

A well-known critical environment was selected for this test nearby Politecnico di Torino
for SM01, as shown in Figure 8.22. Despite of the favourable conditions of SM02 located
on a rooftop, the benefits for SM01 were not remarkable. As depicted in Figure 8.23, this
experiment showed very low profitability in both the smartphones although the accuracy
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Figure 8.23: Pie charts of CP profitability for the two smartphones in the experiment c-01.

improvement in profitable epochs was remarkable, as shown in upper-left quadrant of Figure
8.24. This could be due to the very different conditions of the agents but especially to the
high multipath conditions experienced by SM01 which is responsible for the degradation of
both raw measurements and coarse fix shared by the agent. As commented for experiment
g-05, a further penalizing factor is the use of EKF for the estimation of the static position
of SM02.

A further assessment of the simulation results is given through the analysis of the CDFs
of the positioning errors, provided in Figure 8.25. Differently from the previous analysis,
the plots depict the overall error of the positioning solutions along the whole test duration.
A comparison is shown between standalone and cooperative solution and we can notice
negligible improvement for low dynamics scenarios such as the experiments c-01 (upper-
left quadrant) and d-01 (lower-right quadrant). On the contrary, a higher advantage is
provided on average for high relative dynamics as for the sample experiment d-02, in which
the cooperation was established within bicycle-pedestrian pair (bottom-left quadrant). A
different case is instead shown in the upper-right quadrant for the experiment f-1 in which
a clear aiding-aided configuration would be advisable as SM01→SM02. This finding is clearer
in static experiments during which two identical devices surprisingly experienced different
navigation conditions stably along the whole timespan.

8.6.1 Summary of experimental results and general comments

The performance of all the experiments included in Table 8.8 are reported for SM01 and
SM02 in Table 8.9 and Table 8.10, respectively. It is worth mentioning that, despite of
the high variability of the scenarios (different environmental conditions, baseline lengths,
relative dynamics), the statistical results presented in this chapter support the promising
performance of the paradigm. According to the values reported in such a summary, the
following considerations generally hold for this preliminary test campaign of the CAPS.loc
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Figure 8.24: Collection of mean errors comparisons for the experiments described in 8.6.

ACP(%) PCP (%) HCP (%) ECP (m) ESA (m) ICP (%)
3-D 2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 2-D

a-01 89.62 11.9 12.35 64.38 76.92 20.26 5.65 30.56 9.61 30.83 36.57
b-01 86.39 19.05 14.63 56.12 70.74 11.42 3.67 16.99 6.5 29.21 40.91
b-02 87.50 18.67 16.62 56.78 73.15 13.13 4.72 22.97 8.97 36.46 40.38
b-03 88.08 47.76 35.89 20.25 57.26 21.96 5.23 30.09 8.45 25.41 32.75
b-04 89.80 4.1 3.33 87.08 90.61 15.14 8.78 36.12 16.45 74.15 36.04
c-01 90.00 17.15 10.02 64.61 64.49 15.52 4.43 26.26 7.9 38.04 34.3
c-02 89.47 1.21 1.52 96.04 96.04 28.33 8.26 41.21 14.95 29.63 41.26
d-02 89.40 35.4 31.2 32.6 32.8 11.92 3.2 18.38 5.57 31.96 38.83
d-03 90.00 27.61 38.65 28.83 29.45 10.08 5.45 16.31 8.78 35.45 36.1
d-04 89.88 26.45 24.03 35.39 36.72 15.47 6.72 24.58 11.14 31.77 33.96
d-05 89.70 47.18 39.47 31.45 32.34 15.1 5.32 41.8 14.21 49.42 48.61
e-01 89.76 19.03 17.33 44.24 44.73 13.48 5.35 18.19 7.58 23.68 28.42
f-01 89.40 6.63 13.86 36.75 37.95 38.52 9.35 44.71 12.42 14.05 25.99
f-02 89.48 36.98 29.17 33.85 33.33 24.64 9.15 46.67 18.85 40.58 41.86
g-01
g-02 83.21 22.36 20.18 3.94 3.07 18.96 8.41 26.26 13.19 25.19 35.29
g-03 75.96 67.09 24.05 8.86 35.44 12.4 4.39 21.29 6.76 40.02 36.61
g-05 98.37 38.84 27.27 14.88 28.1 16.27 6.56 48.76 21.51 50.13 56.7
g-06 100.00 51.87 29.32 9.023 18.05 22.74 11.07 61.47 32.6 57.15 64.11

Table 8.9: Xiaomi Mi 8 Pro [SM01]: Static and semi-kinematic pedestrian tests in proximity to
Politecnico Campus (Mixed urban environment). TH = 0.05 m.
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Figure 8.25: Collection of CDFs for the sample experiments described in Section 8.6.
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ACP(%) PCP (%) HCP (%) ECP (m) ESA (m) ICP (%)
3-D 2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 2-D

a-01 86.61 16.32 12.30 59.50 71.88 19.42 7.70 30.34 14.46 31.15 38.39
b-01 90.00 19.46 13.42 59.73 73.15 12.15 5.37 25.70 8.18 34.56 32.95
b-02 86.98 20.84 20.35 59.80 60.05 11.93 5.54 19.80 9.05 34.34 37.24
b-03 89.16 14.29 10.18 71.00 72.14 14.59 5.23 19.58 8.45 22.58 34.30
b-04 76.46 8.01 7.63 84.16 84.35 19.04 2.36 23.99 6.20 17.23 54.67
c-01 87.07 25.08 18.41 41.98 42.14 22.11 10.39 38.62 19.38 38.64 38.02
c-02 89.09 0.92 1.00 97.01 97.01 23.60 10.02 36.27 15.78 33.58 34.32
d-02 89.33 4.03 3.36 90.13 90.36 18.14 8.41 31.13 16.54 43.47 39.99
d-03 89.38 44.10 34.78 11.80 11.80 13.32 4.65 17.44 7.80 22.78 38.94
d-04 85.30 35.02 30.46 28.98 29.71 19.92 9.39 32.68 14.70 36.37 39.34
d-05 89.39 55.31 44.68 23.71 24.01 16.34 6.85 44.50 15.66 51.80 48.96
e-01 89.86 32.42 27.19 19.35 20.39 12.50 5.50 16.59 7.69 22.47 28.76
f-01 87.61 41.46 44.51 36.58 36.58 20.48 11.85 31.94 25.68 31.82 47.97
f-02 90.00 38.02 36.98 14.58 13.54 23.95 9.83 48.03 17.77 43.87 38.67
g-01 62.50% 30.52 20.00 15.78 14.73 22.26 15.16 31.55 21.61 29.82 33.50
g-02 81.48% 31.81 18.18 15.50 21.59 11.63 3.64 23.14 8.58 43.97 57.32
g-03 55.55% 12.50 12.50 22.50 35.00 11.78 6.61 17.21 13.27 40.34 53.47
g-05 58.54% 43.75 14.58 10.41 33.33 21.52 9.28 44.82 25.41 47.41 62.55
g-06 65.47% 56.16 23.97 15.07 39.04 19.53 5.12 37.19 11.89 45.72 57.30

Table 8.10: Xiaomi Mi 8 Pro [SM02]: Static and semi-kinematic pedestrian tests in proximity to
Politecnico Campus (Mixed urban environment). TH = 0.05 m.
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framework.

Availability

The average availability of the CP across all the experiments was about 86.94 % and
81.23 % of the whole test duration for SM01 and SM02 respectively. If we do not consider
the set of experiments g-0x for which the device SM02 experienced unexpected connectivity
issues, the availability can be generally considered above the 87 % for a pairwise CP exploit-
ing 4G connectivity. Let us remark that this metric is tightly related to the connectivity
conditions and the network latencies which can be considerably different according to the
network infrastructure and topology; The measurement combination was indeed excluded if
the difference between raw data timestamps of the devices exceeded a given threshold (i.e.
1 s), according to the CAPS.loc implementation described in Chapter 8. Although it is fun-
damental to rely on low-latency communication networks to limit the amount of discarded
data, QoS policies which could guarantee priority to the CRMs are out of the scope of this
work.

Expected improvement in real scenarios

By looking at all the statistics collected in Table 8.9 and Table 8.10, the mean 2-D
accuracy improvement provided by the CP across al the experiments is about 40.7 % for
SM01 and 43.5 % for SM02. By considering the different conditions of each experiment, this
experimental result suggests an expected value of the accuracy improvement (in case of
profitable conditions) for a single collaborative contribution in poor satellite visibility (g-06
is not considered in this average) and mild-urban environment. Despite of the considerable
improvement provided by CP during the profitable epochs, in most of the experiments the
overall balancing between profitability and unprofitably was expected from the simulation
results presented in Chapter 7 about single agent contribution.

8.7 Final remarks and further works
The CAPS.loc framework has been implemented within the context of the HANSEL

project through a PoC of the GNSS-based CP. It is based on a client-server infrastructure
allowing the cooperation among Android smartphones equipped with GNSS receiver. A
specific message, named CRM, is designed to transport navigation data among collaborating
agents. Such a message is sent to a central service, namely the CPS, which is in charge to
maintain an updated buffer of raw measurements. CRMs are built and exchange among the
agents through the CPA, an application running on the smart devices. The communication
rely on a general-purpose data connectivity such as Wi-Fi 802.11x or mobile networks such
as 4G/LTE.

This PoC has enabled further investigation about feasibility constraints on a mass-market
scenario such as in the context of smart cities. On one hand, the client-server approach has a
huge potential in terms of optimization to further analyse CRLB-based censoring strategies
as discussed in Chapter 7. On the other hand it represent a limit on the communication
latencies which could impact negatively on the synchronization of the raw measurements
among the agents. A direct communication approach could lead to a timely transmission of
CRMs but it could be practically infeasible in NLOS conditions.

Despite of being a preliminary implementation, the CAPS.loc results obtained in the
experimental campaigns showed a great potential in terms of accuracy improvement, when-
ever the paradigm is profitable. For the sake of simplicity, the preliminary tests discussed
in this chapter were conducted according to the pairwise configuration described in Section
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8.5.1. The average performance of such a single agent CP were expected to be around the
5-10 % according to the simulation results obtained through realistic signals in Chapter 7.
According to the theoretical achievements presented in this thesis, an optimization of the
GNSS-based CP and further exhaustive analysis of the CAPS.loc are surely advisable for the
future development. However, such an optimization step falls outside the scope of this exper-
imental assessment. As guidelines for the next investigation, the following modifications are
suggested to improve positioning and navigation performance. Further analysis are indeed
mandatory to observe the behaviour of the collaboration and recompute the performance
metrics according to different architectural blocks. Regarding the actual implementation
of the CAPS.loc paradigm the performance analysis can be extended through the following
points:

• Replacement of functional blocks (i.e. CRU, Hybrid PVT (H-PVT)) with different
GNSS-based ranging algorithms and positioning algorithm, according to the proposals
of Chapter 4 and Chapter 6, respectively.

• Improving the estimation of the inter-epochs time misalignment through accumulated
statistics and continuous monitoring of agent’s independent clocks.

• Implementation of multi-constellation/multi-frequency algorithms both for the coarse
fix and the computation of inter-agent distances

• Implementation of advanced Bayesian estimation for inter-agent distance computation
• Implementation of advanced features for the joint censoring of GNSS measurements

and collaborative contributions when they are poorly effective to the refinement of the
positioning estimation.

• Limit the cross-cooperation by determining aiding-target collaborative pairs runtime,
according to CRLB and theoretical findings presented in Chapter 7.

Regarding the system architecture and the investigated scenarios:

• Comparison of availability performance with different network architectures (e.g. IEEE
Wi-Fi 802.11x, 5G).

• Evaluate multi-agent cooperation including and optimizing multiple collaborative con-
tributions runtime.

• Evaluate multi-agent statistics in crowded areas both for pedestrian and vehicular
navigation

These aspects are subordinated to the development of future CPA releases. An extended
set of configuration parameter will be hence suitable for widening the analysis of the frame-
work to different algorithms and optimization strategies. In this early experimental phase,
the GNSS-based CP was conceived to act as a "GNSS augmentation layer" prior to the in-
tegration of potential auxiliary sensors such as on-board gyros, accelerometer and electronic
compass [208]. An extension of this concept towards a O.S. augmented location provider
was presented at the Galileo Masters 2019 and classified in the top ten ideas. Contextually,
the framework won the Italian Regional Prize promoted by Italian Space Agency as shown
by the certificate in Figure 8.26.
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Figure 8.26: Galileo Masters 2019 award certificate for CAPS.loc.
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Chapter 9

Conclusions

The GNSS has been mostly considered as a reliable navigation technology providing ab-
solute positioning with good accuracy, precision, continuity and reliability. However, GNSS-
based navigation is characterized by critical limitations due to the intrinsic nature of the
system (e.g. poor satellite visibility, low signal quality due to atmospheric impairments and
multipath). Among these, GNSS navigation in harsh environment was addressed as one of
the major challenge to the quality of the positioning solution. A considerable effort has been
focused on the improvement of this technology at any system level (ground segment, space
segment, augmentation systems). In the last decade, absolute positioning determination is
slowly becoming less relevant in new paradigms such as autonomous driving, however, the
effectiveness of situational awareness, surroundings sensing and recent applications is still a
challenging task to be accomplished effectively without contemplating GNSS. The advent of
sophisticated algorithms providing sensor fusion addressed the compensation for the weak-
ness of GNSS thus fuelling new effort in research towards PNT. Fundamental research on
GNSS has been dropped up to the disclosure of raw measurements from mass market devices
which opened a range of opportunities in the fields and allowing in parallel to rise paradigms
belonging to different fields such as robotics and multi-agent systems.

In parallel with the advances in sensor fusion and complementary positioning systems, CP
has been conceived in the last decades as a paradigm for the localization of navigating users
relying on the exchange of independent information. The basic approach is addressed to the
estimation of relative position and the sharing of these data among networked agents through
ad-hoc communication channels or permanent network infrastructures. With this in mind,
it was natural in this work to consider the exploitation of redundant visible satellites among
interconnected users (i.e. collaborative agents) as a powerful resource for the improvement
of GNSS-based solutions.

This study was indeed based on the concept of networked GNSS receivers being able
to share GNSS measurements to enable enhanced positioning and navigation capabilities.
The theoretical limits of a collaborative DGNSS were presented in Chapter 7 and according
to these findings, the exchange of pseudorange measurements has been demonstrated as a
source of auxiliary information for networked receiver.

A set of DGNSS strategies were implemented to combine such measurements into relative
distance measurements among networked GNSS receivers. Well-known Single Difference
and Double Difference baseline estimation methods were compared with a novel geometrical
solution suitable for reduced visibility environment. A comparison of the statistical properties
of the techniques was pursued to provide the most suitable solution to CP.

This thesis investigated the proposed CP paradigm by looking mostly at the position
estimation. Such a vector quantity is surely the most appealing for LBS and receivers in
general. However, the approach can be extended to the velocity estimation of cooperating
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kinematic agents exploiting collaborative differential velocity computation through indepen-
dent, correlated Doppler measurements. Such a solution could be effective the reduce the
dependency of the velocity determination to sensors and odometers, thus presenting the
same advantages of GNSS-only enhanced positioning. Doppler measurements are consider-
ably more stable both for high-end and mass market receivers and this aspect could lead to
outstanding performance.

According to the results presented in this thesis by means of numerical simulation, and
assessed through realistic simulations and through real-time implementation, in Chapter 8,
a proof of the benefits led by cooperative enhancement in GNSS positioning can be clearly
remarked, even in case of ultra low-cost receivers embedded in smartphones. Moreover, many
further improvements were suggested to improve positioning and navigation performance of
the proposed CP framework in order to avoid non-profitable integration, thus turning the
technique into a robust solution in the next development steps.

9.1 Further works
Among the potential extensions of this work addressing a prototype for the paradigm, it

is worthy to mention the development of multi-constellation and multi-frequency algorithms
for improved inter-agent distance estimation, the analysis of the geometrical displacement
of both satellites and agents through the estimation of the precision bound for correlat-
ed/uncorrelated ranging information and the development of advanced filtering of the raw
measurements exchanged among the agents. Despite of the clear contributions provided to-
wards improved GNSS-only positioning and navigation, the proposed framework, CAPS.loc,
can also open a variety of possibilities for centralized/distributed real-time processing of
GNSS raw measurements in different class of receivers. Among the potential applications we
can mention collaborative anti-spoofing techniques based on outliers detection, a source of
big-data about monitoring of ionospheric indexes or for real-time mapping of the quality of
GNSS positioning in harsh context. Furthermore, the implementation of this CP paradigm
provided a baseline for further scientific investigation on state-of-the art cooperative algo-
rithm inherited from different fields which could support a sustainable GNSS navigation in
the near future.
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Appendix A

Fundamentals on Reference
Systems and Frames

All the satellite-based navigation systems such as GNSS require the definition of a com-
mon reference frame to locate both satellite coordinates and user receivers. It is worthy to
remark the difference among reference system and reference frame: the first is theoretically
defined according to a standard model while the latter is an empirical implementation based
on observations and further reference coordinates. The rigorous definition of the reference
frames used in GNSS is out of the scope of this work and further details on the topic can
be found in theory books on geodesy or summarized in [164, 165]. Therefore, the scope of
this appendix is to recall the fundamentals about the conversion among different frames and
their definitions.

A.1 Conventional Celestial Reference System CRS
The CRS coordinate system adopts the Earth’s center of mass as the origin of a Carte-

sian reference frame. The fundamental plane corresponds to the average equatorial plane
calculated at J2000.0 1. The system is also known as Earth-Centered Inertial (ECI) and
it is represented in Figure A.1a by considering the following mapping of the corresponding
Cartesian orthogonal components:

zCRS: axis crossing the average geographic north pole

xCRS: average vernal equinox

yCRS: coordinate axis with respect to zCRS and xCRS

Actually, the CRS is quasi-inertial reference frame since it is characterized by the annual
revolution, thus by the accelerated motion of the Earth w.r.t. the Sun.

A.2 Conventional Terrestrial Reference System (TRS)

The system is often referred as Earth Centered Earth Fixed (ECEF) with origin in the
center of mass of the Earth and a fundamental plane corresponding to equatorial plane.
Despite CRS/ECI, the coordinate axis system is coherent with Earth’s daily rotation, that is

1J2000.0 or J2000 indicates 12h00 of 1st January 2000 of Gregorian Calendar (UT)
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A – Fundamentals on Reference Systems and Frames

to say it is not inertial. The fundamental plane contains the origin and it is perpendicular to
the Conventional Terrestrial Pole (CTP). The zECEF axis is the intersection point between
equator and Greenwich meridian as shown in Figure A.3b. Axis convention is hence reported:

xT RS: axis crossing the intersection between the equator and the Greenwich meridian

zT RS: axis passing through the CTP

yT RS: coordinate axis w.r.t. xT RS and yT RS

x

y

Mean North Pole
J2000.0

z

γ aries

Mean Vernal Equinox
J2000.0

Mean Equatorial Plane Ecliptic Plane

(a) CRS Earth Centered Inertial (ECI)s.

x

y

CTP
z

Equatorial plane

Greenwich
Meridian

(b) Earth Centered Earth Fixed reference frame.

Figure A.1: Coordinates Reference Systems.
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A.3 – Conversion between reference systems

The main GNSSs adopt different reference frames:

• GPS: World Geodetic System WGS-84 (US DoD)[37].

• GLONASS: Parametry Zemli 1990 (Parameters of the Earth 1990) (PZ-90).

• GALILEO: Galileo Terrestrial Reference Frame (GTRF)(GeoForschungsZentrum Pots-
dam)(IGS).

A.3 Conversion between reference systems
A conversion of the ECEF coordinates is required to visualize the position in terms of

latitude and longitude. For each coordinate pair, the height of a point is defined w.r.t. the
geoid and a relative given model (e.g. WGS84 for GPS). Such coordinates are referred as
LLA or LLH and they represent the usual coordinate system adopted to identify the position
of a point on the Earth, namely through its ellipsoidal coordinates.

Ellipsoidal Coordinates (ϕ, λ, h) The Cartesian ECEF can be mapped on an ellipsoidal
model. The conversion is performed through the following transformation, according to
Figure A.2

x

y

h

z

tangent

λ
 

φ

CTP

Figure A.2: Ellipsoidal Coordinates LLA/LLH.

xT RS = (N + h) cos(ϕ) cos(λ)
yT RS = (N + h) cos(ϕ) sin(λ)
zT RS = ((1 − e2)N + h) sin(ϕ)

(A.1)

Where N is the curvature radius along the meridians by varying ϕ:

N = a√︁
1 − e2 sin2 ϕ

(A.2)

and e is the eccentricity of the ellipsoid (often referred as stretching factor)

e2 = a2 − b2

a2 = 2f − f2 (A.3)

where a and b are the semi-major and the semi-minor axis respectively. The eccentricity
can also be expressed in function of flattening coefficient f .

Inverse conversion from Ellipsoidal Coordinate System to ECEF can be approximated
by iterative solution.
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Conversion between ECEF to Local Tangent Plane (LTP) Coordinates LTP co-
ordinate system usually referred as East, North and Up (ENU) coordinates is widely adopted
in GNSS terrestrial receiver and is suitable for the sought application. The ENU coordinates
are derived from ECEF, thus the oblate ellipsoidal configuration is still valid. The axis are
described as follows:

N: is the axes (coordinated to the tangent plane) which points towards north Pole
identified by zT RS .
E: it corresponds to the east axis and is aligned to the local parallel
U: it is the normal vector of the LTP

In order to perform the conversion between ECEF to ENU and viceversa, two linear
transformation are required. They correspond to two rotations of a Cartian reference system.

1. Rotation of 90 deg −ϕ on E-axis to align U-axis with zT RS R1[−(π/2 − ϕ)]
2. Rotation of 90 deg +λ on U-axis to align xT RS to E-axis. R3[−(π/2 + λ)]

where R1, R2 and R3 are defined as follows:

R1(θ) =

⎡⎢⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎥⎦ , R2(θ) =

⎡⎢⎣ cos ϕ 0 − sin ϕ
0 1 0

sinθ 0 cos θ

⎤⎥⎦ , R3(θ) =

⎡⎢⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎥⎦
(A.4)

The conversion in matrix form is expressed as:⎡⎢⎣ x
y
z

⎤⎥⎦ = R1[−(π/2 + λ)]R3[−(π/2 − ϕ)] ·

⎡⎢⎣ E
N
U

⎤⎥⎦ (A.5)

computing the overall transformation matrix

Rc = R1[−(π/2 + λ)]R3[−(π/2 − ϕ)] =

⎡⎢⎣ − sin λ − cos λ sin ϕ cosλ cos ϕ
cos λ −sinλ sin ϕ sin λ cos ϕ

0 cos ϕ sin ϕ

⎤⎥⎦ (A.6)

By substituting Equation (A.6) in matrix Equation (A.5) the coordinates are hence ob-
tained as follows:

ê = (− sin λ, cos λ,0)
n̂ = (− cos λ sin ϕ, − sin λ sin ϕ, cos ϕ)
û = (cos λ cos ϕ, sin λ cos ϕ, sin ϕ)

(A.7)

By applying trivial properties from elementary algebra R−1
i (α) = Ri(−α) = RT

i (α) it is
possible to obtain the reverse relation as follows:

A.3.1 Range, Elevation and Azimuth computation from ENU frame

Azimuth and elevation are relevant to describe the satellite relative observation from the
receiver perspective. From a set of coordinates defined in ENU reference frame, the range
versor is defined as follows:
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ρ̂ = rsat − rrcv

||rsat − rrcv||
(A.8)

where rsat and rrcv are the geocentric satellite and receiver coordinates respectively. Az-
imuth and elevation can be computed from LTP reference by applying elementary trigono-
metric rules, according to Figure A.3

ρ̂ · ê = cos E sin A

ρ̂ · n̂ = cos E cos A

ρ̂ · û = sin E

(A.9)

By inverting the previous equations:

E = arcsin(ρ̂ · û)
A = arctan

(︂
ρ̂·ê
ρ̂·n̂

)︂ (A.10)

Let us remark that if λ and ϕ are ellipsoidal coordinates hence, the vector û is orthogonal
to the LTP and to the reference ellipsoid. Otherwise, if they are in spherical coordinates the
same plane is tangent to a sphere.
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(a) LTP shown in LLA system.
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(b) LTP Coordinates Reference.

Figure A.3: LTP shown w.r.t. a LLA frame and as reference frame.
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Appendix B

Position Error Covariance Matrix
and Geometrical representations

The position uncertainty associated to the output of an unbiased estimator, such as a
WLS, describes the precision of the estimate itself. The scope of this appendix is to provide
the basic knowledge for the computation and visualization of position error ellipses repre-
senting estimated or measured covariance matrices of the positioning solution in simulation
environment. The content of this appendix has been rearranged from [48, 47] to support
visualization tools used within this research.

B.1 Sample Covariance Matrix estimation
The sample covariance matrix at a given time instant tk is by definition a N × N matrix

Pk = [pij ] modelling the probability distribution of a given multi-variate random variable
such as the estimated state vector of a GNSS receiver, θk =

[︂
θ1 θ2 . . . θN

]︂T
. By fixing

a discrete time instant tk for the sake of readability, the entries of Pk are defined as

pij = 1
W − 1

W∑︂
w=1

(︂
θ

(w)
i − θ̄i

)︂ (︂
θ

(w)
j − θ̄j

)︂
(B.1)

where θ
(w)
i is the w-th observation of the i-th random variable belonging to θk and θ̄i

is the mean value of the same i-th random variable over W observations. Therefore, pij is
an estimate of the covariance between the i-th variable and the j-th variable of the consid-
ered multi-variate random variable, θk. In terms of the observation vectors, an equivalent
formulation of the sample covariance is

Pk = 1
W − 1

W∑︂
w=1

(θ(w) − θ̄)(θ(w) − θ̄)T (B.2)

Alternatively, arranging the observation vectors as the columns of a matrix,

Θk =
[︂
θ(1) θ(2) . . . θ(W )

]︂
(B.3)

which is a matrix of N rows and W columns, the sample covariance matrix can be
computed as
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Pk = 1
W − 1(Θk − θ̄ 1T

W )(Θk − θ̄ 1T
W )T (B.4)

where 1N is an W × 1 vector of ones. If the observations are arranged as rows instead of
columns, so θ̄ is now a 1 × N row vector and M = ΘT is an W × N matrix whose column j
is the vector of W observations on variable j, then applying transposes operators

Pk = 1
W − 1(Mk − 1W x̄T)T(Mk − 1W x̄T) (B.5)

Like covariance matrices for random vector, sample covariance matrices are positive semi-
definite. To prove it, note that for any matrix A the matrix AT A is positive semi-definite.
Furthermore, a covariance matrix is positive definite if and only if the rank of the θi − θ̄
vectors is N .

B.2 Covariance Matrix and Error Ellipse
For a given set of applications such as road positioning navigation, horizontal precision

models the Horizontal Positioning Error (HPE) which is considered a fundamental Key
Performance Indicator (KPI) in GNSS [193]. For bivariate observations indeed, a valuable
method to investigate the precision of the positioning solution is the use of error ellipses
a.k.a. information ellipses in Information Theory or confidence ellipses in statistics. An
error ellipse represents an iso-contour of a Gaussian distribution, and allows you to visualize
a bi-dimensional confidence interval. The limitation to a 2D Cartesian reference system does
not constitute a loss of generality, since the following derivations can be arbitrarily extended
to multi-variate random variable by extending the number of degrees of freedom, as well. Let
us remark that error ellipse representation is rarely meaningful for non-spatial coordinates,
therefore in the following, only geometrical coordinates will be considered.
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Figure B.1: Error ellipse of uncorrelated 2D positioning unbiased solutions drawn for 95% of the
confidence interval.

Figure B.1 shows a 95% confidence ellipse for a set of uncorrelated, bivariate normally
distributed positioning solutions. This confidence ellipse defines the region that contains
95% of all the samples (red dots) that can be drawn from a zero-mean Gaussian distribution
with covariance equal to

176



B.2 – Covariance Matrix and Error Ellipse

Pk =
[︄

σ2
x σxy

σyx σ2
y

]︄
(B.6)

where σ2
x = 3 and σ2

y = 1 and σxy = σyx = 0.
It is evident that the magnitudes of the ellipse axes depend on the variance of the data.

The largest variance is in fact in the direction of the x-axis, whereas the smallest variance
lies in the direction of the y-axis.

The generic equation of an axis-aligned ellipse with a major axis of length 2a and a minor
axis of length 2b, centered at the origin, is defined by the following equation:(︃

x

a

)︃2
+
(︃

y

b

)︃2
= 1

In our case, the length of the axes are defined by the standard deviations σx and σy of
the data such that the equation of the error ellipse becomes:

(︃
x

σx

)︃2
+
(︄

y

σy

)︄2

= s (B.7)

where s defines the scale of the ellipse and could be any arbitrary number (e.g. s=1).
The question is now how to choose s, such that the scale of the resulting ellipse represents
a chosen confidence level (e.g. a 95% confidence level corresponds to s = 5.991).

Our 2D data is sampled from a multivariate Gaussian with zero covariance. This means
that both the x-values and the y-values are normally distributed too. Therefore, the left hand
side of equation (B.7) actually represents the sum of squares of independent normally dis-
tributed data samples. The sum of squared Gaussian data points is known to be distributed
according to a Chi-Square distribution. A Chi-Square distribution is defined in terms of
degrees of freedom, which represent the number of unknowns. In the case of bivariate data
there are two unknowns, thus two degrees of freedom.

Therefore, we can easily obtain the probability that the above sum, and thus s equals a
specific value by calculating the Chi-Square likelihood. In fact, since we are interested in a
confidence interval, we are looking for the probability that s is less then or equal to a specific
value which can easily be obtained using the cumulative Chi-Square distribution, such that
to collect the 95% of probability, the following holds

P (s < 5.991) = 1 − 0.05 = 0.95

Formally, a 95 % confidence interval corresponds to s = 5.991. In other words, 95% of
the data will fall inside an ellipse defined as:

(︃
x

σx

)︃2
+
(︄

y

σy

)︄2

= 5.991

Similarly, a 99% confidence interval corresponds to s = 9.210 and a 90% confidence
interval corresponds to s = 4.605.

The error ellipse shown in Figure B.1 can be drawn as an ellipse with a major axis length
equal to 2σx

√
5.991 and the minor axis length to 2σy

√
5.991.

Exploiting the decomposition of the covariance matrix through its eigenvalues and eigen-
vector it is possible to visualize arbitrary confidence intervals of our solution, thus to visually
evaluate the precision of the estimated solution for a generic covariance matrix.
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B.2.1 Eigendecomposition of Covariance

As shown in Figure B.1, Pk defines both the spread (variance), and the orientation
(covariance) of the observation. It is of interest to find the vector directed into the direction
of the largest spread of the data, and whose magnitude equals the spread (variance) in this
direction for an arbitrarily correlated set of data.

When the covariance terms of Pk are not null, the resulting error ellipse will not be
aligned to the Cartesian axis. The previous considerations hold only if we consider a new
reference system in which the ellipses can be actually aligned to the axis.

Instead of computing the variance along the y and x axis , we aim at determining the
variance along the major and minor axis of the error ellipse, as shown by red and black
arrows in Figure B.2. A covariance matrix can be considered as a linear transformation
which scales and rotates a set of originally uncorrelated data. In light of this, the directions
of the axis of the error ellipse are still defined by the eigenvectors of such a transformation
matrix. Thus, the 95% confidence ellipse can be defined similarly to the axis-aligned case,
with the major axis of length 2

√
5.991λ1 and the minor axis of length 2

√
5.991λ2, where λ1

and λ2 represent the eigenvalues of the covariance matrix.
It is hence possible to draw a covariance ellipse representing the covariance matrix of

uncorrelated data and aftwerwards applying a rotation according to the angle

α = arctan v1(y)
v1(x)

which is the angle of the largest eigenvector towards the x-axis and v1 is the eigenvector
of the covariance matrix that corresponds to the largest eigenvalue. The angle α determines
the rotation of the ellipse according to the true statistical properties of the observations.
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Figure B.2: Error ellipses of correlated 2D positioning solutions shown for 5 confidence intervals
indicated in the legend. Eigenvector are multiplied by the respective eigenvalue with a factor 2 to
reach 95% confidence value.

Based on the minor and major axis lengths and the angle α between the major axis and
the x-axis, it becomes trivial to plot the confidence ellipse as shown in Figure B.2.

Let us suppose to compute a set of point
[︂
x y

]︂⊤
describing (B.7), the ellipse modelling

the covariance matrix of a generic dataset can be draw by means of
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[︄
x′

y′

]︄
=
[︄
cos(α) − sin(α)
sin(α) cos(α)

]︄ [︄
x
y

]︄ [︄
cos(α) − sin(α)
sin(α) cos(α)

]︄⊤

(B.8)

Summarizing, a generic 2D error ellipse can be computed according to the following
pseudo-code

Error ellipse Pseudocode for the generation of error ellipses
1: Calculate the eigenvectors and eigenvalues through the eigendecomposition of the covari-

ance matrix
2: Get the largest eigenvalue
3: Compute the confidence intervals according to the number of degrees of freedom.
4: Draw the ellipse in x and y coordinates according to (B.7).
5: Define a rotation matrix R.
6: Rotate the ellipse according to (B.8).

B.2.2 Covariance conversion between reference frames

When the estimation of a covariance matrix is provided in ECEF coordinates, the visual-
ization of the confidence interval in terms of error ellipses does not provide useful information
about its geometrical distribution on a local frame (e.g. ENU). A conversion of the 3D co-
variance matrix must be performed to project the 2D error ellipse to the local reference
frame.

According to Appendix A, the conversion of a set of positioning observations between
different reference frame can be performed applying a proper rotation matrix as

θ′
k = Rθk. (B.9)

According to the following derivation, the same rotation matrix can be used to perform
the conversion Pk → P′

k [177].

Proof.

P′
k = E(θ′θ

′⊤) − E
(︁
θ′)︁E

(︂
θ

′⊤
)︂

= E(Rθθ⊤R⊤) − E(Rθ)E(θ⊤R⊤)
= RE(θθ⊤)R⊤ − REθE(θ⊤)R⊤

= R(E(θθ⊤) − E(θ)E(θ⊤))θ⊤

= RPkR⊤

(B.10)

This transformation is particularly needed when sample covariance cannot be computed
through of the observations such as in PF-based estimation but is directly estimated from
the navigation filter (e.g. KF-based Bayesian estimation) in a different reference frame w.r.t.
to the one of interest. Once the conversion Pk → P′

k is performed, the eigendecomposition
of P′

k can be used to draw covariance ellipse in the new reference frame.
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Appendix C

CPS message fields

C.1 Data fields description
The messages exchanged within the CAPS.loc infrastructure are defined according to a

JASON-like format and they are stored in the DB keeping the same structure. The fields
are briefly described in Table C.1 and Table C.2.

Cooperative Raw Message (CRM)
_id MongoDB unique CRM identifier.

agent_id CPS-CPA multi-agent unique identifier of the sender.
epoch Received GNSS satellite time, at the measurement time, in seconds.

sat_subset Array of the unique identifiers of the satellites used to compute the PVT
contained in the navigation message.

ag_subset Array of the unique identifiers of the collaborating agents used to com-
pute the PVT contained in the navigation message.

sat_raw_range Raw satellites pseudoranges measured by the GNSS sensor and used to
compute the PVT contained in the navigation message.

sigma Error estimated by the GNSS sensor (1-sigma) for the received GNSS
time

llh_pos GNSS-only positioning solution expressed in latitude longitude and
height (above the sea level) .

llh_coop_pos Collaborative positioning solution represented in latitude longitude and
height (above the sea level).

llh_povider Android positioning solution represented in latitude longitude and
height (above the sea level).

ecef_pos GNSS-only Positioning solution expressed in cartesian Earth Cen-
tered Earth Fixed reference frame.

distance Array of distances from other cooperative agents.
cov Upper triangular portion of the estimated error covariance matrix

of the positioning solution in llh_pos.
cov_coop Upper triangular portion of the estimated error covariance matrix

of the cooperative positioning solution in llh_coop_pos.

Table C.1: Database organization. Raw measurements collection entry.
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Agent
_id MongoDB unique user identifier.

agent_id CPS-CPA multi-agent unique identifiers.
type Mobile device used by the agent

status Actual status of the agent. It is active when the service is running,
while it is not when the CPA is stopped without unsubscription
is performed or when the agent has a bad fix.

all Flag indicating that the agent can use all the visible satellite and
the cooperative agent using the CPS. It is used to optimize the
CPA code in term of time and computational cost when the service
runs normally.

visible_satellites Array of the unique identifiers of the visible satellites: GNSS satellites
identifiers are conventionally distinguished by the letters G (GPS), R
(GLONASS), E (Galileo), C (Beidou) associated with a unique identifier
(PRN) for each satellite within a constellation.

usable_satellites Array of the unique identifiers of the usable satellites. It is equal to the
visible satellite array if the FBS

ag_subset Array of the unique identifiers of the collaborating agents.
llh_pos GNSS-only positioning solution expressed in latitude longitude and

height (above the sea level) .
llh_coop_pos Collaborative positioning solution represented in latitude longitude and

height (above the sea level).
llh_povider Android positioning solution represented in latitude longitude and

height (above the sea level).
distance Array of distances from other cooperative agents.

cov Upper triangular portion of the estimated error covariance matrix
of the positioning solution in llh_pos.

cov_coop Upper triangular portion of the estimated error covariance matrix
of the cooperative positioning solution in llh_coop_pos.

Table C.2: Database organization. Agent collection entry.

C.2 APIs
This section includes the description of the methods designed within the CPS API and

a set of examples showing the JSON-compliant messages (when foreseen) which can be
downloaded from the CPS.

Registration/Unregistration of a the agents

The methods described in Table C.3, Table C.4 and Table C.5 are implemented to manage
the set of collaborating agents. Any explicit output message is generated for such methods.

The method /subscribe_agent is used to initialize the device to be ready for cooperation
within the CAPS.loc framework.

The API method /unsubscribe_agent ask to the server for the removal of one agent sub-
scribed to the CPS. The agent entry is removed from the agents collection if the MongoID
passed as params match with the stored one. Also the raw measurements collection corre-
sponding to the agent_id passed as params is deleted. It can be requested from the user at
the end of service usage.
Table C.4 shows the API’s details.

The API method /unsubscribe_all_agents deletes all agents in the agents collection
and all the raw measurements collections. It is used at the closure of CPS.
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/subscribe_agent

Method POST
Access External

Uri subscribe_agent
Params API-key: hash code used for authentication
Returns Unique database identifier MongoID

Example https://hansel.rokubun.cat/cps/api/subscribe_agent
?api-key={API-key}

Table C.3: API description. Agent subscription.

/unsubscribe_agent

Method GET
Access External

Uri unsubscribe_agent
Params API-key: hash code used for authentication

_id: unique database identifier MongoID
agent_id: agent ID number

Returns Positive or negative acknowledgement
Example https://hansel.rokubun.cat/cps/api/unsubscribe_agent

?api-key={API-key}&_id={_id}&agent_id=1

Table C.4: API description. Agent unsubscription.

Table C.5 shows the API’s details.

/unsubscribe_all_agents

Method GET
Access External

Uri unsubscribe_all_agents
Params API-key: hash code used for authentication
Returns Positive or negative acknowledgement

Example https://hansel.rokubun.cat/cps/api/unsubscribe_all_agents
?api-key={API-key}

Table C.5: API description. All agents unsubscription

Database Upkeep API

The API method /db_upkeep sets the expiration time of entries in the raw measurements
collections. It is called bu FBS. Table C.6 shows the API’s details.

Raw measurements and status

The sample output included in Listing C.1 shows a collection of data available at the CPS
for a registered agent and obtained through the method agent_fix(), detailed in Table C.7.
The sample reply includes the raw measurements obtained from a Xiaomi Mi 8 Pro registered
to CPS along with other four agents (see agent_subset for IDs).
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/db_upkeep

Method POST
Access External

Uri db_upkeep
Params API-key: hash code used for authentication
Returns Positive or negative acknowledgement

Example https://hansel.rokubun.cat/cps/api/db_upkeep
?api-key={API-key}

Table C.6: API description. Database refresh time.

/agent_fix
Action

Method GET
Access External

Uri _agent_fix
Params API-key: hash code used for authentication

agent_id: agent ID number
Returns Agent corresponding to agents_id

Example https://hansel.rokubun.cat/cps/api/agent_fix
?api-key={API-key}&agent_id=1

Table C.7: API description. Agent information.

Listing C.1: Example of data retrieved through agent_fix
1

2 {"_id": {"$oid": "5 db03dcf7063d8c820d4271b "},
3 " agent_id ": 1,
4 "type": " Xiaomi MI 8 Pro",
5 " status ": true ,
6 "all": true ,
7 " visible_sat ": [6, 9, 17, 19, 3, 22, 1],
8 " usable_sat ": [6, 9, 17, 19, 3, 22, 1],
9 " ag_subset ": [2],

10 "cov": ["[ 58.25393308534426 , -15.894230180614427 , -181.83995940323592 ,
124.14915758809606] "]

11 " cov_coop ": [" [15.538197348988968 , 3.1395898401645805 , 20.17710162861915 ,
14.649688332314021] "]

12 " distance ": [72.66270493290985],
13 " ecef_pos ": [4472473.843235724, 601384.0767840956, 4492789.074489612],
14 " llh_coop_pos ": [45.064866746105494, 7.658122128206029, -84.17707859631628],
15 " llh_pos ": [45.065574955842465, 7.658251476759935, 410.46206387504935]
16 }

Visibility configuration

The method /agents_visibility offers the possibility to remotely limit the satellite
visibility and the interactions between the agents which are registered to the CPS. The reply
shown in Listing C.2 was obtained by means of the method agent_visibility. It can be
noticed that the device was configured to observe 9 satellites and to collaborate with 3 agents
(see satellite_set for and agents_set for respective details).
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/agents_visibility

Method POST
Access External

Uri agents_visibility
Params API-key: hash code used for authentication

agent_id: agent ID number
Returns Positive or negative acknowledgement

Example https://hansel.rokubun.cat/cps/api/agents_visibility
?api-key={API-key}&agent_id=1

Table C.8: API description. Agent entry update.

Listing C.2: Example of data retrieved through agent_visibility
1 {
2 " satellite_set ": [G12,G3,G8,G26,G9,E4,E12,E24,E31],
3 " agents_set " : [2,3,5]
4 }

Registered agents

The list of agents reported in Listing C.3 was obtained through the method agent_id.
It shows that 4 agents are registered to the CPS. The API method /agents_id gets the list
of all agents registered to the CPS. Table C.9 shows the API’s details.

/agents_id

Method GET
Access External

Uri agents_id
Params API-key: hash code used for authentication
Returns List of the registered agent IDs

Example https://hansel.rokubun.cat/cps/api/agents_id
?api-key={API-key}

Table C.9: API description. Agent listing.

Listing C.3: Example of data retrieved through agent_id
1 {
2 " agents_id " : [1,2,3,4]
3 }

Raw measurements upload

Listing C.4: Example of data downloaded uploaded to the CPS
1 {
2 "_id": {"$oid": "5 d00ccf5a9d68ff97d571ef4 "},
3 "epoch": " [2039 ,145838.5974929312]" ,
4 " agent_id ": "2",
5 "type": " songRX ",
6 " status ": true ,
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7 " sat_subset ": "[G28 ,G7 ,G8 ,G4 ,G12 ,G16 ,G3 ,G17 ,G27 ]",
8 " ag_subset ": "[1 ,3 ,4 ,5 ,6 ,7 ,8]" ,
9 " sat_raw_range ":[2.4542675427833732E7,2.1409056885831743E7,

10 2.2037492893273685E7,2.489673462934284E7,
11 2.0446292198035542E7,2.1941325488014203E7,
12 2.0608730854230978E7,2.4259760887495834E7,
13 2.4440507138588656E7,2.4487624892299775E7]",
14 " sat_doppler ":"[-3573.4968717823663,1616.9385368783649,-3182.0119141144132,-4

410.015313713629,-1986.8888771404663,1563.5353029840799,-801.495005544276
,-3148.0048037427523,-355.342887512213,-3434.848056537203]",

15 " llh_pos ":"[45.06779498069527,7.597496188162584,202.97572307387836]", "
llh_coop_pos ":"[]",

16 " distance ":"[266.754087287577,265.4448624662285,501.7596808566831,817.9027524
47363,1001.0497137762819,819.9610150810086,267.05468965203715]",

17 " ecef_pos ":"[4472823.012104692,596603.0691357873,4492849.1943269605]",
18 "cov": "[4.2,0.34,0.87,6.34,0.56,8]",
19 " cov_coop ": "[4.2,0.34,0.87,6.34,0.56,8]",
20 " db_timestamp ": 1560333552.84
21 }

Raw measurements download

The API method /agent_measurement get the most recent raw measurements collection
entry corresponding to the params agent_id. It can be used to get the last calculated posi-
tion, cooperative position, pseudoranges and covariances.
Table C.10 shows the API’s details.

/agent_measurement

Method GET
Access External

Uri agent_measurement
Params API-key: hash code used for authentication

agent_id: agent ID number
Returns It returns the data carried by the last CRM from agent agent_id

stored in its raw measurements collection.
Example https://hansel.rokubun.cat/cps/api/agent_measurement

?api-key={API-key}&agent_id=1

Table C.10: API description. Agent last measurements information.

Listing C.5: Example of data downloaded from the CPS
1 {
2 "epoch": " [2039 ,145838.5974929312]" ,
3 " agent_id ": "2",
4 " ecef_pos ":" [4472823.012104692 ,596603.0691357873 ,4492849.1943269605]" ,
5 " sat_subset ": "[28 ,7 ,8 ,4 ,12 ,16 ,3 ,17 ,27]" ,
6 " sat_raw_range ": [2.4542675427833732E7,2.1409056885831743E7,
7 2.2037492893273685E7,2.489673462934284E7,
8 2.0446292198035542E7,2.1941325488014203E7,
9 2.0608730854230978E7,2.4259760887495834E7,

10 2.4440507138588656E7,2.4487624892299775E7]",
11 }
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Database Download API

The API method /all_db downloads the whole database hosted by the central server as
a .txt file. This method can be helpful for the post processing of raw measurements data
collected by the network of agents.

Table C.11 shows the API’s details.

/all_db

Method GET
Access External

Uri all_db
Params API-key: hash code used for authentication
Returns File named "CPS_database.txt"

Example https://hansel.rokubun.cat/cps/api/all_db
?api-key={API-key}

Table C.11: API description. Database download.
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Appendix D

Android Location Services

D.1 Background software architecture: Positioning in An-
droid OS

Dealing with time-constrained GNSS measurements requires to act at very low level
in the system architecture but unfortunately this cannot be achieved with smartphones
when we work at the application level. As shown in Figure D.1, the Android Application
Framework works as an interface to access sensors measurements and this holds also for the
GNSS receiver. Different APIs allow to the developers to exploit positioning and navigation
capabilities in Android smartphones.

As an affordable solution within the roadmap of the project, CAPS.loc has been ini-
tially deployed at application level but potential implementations at lower system level (e.g.
operating system background services) are surely of interest for further development.

D.1.1 Android Location Manager

Android gives to the applications the access to the location services supported by the
device through classes in the android.location package. The central component of the lo-
cation framework is the LocationManager system service, which provides APIs to determine
location and bearing (if compass sensor is available) of the underlying device.

Once a given application is registered to the LocationManager service, it is able to
perform three actions:

• Query for the list of all LocationProviders for the last known user location.

• Register/unregister for periodic updates of the user’s current location from a location
provider (specified either by criteria or name).

• Register/unregister for a given Intent to be fired if the device comes within a given
proximity (specified by radius in meters) of a given latitude and longitude.

The LocationProvider class is the superclass of the different location providers which
deliver the information about the current location. This information is stored in the Location
class. The Android’s location APIs use three different providers to get location

• LocationManager.GPS_PROVIDER: This provider determines location using satellites
only. Depending on conditions (i.e. visibility, signal quality, demodulation of the
navigation message), this provider may require a considerable time to return a location
fix. The GPS_PROVIDER foreseen accurate, precise and reliable solutions according to
the quality of the on-board GNSS receiver.
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• LocationManager.NETWORK_PROVIDER: This provider determines location based on
availability of cell tower and Wi-Fi access points by exploiting their geo-tags or RSS
measurements. Results are retrieved by means of a network lookup so the responsive-
ness of the NETWORK_PROVIDER depends on network latencies.

• LocationManager.PASSIVE_PROVIDER: This provider will return locations generated
by other providers. The location is updated when other applications or services request
them without actually requesting the locations yourself.

Some challenging aspects must be taken into account in determining the location of a
device, some sources of error in the user location indeed include:

• Multitude of location sources - GNSS, Cell-ID, and Wi-Fi can each provide a clue
to users location. Determining which to use and trust is a matter of trade-offs in
accuracy, speed, and battery-efficiency.

• User movement - Because the user location changes, you must account for movement
by re-estimating user location every so often. To cope with such a typical issue for
highly-portable devices, the integration of on-board inertial sensors has become very
appealing to guarantee better accuracy and precision.

• Varying accuracy - Location estimates coming from each location source are not
consistent in their accuracy. As an example, the location obtained at a given epoch
from one source might be more accurate than the newest location from another or
same source. This issue hold for all the location providers implemented in the Android
location framework.

These problems can make it difficult to obtain a reliable user location.
The usual way to obtain the location in Android devices works by means of callbacks. An

application can receive location updates from the LocationManager by calling
requestLocationUpdates(), passing it a LocationListener. Your LocationListener
must implement several callback methods that the LocationManager calls when the user
location changes or when the status of the service changes.

The high-level localization options offered to the Android users reflect the potential of
the location provider so that it can be forced the only use of GNSS and on-board inertial
sensors (device only), Networks only (low power) and a combined solution (high accuracy)
which guarantees the best performance in terms of accuracy, precision and availability of the
positioning solution.

D.1.2 Raw GNSS measurements

Raw pseudorange and Doppler measurements are provided as an output by the Raw
GNSS Measurement API. All the information related to the GNSS receiver are hence encap-
sulated in a Java public class named GnssMeasurement. Further details about method and
constant provided by the object android.location.GnssMeasurement can be found at https:
//developer.android.com/reference/android/location/GnssMeasurement.html. The
reference positioning solution is foreseen by the Google Fused Location Provider which inte-
grates available sensors and networks to refine the positioning estimation provided by means
of GNSS, as shown in the right scheme of Figure D.1.

For this reasons the development of the CAPS.loc framework has been pursued at this
level by knowing potential limits imposed by the operating system itself w.r.t. the manage-
ment of the applications.
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Figure D.1: Possible implementation of the CAPS.loc framework in Android systems.

Fused Location Provider API

As shown in the right portion of Figure D.1, the new paradigm aim at providing to the
developer and to the users different layers. The Fused Location Provider is compatible with
lower level sensors hubs which can be tightly-integrated prior to the application level. The
Google Fused Location Provider has been used in the HANSEL project only to assess the
improvement guaranteed by cooperative positioning w.r.t. the standalone GNSS solution.

Nevertheless, a natural extension of the CAPS.loc would act in synergy with other loca-
tion providers, tightly related or augmenting to the capabilities of the GNSS receiver, as for
the block scheme on the right of Figure D.1.
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List of acronyms

A/D Analog-to-Digital
ADC Analog-to-Digital Converter
AGC Automatic Gain Control
AoA Angle of Arrival
AWGN Additive White Gaussian Noise
APD Absolute Position Distance
API Application Programming Interface
AGNSS Assisted GNSS
BOC Binary Offset Carrier
BPSK Binary Phase Shift Keying
BIC Bayesian Information Criterion
CAF Cross Ambiguity Function
CAPS.loc Collaborative Android Positioning System for enhanced LOCalization
CBOC Composite Binary Offset Carrier
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
C/N0 Carrier-to-Noise density power ratio
CoO Cell of Origin
CS Commercial Service
CRM Cooperative Raw Message
CP Cooperative Positioning
CW Continuous Wave
CWI Continuous Wave Interference
CDOP Cooperative Dilution of Precision
CRLB Cramer-Rao Lower Bound
CRU Collaborative Ranging Unit
COTS Commercial Off-the-shelf
CPS Cooperative Positiong Service
CPA Cooperative Positioning Application
CPU Control Processing Unit
CCD Charge-Coupled Device
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CMOS complementary metal-oxide semiconductor
DAC Digital-Analog Converter
DoD Department of Defense
DARPA Defense Advanced Research Projects Agency
DC Deeply Coupled
DD Double Difference
DDR Double Difference Ranging
DCM Direction Cosine Matrix
DLL Delay Lock Loop
DSP Digital Signal Processors
DOP Dilution Of Precision
DGNSS Differential GNSS
DGPS Differential GPS
DSRC Direct Short-Range Communication
DB Database
ECEF Earth-Centered Earth-Fixed
ENU East-North-Up
ECI Earth-Centered Inertial
EKF Extended Kalman Filter
EPF Extended Particle Filter
EOC Early Operational Capability
ESA European Space Agency
FLL Frequency Lock Loop
FPGA Field Programmable Gate Array
FIM Fisher Information Matrix
FDMA Frequency Division Multiple Access
GBPT GNSS-Based Positioning Terminal
GLONASS GLobal NAvigation Satellite System
GM Gauss-Markov
GNSS Global Navigation Satellite System
GPP General Purpose Processor
GPS Global Positioning System
GSA Global Navigation Satellite Systems Agency
GDOP Geometrical Dilution of Precision
GoF Goodness of Fit
GEV Generalized Extreme Value
GUI Graphic User Interface
HOW Hand-over word

194



D.1 – Background software architecture: Positioning in Android OS

HPE Horizontal Positioning Error
HW Hardware
H-LMS Hybrid Least Mean Square
H-PVT Hybrid PVT
H-WLMS Hybrid Weighted Least Mean Square
H-EKF Hybrid Extended Kalman Filter
H-PF Hybrid Particle Filter
HMM Hidden-state Markov Model
IAR Inter-Agent Ranging
IF Intermediate Frequency
IMU Inertial Measurement Unit
ICD Interface Control Document
IOC Initial Operational Capability
IOV In-Orbit Validation
INS Inertial Navigation System
IVS In-Vehicle Systems
ISMR Ionospheric Scintillation Monitoring Receivers
ITS Intelligent Transport System
IoT Internet of Things
ILS Instrument Landing System
KF Kalman Filter
KPI Key Performance Indicator
LC Loosely Coupled
LLA Latitude Longitude Altitude
LoS Line-of-Sight
LDOP Line Dilution Of Precision
LORAN LOng-range Aid to Navigation
LiDAR Light Detection and Ranging System
LNA Low Noise Amplifier
LO Local Oscillator
LMS Least Mean Square
LS Least Square
LTP Local Tangent Plane
LBS Location-Based Service
MBOC Multiplexed BOC
MCS Multilevel Coded Spreading Symbols
MEMS Micro Electro-Mechanical System
ML Maximum Likelihood
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MLE Maximum Likelihood Estimation
MSE Mean Square Error
MMSE Minimum Mean Square Error
MAP Maximum A Posteriori
MEO Medium Earth Orbit
NBI Narrow Band Interference
NCO Numerical Controlled Oscillator
NED North-East-Down
NLOS Non-Line-of-Sight
NNSS Navy Navigation Satellite System
NAVSTAR Navigation System with Time and Ranging
OS Open Service
OCXO Oven Controlled Xtal Oscillator
PC Personal Computer
PPP Precise Point Positioning
PLL Phase Lock Loop
PND Personal Navigation Device
PNT Positioning and Navigation Technologies
PRN Pseudo-Random Noise
PRS Public Regulated Service
PSD Power Spectral Density
PVT Position, Velocity and Time
PDF Probability Density Function
PR Pseudorange Ranging
PF Particle Filter
PCC Pearson’s Correlation Coefficients
PoC Proof of Concept
RADAR RAdio Detection And Ranging
RNSS Radio Navigation Satellite Services
ROS Robot Operating System
RIMS Ranging and Integrity Monitoring Station
R&R Record and Replay
RF Radio Frequency
RFE Radio Front-End
RFCS Radio-Frequency Constellation Simulators
RFI Radio-Frequency Interference
RMS Root Mean Square
RSS Receives Signal Straight
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RTT Round-trip Time
RSSI Receives Signal Straight Indicator
RTMeS Reference Trajectory Measurement System
RFCS Radio Frequency Constellation Simulators
RTK Real Time Kinematic
RTC Real Time Clock
RMD Raw Measurements Database
SAIA Self-Adaptive Iterative Algorithm
SBAS Satellite-based Augementation System
SDR Software Defined Radio
SD Single Difference
SiS Signal-in-Space
SIS Sequential Importance Sampling
SSE Sum of Squared Error
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
SONAR Sound Navigation and Ranging
SNR Signal-to-Noise Ratio
SoL Safety-of-Life
SAR Search-and-Rescue
SV Satellite Vehicle
SW Software
SPP Single Point Positioning
SIR Sampling Importance Resampling
STD Standard Deviation
STL Satellite Time and Location
s-PF suboptimal PF
TC Tightly Coupled
TLM Telemetry word
TDoA Time Difference of Arrival
ToA Time of Arrival
DoA Direction of Arrival
ToF Time of Flight
TOW Time of Week
TTF Time-to-First-Fix
UKF Unscented Kalman Filter
UAV Unmanned Aerial Vehicle
USB Universal Serial Bus
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USRP Universal Software Radio Peripheral
U-TC Ultra-Tightly Coupled
UWB Ultra Wide Band
UERE User-equivalent Range Error
UDP User Datagram Protocol
UHF Ultra High Frequency
VDLL Vector Delay Lock Loop
VERT Vehicle for Experimental Research on Trajectories
VFLL Vector Frequency Lock Loop
VO Visual Odometry
VLC Visual Light Communication
VSG Vector Signal Generator
VHF Very High Frequency
WB Wide-Band
WBI Wide-Band Interference
WLAN Wireless Local Area Network
WLS Weighted Least Square
W-DDR Weighted Double Difference Ranging
W-DD Weighted Double Difference
WSS Wheel Speed Sensor
W-SAIA Weighted SAIA
W-IAR Weighted IAR
WGN White Gaussian Noise
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