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ABSTRACT

A novel rainfall nowcasting method based on the combination of an empirical nonlinear transformation of

measured precipitation fields and the stochastic evolution in spectral space of the transformed fields is

introduced. The power spectrum and the amplitude distribution of precipitation are kept constant during the

forecast, and a Langevin-type model is used to evolve the Fourier phases. The application of the method to a

study case is illustrated, and it is shown that, with this procedure, a forecast skill can be obtained that is

superior to those provided by Eulerian or Lagrangian persistence for a lead time of up to two hours.

1. Introduction

Short-range forecasting (nowcasting) of intense pre-

cipitation events has many applications in hydrometeo-

rological risk management, including flash-flood warning

and surface or air traffic control. Extensive weather radar

networks are now operational in several countries, pro-

viding detailed snapshots of local precipitation conditions

at high spatial and temporal resolution. The availability

of these data allows for the development of nowcasting

techniques that use radar fields as initial conditions and

forecast local precipitation up to a lead time of about one

hour (Wilson et al. 1998, 2004).

Some of the nowcasting procedures are deterministic in

nature, providing one single ‘‘best,’’ forecast (Dixon and

Wiener 1993). However, probabilistic forecasts are essen-

tial to quantify prediction uncertainties (Krzysztofowicz

2001). Physically based atmospheric models can be used

for this purpose, but they usually require large compu-

tational times and detailed boundary conditions that

may not be readily available in real-time applications.

For this reason, most operational nowcasting tech-

niques rely upon some form of stochastic modeling

approach. Some of the existing methods are based on

Bayesian approaches (Xu and Chandrasekar 2005; Fox

and Wikle 2005). Other methods stochastically evolve

individual rain cells or the entire precipitation field

(Andersson and Ivarsson 1991; Mellor et al. 2000; Grecu

and Krajewski 2000; Seed 2003; Xu and Chandrasekar

2005).

An important point in building a nowcasting proce-

dure is that predictability of precipitation at short tem-

poral scales depends on the spatial scale of the structures

considered (Wilson et al. 1998; Germann and Zawadzki

2002). This has motivated the development of stochastic

nowcasting methods operating in the Fourier domain,

such as Spectral Prognosis (S-PROG; Seed 2003) or the
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method proposed by Xu and Chandrasekar (2005). In

these techniques, the spectral representation allows for

naturally taking into account the scale dependence of

the statistical properties.

In addition to scale-dependent predictability, there

are other important properties of spatiotemporal pre-

cipitation fields that need to be taken into account:

(i) both the amplitude distribution and the correlation

structure of the fields—that is, their power spectra—

are often only weakly varying on the nowcasting time

scale (Zawadzki 1973) and (ii) precipitation structures

are often persistent in a Lagrangian framework, leading

to a good nowcasting skill of simple Lagrangian persis-

tence methods applied either to the entire field or to in-

dividual precipitation structures (Germann and Zawadzki

2004).

These two requirements lead us to the development of

a new spectral-based nowcasting procedure, based on

the empirical nonlinear transformation of precipitation

fields provided by radar measurements and the sto-

chastic evolution of the transformed fields in spectral

space. In this approach, the initial one-point distribution

and power spectrum of the precipitation field are kept

constant, and a stochastic Ornstein–Uhlenbeck process

is used for the time evolution of the Fourier phases of

the Gaussianized precipitation field. As we will show,

this procedure is able to provide an ensemble, proba-

bilistic nowcasting of precipitation fields up to a lead

time of two hours. The method introduced here auto-

matically includes large-scale advection of precipitation

structures, and it reproduces the nonlinear and inter-

mittent nature of rain fields. In addition, the use of

spectral space instead of physical space assures that the

spatial correlations of precipitation fields are preserved.

The rest of this paper proceeds as follows: we intro-

duce the ‘‘phase stochastic’’ (PhaSt) nowcasting tech-

nique and its implementation details in section 2 and

illustrate its application to an intense precipitation event

observed by a meteorological radar in Italy in section 3.

We conclude in section 4 with a summary and some

outlook.

2. Nowcasting in Fourier space

a. Model definition

The PhaSt model adopted here requires two initial

precipitation fields, to be used as initial conditions, and it

includes three main steps.

d We take an empirical nonlinear transformation of

the two precipitation fields used as initial conditions,

p(x, y, t 5 0) and p(x, y, t 5 2Dt), generating two

Gaussian fields, g(x, y, 0) and g(x, y, 2Dt). The

transformation G is defined by rank ordering the

values of p and substituting them with rank-ordered

values obtained by sampling a Gaussian distribution

(Schreiber and Schmitz 1996; Ferraris et al. 2003a).

Here, x and y are spatial coordinates, t is time, t 5 0 is

the time when the nowcasting starts, Dt is the radar

sampling time, p is precipitation, and g is the Gaussian

field obtained by the nonlinear transformation g 5 G( p).
d We take the Fourier transform of the Gaussianized

fields and obtain their Fourier spectra, ĝ(k
x
, k

y
, 0) and

ĝ(k
x
, k

y
, �Dt), signified by the caret. From these, we

obtain for each wavenumber (kx, ky) the Fourier phase,

f, and an estimate of the Fourier angular frequency,

herein defined as v 5 df/dt. Fourier phases are then

evolved in time by a stochastic process while Fourier

amplitudes are kept fixed. The spectrum with the

evolved Fourier phases is inverted to generate a now-

casted Gaussian field at the time t of interest, g(x, y, t).

This evolved field has the same power spectrum as the

initial Gaussianized field, g(x, y, 0). Different realiza-

tions of the stochastic process allow for generating

different evolutions of the precipitation field and for

creating an ensemble of precipitation nowcasts.
d We apply an inverse nonlinear transformation to pass

from the evolved Gaussian field g(x, y, t) to the now-

casted precipitation field, ~p(x, y, t) 5 ~G
�1

[g(x, y, t)].

The nonlinear transformation is again defined empir-

ically by rank ordering the values of g(x, y, t) and then

substituting them with the rank-ordered values of the

initial field p(x, y, 0). In this way, the nowcasted pre-

cipitation field ~p(x, y, t) has exactly the same one-point

amplitude distribution as the initial field. Note that the

inverse transformation ~G
�1

is not exactly the inverse

of G, although in practice it is rather close. Because

the power spectrum is not invariant for a nonlinear

transformation (Balmforth et al. 1999), the power

spectrum of ~p is very similar to that of p(x, y, 0) but not

exactly the same.

There are several stochastic models that can be used to

evolve the Fourier phases. The simplest option is to use a

random walk—that is, to assume the angular frequencies

v 5 df/dt to be Gaussian and uncorrelated random

variables. To allow for the presence of time correlations

in the angular frequencies, we can resort to a Langevin-

type model. This type of stochastic model has been

widely used in the turbulence literature as a simple

closure model for isotropic turbulence (Herring and

Kraichnan 1972) to model dispersion (van Dop et al.

1985) and to create synthetic turbulent velocity fields

(Kraichnan 1970; Fung and Vassilicos 1998). The ran-

dom walk behavior is recovered in the limit of vanishing

correlation time.
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In the Langevin-type model adopted here, the tem-

poral evolution of the Fourier phase f(kx, ky) at a given

wavenumber (kx, ky) is written in terms of a linear

Ornstein–Uhlenbeck stochastic process for the angular

frequency:

df(k
x
, k

y
, t) 5 v(k

x
, k

y
, t) dt and (1)

dv(k
x
, k

y
, t) 5

v9(k
x
, k

y
)� v(k

x
, k

y
, t)

T
c
(k

x
, k

y
)

dt

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2(k

x
, k

y
)

T
c
(k

x
, k

y
)

vuut dW(k
x
, k

y
, t). (2)

Here, v(kx, ky, t) is the angular frequency; v9(kx, ky) is a

relaxation frequency to be discussed below; dW(kx, ky, t)

is a random increment drawn from a normal distribution

with zero mean and second-order moment hdW(kx, ky, t)

dW(k9x, k9y, t9)i5 d(kx 2 k9x)d(ky 2 k9y)d(t 2 t9), where W

is a Wiener process; Tc(kx, ky) is the correlation time;

and s2(kx, ky) is the variance of the distribution of an-

gular frequencies at wavenumber (kx, ky). The first term

on the right-hand side of Eq. (2) represents a deter-

ministic relaxation on the time scale Tc to the reference

angular frequency v9, and the second term represents

the stochastic driver. The Ornstein–Uhlenbeck process

[Eqs. (1) and (2)] generates angular frequencies that

have a Gaussian distribution with zero mean and vari-

ance s2 and an exponentially decaying temporal auto-

correlation, C(kx, ky, t) 5 hv(kx, ky, t)v(kx, ky, t 1 t)it/
s2(kx, ky) 5 exp[2t/Tc(kx, ky)], where h�it indicates a

time average. In this simple model, all Fourier phases

are assumed to evolve independently.

The choice of the reference angular frequency, v9(kx, ky),

can either be v9 5 0 or, as we discuss below, v9(kx, ky) 5

v(kx, ky, t 5 0). The latter choice allows the model to

reproduce the temporal evolution encoded in the initial

fields. In fact, by choosing v9 5 v(t 5 0) and s2 5 0 from

Eq. (2), we obtain dv 5 0 and v(t) 5 v9 5 v(t 5 0) at all

times. Large-scale advection with rigid translation of the

initial rain field corresponds to angular frequencies of

the form vadv(kx, ky) 5 c0,xkx 1 c0,yky, where c0,x and c0,y

are the constant phase speeds along the x and y direc-

tions. If the initial fields provide a frequency distribution

with this type of dependence on wavenumber, then

large-scale advection is automatically encoded in the

PhaSt method: By determining v9(kx, ky) from the two

initial frames, we obtain the properties of the large-scale

advection field, similar to what could be recovered by

maximum correlation techniques (Zawadzki et al. 1994).

Alternatively, if one had reasons to force the presence of

large-scale advection in the temporal evolution of the

rain fields, then one could choose the relaxation fre-

quencies accordingly—that is, v9(kx, ky) 5 vadv(kx, ky).

Clearly, if advection is too strong, precipitation struc-

tures are advected too quickly and then the model

cannot reproduce the event. In particular, as discussed in

quantitative terms in the section on parameter estimate,

Fourier phases should vary much less than 2p in one

time step—that is, c0,x and c0,y should not be too large for

a given radar sampling time.

On the one hand, rain fields have been shown to be

characterized by a nonlinear and intermittent nature,

often associated with the presence of multifractal behav-

ior and interpreted in terms of multiplicative cascades

(Lovejoy and Mandelbrot 1985; Schertzer and Lovejoy

1987; Gupta and Waymire 1993; Kumar and Foufoula-

Georgiou 1993). On the other hand, Ferraris et al.

(2003a) have shown that the multifractality of measured

rain fields cannot be distinguished from that generated by

the static nonlinear transformation of a linear Gaussian

process. In a further study, Ferraris et al. (2003b) have

shown that three main classes of rainfall models—

namely, (i) multifractal cascades, (ii) the superposition

of rain cells, and (iii) the nonlinear transformation of a

linear Gaussian field—all display similar performance in

reproducing the observed precipitation data. Rebora

et al. (2006) then developed a downscaling model based

on the static nonlinear transformation of a Gaussian

field with a power-law spectrum and showed that it

correctly reproduces the statistics of high-resolution

precipitation fields measured by meteorological radars.

The model introduced here is an extension of that type

of approach and, consistent with the analysis results

mentioned above, is based on the assumption that the

main nonlinearity of spatial–temporal precipitation dy-

namics can be approximated by the static nonlinear

transformations G and ~G
�1

, and that the residual cor-

relations between the different Fourier phases of

the evolving Gaussianized fields remain absent or very

weak.

The use of a stochastic process for the evolution of

Fourier phases allows for generating many realizations,

to be used as members of an ensemble of precipitation

nowcasts. All ensemble members are characterized by

the same amplitude distribution and very similar power

spectra. However, the phase evolution (i.e., the posi-

tioning of rainfall structures) evolves differently in the

different realizations, providing an estimate of the

probability of occurrence of precipitation at a given

point in space and a given moment in time. At each

wavenumber, the spread in the phase evolution is con-

trolled by the value of s, and the relaxation rate to the

reference phase v9 is controlled by the value of Tc.
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b. Model implementation

In the model implementation, we first Gaussianize, by

rank ordering, the two precipitation fields used as initial

conditions at t 5 0 and t 5 2Dt. A delicate point is how

to treat the zeros (pixels with no precipitation) possibly

existing in the initial fields. Here we opt for assigning all

points with a precipitation value below a given minimum

threshold to the same value of the transformed variable.

This leads to a truncated Gaussian distribution and does

not significantly modify the resulting power spectrum.

The spectral amplitudes and the initial spectral phases,

f(kx, ky, 0), are determined from the Gaussianized

precipitation field at the initial time t 5 0. First-order

finite differences with the phases at the previous time

step, t 5 2Dt (this is why we need at least two initial

precipitation fields), provide the initial conditions for the

Fourier angular frequencies, v(kx, ky, 0) 5 [f(kx, ky, 0) 2

f(kx, ky, 2Dt)]/Dt.

The Ornstein–Uhlenbeck model used to evolve the

Fourier phases can be discretized in time as

v
t1Dt

5 v
t

1� Dt

T

� �
1

v9

T
Dt 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2Dt

T
1� Dt

2T

� �s
W

t

and (3)

f
t1Dt

5 f
t
1 v

t1Dt
Dt, (4)

where Wt is drawn from a Gaussian distribution with

zero mean and unit variance. The variance of the

angular frequencies has been normalized to match the

variance of the continuous case, Eq. (2). The correlation

time in the continuous case Tc is related to that of the

discretized model T by

T 5
Dt

1� exp(�Dt/T
c
)

. (5)

When Tc� Dt, one has T ’ Tc. For T 5 Dt, this model

generates temporally uncorrelated angular frequencies

and a Brownian random walk of Fourier phases. Note

that when v9 5 v0 and s2 5 0, one obtains vt 5 v0 at all

times; when s2 6¼ 0, the ensemble average of the set of

stochastic realizations corresponds to the evolution ob-

tained by keeping constant the initial frequencies.

Because all Fourier phases of the Gaussianized fields

evolve independently of each other, they quickly loose

any initial cross correlation (if it existed). This ensures

that the fields generated by the inverse Fourier trans-

form of the evolved spectra remain Gaussian, in keeping

with the assumption that the main nonlinearity is asso-

ciated with the static nonlinear transformation G used to

Gaussianize the field. The empirical inverse transfor-

mation ~G
�1

is finally implemented by rank ordering

again: we sort both the nowcasted Gaussian field values

and the initial precipitation intensities, and we substitute

each nowcasted value with the value in the initial field

having the same rank. This operation only moderately

modifies the correlation structure of the fields (Balmforth

et al. 1999), and all nowcasted fields have power spectra

that remain very close to that of the initial precipitation

field.

Two-dimensional Fourier transforms assume a double

periodic domain, so that the nowcasted fields can display

precipitation structures falling across the borders. To

avoid this unphysical effect, one should always apply the

PhaSt technique to a larger domain, padding the initial

observation fields with zeros, and then extracting the

area corresponding to the original domain from the

nowcasting outputs.

c. Parameter estimate

Before applying the PhaSt method to real precipita-

tion fields, we explore whether and how the model

parameters can be recovered from measured data. To

this end, we generate a sequence of synthetic precipi-

tation fields with an a priori choice of model parameters

to try to recover their value from the analysis of the data.

The synthetic precipitation fields have spatial resolu-

tion Dx 5 1 km and temporal resolution Dt 5 10 min. We

generate a total number of 18 fields, corresponding to an

event with a total duration of three hours. The fields are

generated on a large domain and then cut on an area of

128 3 128 km2 to avoid spurious spatial periodicity. We

consider a case with a constant value of the correlation

time, T 5 1.5Dt, and a value of s that is linearly growing

with wavenumber, s 5 cok, where k 5 (k2
x 1 k2

y)1/2 is the

radial wavenumber and co 5 0.15 km min21. The initial

radial power spectrum is fixed as P(k) } k22.7, isotropic

in wavenumber space and consistent with the analysis of

precipitation data (Ferraris et al. 2003a,b). Here, P(k)

indicates the average of the squared Fourier amplitudes

on the radial shell (k, k 1 Dk), and the total variance of

the field is thus � kP(k)Dk. The fields generated in this

way are spatially isotropic (in a statistical sense). The

Gaussian fields generated by inverting the Fourier

spectra at different times are then passed through an

exponential filter to generate synthetic precipitation

fields.

We then apply the PhaSt method to the synthetic

fields. After padding the fields with zeroes to a larger

domain of 192 3 192 km2, the first step is to estimate

angular frequencies from finite differences of Fourier

phases. Because phases are defined on the periodic

domain [0, 2p], an ‘‘unwrapping’’ procedure is required
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before computing finite differences: when an estimated

Fourier phase increases by more than p in a time in-

terval Dt, we subtract 2p from it; when the phase jump is

smaller than 2p, we add 2p. This procedure works well

when angular frequencies are small and Fourier phases

evolve slowly, something that usually happens at low

wavenumbers. When the angular frequency is large, the

corresponding Fourier phase can change by more than p

in the time interval Dt. In this case, the whole unwrap-

ping procedure ceases to work and angular frequency

estimates become ambiguous.

From the reconstructed angular frequencies, we can

obtain estimates of s and T. Figure 1a shows the esti-

mate of the standard deviation of the angular frequen-

cies recovered from the Gaussianized fields s(k) as a

function of the radial wavenumber k, obtained by av-

eraging the variances over circular shells of width Dk 5

2p/L and then taking the square root. Figure 1b shows

the estimate of the correlation time of the angular fre-

quencies of the Gaussianized fields, again obtained as an

average over circular shells of width Dk. Each value of

T(kx, ky) has been obtained by fitting a decaying expo-

nential to the temporal autocorrelation of the time se-

ries of the corresponding angular frequency and then

using Eq. (5) that relates Tc and T. Similar results are

obtained by first averaging the autocorrelation functions

for each wavenumber in the shell and then fitting the

mean autocorrelation to an exponential.

An approximate linear dependence of s on k is evi-

dent up to moderate wavenumbers. At higher wave-

numbers, the quantity sDt saturates at the upper limit

p/
ffiffiffi
3
p

, owing to the fact that the phases are defined

modulus 2p. When the phases change by more than p

in a time step Dt, the distribution becomes randomized

and the angular frequencies cannot be properly re-

constructed. As a result, one gets an upper limiting value

for s(k). The value p/
ffiffiffi
3
p

is the value of sDt corre-

sponding to a random uniform distribution of Fourier

phases. Experimentation with other parameter values

shows that when co is large enough, there is always a

value of k beyond which the reconstructed value of the

variance saturates. In real situations, the wavenumber at

which this saturation occurs depends on how rapidly the

precipitation field evolves and on the sampling time Dt.

As shown by Fig. 1b, at small k the value of T(k)

provides an estimate of the correlation time, even

though a constant value is not recovered. The estimated

value of T rapidly decays to Dt for growing k. This

confirms that, at large k, Fourier phases undergo a

Brownian motion and indicates that the value of T

should be estimated from the small wavenumbers.

3. Application to a study case

To illustrate the workings of the PhaSt method, we

now apply this nowcasting technique to one example of

a typical precipitation event observed by the meteoro-

logical radar on Mt. Settepani, Liguria, Italy. The syn-

optic scenario of this event shows a deep low-pressure

area extending between northern France and northern

Africa and a southern warm moist flow over Italy, lead-

ing to intense precipitation events in northwestern Italy.

FIG. 1. (a) Standard deviation of the angular frequencies reconstructed from the synthetic fields generated to test

the PhaSt procedure, as a function of radial wavenumber k. (b) Correlation time T as a function of radial wave-

number k, estimated from the data by fitting an exponentially decaying function to the autocorrelation of the

angular frequencies. The bars represent one standard deviation around the mean, computed from the distribution

of angular frequencies on circular shells of width Dk.
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The radar frames analyzed here cover a domain of

128 3 128 km2, with resolution Dx 5 1 km. Different scans

are obtained with temporal resolution Dt 5 10 min, start-

ing at 0720 UTC 24 November 2003 and continuing for

more than two hours, providing a total of 14 consecutive

precipitation fields (Fig. 2). The particular sequence ana-

lyzed here is an example of an intense, localized precipi-

tation pattern, characterized by significant wind advection.

a. Verification of model assumptions

First, we explore whether the statistical properties of

the precipitation fields in the event used as an example

are consistent with the assumptions of the PhaSt method.

Figures 3a and 3b show the power spectrum and

the amplitude distribution of the precipitation field at

different times. Both statistics remain approximately

FIG. 2. Sequence of precipitation intensity fields, accumulated over 10 min, observed by the meteorological radar on

Mt. Settepani, Italy. The startup time of the nowcasting procedure, t 5 0, is fixed at 0730 UTC 24 Nov 2003.

FIG. 3. (a) Spatial power spectra, as a function of radial wavenumber, of the precipitation fields. (b) Distributions of

precipitation intensity for the event shown in Fig. 2. The spectra of the Gaussianized fields are very similar. Different

curves refer to different times from t 5 0 to t 5 12Dt.
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constant in time, consistent with the assumptions of the

nowcasting model introduced here and the observations

of Zawadzki (1973).

Then, to proceed with model verification, we first pad

the original field with zeros, obtaining a field with res-

olution Dx 5 1 km and total size 192 3 192 km2. We then

proceed with the empirical Gaussianization of the fields

and obtain a temporal sequence of angular frequencies,

v(kx, ky, t), by finite differences of the spectral phases

of the Gaussianized fields. From these, the variance

s2(kx, ky) of the angular frequency distribution at each

wavenumber can be estimated. By computing the auto-

correlation of v(kx, ky, t) at different time lags and fitting

a decaying exponential function, we estimate the cor-

relation time Tc(kx, ky) and then, using Eq. (5), the value

of T(kx, ky). At this point, one can either keep the in-

formation on potential anisotropies in the x and y di-

rections, at the cost of a limited statistics in the estimates

of s and T, or average over isotropic wavenumber shells

at radial wavenumber k and width Dk. In this way, the

information on anisotropy is lost but a more robust es-

timate of model parameters is obtained.

Figure 4a reports the standard deviation of the an-

gular frequencies s(k) as a function of the radial wave-

number k, obtained by averaging the variances over

circular shells of width Dk and then taking the square

root. An approximate linear dependence of s on k is ev-

ident up to moderate wavenumbers. Consistent with the

results discussed earlier, the quantity sDt saturates at the

upper limit p/
ffiffiffi
3
p

at higher wavenumbers. For this event

and Dt 5 10 min, saturation occurs at a wavenumber k

corresponding to length scale Lsat 5 2p/ksat ’ 13 km.

Notice, however, that the complete reconstructed field

s(kx, ky), shown in the inset of Fig. 4a, displays clear

anisotropy. In this case, the use of an isotropic form s(k)

would represent only a coarse approximation to the full

structure of s(kx, ky).

Figure 4b shows the average correlation time T(k),

again averaged over radial shells of width Dk. At small

values of k, the value of T(k) indicates that the angular

frequencies have significant temporal correlation. At

larger values of k, the value of T(k) decays to the value

T 5 Dt, corresponding to uncorrelated frequencies. The

length scale Lsat obtained from the saturation of s(k) is

consistent with the value beyond which temporal cor-

relations in angular frequencies vanish.

Overall, Figs. 3 and 4 show that the precipitation

statistics of this test case are consistent with the as-

sumptions of the PhaSt nowcasting model—that is,

temporally correlated angular frequencies, a variance

growing with wavenumber, and an amplitude distribu-

tion and a power spectrum approximately constant in

time.

b. Hindcast

We now apply the PhaSt method to the test case dis-

cussed earlier, assuming in-sample knowledge of model

parameters. The standard deviation s(kx, ky) and the

correlation time T(kx, ky) at each wavenumber (kx, ky)

are obtained from the whole dataset. We determine the

reference angular frequencies v9(kx, ky) as the time av-

erage of the angular frequencies obtained from the

analysis of the entire time series v9(kx, ky) 5 hv(kx, ky, t)it.
No assumption of isotropy in spectral space is made.

FIG. 4. (a) Standard deviation of reconstructed angular frequencies as a function of radial wavenumber k, for the

event shown in Fig. 2. The inset shows the reconstructed field s(kx, ky). (b) Same analysis as in Fig. 1b, for the event

shown in Fig. 2.
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Figure 5 shows a single stochastic realization obtained

from the nowcasting model. Comparison with Fig. 2

indicates that the PhaSt approach is capable of re-

producing a realistic temporal evolution of the precipi-

tation field and that it captures the eastward advection of

the high-intensity precipitation structures. By construc-

tion, this sequence of nowcasted fields is characterized by

the same amplitude distribution and very similar power

spectrum at all times. Figure 6 shows the power spectrum

of the nowcasted fields at different times.

To quantitatively compare the nowcasted fields with

the observed sequence, we show in Fig. 7 the average

cross correlation r between nowcasted and observed

fields, as a function of forecast time. The graph shows

the cross correlations for an ensemble of 100 stochastic

realizations of the PhaSt method, corresponding to dif-

ferent choices of the evolution of Fourier phases, and

the ensemble mean. The figure also shows the cross

correlations obtained from three other nowcasting

methods: 1) simple Eulerian persistence, where the field

at time t 5 0 is assumed to persist; 2) Lagrangian per-

sistence, where the average advection velocity is esti-

mated from the first two radar images of the sequence by

using a maximum correlation technique (Zawadzki et al.

1994); and 3) random nowcasting fields having the same

amplitude distribution and correlation structure of the

observed precipitation field at t 5 0 but characterized by a

random, uniform distribution of the spectral phases of the

Gaussianized fields (this generates a random positioning

of precipitation structures with no temporal correlation).

For the latter case, the figure reports the limit below

which 95% of the 3000 random realizations fall.

As shown in Fig. 7, both Eulerian and Lagrangian

persistence display a rapidly decreasing correlation with

the observations and, even though Lagrangian persis-

tence appears to provide a better forecast than Eulerian

persistence for this event, after about 90 min they both

provide nowcasts that are actually worse than the ref-

erence random nowcast. On the contrary, all PhaSt

nowcasting fields keep high correlation with obser-

vations up to about two hours of forecast time, and they

never fall below the skill of the reference random

FIG. 5. Sequence of precipitation intensity fields, accumulated over 10 min, nowcasted by the PhaSt method assuming

in-sample knowledge of model parameters.
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forecast. In addition, the spread around the ensemble

mean of the different realizations provides an estimate

of forecast uncertainty.

A further confirmation of the good performance of

the PhaSt method comes from the comparison between

the statistics of the accumulated precipitation data and

those of model outputs. Figure 8 shows the amplitude

distribution (left) and power spectra (right) for the radar

data (dashed curve) and the PhaSt fields (solid curve),

accumulated over 0.5 (top), 1 (middle), and 1.5 h (bot-

tom). Although the amplitude distribution of the data

and that of the PhaSt fields are the same at every time

step, there is no a priori reason why they should remain

the same for accumulated precipitation. The fact that

the amplitude distributions and the power spectra of the

data and of the model outputs remain so close to each

other confirms that for this event, the PhaSt method is

able to reproduce the main statistical properties of the

evolution of the rain field.

c. Simplifications adopted for operational
applications

In operational applications, only the past history of

the event is available, and a robust estimate of model

parameters can become difficult to determine. For this

reason, it is necessary to significantly reduce the model

complexity. One significant simplification is to assume a

constant value for T, independent of wavenumber, and

an isotropic form of s growing linearly with wavenum-

ber, s 5 cok. Therefore, the only two free parameters of

the model become T and co. Next we discuss the per-

formance of the PhaSt method when this simplification

is adopted, using as an example the rainfall event ana-

lyzed earlier.

Figure 9a shows the cross correlation between the

model forecasts and the observed fields obtained by

fixing T 5 15 min and co 5 0.15 km min21. Not sur-

prisingly, the ensemble mean now shows lower skill than

in the in-sample case. However, even in this case all

nowcasting ensemble members have a skill that is larger

than the reference random forecast—up to two hours of

forecast time. Some ensemble members still achieve

very high-correlation values, indicating the good skill of

the method even with the simplified approach adopted

here.

Figure 9b shows the critical success index (CSI; Wilks

1995), with a threshold of 10 mm h21, for the same data.

The information provided by this measure is consistent

with the results of the cross-correlation test, with the

PhaSt nowcasting showing better skill than Lagrangian

and Eulerian persistence at all times.

The spread of the ensemble gauges uncertainty in the

nowcast. Probabilities of exceedence of fixed precipita-

tion thresholds can be derived by counting the number of

ensemble members satisfying this condition. Figure 10

FIG. 6. Spatial power spectra, as a function of radial wavenum-

ber, of the nowcasted fields generated by the PhaSt method. Dif-

ferent curves refer to different times.

FIG. 7. Cross correlation, as a function of forecast time, between

observed radar fields and nowcasts for Eulerian persistence

(squares), Lagrangian persistence (circles), and 100 nowcasting

fields generated using the PhaSt method, assuming in-sample

knowledge of the model parameters (thin lines) and their ensemble

mean (thick line). The triangles show the limit below which 95% of

3000 random realizations (with the same amplitude distribution

and power spectrum of the precipitation data and random, un-

correlated Fourier phases) are found.
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FIG. 8. (left) Amplitude distributions and (right) spatial power spectra, as a function of radial wavenumber, of the

accumulated precipitation data (dashed curve) and the accumulated nowcasted fields generated by the PhaSt

method (solid curve). Accumulation times of (top) 0.5, (middle) 1, and (bottom) 1.5 h.
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shows the skill of the PhaSt ensemble in providing a

probabilistic forecast. The figure reports the Brier scores

(Wilks 1995) for the probability of exceeding a precipi-

tation intensity of 10 mm h21, as a function of forecast

time. For comparison, we report also the hit rates H of

the two deterministic Eulerian and Lagrangian nowcasts

and the Brier score obtained using a reference random

nowcasting having the same amplitude distribution and

power spectrum of the initial radar fields and random

Fourier phases. The Brier score and the hit rate (or ac-

curacy) are related: we transform observations to a bi-

nary verification set O(x, y, t) —where x and y indicate

the position of the pixel of the radar image and t indi-

cates time—by defining a given threshold in precipita-

tion intensity. If the nowcasting is probabilistic, then

counting the number of ensemble members exceeding

the threshold provides a probability of exceedence,

P(x, y, t). The Brier score B is defined as the average

squared difference between P and the verification set O.

If the forecast is deterministic, then it can be transformed

to a binary forecast set Y(x, y, t). The average squared

difference between Y and the verificationO is equivalent

to a Brier score B in case of an ensemble with only one

member. In this case, the quantity H 5 1 2 B is known as

‘‘hit rate’’ or ‘‘accuracy’’ (Wilks 1995).

Also with this probabilistic skill measure, both the

Eulerian and Lagrangian persistence nowcasts perform

worse than the reference random nowcasting already at

relatively short times, whereas the PhaSt nowcasting

performs better at all times.

A delicate point in the application of the PhaSt

method to operational nowcasting is the choice of the

values of T and co. An estimate of the correlation time T

can be obtained either from the analysis of a sequence of

a few past rain fields (assuming persistence of the sta-

tistical properties of the event) or fixed from climatol-

ogy. Preliminary analysis of different events indicates

that the value of T is usually smaller than about 20 min in

the low wavenumber range, consistent with the typical

lifetimes of precipitation structures at kilometer scale.

Experimentation with different values of T in the model

indicates that nowcasting accuracy is only weakly sen-

sitive to the precise value of T. A reasonable ‘‘first

guess’’ is thus to fix T 5 15 min, as in the example dis-

cussed earlier.

In principle, the value of co can be fixed from the

behavior of s(k) in the low wavenumber range, as ob-

tained from a few past rain fields. For the event studied

here, Fig. 4 suggests a slope co ’ 0.3 km min21 at low

wavenumbers. At least for this event, however, there is

strong anisotropy in spectral space, and the value of co

obtained from radial average can be misleading. Ex-

perimentation with different values of co indicates that

the average performance of the nowcasting procedure

improves as co is reduced. At the same time, reducing co

(and thus s) leads to a smaller spread of the ensemble,

which collapses to zero for co 5 0. A compromise should

thus be accepted between the desire for improving the

performance of the ensemble mean and the need for

obtaining a representative spread of the ensemble.

FIG. 9. (a) Cross correlations and (b) critical success indices for a threshold of 10 mm h21, as a function of forecast

time, between observed radar fields and nowcasts for Eulerian persistence (squares), Lagrangian persistence

(circles), and 100 nowcasting fields generated using the simplified version of the PhaSt method with s(k) 5 cok,

where co 5 0.15 km min21, and T 5 1.5Dt, where Dt 5 10 min. The thin lines show each ensemble member and the

thick line indicates the ensemble mean. Refer to Fig. 7 for meaning of triangles.
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4. Summary and conclusions

In this paper we have introduced a novel ensemble

nowcasting method based on the stochastic evolution of

the Fourier phases of a Gaussianized precipitation field.

Because the model is formulated in spectral space, it

naturally allows for representing an uncertainty varying

with scale. In this model, Lagrangian advection of the

precipitation field can be captured by estimating the

angular frequencies by finite differences of the Fourier

phases of two Gaussianized initial fields. In its simplest

version, the model has only two free parameters—that

is, the correlation time and the variance entering the

stochastic process that regulates the evolution of the

angular frequencies. Because the model implements a

simple stochastic process, large ensembles of realiza-

tions can be created with only modest computational

burden, allowing for estimating the probability of oc-

currence of intense precipitation events in a small area

and at a given time.

We illustrated the applicability of this nowcasting

method to an example precipitation event, showing that

in this case its skill is superior to simple Lagrangian

advection and Eulerian persistence—up to about two

hours of forecast time. Given the short lifetime of local-

ized precipitation structures (of the order of 20–30 min),

this is probably about the maximum predictability time that

can be reached with statistical or deterministic methods in

the absence of an assimilation network of the full set of

meteorological variables at the scales of individual rainfall

structures (i.e., about 1 km). Future explorations should

verify the performance of the PhaSt method on a set of

precipitation events with different characteristics.

In operational applications, the most difficult part of

the method is the correct estimate of the correlation

time T and the variance s2. One option is to tune these

parameters on a large set of example events, creating a

climatology of model parameter values. Another option

is to estimate these parameters from a few measured

fields—once the storm has started. As an alternative,

these parameters can be allowed to vary, generating a

larger (‘‘super’’) ensemble that includes both individual

realizations for given parameter values and different

choices for the parameters of the stochastic evolution.
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