POLITECNICO DI TORINO Repository ISTITUZIONALE

Poly(glycidyl ether)s recycling from industrial waste and reuse as electrolytes for sodium batteries

Original Poly(glycidyl ether)s recycling from industrial waste and reuse as electrolytes for sodium batteries / Bella, F.; Piana, G.; Ricciardi, M.; Cucciniello, R.; Proto, A.; Gerbaldi, C ELETTRONICO (2019), pp. 174-174. (Intervento presentato al convegno Merck Young Chemists' Symposium 2019 (MYCS 2019) tenutosi a Rimini (Italy) nel November 25th-27th, 2019).
Availability: This version is available at: 11583/2809007 since: 2020-04-06T09:56:25Z
Publisher: Società Chimica Italiana
Published DOI:
Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository
Publisher copyright

(Article begins on next page)

Poly(glycidyl ether)s recycling from industrial waste and reuse as electrolytes for sodium batteries

Federico Bella,^{a,b} Giulia Piana,^{a,b} Maria Ricciardi,^c Raffaele Cucciniello,^c Antonio Proto,^c and Claudio Gerbaldi^{a,b}

^a Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129-Turin, Italy

b INSTM Consortium, Via Giuseppe Giusti 9, 50121-Florence, Italy
C Department of Chemistry and Biology "Adolfo Zambelli", Università degli Studi di Salerno,
Via Giovanni Paolo II 132, 84084-Fisciano, Italy
E-mail: federico.bella@polito.it

The need to recycle waste products, convert and reuse them for different high-value applications is a very up-to-date, utmost important topic. In this context, here we propose glycidol, a high-value product isolated from epichlorohydrin industry waste, as a starting material for the preparation of two poly(glycidol)s polymer matrices with a chemical structure mimicking that of poly(ethylene oxide), i.e. the most used polymer matrix for non-liquid battery electrolytes.

The materials are characterized from the physico-chemical viewpoint, showing high thermal stability. They are then obtained in the form of ionic conducting polymer electrolytes encompassing different sodium salts and solvent mixtures. Ionic conductivity values exceeding 10^{-5} S cm⁻¹ are measured in the "dry" truly solid state at 80 °C, while it approaches 6×10^{-5} S cm⁻¹ at ambient temperature in the "wet" quasi-solid state. In addition, poly(glycidol)-based polymer matrices show reasonably wide electrochemical stability towards anodic oxidation.

It envisages their possible use as separating electrolytes in secondary batteries, which is also demonstrated by preliminary charge/discharge cycling tests in labscale sodium cells [1]. The present findings pave the way to a circular economy platform starting from industry wastes and ending with post-lithium storage systems.

^[1] G. Piana, M. Ricciardi, F. Bella, R. Cucciniello, A. Proto, and C. Gerbaldi, *Chem. Eng. J.*, DOI: 10.1016/j.cej.2019.122934.