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Abstract  

The purpose of this thesis is the development of accurate and efficient 
structural models for the analysis of multilayered and sandwich structures. 
Starting from the 3-D zig-zag adaptive (ZZA) theory by Icardi and Sola, a number 
of variants are created, in order to understand when transverse displacement 
representation is essential, or, vice versa, a simpler kinematics can be assumed. 
Higher-order theories are developed both in mixed and displacement-based forms 
and their coefficients are redefined for each layer across the thickness and 
calculated by imposing the full set of physical constraints of the parent theory 
(ZZA). Using this approach, zig-zag functions can be changed or omitted, those 
describing the variation of displacements across the thickness can be assumed 
differently for each displacement component and from point to point across the 
thickness. On the contrary, the accuracy of lower-order theories that do not have 
these features become strongly case dependent. Such findings are confirmed by 
means of numerous challenging benchmarks. Different loading (both localized 
and distributed) and boundary conditions are examined for elastostatic cases, 
where laminations with strongly asymmetries are also studied. Also damaged lay-
ups are analysed, because this conditions could occur during service life and 
structural models should be able to accurately capture this. Moreover, the 
capability of theories to precisely calculate natural frequencies, to describe 
response to impulsive blast pulse loading and to catch effects on pumping 
vibrations of soft-core sandwiches are tested. Impact damage analysis and two-
material wedge problems are also approached. A generalization of the adaptive 
zig-zag theory by Icardi and Sola is also presented, whose particularizations have 
the same accuracy of the parent theory but lower processing time, thus a higher 
efficiency. Such theory is able to match the results of most used formulations in 
the literature and, thanks to its simple displacement field, is the most suitable to 
apply the Strain Energy Update Technique. Such technique allows to get accurate 
C0 finite elements and to improve the results of the analyses obtained by means of 
commercial finite elements software.  

 
 

  



 

 
 

Motivations, objectives,  steps and 
major achievements of research 

Motivations 

Nowadays, composite and sandwich materials are widespread in a lot of 
engineering fields, thanks to their specific properties. Anyway, their modeling is 
complex because of their intrinsically multi-phase construction, so, they exhibit 
different local failure and damage propagation behaviour compared to metals. 
They are also strongly influenced by local effects, at fiber-matrix and layer 
interface level. Moreover, displacements have to be C0-continuous across the 
thickness (zig-zag effect), in order to guarantee the continuity of out-of-plane 
stresses and of the gradient of transverse normal stress across the thickness.  

 
The design of complex structures made of these materials is carried out by 

utilizing commercial finite element software, using 1-D and 2-D elements based 
on simple equivalent single layer theories, which disregard layerwise effects. 
Indeed, these elements are not accurate, e.g. when thin-walled structures or soft-
core sandwiches are analyzed (according to papers by Carrera and co-workers  
[1], [2], [3]). Commercial 3-D finite elements are more accurate, but they are very 
expensive and in any case they do not respect out-of-plane stresses prescriptions 
by the theory of elasticity.  

 
For these reasons, aerostructural research has been focusing on the 

development of accurate and efficient models to describe behavior of these 
materials during service life; among the many modeling approaches zig-zag 
theories stand out because offer a good balance between precision and 
computational costs. Particularly, refined zig-zag adaptive theory ZZA by Icardi 
and Sola [4], which is developed under physical considerations and has the same 
number of d.o.f. of FSDT, has demonstrated its superior accuracy and a high 
capability to describe layerwise effects. Anyway, it cannot analyse complex 
structures of industrial interests, e.g. wings, as like as any other analytical model.  
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In order to overcome these issues, finite elements can be obtained by this 
theory. However, because of its layerwise and higher-order terms that impose 
physical constraints (compatibility and boundary conditions on out-of-plane 
stresses and fulfilment of local equilibrium equation) there are a lot of higher 
order derivatives into strain energy (see Icardi and Ferrero [5]). As a consequence,  
a high number of nodal d.o.f. is required, so, they cannot be used to analyze very 
complex structures. Mixed finite elements able to obtain accurate displacements 
and stresses can be developed (see e.g. mixed 3-D C0 element by Icardi and 
Atzori [6], Icardi [7], Icardi and Sola [8]). Anyway, even though their shape 
functions are simple, they still require a greater number of d.o.f. than commercial 
ones. Thus, with the intended aim to exploit the power of commercial finite 
element software and to increase their performance, a novel Strain Energy Update 
Technique (SEUPT) has been developed. 

 
 

Objectives 

In order to apply SEUPT, corrective terms are introduced into the 
displacement field of a simplified model, so that the same amount of strain energy 
of a higher-order theory (e.g. ZZA) is obtained. 

 
Regarding its original form (see Icardi [9] and Icardi and Ferrero [10]), 

precision of results obtained by commercial finite elements was improved using 
an iterative post-processing tool. In order to apply this version of SEUPT, the next 
steps have to be followed: 

 Choice of the region to which apply SEUPT; 
 Polynomial spline interpolation of the results (e.g. displacements, 

strains, stresses) obtained by finite elements; 
 Calculation of energy contributions of zig-zag theory, using finite 

element results; 
 Calculation of energy contributions of finite elements; 
 Corrective terms are introduced into energy contribution by finite 

elements.  
 Calculation of corrective terms, through an iterative process that 

makes energy contributions equal. 
 When the convergence has been achieved, nodal d.o.f. of finite 

elements are updated; 



 

 
 

 A great improvement of results is obtained. 

 
A modified and upgraded version of SEUPT was developed by Icardi and 

Sola (see [11], [12], [13]). Unlike the previous version, a priori technique  is 
performed, with the aim to obtain an accurate C0 lagrangian finite element.  

Firstly, a higher-order theory (e.g. ZZA) is chosen and referred as original 
model OM. The purpose is to obtain a modified C0 counterpart (without any d.o.f. 
derivatives) referred as equivalent model EM. In other words, the aim is to obtain 
a modified expression of displacements of EM, without d.o.f. derivatives, through 
energy balances, that equalize strain energy, work of inertial and external forces 
between the two models. Indeed, the basic assumption of SEUPT is that each 
derivative of d.o.f. in OM can be removed, obtaining a C0 equivalent model, 
because its energy contributions can be incorporated through corrective terms, 
irrespective the order of derivatives. So, EM and OM have the same amount of 
energy and the same d.o.f. and provide the same results. To achieve this, the 
following steps have to be followed: 

 The closed-form expressions of displacements of OM model are 
obtained, through symbolic calculus tool. They are functions of five 
d.o.f. of ZZA and their derivatives; 

 The closed-form expressions of displacements of EM model are 
written. This displacement field depends only from d.o.f.  

 Derivatives of d.o.f. into displacement field of OM are substituted 
with corrective terms, whose expression is unknown. So, this rewritten 
C0 displacement field does not contain any derivative of d.o.f. and it 
constitutes modified displacement field of EM (but corrective terms 
are not yet calculated);  

 Strain energy of the two models is computed. Through an energy 
balance and integrating by parts, it is possible to obtain a closed form 
solution for each corrective term. Thanks to symbolic calculus tool, 
they are calculated once and for all; 

 The same steps can be used also for work of inertial and external 
forces; 

 Because of corrective terms, both models have the same amount of 
energy. As a consequence they provide the same results. 
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Because no derivatives are involved as nodal d.o.f., it is possible to obtain a 
simple C0 lagrangian finite element. Its shape functions are the same as 
commercial elements, but its precision is similar to a layerwise model 
 

A further version of SEUPT (still under development) consists of a novel 
approach that strongly integrates commercial finite elements software in the 
improvement process. Like the previous version of SEUPT, structure is analyzed 
by using commercial software, so, the next steps are followed: 

 Choice of the region to which apply SEUPT; 
 Polynomial spline of displacements calculated by finite elements; 
 Spline functions are normalized and then they are assumed as trial 

functions of a higher-order theory (e.g. ZZA), whose amplitudes are 
unknown and have to be calculated by solving problems; 

 Equivalent external load are applied to the model; 
 Amplitudes are calculated by applying Rayleigh-Ritz method; 
 Corrective elastic moduli are calculated, in order to equal strain 

energies of higher-order theory and of finite elements;  
 Corrective elastic moduli are substituted into commercial finite 

elements software; a new calculation is done, improving results 
because the same energy of a higher-order models is obtained. 

So, this technique is very interesting, especially for industrial applications, 
because there is a greater use of commercial codes during design process as pre- 
and post-processors. Anyway, in order to properly apply SEUPT, modifications 
and improvements to ZZA theory are mandatory.  

 
As previously stated, ZZA demonstrates a great accuracy. However, its 

displacement field is very complex and contains a large number of higher order 
derivatives of d.o.f. Because of summations of layerwise terms of ZZA, very long 
processing time could occur when structures of industrial interest with a very high 
number of layers are analyzed. Indeed, computational cost to compute strain 
energy dramatically increases with increasing the number of constituent layers.  

 
So, the main focus of this thesis is the development of generalized, efficient 

and accurate theories, with features optimized to be an integral part of process of 
SEUPT and as a consequence, valuable tools for engineering design of complex 
components and able to compete with more famous ones in Literature [14]. In 



 

 
 

order to do this, a lot of studies were necessary and they are briefly outlined in the 
next section. 

 
 

Steps of research 

During research activity, the following steps were taken: 

1. Firstly, mixed version of ZZA are created (see Icardi and Urraci [15]), 
because according to Literature, simplified but still accurate theories 
could be obtained by assuming displacements, strains and stresses 
apart, using Hellingher-Ressner (HR) or Hu-Washizu (HW) 
variational theorems. Also mixed theories based on kinematic 
considerations are created (a priori change of slope of displacements is 
enforced), but physically-based ones demonstrate their superiority 
[15]. Only HW mixed higher-order zig-zag adaptive theory (HWZZ), 
that imposes the full set of physical constraints of ZZA and has all 
coefficients redefined for each layer across the thickness obtains 
indistinguishable results from those of ZZA but with a lower 
computational cost (10% less than ZZA).  

2. Even though HWZZ has the same accuracy of ZZA but lower 
processing time, other studies are required, because of cost saving of 
HWZZ is not very high. Indeed, processing time is mainly determined 
by integration of strain energy that strongly depends by complexity of 
fields of the theory and of zig-zag functions. Summations and 
layerwise functions into displacements of ZZA and HWZZ strongly 
increase processing time of integration of upper layers, especially 
when their number is very high. So, with the intended aim to lower 
computational effort of integration of strain energy, new theories were 
developed by assuming different and more simple layerwise functions. 
Particularly, a variant of HWZZ, called HWZZM (Icardi and Urraci  
[16])  is developed by assuming Murakami’s zig-zag functions instead 
of those of HWZZ. Similarly, a modified ZZA theory, called ZZA* 
(Icardi and Urraci [17]) is developed, where first and second order 
power functions are assumed as layerwise functions. Indistinguishable 
results than parent theory are obtained by ZZA* and HWZZM, 
irrespective zig-zag functions chosen, as coefficients are redefined for 
each layer across the thickness and the full set of physical constraints 
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of ZZA is imposed. Moreover, lower processing time than ZZA and 
HWZZ are obtained by these theories. Anyway, further studies are 
required, in order to get a more generalized and simple version of 
ZZA, optimized for SEUPT process. 

3. With the intended aim to create a general version of ZZA, a lot of 
theories were developed and tested. According to Icardi and Urraci 
[18], [19], [20], [21], [22] [23] these theories assume: 

a. different representations of global functions across the 
thickness, such as exponential, trigonometric, power series or a 
combination of them instead of polynomial; 

b. different representations of transverse variation of 
displacements that can be assumed differently from a point to 
point across the thickness and for each displacement.  

Regarding calculation of coefficients, there are several differences 
between ZZA, HWZZ, HWZZM, ZZA* and theories of [18], [19], 
[20], [21], [22] [23].  
Indeed, ZZA, HWZZ, HWZZM, ZZA* are developed adding terms to 
FSDT kinematics, which are subdivided into higher-order and 
continuity terms, according to the role assumed in the imposition of 
physical constraints:  

- Coefficients of the continuity terms (which multiply the zig-zag 
functions) are calculated by imposing the compatibility of out-of-
plane stresses and displacements at the interfaces across the 
thickness.  

- Coefficients of higher-order terms (which multiply the global 
functions that describe the variations of displacements across the 
thickness) are calculated by imposing the fulfillment of local  
equilibrium equations at different points across the thickness and 
of boundary conditions on out-of-plane stresses. 

So, coefficients of terms of ZZA, HWZZ, HWZZM, ZZA* theories 
assume a specific role and, as a consequence, are calculated by 
imposing the fulfillment of specific physical constraints. E.g.,   of 
ZZA is calculated by imposing compatibility of transverse shear stress 
at interfaces, while C  by enforcing the fulfillment of local 
equilibrium equation at inner layers.  
 



 

 
 

Numerical assessments in [18], [19], [20], [21], [22] [23] 
demonstrated that roles of coefficients of theories ZZA, HWZZ, 
HWZZM, ZZA* can be freely modified without losing accuracy. E.g., 

  can be calculated by imposing the fulfillment of local equilibrium 

equation at inner layers, while C  by enforcing compatibility of 
transverse shear stress at interfaces.  
As a consequence, for theories developed in [18], [19], [20], [21], [22] 
[23] it is not necessary to a priori assign a specific role to terms of the 
displacement field. So, the rigid subdivision of coefficients is 
completely abandoned. 
Indeed, coefficients of theories in [18], [19], [20], [21], [22] [23] are 
calculated by solving a unique algebraic system whose equations are 
all the physical conditions expressed in strong point-wise sense. By 
solving the system in matrix form, it is possible to calculate the 
explicit expression of the coefficients, which depend on geometry, on 
mechanical properties of constituent layers, on loading and on d.o.f. 
that must be calculated through Rayleigh-Ritz method. So, for theories 
[18], [19], [20], [21], [22] [23]: 

c. there is no need to assign a specific role to coefficients.  
 
As a result, two generalized version of ZZA are obtained and called 
ZZA-XX and ZZA-XX’, whose functions that represent transverse 
variation of displacements along thickness coordinate can be freely 
assumed by user as input of analysis and coefficients are redefined for 
each layer across the thickness and calculated on a physical basis. 
Expansion order of displacements across the thickness is chosen by 
user, even if at least a cubic/fourth-order should be enforced to impose 
the full set of physical constraints of ZZA, and as a consequence, to 
obtain indistinguishable results than the parent theory.  

4. A more general version of the ZZA, called ZZA_GEN can be 
obtained, omitting linear contribution of FSDT (that is included into 
ZZA and all theories derived from it). Nevertheless, five coefficients 
of the first layer from below are assumed as fixed d.o.f. of this theory, 
which have the same number of unknowns of ZZA and the same 
features than ZZA-XX and ZZA-XX’.   
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Major achievements of research 

All the previous findings (1 to 4) are valid when coefficients are redefined for 
each layer across the thickness and calculated by enforcing the full set of physical 
constraints of ZZA. Under these conditions: 

 zig-zag functions can be changed or omitted  
 functions that describe variation of displacements across the thickness 

can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 
each displacement and from point to point across the thickness 

 there is no need to assign a specific role to coefficients, indeed it can 
be freely switched. 

without any loss of accuracy and indistinguishable results than ZZA are obtained. 
 
On the contrary, if the fulfilment of physical constraint is only partial and/or 

coefficients are not redefined across the thickness, accuracy of theories (which are 
defined lower-order) become strongly dependent on the assumptions. 

ZZA_GEN, of which a new particularization is developed and reported into 
this thesis (ZZA_GEN2*), is the most general version of theories obtained from 
ZZA, which assures the same accuracy of parent theory, but with low 
computational burden, thanks to its assumptions.  

For these reasons they represent the most suitable theories, to which SEUPT 
processes should be applied. The application of different version of SEUPT 
techniques will be briefly outlined in chapter 8. Indeed, the focus of this thesis is 
the development of optimized models for SEUPT process (e.g. ZZA_GEN).  

 
 
 
 
 
 
 
 
 
 



 

 
 

Previous achievements are also contained into these papers, published during 
PhD research: 

 
 

Authors Title Journal Years 
    

U. Icardi and A. Urraci 
Impact Damage Analysis with Stress Continuity Constraints 
Fulfilment at Damaged-Undamaged Regions and at Layer 
Interfaces 

Latin American Journal of Solids 
and Structures 2017 

U. Icardi and A. Urraci 
Novel HW mixed zig-zag theory accounting for transverse normal 
deformability and lower-order counterparts assessed by old and 
new elastostatic benchmarks. 

Aerospace Science and 
Technology 2018 

U. Icardi and A. Urraci 
Free and Forced Vibration of Laminated and Sandwich Plates by 
Zig-Zag Theories Differently Accounting for Transverse Shear and 
Normal Deformability 

Aerospace, MDPI 2018 

A. Urraci and U. Icardi 
New 3-D zig zag theories: elastostatic assessment of strategies 
differently accounting for layerwise effects of laminated and 
sandwich composites 

International Journal of 
Engineering Research and 
Application 

2019 

A. Urraci and U. Icardi Approximate 3-D model for analysis of laminated plates with 
arbitrary lay-ups, loading and boundary conditions 

International Journal of 
Engineering Research & Science 2019 

A. Urraci and U. Icardi Zig-zag theories differently accounting for layerwise effects of 
multilayered composites 

International Journal of 
Engineering Research & Science 2019 

U. Icardi and A. Urraci 
Free Vibration of flexible soft-core sandwiches according to 
layerwise theories differently accounting for the transverse normal 
deformability 

Latin American Journal of Solids 
and Structures 2019 

U. Icardi and A. Urraci 
Elastostatic assessment of several mixed/displacement-bases 
laminated plate theories, differently accounting for trasverse 
normal deformability 

Aerospace Science and 
Technology 2020 

U. Icardi and A. Urraci Considerations about the choice of layerwise and through-thickness 
global functions of 3-D physically-based zig-zag theories Under Review - 

A. Urraci and U. Icardi Physically-based approximate  3-D multilayered structural models 
derived as a generalization and an improvement of zig-zag theories Under Review - 
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Overview of research 

Brief description of theories developed  
It should be noticed that in order to demonstrate previous findings, various 

theories were developed in papers [15] to [23]. Their accuracy was tested studying 
many challenging elastostatic and dynamic problems. A brief summary of theories 
developed in papers [15] to [23] and in this thesis is reported in Tables 1 to 5. 

 
Regarding Tables 1a to 1c that briefly reports the features of theories, models 

in bold are retaken also into this thesis, while light blue highlighted ones are new 
theories developed in this thesis.  

Particularly, Table 1a, reports higher-order zig-zag theories obtained from 
ZZA, whose coefficients are redefined for each layer and calculated by imposing 
the full set of physical constraints. In-plane displacements are piecewise cubic, 
transverse one is piecewise fourth-order.  

Name and reference 
HSDT_34 [19]  ZZA* [17]  
HWZZ [15]  ZZA*_43 [19]  
HWZZ_RDF [19]  ZZA*_43PRM [22]  
HWZZ_RDFX [20]  ZZA*_43X [20]  
HWZZM [17]  ZZA1 [16]  
HWZZM* [17]  ZZA2 [16]  
ZZA_RDF [19]  ZZA3 [16]  
ZZA_RDFX [20]  ZZAS4 [18]  
ZZA-XX [19]  ZZM  
ZZA-XX’ [19]    

 

 Zig-zag omitted  Different role of coefficients and different representation from 
point to point across the thickness 

 Mixed HW  Different representation from point to point across the thickness, 
zig-zag omitted 

 Mixed HW with different role of coefficients  Different expansion order (4th in-plane, 3rd transverse 
displacements) 

 Mixed HW with different role of coefficients and different 
representation from point to point across the thickness  Different expansion order (4th in-plane, 3rd transverse 

displacements), zig-zag omitted, different role of coefficients 

 Mixed HW, Different zig-zag functions  Different expansion order (4th in-plane, 3rd transverse 
displacements), zig-zag omitted 

 Mixed HW, Zig-zag omitted  Different zig-zag functions 
 Different role of coefficients   

Table 1a. Higher-order theories developed in [15] to [23]. In bold theories 
reported in this paper.  



 

 
 

Table 1b reports two generalizations of ZZA developed in this thesis: 

Theory Particularizations 
ZZA_GEN [23]: ZZA_GEN1 and ZZA_GEN2 

New particularization: ZZA_GEN2* 

ZZA_X [18] 

[18]: ZZA_PP34, ZZA_PT34, ZZA_PM34, ZZA_PMTP34, ZZA_PPM34, NOZZG 
[19]: ZZA_X1 to _X4. 
[22]: ZZA_X1* to _X4*. 
[20]: ZZA_X_1 to X_4. 
New particularizations: ZZA_XN1, ZZA_XN2, ZZA_XN3, ZZA_XN4, ZZA_XN5, ZZA_XN6, ZZA_XN7, ZZA_XN8, ZZA_XN9, ZZA_XN10. 

Table 1b. New higher-order theories developed in this thesis.  
 
Table 1c contains features of lower-order zig-zag theories. 

Mixed theories with piecewise cubic in-plane displacements 

HRZZ [15]  MHR± [17]  
HRZZ4 [15]  MHR4± [17]  
HWZZM(♥) [17]  MHWZZA [15]  
MHR [15]  MHWZZA4 [15]  
MHR4 [15]    

 

 Mixed HR with simplified transverse 
displacement.   

Mixed HR with simplified transverse 
displacement, periodic change of slope of 
displacements and coefficients not redefined. 

 
Mixed HW versions of HWZZM with some zig-
zag amplitudes calculated, other imposed.  
Particularizations: ♥=0,A,B,C, B2, C2 

 

Mixed HR with simplified transverse 
displacement, the correct sign of zig-zag 
functions is assumed on a physical basis and 
coefficients not redefined. 

 
Mixed HW with displacements, kinematics with 
periodic change of slope of displacements, strains 
and stresses like HWZZ 

  

 
 

Lower-order of representation 

ZS1 [18]  ZS3 [18]  
ZS1_1 [18]  ZS3_1 [18]  
ZS1_2 [18]  ZS3_2 [18]  
ZS1_3 [18]  PP23 [18]  
ZS1_4 [18]  HSDT_32 [19]  
ZS2 [18]  HSDT_33 [19]  

 

 Piecewise linear in-plane displacements and piecewise parabolic transverse one 
 Piecewise parabolic in-plane displacements. Zig-zag functions omitted. 
 Piecewise cubic in-plane displacements. Zig-zag functions omitted. 

 
 

Piecewise cubic in-plane displacements and piecewise fourth-order transverse one 

ZZ_NA1 [16]  ZZAM_P3P4 [18]  
ZZ_NA2 [16]  ZZAS2 [18]  
ZZAS1 [18]  ZZAS3 [18]  

 

 Not redefined coefficients. 
 Equilibrium enforced in integral form. 
 Some layers assume a linear in-plane displacement and a uniform transverse one. 
 Some layers assume a linear in-plane displacement and a parabolic transverse one. 
 Some layers assume a parabolic in-plane displacement and a cubic transverse one. 

 

Table 1c. Lower-order theories developed in [15] to [23]. Accuracy strongly case 
dependent. In grey theories reported in this paper. 
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Nomenclature 

Symbol  

,(.) i  Derivative 
 ,   In-plane coordinates 

ib  Body forces 
iC  Differentiability class of functions 

ijC  Elastic moduli 

ijE  Young’s modulus 

ij  Strains  

{ }eF  Vector of nodal forces 

ijG  Transverse shear modulus 

 ,   Shear rotations of then normal 
h  Overall thickness 
[ ]eK  Stiffness element matrix  

[ ]eM  Mass matrix  

iN  Shape functions 

ij  Poisson ratios 

ij  Stresses  
  Orientation angle 
{ }eq  Vector of nodal d.o.f.  

i  Trial functions 
S  Surface 
it  Tractions 
0u , 0u , 0w  Middle plane displacements 

u , u  In-plane and transverse displacements 
V  Volume 
  Transverse coordinate 

 
 
 



 

 
 

Acronyms, abbreviations and 
appellations of theories  

Symbol  Explanation 
3-D FEA Mixed solid 3-D elements (see [6]). 
CUF Carrera Unified Formulation. 
DL Discrete-layer theories. 
d.o.f. Degrees of freedom 
DZZ Di Sciuva’s like (or physically-based) zig-zag theories. 
ESL Equivalent Single Layer theories. 
FSDT First-order shear deformation theory (see 1.6). 
HR Hellinger-Ressner variational theorem 

HRZZ HR zig-zag mixed theory with uniform transverse displacement 
(see 2.3 and 2.3.1). 

HRZZ4 HR zig-zag mixed theory with fourth-order polynomial 
transverse displacement (see 2.3 and 2.3.1). 

HSDT Higher-order shear deformation theory (see 1.6). 

HSDT_32 
Refined variant of HSDT with piecewise cubic in-plane 
displacements and piecewise parabolic transverse one (see 3.2.1 
and 3.2.3). 

HSDT_33 
Refined variant of HSDT with piecewise cubic in-plane 
displacements and piecewise cubic transverse one (see 3.2.1 and 
3.2.3). 

HSDT_34 
Refined variant of HSDT with piecewise cubic in-plane 
displacements and piecewise fourth-order polynomial transverse 
one (see 3.2.2 and 3.2.3). 

HT Hierarchical theories 
HW Hu-Washizu variational theorem 

HWZZ HW zig-zag mixed theory obtained from ZZA (see 2.4 and 
2.4.1). 

HWZZ_RDF HWZZ whose coefficients assume different roles than ZA (see 
3.3 and 3.3.1). 

HWZZM HW zig-zag mixed theory obtained from ZZM (see 3.1.1 and 
3.1.3). 

HWZZM* HW zig-zag mixed theory obtained from ZZA* (see 3.1.2 and 
3.1.3). 

MHR HR mixed theory with Murakami’s zig-zag function (see 2.5 
and 2.5.1) 
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Continuation: 
 

Symbol Explanation 

MHR± MHR with slope defined on a physical basis (see 2.6 and 2.6.1). 
 

MHR4 MHR with fourth-order piecewise polynomial transverse 
displacement (see 2.5 and 2.5.1). 

MHR4± MHR4 with slope defined on a physical basis (see 2.6 and 
2.6.1). 

MHWZZA HW mixed theory with displacements from MHR,  strain and 
stresses like HWZZ (see 2.6 and 2.6.1). 

MHWZZA4 
HW mixed theory with in-plane displacements from MHR, 
transverse one from ZZA, strain and stresses like HWZZ (see 
2.6 and 2.6.1). 

MZZ Murakami0s like or kinematic-based zig-zag theories 

NOZZG Generalized theory with features similar to DL and exponential 
representation (see [18]). 

NOZZG’ Generalized theory with features similar to DL (see [18]). 
SEUPT Strain Energy Update Technique 
TPE Total Potential Energy 
ZZ Zig-zag theories. 
ZZA Zig-zag adaptive theory (see 1.6). 
ZZA_GEN Generalized zig-zag theory (see 3.5.1 and 3.5.2). 

ZZA_RDF ZZA whose coefficients assume different roles than ZA (see 3.3 
and 3.3.1). 

ZZA_X Generalized zig-zag theory (see 3.5.3 and 3.5.4). 

ZZA* Modified ZZA theory without zig-zag functions (see 3.1.2 and 
3.1.3). 

ZZA**** Modified ZZA theory with different representation (see 3.4 and 
3.4.1). 

ZZM Modified ZZA theory with Murakami’s zig-zag functions (see 
3.1.1 and 3.1.3). 

 
 
 
 
 
 
 
 
 



 

 
 

 
Outline 

PART I – Introduction 
Chapter 1: this chapter contains general assumptions about modelling of 

composites, as well as an in-depth description of ZZA. Also a brief explanation of 
FSDT, HSDT theories and of the mixed solid element by Icardi and Atzori [6] are 
given. 

 
 
PART II – Zig-zag theories and applications 
Chapter 2: most significant theories are reported in this chapter, which show 

progressive refinement of ZZA. Particularly, mixed theories are developed both in 
physically- and kinematic-based forms. 

 
Chapter 3: most significant theories are reported in this chapter, which are a 

general and efficient version of ZZA. 
 
Chapter 4: in this chapter, elastostatic assessment of theories of chapters 2 and 

3 are reported. Challenging benchmarks are chosen to highlight discrepancies of 
predictions of theories, assuming low length-to-thickness ratios and different 
loading and boundary conditions. A functionally-graded sandwich plate not 
previously published is also analyzed.  

 
Chapter 5: this chapter contains dynamic assessment of theories of chapters 2 

and 3. Similarly to previous chapter, dynamic benchmarks are chosen to highlight 
discrepancies of predictions among theories. Moreover, the capability of theories 
to calculate pumping modes and response to blast pulse impulsive loading are 
explored.  

 
Chapter 6: in this chapter, applications of most advanced and generalized 

theories for impact and material wedge problems (Icardi and Urraci [24]) are 
reported. 

 
PART III – Approximate 3-D solutions 
Chapter 7: in this chapter, approximate 3-D solutions are developed and 

outlined, whose purpose is to be an alternative solution for comparison if exact 
one is not available.  
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PART IV – SEUPT 
Chapter 8: in this chapter, different versions of SEUPT are presented. A novel 

approach is also developed, whose purpose is to improve accuracy of commercial 
finite elements results, without no iterative post-processing techniques.  
  



 

 
 

 

Chapter 1 - Modelling of composite 

1.1 Features of composite and how they are modelled 

Nowadays, composite and sandwich materials are overused in a lot of 
engineering fields, thanks to their excellent specific properties. Because of their 
intrinsically multi-phase construction, they have complex behavior that is strongly 
influenced by  local effects, moreover, local failure and damage propagation are 
different than metals. Furthermore, displacements have to be C0-continuous across 
the thickness (zig-zag effects) in order to guarantee the continuity of out-of-plane 
stresses and of the gradient of transverse normal stress across the thickness, which 
is needed to impose fulfillment of local equilibrium equations. Thus, their 
modelling is very complex and a lot of theories were proposed, in order to 
precisely calculate displacements and stresses and to prevent loss during service 
life. Readers can find detailed description of composite modelling in papers by 
Reddy [25], Reddy and co-workers [26], [27], Vasilive and Lur’e [28], Noor et al. 
[29], Carrera [30], [31], Qatu [32], Qatu et al. [33], Wanji and Zhen [34], 
Khandan et al. [35]. So, theories can be subdivided in different categories, 
depending on their features. 

Equivalent single-layer (ESL) theories do not take into account layerwise 
effects but they are still used because of their simplicity ( [36] and [37] are recent 
examples). Anyway, they require post-processing techniques and a shear 
correction factor (that is strongly case-dependent [38]) in order to get a realistic 
stress field; however, they can’t get accurate results if there are strong layerwise 
effects, for some lay-ups (e.g. for soft-core sandwiches [39]) and certain loading 
conditions.  

Instead, Discrete-Layer (DL) theories (e.g. [40], [41]) always obtain very 
accurate results. However, they require a very high computational cost when 
laminates with a lot of layers are analysed, because of their number of unknowns. 

So, zig-zag (ZZ) theories have been developed adding layerwise and higher-
order contributions to ESL, in order to obtain simple and accurate models that are 
able to analyse also structures of industrial interest with a low computational 
burden. The number of variables is low but predictive ability is very high. They 
can be subdivided into Di Sciuva’s like [42] (DZZ or physically-based) and 
Murakami’s like [43] (MZZ or kinematic-based) zig-zag theories. As regards the 
first ones, zig-zag contributions are the product of linear or non-linear zig-zag 
functions and zig-zag amplitudes that are calculated by imposing the continuity of 
out-of-plane stresses and of gradient of transverse normal stress at layer 
interfaces. As regards MZZ, these theories assume zig-zag functions that force a 
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priori changing of slope of displacements at layer interfaces. Finally, ZZ theories 
can be also distinguished into displacement-based (strains and stresses are 
calculated using displacement-strain and constitutive stress-strain relations) and 
mixed form (strain and stress fields can be assumed separately from 
displacements and are developed through variational theorems). In-depth studies 
about accuracy of DZZ and MZZ theories in mixed and displacement-based forms 
will be reported in the next chapters. Results will confirm previous analyses by 
Gherlone [44] and Groh and Weaver [45] about the superiority of DZZ on MZZ, 
if the same expansion order of  displacements across the thickness is assumed.  

Recently, also hierarchical theories (HT) were proposed, where papers by 
Giunta et al. [46], Carrera et al. [47], Catapano et al. [48] and de Miguel et al. [49] 
are cited as significant examples. The variation of the displacement field across 
the thickness is postulated a priori, by choosing a hierarchical set of locally 
defined polynomials. In this case, layerwise functions are not included into 
displacement field, no physical or kinematic constraints are imposed, differently 
to ZZ. The main advantage of this approach is that no post-processing techniques 
are needed, as long as an appropriate expansion order of displacements across the 
thickness (and as a consequence an appropriate number of unknowns) is imposed  
[48]. Moreover, the accuracy of non-polynomial representations of displacements 
across the thickness was studied by Candiotti et al. [50], where exponential, 
sinusoidal and hyperbolic expansions were assumed using an 
axiomatic/asymptotic method, in order to understand which was the best choice 
for the analysed problems. Sinusoidal expansion was designed as the best option 
among the considered models. 

It should be noticed that [46], [47], [48], [49], [50] are obtained as 
particularizations of Carrera’s unified formulation (CUF) [14]. Indeed, CUF 
allows to express displacements to take arbitrary forms, as product of unknown 
coefficients (that are assumed as d.o.f.) and functions that describe variation of 
displacements along transverse coordinate. So, ESL, MZZ, HT, DL and also some 
existing theories can be obtained as its particularizations, because of its 
generalized formulation. Instead, DZZ cannot be obtained from [14], because of 
enforcement of physical constraints. 

However, as it will be shown in-depth in chapters 4 and 5, recent refined 
physically-based zig-zag theories [18]- [23] can get accurate results, very close to 
exact or 3-D mixed finite elements solutions, also omitting zig-zag functions and 
without requiring post-processing procedure, resulting also more efficient than 
MZZ and HT, requiring only five d.o.f. Furthermore, they can assume an arbitrary 
representation of the displacements (that can be also assumed differently from a 
point to point across the thickness), where power, exponential and trigonometric 
series are tested, obtaining indistinguishable results still comparable to those 
provided by mixed 3-D finite elements, as long as coefficients are redefined 
across the thickness and the full set of physical constraints of ZZA is imposed. 
Generalized theories of [18]- [23] are able to replicate formulations widespread in 
literature [14], resulting very interesting, because of computational burden is still 
similar to ESL ones (only five d.o.f. required). Finally, since a lot of unknowns 



 

 
 

are involved in CUF and its particularizations [14] (see e.g. [46]- [49], [51]), such 
approaches will not be used into this thesis. For these reasons, the main topic of 
this research is the development and assessment of accurate, efficient, physically-
based, generalized zig-zag theories. 

Particularly, zig-zag adaptive 3-D theory (ZZA) developed by Icardi and Sola 
[52] is assumed as starting point of research activity of this thesis. This theory that 
is both displacement-based and physically-based is chosen because it 
demonstrates its superiority in a lot of cases, irrespective loading and boundary 
conditions assumed. Very low computational effort is needed, requiring only five 
degrees of freedom (d.o.f.) to obtain accurate results. It should be also noticed that 
ZZA and all theories derived from it contain a lot of derivatives of d.o.f. into 
displacement field, as a consequence of enforcement of physical constraints, that 
apparently inhibit the chance to get simple finite elements.  

1.2 Assumptions adopted in this study 

To develop theories, the following assumptions are adopted in this PhD thesis. 
The reference frame is a rectangular right-handed Cartesian coordinate reference 
system. It is placed on middle reference plane at lower left edge, so, [0, ]L  , 

[0, ]L   and ,
2 2
h h


 

  
 

, where Lα and Lβ are the length of edges along α and 

β axes respectively. Thickness of k-th layer is indicated as kh ; constituent layers 
are perfectly bonded to each other and the effects of bonding resin are not 
considered. Similarly, sandwich laminates are analysed as multi-layered beams 
and plates with one or more intermediate weak cores, whose cell-scale effects are 
not considered. Differently to many papers in literature, multi-layered faces are 
not modelled as single layers, in order to prevent any loss of accuracy.   

Spatial derivatives are indicated as ,(.) /    , ,(.) /    , ,(.) /    , 

while Newton’s notation is used for time derivatives. Each theory of this thesis 

contains only five functional degrees of freedom ( 0u , 0u , 0w , 0 0 ( , )    

0
,( , )w    and 0 0 ( , )     0

,( , )w   ) that are the middle plane 

displacement components and rotations of the normal.  
 

1.3 Strain-displacement and constitutive relations  

In this section, strain-displacement equations and constitutive stress-strain 
relations assumed in this thesis are reported: 
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/ 0 0
0 / 0
0 0 /
/ 0 /
0 / /
/ / 0

u
u
u

 

 



 



  



  

  













    
   

 
     
       

     
       

       
  
        

         (1.1) 

 

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

C C C C C C
C C C C C

C C C C
C C C

C C
C




 

 








 

 

 







    
    
    
       

     
    
    
    
         

1

( )
([ ] [ ])

ij jiC C
C S



        (1.2) 

 
Strains are assumed to be infinitesimal and regarding elastic moduli ijC , they 

are calculated starting from Young’s and shear moduli and Poisson’s ratios, so, 
[ ']S  matrix is defined (the following relations are valid for orthotropic materials): 

1 12 1 13 1

12 1 2 23 2

13 1 23 2 3

13

23

12

1/ / / 0 0 0
/ 1/ / 0 0 0
/ / 1/ 0 0 0

[ ]
0 0 0 1/ 0 0
0 0 0 0 1/ 0
0 0 0 0 0 1/

E E E
E E E
E E E

S
G

G
G

 

 

 

  
 
 
 
  

  
 
 
 
  

               
       (1.2a) 

 
Considering that each layer has an arbitrary orientation  , the following 

rotation matrix [ ]T  is defined: 
2 2

2 2

2 2

              ( );       ( )

0 0 0 2
0 0 0 2

0 0 1 0 0 0
[ ]

0 0 0 0
0 0 0 0

0 0 0

c s cs
s c cs

T
c s
s c

c
c
s cs s

cos s sin
c

 



 
 

 
 

 
 
 







  

                
                                               (1.2b) 

 
Thus, [ ]C  can be calculated using the following expression: 

1[ ] [ ][ '] [ ]TC T S T  
          

                                                                          (1.2c) 
 



 

 
 

So, using standard techniques, it is possible to obtain their expression, where 
1[ '] [ ']C S  : 

 

   

  

 

 

4 2 2 4
11 11 12 66 22

2 2 4 4
12 11 22 66 12

2 2
13 13 23

2 2 2 2
16 11 22 12 66

4 2 2 4
22 11 12 66 22

2 2
23 13 23

2 2 2 2
26 11 22

' 2 ' 2 ' '

' ' 4 ' '

' '

' ' ' 2 '

' 2 ' 2 ' '

' '

' '

C c C c s C C s C

C c s C C C c s C

C c C s C

C cs c C s C c s C C

C s C c s C C c C

C s C c C

C cs s C c C c s C

   

    

 

      
 

   

 

      

 

 

   

12 66

33 33

36 23 13

2 2
44 44 55

2 2
55 44 55

45 44 55

22 2 2 2
66 11 22 12 66

' 2 '

'
' '

' '

' '
' '

' ' 2 ' '

C

C C
C cs C C

C c C s C

C s C c C
C cs C C

C c s C C C c s C

 
 



 

 

 

 

                                               (1.2d) 

 
(1.1) and (1.2) can be rewritten using tensor notation: 

, ,
1 [ ]
2

u
ij i j j iu u  

                    (1.3) 

ij ijkl klC                    (1.4) 
 
It should be noticed that standard engineering notation is adopted, so,  , 

  and   are expressed as: 

2u u
ij ij                  (1.5) 

 
The inverse relation of (1.4) is: 

1( )ij ijkl kl ijkl klS C                          (1.5a) 
The superscripts u ,   and   are used in (1.3) to (1.5) to indicate the origin of 

slave fields; u
ij  come from kinematics, while ij

  come from constitutive stress-

strains relations, instead  ij
  are obtained from stresses. These distinctions will 

be used in section 1.5 for variational statements. Tensor notations will be used for 
all theories of this thesis, for the sake of brevity.  
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1.4 Solution of governing equations 

Structural problems of this thesis will be solved in closed form by using 
Rayleigh-Ritz method. In-plane variation of d.o.f. is expressed as a truncated 
series expansion of unknown amplitudes iA  and trial functions ( , )i    that a 
priori satisfy the prescribed boundary conditions. 

1
( , )

m
i i

i
A  







   ;                                                                                  (1.6)       

 
Also mechanical boundary conditions could be satisfied, when it is required, 

by using Lagrange multiplier method, as described below. As regards simply-
supported edges, the following boundary conditions are enforced: 

0 (0, ) 0w    ; 0 ( , ) 0w L   ; 0
,(0, ) 0w    ; 0

,( , ) 0w L    
0 ( ,0) 0w   ; 0 ( , ) 0w L  ; 0

,( ,0) 0w   ; 0
,( , ) 0w L                 (1.7) 

 
So, under conditions (1.7) d.o.f. are expressed:  

0

1 1
( , ) cos sin

M N

mn
m n

m nu A
L L

 

 
   

 

  
     

   


 

0

1 1
( , ) sin cos

M N

mn
m n

m nu B
L L

 

 
   

 

  
     

   
  

0

1 1
( , ) sin sin

M N

mn
m n

m nw C
L L 

 
   

 

  
     

   
                                            (1.8) 

0

1 1
( , ) cos sin

M N

mn
m n

m nD
L L

 

 
   

 

  
      

   
  

0

1 1
( , ) sin cos

M N

mn
m n

m nD
L L

 

 
   

 

  
      

   
  

 
As regards clamped edges for a cantilever beam, the following boundary 

conditions are enforced: 
0 (0,0) 0u   ; 0)0,0(0 w ; 0

,(0,0) 0w    ; 0 (0,0) 0     

,(0, ) 0u   ; ,(0, ) 0u   ; ,(0, ) 0u                                                    (1.9) 

 

While also support conditions ( , ) 0u     is enforced for propped-

cantilever beams. In numerical applications, fulfilment of mechanical boundary 
conditions (1.11) is obtained using Lagrange multipliers method. So, the 
following series can be used for d.o.f. for cantilever and propped cantilever 
beams: 



 

 
 

1

iI
i

i
A

L






 
   

 
                                                                                         (1.10) 

 
In order to increase accuracy, also mechanical boundary conditions on shear 

force can be enforced for cantilever and propped cantilever beams, e.g.: 
/2

/2
( , )

h

h
d T 

   


                                                                                  (1.11) 

 
Fulfilment of (1.11) will be used for clamped edges and imposed by using 

Lagrange multiplier method. Alternatively, also a higher-order of expansions of 
displacements across the thickness could be assumed to fulfil mechanical 
boundary conditions, however, this latter technique will not be adopted.  

Once trial functions and order of expansion are chosen, deriving governing 
functional with respect to unknown amplitudes and equating to zero, an algebraic 
system is obtained and it can be solved in a few seconds with low computational 
cost, whose solution are the explicit value of amplitudes. So, displacement, strain 
and stress fields can be obtained.  

For displacement-based theories, Total Potential Energy (TPE) is used as 
functional, while Hellinger-Reissner (HR) or Hu-Washizu (HW) variational 
theorems are used for mixed theories. In the next section, HW and HR variational 
statements will be briefly outlined because they are the basis of mixed theories of 
the next chapter and of hybrid element [6]. 

 

1.5 Mixed HR and HW Variational Statements 

Hereafter, HR and HW variational theorems are briefly overviewed. 
Laminated and sandwich beams and plates are elastic bodies of volume V , whose 
surface S  is split into tS  and uS . Surface tractions it  are prescribed on tS , while 

surface displacements iu are prescribed on uS , so, t uS S S  . The three 
unknown internal fields are displacement, strain and stress fields, which are 
continuous and piecewise differentiable in the whole volume V , because, for the 
sake of simplicity, no discontinuities in material or geometry are allowed. The 
body is in static equilibrium under body forces ib  defined in V , that along with 

iu  and it  are the three known data. The three unknown volume fields 
(displacements, strains, stresses) are linked by field equations, which are strain-
displacement (1.3), constitutive (1.4) and internal equilibrium equations (1.18), 
while boundary conditions (    on   i i uu u S  and    on   i ij j i tt n t S  , where jn  

are components of external unit normal) link volume fields and prescribed surface 
fields it  and iu . Field equations and boundary conditions are governing equations 
of elastostatic.  
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The strong form of linear elastostatic is reported into Strong Form Tonti 
diagram (see Figure 1.1) that represents the field equations of a mathematical 
model in a graphical form.  

 

 

Figure 1.1: Strong Form Tonti diagram 

 
The primary variables in this case are displacements iu , while strains ij  and 

stresses ij  are the first and the second intermediate variables. Boundary 

conditions (PBC and TBC) link prescribed displacements iu  and tractions it  to 

iu  and ij , respectively, while equilibrium equations link ib  to stresses. Strain-

displacement and constitutive relations link three unknown fields. It is possible to 
obtain infinite variational forms from the strong form of Figure 1.1. In order to do 
this, the following steps have to be followed: 

 Choice of mater field(s): one or more internal fields are assumed as 
masters, that are subjected to variations in variational process. All 
other fields are called slaves; they are not subjected to variations and 
are obtained from masters. Depending on the number of master fields, 
variational principle can be defined as single- or multi-field. 

 Weak and strong connections are determined: master fields are linked 
to other fields through:  

o strong connections that are enforced point to point; 
o weak connections, that are enforced only in integral form. 

It should be noticed that slave fields are obtained from master fields 
through strong connections.  

 Weak connections are enforced in average sense through Lagrange 
multipliers. In other words, weak connections are multiplied for 
Lagrange multipliers and integrated.  



 

 
 

 Lagrange multipliers are appropriately substituted and the divergence 
theorem is applied; integration is performed by parts and the first 
variation of functional is obtained. 

 The exact variation of functional respect to master field can be 
calculated. 

In order to get total potential energy, only displacements are assumed as 
master fields, so, strain and stresses are assumed as slave fields. So, strain-
displacement and constitutive equations are strong connections as like as essential 
boundary conditions    on   i i uu u S . On the contrary, natural boundary 
conditions and equilibrium equations are the weak connections. 

, ,

,

1Strong:    ( )  in   ;      in   ;       on   
2

ˆWeak:     0  in   ;      on   

ij i j j i ij ijkl kl i i u

ij j i ij j i t

u u V E V u u S

b V n t S

  

 

   

  

    (1.12a) 

 
Because of ij  and ij  are slave fields and come from master displacements 

they will be indicated as u
ij  and u

ij  in the following steps. In order to obtain 

variational principle, equilibrium equation is integrated and multiplied for 
Lagrange multiplier vector i : 

, ,( )     0u u
ij j i i ij j i i iV V V

b dV dV b dV                                                     (1.12b) 

 
Through divergence theorem, the previous expression can be rewritten, 

considering a symmetric stress tensor, as: 

, , ,
1  ( + )    
2

u u u
ij j i ij i j j i ij j iV V S

dV dV n dS                                            (1.12c) 

 
Assuming Lagrange multiplier vector as the variation of master 

displacements, the following expression can be obtained: 

, , ,
1  ( + )    
2

                            

u u u
ij j i ij i j j i ij j iV V S

u u u
ij ij ij j iV S

u dV u u dV n u dS

dV n u dS

  

  

       

    

  

 

                      (1.12d) 

 
So, substituting (1.12d) into (1.12b), the following expression is obtained: 

       0u u u
ij ij ij j i i iV S V

dV n u dS b u dV                                                     (1.12e) 

 
It should be noticed that the surface integral can be rewritten as: 

         
t u

u u u
ij j i ij j i ij j iS S S

n u dS n u dS n u dS                                                (1.12f) 

 

iu  is null on uS  and the second part of (1.12f) can be rewritten, according to 
(1.12a), so: 
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ˆ     

t t

u
ij j i i iS S

n u dS t u dS                                                                              (1.12g) 

 
Substituting the first variation of total potential energy TPE  is obtained:  

ˆ      0
t

u u
TPE ij ij i i i iV S V

dV t u dS b u dV                                                (1.12h) 

 
From which the exact variation respect master field can be obtained: 

1
ˆ      

2 t

u u
TPE ij ij i i i iV S V

dV t u dS b u dV                                                      (1.12h) 

 
Similarly, HW and HR variational principles can be obtained, assuming 

different master fields. HW variational theorem can be used to create theories 
whose displacements, strains and stresses can be assumed independently from 
each other. So, master fields are iu , ij  and ij . Slave strains that are obtained 

through displacement-strain relations are indicated as u
ij , while slave stresses that 

are obtained from constitutive relations are indicated as e
ij . Similarly to total 

potential energy, strain-displacement, constitutive equations are the strong 
connections. Instead, equilibrium equations, essential and natural boundary 
conditions are the weak links, as well as the compatibility between strains u

ij ij   

and stresses e
ij ij  . So, there are five weak connections: 

,( ) ( ) ( )  

ˆ         + ( )  [( ) ]
t

u

g u e u
HW ij ij ij ij ij ij ij j i iV

V V

ij j i i i i j ijS
S

dV dV b u dV

n t u dS u u n dS

      

 

          

    

  

 
          (1.13a) 

 
The divergence theorem is applied: 

,      n   

                           n    n   
t u

u
ij j i ij ij ij j iV V S

u
ij ij ij j i ij j iV S S

u dV dV u dV

dV u dV u dV

   

   

       

      

  

  
        (1.13b) 

 
Substituting: 

( ) ( )  

ˆ         + ( )  ( )

           n    n   

t
u

t u

g u e
HW ij ij ij ij ij ij i iV

V V

ij j i i i i j ijS
S

u
ij ij ij j i ij j iV S S

dV dV b u dV

n t u dS u u n dS

dV u dV u dV

     

 

   

         

     

      

  

 

  
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(1.13c) can be rewritten in compact form as: 
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Similarly, HR variational theorem is obtained assuming independently 

displacements and stresses (that are also master fields). So, slave strains that are 
obtained from displacements are indicated as u

ij , while those obtained from 

stresses are indicated as ij
 . Strain-displacement relations, constitutive equations 

and boundary conditions on displacements    on   i i uu u S   are the strong 
connections. Equilibrium equations, natural boundary conditions and 
compatibility of strains u

ij ij
   are weak connections: 

,
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u u
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Using divergence theorem, the following expression is obtained: 
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It should be noticed that  n   0
u

ij j iS
u dV    because of essential boundary 

condition. Substituting (1.13f) into (1.13e) and rearranging, the first variation of 
Hellinger-Reissner variational theorem is obtained: 
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It should be noticed that tractions and body forces are imposed null in 
numerical applications. A lot of mixed theories based on HR or HW variational 
statements will be developed and their features, assumption, simplifying 
hypothesis and accuracy will be discussed in the next chapter.  

 

1.6 Parent Zig-zag Adaptive Theory (ZZA) 

ZZA theory is discussed because it is the fundamental theory and basis of 
research activity, from which all the theories of the following chapters have been 
generalized. As previously stated, this theory is both displacement-based and 
physically-based. So, similarly to other DZZ theories, the following physical 
constraints have to be imposed: compatibility of out-of-plane stresses and 
displacements, fulfilment of boundary conditions of stresses and local equilibrium 
equations at different points across the thickness.  

 
Description of displacement field 
According to [4], the displacement field of zig-zag adaptive theory (ZZA) in 

compact form can be subdivided into three contributions: 
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_ _ _
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                          (1.14a)   

 
,   are in-plane coordinates, while   is the through-the-thickness one. u  

and u  are in-plane and transverse displacements, respectively. 0
_ FSDTU  and 

0
_ FSDTU  contributions are the same of FSDT [53] and contain the only five fixed 

d.o.f. of this theory, which are middle plane displacements ( 0u , 0w ) and 

rotations ( 0
 ). So, accordingly to [53], 0

_ FSDTU  and 0
_ FSDTU  contain a linear and 

a uniform variation of in-plane and transverse displacements across the thickness, 
respectively: 
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                                             (1.14b)   

 
As like as any zig-zag theory, ZZA is developed adding higher-order and zig-

zag contributions to FSDT kinematics. Higher-order contributions are indicated as 
0

_ HTU  and 0
_ HTU  in (1.14a), whose expression is: 
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                                (1.14c)   

 



 

 
 

Higher-order coefficients are indicated as iC , iD , ib , ic , id , ie . They are 
multiplied for global functions, which are used to describe displacements across 
the thickness. For ZZA and most of its variants they are assumed as truncated 
power series expansions (cubic for in-plane displacements and quartic for 
transverse one). Differently to the most zig-zag theories in literature, these terms 
are recalculated for each layer across the thickness, through the fulfilment of out-
of-plane stresses boundary conditions on the top and bottom layers and 
equilibrium equations at different points across the thickness. So, displacements 
can adapt themself to strong variations of mechanical properties across the 
thickness. 

Zig-zag contributions are indicated as 0
_ ZZU  and 0

_ ZZU  in (1.14a) and their 

expression is: 
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                 (1.14d)   

 
Layerwise coefficients k

 , k , k , k
uC , and kC  are calculated by 

imposing the continuity of transverse shear and normal stresses, of gradient of 
transverse normal stress and of displacements at interfaces. k  is the index of 
interfaces, where 1in i  .  

Coefficients  k
  and k  are multiplied for Di Sciuva’s zig-zag function [42] 

(indicated as 1( )Z  ) and allow fulfilment of transverse shear and normal stresses 

continuity, while k  are multiplied for Icardi’s parabolic zig-zag function [54] 
(indicated as 2 ( )Z  ) and are calculated through the compatibility of gradient of 
transverse normal stress at the interfaces. Explicit expression of zig-zag functions 
is: 
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                                                                                        (1.14e)   

 
( )kH   is Heaviside’s function, that is null for k  : 
1    if     

( )
0    if     

k
k

k

H
 


 


 



                                                                                       (1.14f)   

 

k  is the thickness coordinate of k-th interface. Coefficients k
uC , and kC  are 

calculated by imposing the continuity of in-plane and transverse displacements 
across the thickness. Also continuity coefficients are redefined for each layer 
across the thickness; similarly to classical zig-zag theories, they are not included 
to describe kinematic of the bottom layer because no interfaces are still met.  
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So, the displacement field of ZZA is: 
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Calculation of coefficients 
Higher order coefficients iC , iD , ib , ic , id , ie  are calculated by enforcing 

the boundary conditions of out-of-plane stresses and of gradient of transverse 
normal stress at upper and lower faces (equations (1.15) to (1.17)). 
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                                                                                           (1.17)  

0p   is the distributed loading on the upper face, while 0p   is the loading on 
the lower one. Thanks to symbolic calculus, in numerical applications, the exact 
in-plane expression of loading is used for computation of work of external forces, 
so, no approximations or series expansions are needed.   

Since, the number of higher order terms is greater than number of equations 
(1.15) to (1.17), remaining terms are calculated by imposing the fulfilment of 
local equilibrium equations at selected points across the thickness: 

, ,

, ,

b
b
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              (1.18) 

 
It should be noticed that terms ib , ic  can be omitted in all layers except the 

first one from below without loss of accuracy, obtaining a little time saving. 
Assuming this latter choice, only three equilibrium equations (one point) are 
needed for the upper and lower bounding faces, while six ones (two points) are 
used for the inner layers.  

Continuity coefficients k
 , k , k  are determined by imposing: 

( ) ( )( ) ( )k k
      ; ( ) ( )( ) ( )k k

      ; ( ) ( )
, ,( ) ( )k k

             (1.19)          

 
respectively, while k

uC , and kC  are calculated by imposing:  
( ) ( )( ) ( )k ku u    ; ( ) ( )( ) ( )k ku u                                                         (1.20)       



 

 
 

 
It is also possible to split a physical layer into two or more computational 

ones, with the intended aim to increase accuracy of theory, for cases with strong 
layerwise effects, having more equilibrium points across the thickness. This latter 
strategy will be adopted to analyse functionally-graded sandwiches in numerical 
applications. For other cases, no computational layers are used, because high 
accuracy of results is already obtained without any split of physical ones.  

It should be noticed that higher order and compatibility coefficients are 
obtained in a closed form using symbolic calculus tool; all terms are functions of 
material properties, geometry and of d.o.f. and their derivatives. Because of a lot 
of derivatives of d.o.f. are involved into displacement field (and as a consequence 
into strain energy) due to higher-order and continuity terms, finite elements with a 
high number of nodal d.o.f. can be obtained. However, they cannot be used to 
analyze very complex structures. Despite this, it is possible to obtain a C° 
formulation of the ZZA theory using SEUPT technique (see [55] and chapter 8), 
in order to get simple Lagrangian accurate finite elements starting from this 
theory. 

ZZA requires a lot of time for its building and it’s unknown which 

contributions are important and which are negligible depending on the type of 
problem. Expression of its displacements is very complex, so, in the next chapter 
all steps made, to obtain a simpler and still accurate generalization ZZA, are 
reported.  

 
ZZA 

 Displacement-based, pshysically-based zig-zag theory; 
 Piecewise cubic in-plane displacements (3)u  (redefined 

coefficients); 
 Piecewise fourth-order transverse displacement (4)u  (redefined 

coefficients); 
 Terms are calculated by imposing the full set of physical 

constraints. 

 
PROS CONS 

Good processing time, 
comparable with those of ESL; Its expression is very complex.  

High accuracy, still comparable 
with those of 3-D FEA and exact 
solutions. 

A simplification and a 
generalization of this theory 
could be developed. 

 

Table 1.1: Characteristic features of ZZA theory. 
 

1.7 Quick accuracy assessment of ZZA 

Accuracy of ZZA has been thoroughly assessed in [11]- [13]. Only some 
significant results are here reported, that prove its accuracy and efficiency, which 
justifies the development of the present theories based on it. Further examples will 
be given in the following chapters, as well as in [20]- [23].  Figures also contain 
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results provided by mixed FEA3-D elements, which will be used as reference 
solution if exact ones is not available, whose features briefly explained in the next 
section. 

Lay-up, load and boundary conditions, material properties, trial functions and 
expansion order that will be adopted are reported in Tables 1.2 to 1.5, while 
results for this two cases are reported in Tables 1.6.1-1.6.2 and Figures 1.1 and 
1.2. 

 

Case Lay-up Layer thickness Material BCS Load Lx/h Ref 

1.1 [0/90/0] [(h/3)3] [r2] SS Sinusoidal 4 [15] 

1.2 [ 0 ]11 
[0.01h/0.025h 
/0.015h/0.02h 
/0.03h/0.4h]S 

[s1/s2/s3 
/s1/s3/s4]S 

SS Sinusoidal 4 [13] 

Table 1.2: Data of cases 
 

Case Expansion 
order 

Mesh 
(xa · yb · zh)(+) Trial functions 

1.1 [15] 
1.2 [13] 

1 
1 

16·2·60 
16·2·60 

0

1
( , ) cos ;

M

m
m

mu A
L




 



 
  

 
 0

1
( , ) sin ;  

M

m
m

mw C
L


 



 
  

 


 

0

1
( , ) cos

M

x m
m

mD
L


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  
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

 
(+)A uniform mesh is used; xa and yb represent the number of elements in α and β directions, respectively, zh is the number 
of elements across the thickness; 
 
(-)Number of d.o.f. used; under brackets the number of unknowns used in reference paper by analytical models.

 Table 1.3: Expansion order, FEA-3D meshing and trial functions 
 

Material name r s1 s2 s3 s4 

E1[GPa] 25E2 1 33 25 0.05 

E2[GPa] E2 1 1 1 0.05 

E3 [GPa] E2 1 1 1 0.05 

G12 [GPa] 0.5E2 0.2 0.8 0.5 0.0217 

G13 [GPa] 0.5E2 0.2 0.8 0.5 0.0217 

G23 [GPa] 0.2E2 0.2 0.8 0.5 0.0217 

σ12 0.25 0.25 0.25 0.25 0.15 

σ13 0.25 0.25 0.25 0.25 0.15 

σ23 0.25 0.25 0.25 0.25 0.15 

Table 1.4. Mechanical properties. 
 
 

Load BCS Type Sketch  Formula  

Sinusoidal SS Beam 

 

0 0( ) sin( / )  if   0up p L L     

 



 

 
 

Table 1.5: Loading and boundary conditions  
 

It should be noticed that case 1.1  is a standard case considered by almost all 
researchers, while case 1.2 is challenging owing to strong asymmetry of material 
properties across the thickness. Hereafter, displacement fields of  First-Order 
Shear Deformation Theory (FSDT) [53] and of Higher-order Shear Deformation 
Theory (HSDT) [56] are reported as comparison results. FSDT assumes the 
following displacement field truncated at the first order [53]: 

 
0 0 0

,( , , ) ( , ) ( ( , ) ( , ) )u u w                                                    (1.21) 
0( , , ) ( , )u w              

 
It should be noticed that transverse normal strain is null across the thickness, 

while transverse shear strain is constant across ς. Thus, transformed reduced 
stiffness have to be used and transverse shear stresses are not continuous across 
the thickness. Moreover, there is not the fulfilment of boundaries conditions on 
stresses. A shear correction factor and post-processing techniques are mandatory, 
in order to get a realistic representation of ij ; anyway this theory get very bad 

results if layerwise effects are relevant and it is not precise also for some lay-ups 
(e.g. for soft core sandwich). So, in order to improve accuracy, HSDT was 
developed [56]: 

 
0 0 0 2 3

,( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( , )u u w C D                           (1.22) 
0( , , ) ( , )u w                

 
Terms C  and D  are calculated by imposing the fulfilment of (1.15). 

Similarly to FSDT, transverse normal strain is null across the thickness, so, 
transformed reduced stiffness have to be still used. Because transverse shear stress 
is not continuous across the thickness, results have to be post-processed in order 
to get a realistic representation of out-of-plane stresses. Because of their too 
simple kinematics this theory cannot obtain good results if layerwise effects 
relevant.  

 

1.7.1 Results for cases 1.1 and 1.2 by ZZA, FSDT and HSDT 

Firstly, a [0/90/0] laminated beam (case 1.1), under a sinusoidal loading is 
analyzed. All layers are made of the same material and have the same thickness. A 
length to thickness ratio of 4 is considered. Results (reported in Figure 1.2 and 
Tables 1.6.1 in tabular form, for the sake of completeness) are compared to exact 
solution, provided by Pagano [57], except that in-plane stress (not provided in 
[57]), for which 3-D FEA is used as reference solution. Transverse shear and 
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transverse normal stresses of HSDT and FSDT are obtained by post-processing 
through integration of local equilibrium equations and a shear correction factor of 
5/6 is assumed for FSDT. The following normalizations are used for case 1.1: 

   
3

2
2

0 4 0 0 0 0

100 , , ,0,0, 2 2 2
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(1.23a) 

 
 

 

 



 

 
 

 

 

 

Figure 1.2: Normalized displacements and stresses, case 1.1 
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It should be noticed that 3-D FEA obtain results that are in a very good 
agreement with exact solution and also ZZA calculate stresses and displacements 
very close to reference ones. Instead, FSDT and HSDT theories are not able to 
reproduce the correct trend of displacements and stresses across the thickness, 
even if they are post-processed. Transverse displacements provided by these 
theories are not reported in Figure 1.2 because errors are very high and the curves 
would not fit within the scales.  

 

Case 1.1 Position Exact [15] 3-D FEA ZZA FSDT HSDT 

 up 0.9352 0.9372 0.9362 0.5123 0.8639 

uα down -0.9323 -0.9378 -0.9371 -0.5123 -0.8639 

 max 0.9352 0.9372 0.9362 0.5123 0.8639 

 min -0.9323 -0.9378 -0.9371 -0.5123 -0.8639 

 up - 3.0224 3.0220 2.4094 2.6985 

uς down - 2.8390 2.8386 2.4094 2.6985 

 max - 3.0224 3.0220 2.4094 2.6985 

 min - 2.8390 2.8386 2.4094 2.6985 

 up 18.7664 18.9669 18.8549 10.0854 17.0063 

σαα down -18.6899 -18.4311 -18.4292 -10.0854 -17.0063 

 max 18.7664 18.9669 18.8549 10.0854 17.0063 

 min -18.6899 -18.4311 -18.4292 -10.0854 -17.0063 

σας max 1.5918 1.5919 1.5902 1.7602 1.5566 

 min 0 0 0 0 0 

σςς up 1.0000 1.0000 1.0000 1.0000 1.0000 

 max 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 1.6.1: Results in tabular form for case 1.1  

 
As regards case 1.2, it is a simply-supported eleven layers sandwich beam 

under a sinusoidal loading (Lα/h=4). The lower face is damaged reducing elastic 
modulus E3 by a factor of 100. Each face is a five layer laminate made of different 
materials (see Tables 1.1 to 1.6). Material s1 has weak properties in both tension, 
compression and shear, s2 is very stiff, s3 is compliant in shear and stiff in 
compression and tension, while the core material s4 is weak. This case was 
previously studied by Icardi [54] and it is very challenging because transverse 
shear stresses of faces assume an opposite sign. The following normalizations are 
assumed for this case: 
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Case 1.2 Position Exact [13] 3-D FEA ZZA FSDT HSDT 

 up -0.0153 -0.0153 -0.0153 -0.0012 0.0029 

uα down -0.0026 -0.0026 -0.0026 0.0012 -0.0029 

 max 0.0424 0.0424 0.0426 0.0012 0.0030 

 min -0.0153 -0.0153 -0.0152 -0.0012 -0.0030 

 up 0.3861 0.3861 0.3864 0.0202 0.0563 

uς down -0.0875 -0.0875 -0.0872 0.0202 0.0563 

 max 0.3861 0.3861 0.3864 0.0202 0.0563 

 min -0.0876 -0.0876 -0.0878 0.0202 0.0563 

 up - 0.8734 0.8732 0.0668 0.1547 

σαα down - 0.1448 0.1453 -0.0668 -0.1547 

 max - 21.4108 21.4011 2.0285 4.0974 

 min - -16.4857 -16.4760 -2.0285 -4.0974 

σας max 5.7220 5.7005 5.7337 1.4122 1.3981 

 min -0.6498 -0.6490 -0.6512 0 0 

σςς up 1.0000 1.0000 1.0000 1.0000 1.0000 

 max 1.0000 1.0000 1.0000 1.0000 1.0000 

 min -0.0252 -0.0252 -0.0252 0 0 

Table 1.6.2: Results in tabular form for case 1.2 

 
Again, results by ZZA and 3-D FEA are always in a very good agreement 

with exact solution provided by [54]. Instead, FSDT (shear correction factor of 
5/6 is used) and HSDT theories calculate inaccurate displacements and stresses 
and they are not able to reproduce the distribution of quantities across the 
thickness, even if post-processing is used.  
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Figure 1.3: Normalized displacements and stresses, case 1.2 

These results demonstrate the accuracy of ZZA and of 3-D FEA; this latter 
theory will be used as reference solution, if exact one is not available. Moreover it 
is demonstrated that simplified FSDT and HSDT theories cannot achieve the same 
accuracy of higher-order adaptive theories, even if they are post-processed and 
they are completely inadequate if there are strong layerwise effects, as for case 
1.2. Table 1.6.3 reports processing time of theories of this section. It should be 
noticed that ZZA has a processing time that is 2 to 3 times larger than ESL 
theories, but its accuracy is much higher. E.g., maximum percentage error for case 
1.2 is about 0.6% for ZZA (see Table 1.6.2) while FSDT and HSDT provide more 
than 70% of percentage error for all displacements and stresses.  

 
Theory Case 1.1 Case 1.2 
ZZA 4.3157 17.7618 
FSDT 1.9507 6.6445 
HSDT 2.2694 9.3617 

Table 1.6.3: Processing time [s] 

 
1.8 3-D FEA reference solution used in numerical 
assessments 

Exact solutions are used as reference solutions, whenever available. 
Otherwise, 3-D finite element solutions are used. Such solution have been 
obtained employing the mixed 3D continuum element by Icardi and Atzori [6], 
whose features are briefly reminded.  

Nodal d.o.f. of this eight-nodes mixed solid element are indicated as  eq  and 

are displacements and out-of-plane stresses. Also the electric field along ς and the 
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temperature rise are incorporated in nodal d.o.f. vector, with the intended aim to 
allow analysis of piezoactuated composites including thermal effects. So, the 
expression of  eq  is: 

   , , , ,, , , , , , ,
T

e i i i xz i yz i zz i i z iq u v w T E  

         
                (1.24)

  
 

 
where the superscript T indicate a transposed vector. Anyway, ,,i z iT E  will be 

omitted in applications of this thesis. The following serendipity, linear 
interpolation functions for every d.o.f. are used: 
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All nodal d.o.f. can be rearranged: 
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So, the eight independent components can be expressed as: 
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                                            (1.27)   

 
The topological transformation from physical  1 2 3, ,x x x  to natural volume 

 1 2 3, ,    is used, in order to simplify and harmonize calculus of integrals of 

strain energy, so: 

 e
ix x N                                                                                                        (1.28)   

 
 



 

 
 

As regards derivative, the following relations apply: 

   

1 1

1

2 2

3 3

;J J

  

   

  



        
              
         

        
          

         
       

        

                                       (1.29)   

 

where  J  is Jacobian matrix and  
1J   its inverse 
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So, the following expressions of strains, obtained by strain-displacement 

relations are obtained: 
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Considering the effect of thermal expansion on strains: 
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and piezoelectric constitutive equations: 
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the following expressions of in-plane stresses can be obtained: 
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where  *S  is the submatrix of stiffness matrix (obtained removing the last three 

rows),  *B  is the submatrix of  B  (obtained removing the last two columns) and 

 P  is:   
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(1.43)   
 
where ij  and 3ie  are thermal expansion and piezoelectric stress coefficients.  So, 
vector of stresses can be expressed as: 
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Strains and stresses can be substituted into HR functional (1.13g), whose 

expression (1.36) is obtained considering only mechanical d.o.f.: 
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Deriving the expression of   for each  eq , the element stiffness matrix 

 eK  can be obtained; using standard techniques it is also possible to obtain 

element mass matrix  eM  and vector of nodal forces  eF . 

 
 
 

  



 

 
 

Chapter 2 – Mixed theories derived 
from ZZA 

The main goal of this thesis is development of general and efficient version of 
ZZA. In this chapter, only mixed variants of the parent theory are presented, while 
theories with a growing degree of generalization are developed and discussed in 
the next chapter. The most advanced theories have similar features to HT, 
axiomatic/asymptotic approaches and CUF particularizations, but because of their 
low computational costs, that are always comparable to ESL ones and require 
very low number of unknowns, they can be used as alternatives than more 
expensive formulations widespread in literature [14], irrespective lay-up, loading 
and boundary conditions considered.  

Features of currently available zigzag theories are overviewed in the next 
section, since their characteristics are retaken in the subsequent theories of this 
study. 

 

2.1 Discussion of layerwise functions  

As stated in the previous chapter, nowadays composite and sandwich 
structures are widespread in a lot of fields of engineering and their use could 
further increase in the next years. However, their modelling is very challenging 
and a lot of structural models to describe their behaviour have been proposing 
during the years. ESL are not used in this thesis because they can’t  get accurate 

results if strong layerwise effects are present, for some lay-ups (e.g. for soft-core 
sandwiches [39]) and certain loading and boundary condition. Even though they 
require post-processing techniques and a shear correction factor (that is strong 
case-dependent [38]), they often are not able to get also global quantities. Instead, 
DL are very accurate but the number of unknowns depends on the number of 
layers, so, they cannot be used to analyse structures of industrial interest. 

Indeed, as deeply explained in section 1.1, the main focus of this thesis are 
zig-zag theories, which guarantee the right balance between accuracy and cost 
saving. They are developed by adding layerwise and higher-order contributions to 
ESL, as displacement-based or mixed theories (if displacement, strain and stress 
fields are assumed separately one to another or not) and as kinematic-
based/Murakami’s like or physically-based/Di Sciuva’s like (depending on zig-
zag functions that are incorporated and conditions that are imposed). 

As regard Di Sciuva’s like zig-zag theories, zig-zag contributions are 
calculated by enforcing the continuity of out-of-plane stresses and of the gradient 
of transverse normal stress across the thickness (see section 1.6). Some 
remarkable examples of these kind of theories can be found in papers by Li and 
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Liu [58], by Zhen and Wanji [59] (global-local theories), by Kim and Cho [60], 
by Tessler et al. [61] (that developed RZT theory), by Iurlaro et al. [62] (RZT with 
cubic transverse displacement), by Icardi [54] (physically-based theory with a 
second-order zig-zag function), by Icardi and Sola [4] (ZZA theory), by Shariyat 
[63] and by Icardi and Urraci [15] to [23] (various mixed and displacement-based 
physically-based theories).  

Instead, as regard Murakami’s like zig-zag theories, a periodic change of 
slope of displacements across the thickness is imposed; usually, these theories are 
developed in mixed form, assuming stresses apart through Hellinger-Reissner 
variational theorem. Some important examples of these theories can be found in 
papers by Zhen and Wanji [64] (mixed kinematic-based HW theory), Brischetto et 
al. [51], Demasi [65], Rodrigues et al. [66], Carrera and coworkers [30], [67] and 
[68] (these latter theories are particularization of Carrera’s Unified Formulation 
(CUF) [14]).  

In recent papers, Gherlone [44] and Groh and Weaver [45] demonstrate that 
physically-based zig-zag theories are more accurate than Murakami’s like ones 

(with the same degree of representation) but Zhen and Wanji [64] affirm the 
opposite. Anyway, results by [15] to [23] confirm findings by [44] and [45] for a 
great number of challenging benchmarks. A lot of results that will show the 
behaviour of various models, both displacements-based and mixed ones, both 
physically- and kinematic-based ones, will be reported in chapters 4 and 5 for 
static and dynamic relevant cases.  

So, according to [44] and [45], physically-based zig-zag theories are chosen 
as the main topic of this work. Particularly, the starting point of research is ZZA 
by Icardi and Sola [4], because it demonstrates its superiority and accuracy for a 
lot of challenging cases, requiring only 5 d.o.f. (see section 1.6). An accurate 
description of transverse displacement and the imposition of continuity of gradient 
of transverse normal stress are characteristic features of ZZA (and of theories 
obtained from it in [15] to [23]). It should be noticed that an accurate modelling of 
transverse deformation is mandatory, in order to get accurate results under 
localized loading (Carrera and Ciuffreda [69]), for damaged sandwiches (Icardi 
[54]), for high frequency vibrations and transient response analyses (Rekatsinas et 
al. [70]), to calculate pumping modes (Icardi and Urraci [17]) and to get accurate 
stresses for clamped and propped-cantilever sandwich beam under uniform static 
loading (Mattei and Bardella [71]). Regarding cantilever and propped-cantilever 
beams, it should be noticed that their modelling is challenging, because, according 
to Carrera et al. [72] and Tessler et al. [61] transverse shear stresses is null at 
clamped edges for traditional plate models. Anyway, recent refined zig-zag 
theories ( [4], [15] to [23], [61], [72]) are able to overcome this issue. 

As explained in section 1.1, CUF permits user to choice the order of 
expansion of displacements (and consequently the number of unknowns that 
depend directly from it) as an input, obtaining arbitrary mixed kinematic based 
zig-zag, equivalent single layer, layerwise and hierarchical structural models as its 
particularizations (see [46]- [49]). Regarding hierarchical theories, the variation of 
displacement field across the thickness is postulated a priori, by choosing a 



 

 
 

hierarchical set of locally defined polynomials, without layerwise functions and 
no physical or kinematic constraints are imposed. No post-processing techniques 
are needed, as long as an appropriate expansion order of displacements across the 
thickness (so, an appropriate number of unknowns) is chosen.  

Regarding the representation of displacements across the thickness, Taylor’s 

series, trigonometric and exponential functions, a combination of both and radial 
basis functions were used by many researchers; a lot of important findings can be 
found in papers [62], [73], [74], [75], [76], [77], [78] and [79]. Recently, Candiotti 
et al. [50] investigated non polynomial through-thickness representations 
(exponential, sinusoidal and hyperbolic expansions) of variables using an 
axiomatic/asymptotic method combined with CUF (thanks to arbitrariness 
regarding choice of displacements), concluding that a sinusoidal expansion of 
displacements across the thickness was the best option among the considered 
models. 

However, it should be noticed that recent refined higher-order physically-
based zig-zag theories [18]- [23], which are obtained by redefining coefficients 
across the thickness and calculating them by imposing the full set of physical 
constraints of ZZA (compatibility of out-of-plane stresses, gradient of transverse 
normal stress and displacements across the thickness, boundary conditions on 
stresses, fulfilment of local equilibrium equations across the thickness, see section 
1.6), can get accurate results, indistinguishable from exact ones, irrespective zig-
zag functions chosen, which can be also omitted without any loss of accuracy. 
Moreover, for these higher-order theories different functions than power series 
(e.g. trigonometric or exponential expansions) can be chosen differently for each 
displacements and from point to point across the thickness. Differently to [50], 
indistinguishable results are obtained, as long as coefficients are redefined and 
calculated on a physical basis. On the contrary, if coefficients are not redefined 
across the thickness or only a few of physical constraints of ZZA are imposed, 
results by Candiotti et al. [50] are confirmed and they strongly depend from 
representation chosen.  

So, theories [18]- [23] have a great degree of generalizations (similar to those 
provided by hierarchical and axiomatic/asymptotic theories) and are much more 
efficient than HT, MZZ or particularizations of  [14], because only five fixed 
d.o.f. are needed. As a consequence, the most general theory, ZZA_GEN [23], 
here retaken in section 3.5.3 (where its new particularizations are proposed and 
assessed), can compete with formulations widespread in literature, such as [14], 
resulting very interesting by virtue of its very low computational burden.  

The progressive refinement of ZZA is reported in chapters 2 and 3, as well as 
theories that will be used for calculations for elastostatic (chapter 4), dynamic 
(chapter 5) and impact damage applications (chapter 6). In this chapter, mixed 
formulations obtained from ZZA are discussed, while in the next one, many 
variants of the parent theory are reported or developed. Each of theories of 
chapters 2 and 3 have peculiar features, which are useful to demonstrate when the 
choices of zig-zag or representation functions are critical or otherwise when they 
can be changed. Symbolic calculus is used to develop and assess all theories of 
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this thesis. For this reason, the symbolic procedure that is general and valid for all 
physically-based zig-zag theories, is reported in Appendix 3. 

In order to preserve accuracy and efficiency of ZZA, while keeping only 
essential contributions within displacement strain and stress fields, the first group 
of theories that was developed concerns mixed HR and HW theories. 

2.2 Multilayered mixed theories so far developed 

As shown in the previous section, ZZA has an accuracy degree comparable 
with those of DL, anyway, its displacement fields is very complex and it requires 
a lot of time for its building, despite its time calculation is similar to FSDT. So, 
the intended aim is to develop a refined and (possibly) generalized version of 
ZZA, which must keep the same accuracy of the parent theory but a simpler 
expression of displacement field. In order to do this, a lot studies are required with 
the purpose to understand which contributions of ZZA are important and which 
can be eventually omitted.  

So far, a lot of mixed theories have been proposed in Literature, usually 
developed through HR variational theorem, whose stresses are assumed apart 
from displacements of a simplified kinematics. A remarkable example is the 
mixed EFSDTM theory, developed by Kim and Cho [60] by using HR variational 
theorem, whose kinematics is the same of FSDT while stresses are obtained from 
a higher-order zig-zag theory (EHOPT). Another interesting HR mixed 
physically-based theory is RZT, developed by Tessler et al. [61] and refined by 
Iurlaro et al. [62]. Cubic piecewise in-plane displacements and a uniform 
transverse one across the thickness are assumed, while stresses are obtained by 
integrating local equilibrium equations.  

EDZN theory by Brischetto et al. [51] is cited as a notable example of mixed 
HR kinematic-based theory. This theory is obtained as a particularization of CUF 
[14] whose displacements include Murakami’s zig-zag function and are expanded 
to N-order across the thickness (N is chosen by user). Differently to EFSDTM and 
RZT, transverse displacement is not assumed uniform across the thickness, so, 
EDZN is able to obtain stresses that are in well agreement with exact solutions 
also for thick sandwich with quite-strong layerwise effects. Anyway, an expansion 
order across the thickness of N=7 (thus 27 d.o.f.) is required to obtain better 
results, but despite this, displacements are quite wrong. 

As an example of mixed HW theory, GHZTM theory developed by Zhen and 
Wanji [64] is mentioned. This theory is developed in kinematic-based form, 
whose displacements (transverse displacement is uniform across the thickness), 
strains and stresses are assumed apart each other, with the intended aim to create 
an efficient and accurate C0 finite element (it should be noticed that elements with 
these features were previously developed in [6] and [55] using different 
techniques). An interesting findings of [64] affirms that physically-based theories 
are less accurate than kinematic-based ones, while results of previous papers by 
Gherlone [44] and Groh and Weaver [45] affirm the opposite.  



 

 
 

With the purpose to decrease computational burden of ZZA and also to settle 
this dispute, different theories both in physically- and kinematic-based forms are 
developed, through the use of HR and HW variational theorems. Their features 
are similar to those of theories previously cited (and of other remarkable theories 
here not cited for sake of brevity). Moreover, another purpose of these theories is 
to better understand if an accurate description of transverse displacement and 
deformability is always required to obtain accurate results, as affirmed by Mattei 
and Bardella [71] and by [17]. It should be noticed that all theories developed by 
author in this thesis or in [15], [18]- [22], [24] assume the same number of d.o.f. 
and the same in-plane expansion order of trial functions, in order to test their 
performance under the same conditions. Figure 2.1 reports genealogy of models 
of this chapter. 

 

 

Figure 2.1: Genealogy of theories of section 2.2 

 

2.3 Mixed HR zig-zag theories of this study 

For each theory of chapters 2 and 3, a qualitative description is reported, 
where tables summarize their main characteristics. Their specifics, along with 
their displacement, strain and stress fields are reported in specific subsections.  

Firstly, HRZZ theory, retaken from [15], is cited. It is a mixed HR physically-
based model, whose coefficients of in-plane displacements are redefined layer-by-
layer across the thickness, while transverse displacement is uniform across the 
thickness, similarly to [60], [62], [64]. Transverse normal stress is the same of 
ZZA, while transverse shear stresses are assumed by integrating local equilibrium 
equations. Nevertheless this theory usually obtains good results, inaccurate 
description of displacements and stresses are provided when laminates have 
strong layerwise effects, confirming that an accurate description of transverse 
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displacement and deformability is required for these cases, according to [71] and 
[17].  

 
Theory Main features 
HRZZ 

 Mixed HR physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficient); 

 Uniform transverse displacement (0)u ; 
 Transverse normal stress from ZZA; 
 Transverse shear stresses apart, by integrating local equilibrium 

equations. 

 
PROS CONS 

Better results than ESL; Inaccurate results for strong 
layerwise effects; 

Good results for mid layerwise 
effects; 

Inaccurate results for high 
natural frequencies; 

More accurate than other 
simplified theories, like MHR 
and MHR4 (see 2.4) 

Poor results when an accurate 
description of transverse 
displacement is required. 

 Processing time are similar to 
those of ZZA 

 

( )n  indicates the order of expansion of in-plane and transverse displacements 

 
Table 2.1a: Characteristic features of HRZZ and HRZZ4 theories. 

HRZZ4 [15] constitutes a variation of HRZZ, whose in-plane displacements 
are the same of its counterpart but a fourth-order polynomial transverse 
displacement is assumed. Results obtained by this theory are similar to those of 
HRZZ, confirming that only a piecewise description of displacements (obtained 
by redefining coefficients layer-by-layer across the thickness) allows to get the 
maximal accuracy [17]. It should be also noticed that use of theories with a 
simplified kinematics (like HRZZ and HRZZ4) is discouraged also to get high 
natural frequencies or for dynamic problems that require an accurate description 
of transverse displacement (e.g. pumping modes of sandwich structures see [17], 
[19] and chapter 5). The  processing time of HRZZ and HRZZ4 is similar to that 
of ZZA, so, use of these theories is neither advantageous, from the point of view 
of accuracy, nor for computational cost savings. 

 
HRZZ4 

 Mixed HR physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Fourth-order polynomial transverse displacement (4)u  (not 
redefined coefficients); 

 Transverse normal stress from ZZA; 
 Transverse shear stresses apart, by integrating local equilibrium 

equations. 

 



 

 
 

PROS CONS 
Better results than ESL; Inaccurate results for strong 

layerwise effects; 
Good results for mid layerwise 
effects; 

Inaccurate results for high 
natural frequencies; 

More accurate than other 
simplified theories, like MHR 
and MHR4 (see 2.4) 

Poor results when an accurate 
description of transverse 
displacement is required. 

 Processing time are similar to 
those of ZZA 

 

( )n  indicates the order of expansion of in-plane and transverse displacements 

 
Table 2.1b: Characteristic features of HRZZ and HRZZ4 theories. 

 
2.3.1 Mixed HRZZ and HRZZ4 theories 

In this section, HRZZ and HRZZ4 developed under HR variational theorem 
(1.13g) in physically-based form are reported (they are retaken from [15]). Their 
qualitative features are described in previous section. 

Regarding HRZZ, it is a physically-based zig-zag theory, whose transverse 
displacement is uniform across the thickness and in-plane ones are piecewise 
cubic: 
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It should be noticed that symbols already defined for ZZA in (1.14g) are not 

explained also in this section (e.g. symbols of in-plane and thickness coordinates). 
For their meaning refer to section 1.6. Due to this choice, transverse normal strain 

  obtained by stress-strain relations is null. So, transformed, reduced stiffness 

properties are assumed. Transverse shear stresses are obtained apart from 
displacements by integrating in-plane stresses, while, with the intended aim to 
include a more correct transverse deformability, transverse normal one 

  is the 

same of ZZA. Coefficients iC  and iD  are calculated by imposing boundary 
conditions on transverse shear stresses (1.15) and the first equilibrium equation 
(1.18) at different points across the thickness. k

  are obtained by imposing the 

compatibility of transverse shear stresses (1.19), while k
uC  restore the continuity 

of in-plane displacements (1.20). So, the full, set of physical constraints of ZZA is 
not imposed. Nevertheless coefficients of in-plane displacements are redefined for 
each layer, results of this theory are less accurate than ZZA, HWZZ and other 
higher-order theories, because of u  is too simple. Particularly, this theory 

provide very inaccurate results when there are strong layerwise effects, when an 
accurate transverse displacement is required or for dynamic problems, 
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demonstrating that only an accurate description of transverse deformability and 
the imposition of full set of physical constraints (and coefficients of displacements 
redefined for each layer) prevent loss of accuracy. 

With the intended aim to increase accuracy of HRZZ, HRZZ4 is developed. 
Transverse displacement is a fourth-order polynomial, but, differently to in-plane 
ones, its coefficients are not redefined across the thickness: 
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Because of the transverse displacement is not uniform across the thickness, 

reduced stiffness properties are not necessary. Again, transverse normal stress is 
the same of ZZA, while transverse shear stresses are obtained by integrating local 
equilibrium equations. Coefficients iC , iD , k

  and k
uC  are calculated like 

HRZZ, while b , c , d  and e  are calculated by imposing boundary conditions on 
transverse normal stress and its gradient (1.16) and (1.17). Again, the whole set of 
physical constraint of ZZA is not imposed, being coefficients of u  not redefined 

layer-by-layer across the thickness. Nevertheless 
  is retaken from ZZA, the 

description of transverse deformability is too poor and the same defects of HRZZ 
still apply. Results demonstrate that only theories whose coefficients are redefined 
layer-by-layer across the thickness for each displacement and calculated by 
imposing the full set of physical constraints of ZZA are always accurate, 
irrespective the lay-up, material properties, loading and boundary conditions of 
examined cases.  

 

2.4 Mixed HWZZ zig-zag theory of this study 

With the intended aim to overcome issues of HRZZ and HRZZ4, a mixed HW 
physically-based theory, called HWZZ is developed [15], whose displacements, 
strains and stresses are assumed apart each-other preserving only essential 
contributions for each field and decreasing computational burden of ZZA. 
Particularly, master displacement field is retaken from ZZA, whose second-order 
zig-zag contributions are omitted, but coefficients are still redefined layer-by-
layer across the thickness and no subdivision into mathematical layers is allowed. 
This decomposition is restored for out-of-plane master strains, that are also used 
to calculate in-plane stresses, while out-of-plane ones are obtained by integrating 
local equilibrium equations. Results of static and dynamic analyses provided by 
this theory, for which all physical constraints are imposed and coefficients of 
displacements are redefined layer-by-layer across the thickness, are very close to 
those provided by ZZA, also for structures whose layerwise effects are strong, 
confirming that only a redefinition of coefficients across the thickness and 
imposition of all physical constraints (1.15)-(1.20) prevents loss of accuracy. 



 

 
 

Computational burden of this theory is lower than ZZA, because only essential 
contributions are present for each field, but cost saving is only 10% of the overall 
processing time of the parent theory. Indeed, HW variational principle introduces 
additional contributions into energy, that undermine the beneficial effects of 
simplifications. Thus, cheaper but still accurate variants of HWZZ and ZZA are 
developed (and explained) in following sections.  

 
HWZZ 

 Mixed HW pshysically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise transverse displacement (4)u  (redefined coefficients); 
 Second order zig-zag omitted for master transverse displacement, 

no decomposition into mathematical layers allowed; 
 Subdivision into mathematical layers admitted for out-of-plain 

master strains; 
 Master out-of-plane stresses obtained by integrating local 

equilibrium equations; 

PROS CONS 
Results very close to ZZA ones, 
also when when are strong 
layerwise effects, irrespective 
loading and boundary conditions.  

Time saving is only about 10% 
of processing time of ZZA.  

Processing time is lower than 
ZZA one.  

 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 2.2: Characteristic features of HWZZ theory. 

2.4.1 Displacement, strain and stress fields of HWZZ 

This theory is developed through HW variational theorem (1.13d) and was 
previously presented in [15]. The purpose of this theory is to decrease the 
computational burden of ZZA (whose time calculation is still comparable with 
those of equivalent single layer theories), keeping only essential contributions for 
displacement, strain and stress fields and maintaining the same accuracy of parent 
theory.  

Master displacement field is obtained from that of ZZA neglecting second-
order zig-zag contributions ( k ). No decomposition into mathematical layer is 
allowed for displacement field, so, terms j

uC
 and jC

  (that impose continuity of 

displacements at mathematical layer interfaces) are omitted: 
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Coefficients are still redefined for each layer and iC , iD , ib , ic , id , ie  are 
calculated by imposing boundary conditions on out-of-plane stresses (1.15)-(1.16) 
and equilibrium at different points across the thickness (1.18). Again, k

  and 
k  restore the continuity of transverse shear and normal stresses (1.19).  

As regard master strain field, they are obtained using strain-displacements 
relations (1.1) assuming the following displacement field, where the 
decomposition into mathematical layer is again allowed, so, j

uC
 and jC

 are 

reintroduced: 
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Again, iC , iD , ib , ic , id , ie , k
  and k  enable the fulfilment of boundary 

conditions, equilibrium equations, equilibrium equations and compatibility of 
stresses at interfaces (1.15)-(1.16), (1.18), (1.19), while j

uC
 and jC

 are 

calculated by imposing the continuity of displacements between mathematical 
layers (1.20). So, strains assume the following expressions: 
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As regard master stress field, in-plane stresses (  ,  ,  ) are obtained 

using stress-strain relations (1.2), while out-of-plane ones are obtained by 
integrating local equilibrium equations (1.18). As a consequence, also the 
continuity of gradient of transverse normal stress across the thickness is 



 

 
 

guaranteed (1.19), overcoming all simplifications made, and so imposing the full 
set of physical constraints: 
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Because of simplifications on (2.3), displacements have to be post-processed 

and amplitudes iA  obtained by Rayleigh-Ritz method (see section 1.4) are 
substituted into displacement field of ZZA (1.10). Because of coefficients of 
displacement, strain and stress fields are redefined layer-by-later across the 
thickness and the whole set of physical constraints is imposed, very accurate 
results, indistinguishable than those obtained by ZZA, are obtained with a lower 
processing time, demonstrating that HW variational theorem can be used to create 
accurate and simple theories. Anyway the cost saving obtained by HWZZ is only 
about 10%, so, other theories are developed, with the intended aim to create a 
more general and a more simple version of ZZA (see chapter 3). 

 

2.5 Mixed kinematic-based zig-zag theories of this study 

Unlike physically-based theories such as HRZZ, HRZZ4, HWZZA, where 
amplitudes of zig-zag functions are determined by imposing the fulfilment of 
interfacial stress compatibility conditions, a reverse of the slope of displacements 
is imposed at each interface for kinematic-based theories. 

Two mixed HR kinematic-based theories, called MHR and MHR4, were 
developed [15] and assessed. The first one has similar characteristics of other 
theories of Literature, whose in-plane displacements are piecewise cubic and 
include Murakami’s layerwise function, while transverse one is a fourth-order 
polynomial and out-of-plane stresses are calculated separately by integrating local 
equilibrium equations. Thus, nevertheless coefficients of displacement field are 
not redefined (and are obtained by imposing the BCS of stresses (1.15)-(1.17)), a 
periodic change of the slope of in-plane displacement is imposed at each interface, 
regardless lay-up and material properties. Because of this latter feature, this theory 
cannot provide good results when Murakami’s rule is not respected and also for 
structures whose layerwise effects are too strong, being its kinematics too simple.  

 
MHR 

 Mixed HR kinematic-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (not redefined coefficient) 

with Murakami’s zig-zag function; 
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 Fourth-order polynomial transverse displacement (4)u  (not 
redefined coefficient); 

 Out-of-plane stresses by integrating local equilibrium equations; 

 
PROS CONS 

Better results than ESL; Inaccurate results for strong 
layerwise effects; 

Good results if Murakami’s rule 

is respected; 
Inaccurate results if Murakami’s 

rule is not respceted; 

Very low processing time. Inaccurate results for high 
natural frequencies; 

 
Poor results when an accurate 
description of transverse 
displacement is required. 

 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 2.3a: Characteristic features of MHR theory. 

Even the inclusion of Murakami’s zig-zag functions into transverse 
displacement, like for MHR4 theory, cannot increase accuracy of this theory. So, 
similar results of MHR are obtained and similar considerations apply for both 
theories. Processing time of these theories is very low and their development is 
very easy, but their usage is discouraged unless Murakami’s rule is respected and 
strong layerwise effects are absent. These statements still apply also for dynamic 
problems (e.g. high natural frequencies or pumping modes, that require a proper 
description of displacement field). Indeed, very high expansion order of 
displacements across the thickness are required to get quite accurate results [51]. 
So, results by Gherlone [44] and Groh and Weaver [45] about the superiority of 
physically-based theories over kinematic-based ones, if the same expansion order 
is assumed, are confirmed. 

 
MHR4 

 Mixed HR kinematic-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (not redefined coefficient) 

with Murakami’s zig-zag function; 
 Piecewise transverse displacement (0)u  (not redefined coefficient) 

with Murakami’s zig-zag function; 
 Out-of-plane stresses by integrating local equilibrium equations; 

 
PROS CONS 

Better results than ESL; Inaccurate results for strong 
layerwise effects; 

Good results if Murakami’s rule 

is respected; 
Inaccurate results if Murakami’s 

rule is not respceted; 

Very low processing time. Inaccurate results for high 
natural frequencies; 

 
Poor results when an accurate 
description of transverse 
displacement is required; 

 Nevertheless Murakami’s zig-
zag function is also included 



 

 
 

into transverse displacement, 
similar results than MHR are 
obtained. 

 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 2.3b: Characteristic features of MHR4 theory. 

2.5.1 MHR and MHR4 

As previously stated, MHR and MHR4 are developed under HR variational 
theorem (1.13g) in kinematic-based form (they are retaken from [15]). Their 
qualitative features are described in previous section, while their specifics are 
reported here. 

Regarding MHR, this is a kinematic-based zig-zag theory, whose features are 
similar to other models of Literature and the following displacement field is 
assumed: 
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  (2.8)   

 
Transverse displacement is a fourth-order polynomial, while in-plane 

displacements are piecewise cubic and include Murakami’s zig-zag function, 
which provides a periodic change of slope of displacements at each layer 
interface, irrespective lay-up and material properties: 

( ) ( 1)k k kM                                                                                                         (2.9)   
 
where k , whose superscript k is the layer number, is expressed as: 

1

1 1
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

 


   

 
                                                         (2.10)   

 
Coefficients of displacements are not redefined across the thickness and C , 

D  are calculated by imposing boundary conditions on transverse shear stresses 
(1.15), a , b , c  and d by imposing (1.16) and (1.17). With the intended aim to 
test all theories under the same conditions, MHR must have the same number of 
d.o.f. than other theories. To do this, an additional equation is imposed, so, zu  
are calculated by imposing the fulfilment of first and second equilibrium 
equations (1.18) at a point near the reference plane. It should be noticed that this 
latter choice is peculiar of MHR and usually in Literature also zu  is an additional 
degree of freedom. Despite this, results obtained by MHR are similar to others 
obtained by kinematic-based models in Literature (see results of chapters 4 and 5). 
Because of its too simple kinematics, this theory is not adequate for strong 
layerwise effects, for dynamic calculations and to analyse structures when 
Murakami’s rule is not respected. Because of HRZZ and HRZZ4 obtain better 

results than this theory, it is demonstrated the superiority of physically-based 
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theories on kinematic-based ones, when the same expansion order across the 
thickness is assumed, confirming results of [44] and [45]. Moreover, it is also 
demonstrated that only theories whose coefficients are redefined for each layer 
across the thickness and that impose the full set of physical constraints (1.15)-
(1.20) are always precise. Similar findings still apply also for MHR4 theory, 
whose in-plane displacements are the same of MHR, while transverse one contain 
Murakami’s zig-zag function, so, a periodic change of slope is imposed also for 
u : 
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Nevertheless transverse displacement is piecewise polynomial, again, 

kinematics of this theory is too poor, so, it cannot provide accurate results for 
cases with strong layerwise effects, for dynamic calculations and when 
Murakami’s rule is not respected. The same findings about superiority of 
physically-based theories, which provide better results assuming the same 
expansion order across the thickness, are still valid. C , D , a , b , c , d  and 

zu  are calculated like MHR theory, while zw  is obtained by imposing the third 
equilibrium equation at a point near middle surface.  

Despite their low accuracy, MHR and MHR4 are very interesting, thanks to 
their processing time that is very low. So, four variants are developed, with the 
intended aim to increase their accuracy and possibly to overcome some of their 
deficiency, so, MHR±, MHR4±, MHWZZA, MHWZZA4 theories are obtained 
and explained in the next subsection.  

 

2.6 MZZ with slope defined on a physical basis and with 
improved fields 

With the intended aim to increase accuracy of MHR and MHR4, four theories 
called MHWZZA, MHWZZA4 [15], MHR± e MHR4± [17] are developed. 
MHWZZA is a mixed HW theory, whose displacement field is the same of MHR, 
while strain and stress fields come from HWZZ. Incorporation of strains and 
stresses from a physically-based model strongly increase accuracy of this theory 
for elastostatic benchmarks, confirming previous statements about superiority of 
physically-based theories. However, the accuracy of HWZZ and ZZA cannot be 
reached, because kinematics is too poor. Particularly, very inaccurate results are 
provided for dynamic studies (see [17]), being the accuracy depending also on 
displacements. Similar findings still apply also including transverse displacement 
of ZZA into displacement field of MHWZZA4, confirming that only theories 



 

 
 

whose coefficients are redefined layer-by-layer across the thickness for each 
displacements and calculated by imposing the full set of physical constraints 
(1.15)-(1.20) can achieve maximal accuracy. 

 
MHWZZA 

 Mixed HW zig-zag theory; 
 Displacements from MHR; 
 Strains and stresses from HWZZ; 

 
PROS CONS 

Better results than MHR and 
MHR4; 

Inaccurate results for strong 
layerwise effects; 

Good results for mid layerwise 
effects; 

Very inaccurate results for 
dynamic studies; 

Lower processing time than 
ZZA. 

Poor results when an accurate 
description of transverse 
displacement is required. 

 
 

MHWZZA4 
 Mixed HW zig-zag theory; 
 In-plane displacements from MHR, transverse one from ZZA; 
 Strains and stresses from HWZZ; 

 
PROS CONS 

Better results than MHR and 
MHR4; 

Inaccurate results for strong 
layerwise effects; 

Good results for mid layerwise 
effects; 

Very inaccurate results for 
dynamic studies; 

Lower processing time than 
ZZA. 

Poor results when an accurate 
description of transverse 
displacement is required. 

 

Table 2.4: Characteristic features of MHWZZA and MHWZZA4 
theories. 

Similar findings also apply for MHR± and MHR4± theories. They are similar 
to their counterparts MHR and MHR4, but the inversion of slope of displacements 
at interfaces is determined on a physical basis (see [17] for details), improving 
their accuracy also for lay-ups that don’t respect Murakami’s rule and preserving 

very low processing time. Anyway MHR± and MHR4± (whose coefficients of 
displacement field are not redefined) cannot achieve the same accuracy of ZZA 
and HWZZ for lay-ups that have strong layerwise effects or for dynamic studies, 
because their too poor kinematics. 

 
MHR± 

 Mixed HR kinematic-based zig-zag theory; 
 Displacement field from MHR; 
 Right sign of Murakami’s zig-zag function for each layer is 

determined on a physical basis; 
 Out-of-plane stresses by integrating local equilibrium equations; 
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PROS CONS 
Better results than MHR; Inaccurate results for strong 

layerwise effects; 
Good results also if Murakami’s 

rule is not respected thanks to 
calculation of sign of 
Murakami’s zig-zag function on 
a physical basis; 

Inaccurate results for high 
natural frequencies; 

Very low processing time. 
Poor results when an accurate 
description of transverse 
displacement is required. 

 
 

MHR4± 
 Mixed HR kinematic-based zig-zag theory; 
 Displacement field from MHR4; 
 Right sign of Murakami’s zig-zag function for each layer is 

determined on a physical basis; 
 Out-of-plane stresses by integrating local equilibrium equations; 

 
PROS CONS 

Better results than MHR4; Inaccurate results for strong 
layerwise effects; 

Good results also if Murakami’s 

rule is not respected thanks to 
calculation of sign of 
Murakami’s zig-zag function on 
a physical basis; 

Inaccurate results for high 
natural frequencies; 

Very low processing time. 
Poor results when an accurate 
description of transverse 
displacement is required. 

 

 

Table 2.5: Characteristic features of MHR± and MHR4± theories. 

 
2.6.1 MHR±, MHR4±, MHWZZA, MHWZZA4 theories 

MHR± is obtained from MHR assuming the same displacement field. 
Coefficients are still calculated in the same way, but now a periodic change of in-
plane displacements is not imposed at each interface, but determined on a physical 
basis, choosing for any interface which sign of (2.9) produce the minimum 
residual force norm from (1.18) (it should be noticed that processing time is 
almost the same, because the operations described are very cheap). In the same 
way theory MHR4± can be obtained from MHR4. It should be noticed that 
differently to MHR and MHR4, zu  and zw  are calculated for each layer, in order 
to determine their sign on a physical basis. Results will show that this choice has 
beneficial effects on accuracy, indeed good predictions are also obtained for lay-
ups that do not fulfil Murakami’s rule. Anyway, being their kinematics too poor 

they cannot be used when layerwise effects are too strong, despite having very 
low processing time.  

With the intended aim to improve MHR performance, MHWZZA was 
developed. Its displacement field is the same of MHR (2.8), while strains and 



 

 
 

stresses are the same of HWZZ (see section 2.4), so, this theory is developed by 
using HW variational theorem. In detail, starting from displacement field (2.4), 
strains are obtained and in-plane stresses are calculated using stress-strains 
relations (1.4), while out-of-plane ones are obtained by integrating local 
equilibrium equations (1.18). Thanks to incorporation of strains and stresses that 
come from physically-based models, results of this theory are better than MHR 
and MHR4 ones, but their accuracy is lower if cases with very strong layerwise 
effects are analysed [15]. Moreover, natural frequencies and modal displacements 
and stresses are very bad predicted, demonstrating that this theory cannot be used 
for dynamic calculations, nevertheless its processing time is lower than ZZA. 
Findings of this theory demonstrate that only theories whose coefficients are 
redefined for each displacements and that impose the full set of physical 
constraints can always get displacements and stresses without any loss of 
accuracy. The same conclusions still apply also for MHWZZA4, where transverse 
displacement of ZZA is assumed (1.14g), while in-plane displacements, strains 
and stresses are the same of MHWZZA. 

 

2.7 Remarks about mixed theories 

Various mixed theories are developed and reported in this chapter, in order to 
test if mixed formulations are a viable option to keep kinematics simple and 
obtain accurate results and to settle dispute of superior accuracy of kinematic- or 
physically-based theories.  

A lot of lower-order theories are created, whose features are similar to ones of 
literature and whose displacements assume simplified expressions, both in 
physically- and kinematic-based forms. Results (see chapters 4 and 5) confirm 
superior accuracy of physically-based theories on kinematic-based ones. 
However, all mixed lower-order theories that do not take into account an accurate 
description of transverse normal deformability cannot reach the same accuracy of 
higher-order theories and their cost saving is not very high. So, mixed theories 
with only a partial fulfilment of physical constraints are no advantageous from the 
standpoint of results and processing time.  

Only HWZZ, higher-order mixed version of ZZA whose fields contain only 
essential contributions and that impose the full set of physical constraints of 
parent theory demonstrates its great accuracy, with a cost saving of 10%. 
Anyway, because of cost saving obtained by HWZZ is rather limited, different 
formulations must be further considered in order to attempt to achieve the 
objectives to obtain more efficient generalized theories.  
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Chapter 3 – Theories that 
generalize ZZA 

As shown in previous chapter, lower-order mixed theories are useless, unless 
the full set of physical constraints of parent theory is imposed, as HWZZ. 
Anyway, cost saving obtained is rather limited, so, different formulations must be 
considered in order to achieve the objectives to obtain more efficient generalized 
theories. Particularly, it is needed to check if accuracy depends from the choices 
of zig-zag and representation functions, if the full set of physical constraints of 
ZZA is imposed in a pointwise sense.  

3.1 Effects of the choice of zig-zag functions 

As shown in previous chapter, mixed formulations allow development of 
theories with lower computational burden. The best model reported in 2.2.1 is 
HWZZ, whose accuracy is the same of its parent theory (ZZA) but its 
computational burden is 10% less than ZZA one. Anyway, cost saving obtained 
by HWZZ is rather limited, because processing time it is mainly determined by 
integration of strain energy (see Figure 3.1):  

 

 

Figure 3.1: Detailed description of computational effort of HWZZ 



 

 
 

The computational burden of integration of strain energy strongly depends by 
complexity of fields of theory and of zig-zag functions expressions, whose 
summations increase processing time of integration of upper layers. As a 
consequence, computational effort strongly rises if the number of layers is high. 
Instead, kinematic-based theories MHR and MHR4, which include Murakami’s 

zig-zag function, show lower cost than physically-based ones, also thanks to 
particularly simple expression of their layerwise function, but their results are 
very inaccurate, making them useless.  

3.1.1 Different assumptions of zig-zag functions 

So, with the intended aim to lower computational effort of strain energy 
integration, a new theory called ZZM is developed. The same expression of 
displacements of ZZA is assumed but Di Sciuva’s (see [42]) and Icardi’s (see  

[54]) zig-zag functions are substituted with Murakami’s (see [43]) and M2ZZ (see 
[17] and (2.11)) ones. Nevertheless the inclusion of Murakami’s zig-zag function, 
ZZM is a physically-based zig-zag adaptive theory, because zig-zag amplitudes 
are redefined layer-by-layer across thickness and recalculated by imposing the 
continuity of transverse shear stresses, of transverse normal stress and its gradient 
at each interface. As a consequence, a periodic change of slope at each interface is 
not imposed, differently to kinematic-based models and, similarly to ZZA, 
redefinition of coefficients allows ZZM to adapt itself to variation of solution.  

 

 

Figure 3.2: Detailed description of computational effort of ZZM 
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Surprisingly, results provided by this theory are indistinguishable to ZZA 
ones. So, the conclusion is that the choice of zig-zag functions is immaterial for 
this type of theories (physically-based adaptive). Indeed, they can be substituted 
with other functions (e.g. Murakami’s one) without any loss of accuracy, provided 

that coefficients are redefined layer-by-layer across the thickness and calculated 
by imposing the full-set of physical constraints (1.15)-(1.20). On the contrary, if 
these latter conditions are not fully satisfied, accuracy of models heavily depends 
by assumptions, consistently with results previously obtained by MHR and 
MHR4. Moreover, ZZM has a cost saving at least of 25% than ZZA and HWZZ, 
thanks to more simple expressions of layerwise functions (which also don’t 

contain any summations) that decrease computational effort of strain energy 
integration (Figure 3.2). Similarly to previous section, Table 3.1 reports only a 
qualitative description of ZZM, while its specific features and expression of 
displacement, strain and stress fields are in section 3.1.3. 

 
ZZM 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise transverse displacement (4)u  (redefined coefficients); 
 Same displacement field of ZZA but different zig-zag functions are 

assumed. 
 Murakami’s zig-zag function and M2ZZ one are included in 

displacement field. 

 
PROS CONS 

Results always indistinguishable 
to ZZA ones.  

Its expression could be more 
simplified. 

Cost saving is betond 25%.  
 
 
 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 3.1: Characteristic features of ZZM theory. 

 
3.1.2 Theories with redefined coefficients without zig-zag 
functions 

Since adaptive theories redefine coefficients across the thickness, the 
fulfilment of interfacial stress compatibility conditions (1.19) could be achieved 
by calculating some coefficients through them, also without the use of zigzag 
functions. Because this implies a greater efficiency, it is interesting to verify this 
hypothesis. So, another physically-based theory, called ZZA* [17] is developed, 
whose displacement field is the same of ZZA but Di Sciuvsa’s and Icardi’s 

layerwise functions are omitted and substituted with power series of transverse 
coordinate (ς and ς

2). So, this theory does not contain any zig-zag function but 



 

 
 

similarly to parent theory ZZA coefficients are redefined for each layer across the 
thickness and obtained by imposing (1.15)-(1.20). Again, results obtained are 
indistinguishable to ZZA and ZZM ones, confirming that the choice of zig-zag 
functions is immaterial and they can freely omitted or changed for adaptive 
theories, without any loss of accuracy, as coefficients are redefined across the 
thickness and all physical constraints are enforced. Computational burden 
obtained by this theory is similar to that of ZZM and lower to ZZA one, thanks to 
the simpler expression of zig-zag function. 

 
ZZA* 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise transverse displacement (4)u  (redefined coefficients); 
 Same displacement field of ZZA but power series are used instead 

of zig-zag functions 
 Zig-zag functions are omitted. 

PROS CONS 
Results always indistinguishable 
to ZZA ones.  

Its expression could be more 
simplified. 

Cost saving is beyond 25%.  
 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 3.2: Characteristic features of ZZA* theory. 

It should be noticed that HW mixed formulations of ZZM and ZZA* can be 
obtained, following exactly the same steps previously described in section 2.4 for 
HWZZ from ZZA. These two theories, called HWZZM and HWZZM* [17] 
respectively obtain indistinguishable results than HWZZ and a very little cost 
saving than ZZM and ZZA*. Nevertheless these theories obtain very good results, 
their expressions are still too complex, so further studies are needed with the 
intended aim to create simpler and generalized variants. Figure 3.3 report 
genealogical tree of theories of this section: 

 

Figure 3.3: Genealogy of theories with different zig-zag functions 
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3.1.3 ZZM and HWZZM 

ZZM is a displacement-based Di Sciuva’s like adaptive theory (coefficients 

are recomputed for each layer); Di Sciuva’s zig-zag function ( ) ( )k kH    is 
substituted with Murakami’s one (2.9) and second-order zig-zag function 

2( ) ( )k kH    is substituted with a second-order layerwise function, firstly 
presented in [17] and called M2ZZ in this thesis, whose expression is the 
following: 
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Nevertheless this theory contains Murakami’s zig-zag function, ZZM is 

physically-based, because amplitudes u
kA  , u

kA   and u
kB   are obtained by enforcing 

the continuity of transverse shear and normal stresses and of gradient of transverse 
normal stress at the interfaces between two layers. Terms k

uC  and kC  are still 

obtained by imposing the continuity of displacements across the thickness. The 
remaining coefficients, iC , iD , ib , ic , id  and ie  are obtained by enforcing the 
fulfilment of stress boundary conditions and of local equilibrium equations at 
different points across the thickness (1.18). Numerical results will show that 
displacements and stresses obtained by ZZM are indistinguishable from those 
obtained by ZZA, that incorporates different zig-zag functions. Moreover, time 
calculations will show that this theory is cheaper than ZZA and HWZZ, because 
the expression of zig-zag functions is simpler.  

From this theory, a HW mixed counterpart can be obtained, following the 
same steps previously described in section 2.4. This theory is called HWZZM and 
was developed in [17]. So, master displacement field is: 
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Master strain field is obtained by using strain-displacement relations on the 

following slave displacement field: 
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so, ij  expressions are: 
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Finally, master in-plane stresses (  ,  ,  ) are obtained using stress-

strain relations (1.2), while out-of-plane ones are obtained by integrating local 
equilibrium equations (1.18), so their expressions are the same of (2.7). Again, 
this theory obtains results that are indistinguishable from those of ZZA, HWZZ 
and ZZM and with lower processing time than latter theories (whose time 
calculation are still comparable to those of ESL) demonstrating that HW can be 
used in order to create mixed cheaper and accurate theories. Moreover, because 
ZZM and HWZZM obtain same results of ZZA and HWZZ, it is demonstrated 
that the choice of zig-zag functions is immaterial and they can be changed without 
any loss of accuracy, according to [17]. It should be noticed that this latter 
statement applies only for physically-based adaptive theories, whose coefficients 
are recomputed for each layer and calculated by imposing all physical constraints 
of ZZA (1.15)-(1.20), otherwise the accuracy is strongly dependent by this choice 
(as shown in the previous chapter).  

 

3.1.4 ZZA* and HWZZM* 

Another physically-based adaptive theory, called ZZA*, was previously 
developed in [17], in order to verify if zig-zag functions can be omitted without 
any loss of accuracy, since ZZM and HWZZM theories demonstrate that they can 
be changed obtaining the same results of ZZA and HWZZ. For this reason, 
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contributions of first and second order zig-zag functions of ZZA are substituted 
with ς and ς2, respectively. So, the displacement field is: 
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Terms i
k B , i

k b  and i
k c  are obtained by imposing the continuity of 

transverse shear and normal stresses and its gradient at the interfaces between two 
layers (1.19), while i

k C  and i
k d  enable the fulfilment of continuity of 

displacements (1.20) across the thickness. The remaining coefficients, iC , iD , 
ib , ic , id  and ie  are obtained by enforcing the fulfilment of stress boundary 

conditions and of local equilibrium equations at different points across the 
thickness (1.15)-(1.18). It should be noticed that terms ib  and ic  could be 
omitted, without any loss of accuracy, for all layers above the first one ( 1i  ), 
slightly reducing computational burden of this theory. 

Furthermore, results obtained by ZZA* are indistinguishable from those of 
ZZA, demonstrating that zig-zag functions can be changed (see section 3.1.1) or 
also omitted for higher-order zig-zag adaptive theories, without any loss of 
accuracy; moreover, processing time of ZZA* is lower than ZZA, ZZM, HWZZ 
and HWZZM. In the following section other physically-based adaptive theories 
will be presented in order to test the latter statements deeply.  

Similarly to HWZZ and HWZZM, another adaptive mixed theory, called 
HWZZM*, can be obtained from ZZA*, following the same steps of section 2.4. 
So, master displacement field is: 
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Master strain field is obtained by the following slave displacement field: 
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so, the following ij  are obtained: 
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Finally, master in-plane stresses (  ,  ,  ) are obtained using stress-

strain relations (1.2), while out-of-plane ones are calculated by integrating local 
equilibrium equations (1.18), so their expressions are the same of (2.7). Once 
again, this theory obtains the same results of ZZA, ZZM, ZZA*, HWZZ and 
HWZZM with lower processing time.  

 

3.2 Choice of number of equilibrium points 

As ZZA* and ZZM theories calculate indistinguishable results from ZZA 
(also with lower computational burden), it was concluded that the choice of zig-
zag functions is immaterial and that such functions can be changed or omitted 
without any loss of accuracy. These statements are valid only if coefficients are 
redefined for each layer across the thickness and calculated by imposing the full 
set of  physical constraints of ZZA (1.15)-(1.20): 

 boundary conditions on out-of-plane stresses; 
 continuity of displacements, of transverse shear, transverse normal 

stresses and its gradient across the thickness; 
 fulfillment of local equilibrium equations at different points across the 

thickness.  

About the latter conditions, at least one equilibrium point (three equations) are 
needed for the outer layers and at least two of them (six equations) for the inner 
ones to obtain maximal accuracy. More equilibrium equations could be imposed, 
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including additional higher-order terms into displacement field, but this technique 
won’t be used in numerical applications.  

With the intended aim to determine the minimum number of equilibrium 
points necessary to obtain maximal accuracy, three different theories are 
developed as refined variants of HSDT. These three models, called HSDT_32, 
HSDT_33 and HSDT_34, are three physically-based zig-zag adaptive theories, 
whose coefficients are redefined layer-by-layer across the thickness. Similarly to 
ZZA* zig-zag functions are omitted and substituted with power of thickness 
coordinate ς of first and second order, but also summations (that were still 
included in ZZA*) are omitted. Coefficients of HSDT_32, HSDT_33 and 
HSDT_34 are calculated by imposing boundary conditions (1.15)-(1.17) and 
continuity of out-of-plane stresses (1.19), but the number of equilibrium points 
that is imposed is different for each theory.  

All these theories are displacement-based, so, strains and stresses are 
calculated by constitutive equations and  ,   and   are eventually post-

processed by integrating local equilibrium equations to increase their accuracy. A 
brief description of these theories is reported in the following section.  

3.2.1 Equilibrium points for lower-order theories 

HSDT_32 has piecewise cubic in-plane displacements and a piecewise 
parabolic transverse one, so, only three equilibrium equations are needed for a 
three-layers beam. Results of this theory are very inaccurate, also when there are 
mild layerwise effects, especially for dynamic calculations, because its kinematics 
is too simple. For this reason, results provided by HSDT_32 will not be reported 
for the most challenging cases. Bad findings of this theory confirm that a model, 
whose kinematics is too simple, cannot work properly, unless a mixed formulation 
is adopted and stresses are assumed apart from displacements. Moreover, it is 
confirmed that if the full set of physical constraints of ZZA is not imposed, like 
for HSDT_32, there is a loss of accuracy, regardless coefficients are redefined or 
not. 

 
HSDT_32  Displacement-based, physically-based zig-zag theory; 

 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise parabolic transverse displacement (2)u  (redefined 
coefficients); 

 Zig-zag functions are omitted. 

PROS CONS 
Processing time lower than ZZA 
one, 

Very inaccurate results also for 
mid layerwise effects. 

 Very inaccurate results for 
dynamic case 

 

Table 3.3: Characteristic features of HSDT_32 theory. 

 



 

 
 

HSDT_33 theory, instead, have both in-plane and transverse displacements 
piecewise cubic, so, five equilibrium equations are needed for a three-layers 
beam. As a consequence, a greater accuracy than HSDT_32 is obtained. 
HSDT_33  provides quite precise results also if there are fairly strong layerwise 
effects, anyway, accuracy of ZZA, ZZA* and ZZM cannot be reached because the 
full set of physical constraints of ZZA is not imposed.  

 
HSDT_33 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise cubic transverse displacement (3)u  (redefined 
coefficients); 

 Zig-zag functions are omitted. 

PROS CONS 
Processing time lower than ZZA 
one; 

Accuracy is slightly lower than 
ZZA one. 

Better results than HSDT_32;  
Good accuracy also for quite 
strong layerwise effects  

 

Table 3.4: Characteristic features of HSDT_33 theory. 

 

3.2.2 Minimum number of required equilibrium points  

Finally, HSDT_34 theory is developed, whose transverse displacement is a 
fourth-order piecewise polynomial across the thickness. Expansion order is the 
same of ZZA and the same number of equilibrium equations is imposed. Results 
demonstrate previous findings: this theory, whose coefficients are redefined layer-
by-layer across the thickness and calculated by imposing the full set of physical 
constraints of ZZA (thus also the same number of equilibrium points) obtains 
indistinguishable results than ZZA (and other higher-order theories obtained from 
it), irrespective of zig-zag assumed, which can be also omitted (along with their 
summations) without any loss of accuracy.  

 
 
 

HSDT_34 
 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise fourth-order transverse displacement (4)u  (redefined 
coefficients); 

 Zig-zag functions are omitted. 
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PROS CONS 
Processing time lower than ZZA 
one; 

Its expression could be more 
simplified. 

Better results than HSDT_32 and 
HSDT_33;  

Indistinguishable results than 
ZZA, ZZM, ZZA* and mixed 
theories obtained from them. 

 
 

Table 3.5: Characteristic features of HSDT_34 theory. 

 
Results obtained by HSDT_32, HSDT_33 and HSDT_34, demonstrate that at 

least a piecewise cubic and a piecewise fourth-order polynomial expansion order 
are required to get accurate results.  

 

3.2.3 HSDT_32, HSDT_33, HSDT_34 theories  

Three physically-based adaptive theories are developed, which do not contain 
any zig-zag function, being their choice immaterial if coefficients are redefined 
for each layer across the thickness (according to section 3.1.2) and calculated on a 
physical basis by imposing (1.15)-(1.20). Three different expansion orders are 
chosen for these theories, which assume piecewise cubic in-plane displacements 
and a piecewise parabolic, cubic and fourth-order polynomial transverse one, with 
the intended aim to understand which is the minimum number of equilibrium 
equations needed to obtain accurate results. Being displacement-based models, 
strains and stresses of these theories are obtained by constitutive equations.  

Regarding HSDT_32, it has piecewise cubic in-plane displacements and a 
piecewise parabolic transverse one: 
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1iB

 , 1iA

  and 1ia   are assumed null for the first layer from below. iA  and ia   

are calculated by imposing the continuity of displacements (1.20), while iB , iC , 
iD , ib  and ic  enable the fulfilment of (1.15)-(1.17), (1.19) and of local 

equilibrium equation (1.18). For this theory, only three equilibrium equations are 
needed for a three-layers beam. Because its kinematics is too poor, very 
inaccurate results are obtained, especially for dynamic calculations. So, it is 
confirmed that a model cannot work properly if its kinematics is too simple, 
unless a mixed formulation (with stresses apart from displacements) is adopted. 
Moreover, it is reiterated that if the full set of physical constraints of ZZA is not 
imposed, inaccurate results could be predicted.  

Instead, a cubic piecewise transverse displacement is assumed for HSDT_33: 
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Similarly to HSDT_32, iA  and ia   are calculated by imposing (1.20), while 

iB , iC , iD , ib  and ic  by imposing (1.15)-(1.17),(1.19) and (1.18). For this 
theory, five equilibrium equations are needed for a three-layers beam. HSDT_33 
is more accurate than HSDT_32, thanks to its more complex displacement field. 
As a consequence, this theory can also give good prediction also for laminations 
with quite strong layerwise effects, but the precision of ZZA cannot be obtained, 
because the full set of physical constraints of ZZA is not imposed. Newly, 1iB

 , 
1iA

  and 1ia   are assumed null for the first layer from below. 
Regarding HSDT_34, a piecewise fourth-order polynomial transverse displacement 

is assumed: 
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Again, 1iB

 , 1iA

  and 1ia   are null for the first layer from below, iA  and ia  

are obtained by imposing (1.20), while iB , iC , iD , ib , ic  and id  by imposing 
(1.15)-(1.17), (1.19) and (1.18). Because of expansion order is the same of ZZA 
and the same number of equilibrium points is assumed, the full set of physical 
constraints of ZZA (1.15)-(1.20) is imposed. As a consequence, the same results 
of ZZA are provided by HSDT_34, demonstrating that zig-zag functions can be 
changed or omitted without any loss of accuracy.  

Summarizing, results of this section demonstrate that at least the same number 
of conditions of ZZA have to be imposed to get the maximal accuracy. In the next 
section, two other aspects about the role of coefficients and the representation of 
displacements across the thickness are deeply explored, in order to simplify and 
generalize ZZA. 

3.3 Theories with no prefixed role of coefficients 

Coefficients of ZZA and other theories obtained from it (ZZM, ZZA*, 
HWZZ, HWZZM, HWZZM*) are calculated by imposing the full set of physical 
constraints (1.15)-(1.20). Each coefficient of displacement field has a fixed role, 
as deeply explained in section 1.6. For example, zig-zag amplitudes k

 , k , k  
that multiply Di Sciuva’s and Icardi’s zig-zag functions (1.14g), are calculated by 
imposing the continuity of transverse shear stresses, transverse normal one and its 
gradient at the interfaces. Instead, higher-order coefficients iC , iD , ib , ic , id , 

and ie  impose the fulfillment of boundary conditions and equilibrium equations 
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(section 1.6). Anyway, more investigations are necessary, with the intended aim 
to understand if the role of coefficients can be changed or not.  

So, ZZA_RDF [19] is developed, whose coefficients assume different roles 
respect to ZZA. E.g., k

  are calculated by imposing the fulfilment of first 

equilibrium equation, while iC  impose the continuity of transverse shear stresses. 
Results obtained by ZZA and ZZA_RDF are indistinguishable from each other, 
demonstrating that role of coefficients can be freely exchanged, so it is not 
necessary to assign them in advance, as long as coefficients are redefined layer-
by-layer across the thickness and calculated by imposing the full set of physical 
constraints. A detailed description of this theory can be found in following 
section, along with reference frame adopted to prevent numerical errors. The same 
identical features of ZZA still apply also for ZZA_RDF. In a similar way, 
HWZZ_RDF can be obtained, assigning different roles to coefficients of HWZZ. 

 
ZZA_RDF 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise fourth-order transverse displacement (4)u  (redefined 
coefficients); 

 Role of coefficients is switched than ZZA.  

 
PROS CONS 

Same results and features than 
ZZA. Same cons of ZZA still apply. 

 
 

Table 3.6: Characteristic features of ZZA_RDF theory. 
 

3.3.1 ZZA_RDF theory 

This theory is developed in order to test the effect of switch the role of 
coefficients. For example, k

 , k , k   of ZZA theory are calculated by 

imposing (1.19), while iC , iD , ib , ic , id , and ie  enforce the fulfilment of 
(1.15)-(1.18). Regarding ZZA_RDF, the displacement field is the same of ZZA 
(1.14g), but role of coefficients is different than the parent theory: k

  enable the 

fulfilment of first equilibrium equation, while iC  impose the continuity of 
transverse shear stresses. Because of results obtained by ZZA_RDF and ZZA are 
the same, it is demonstrated that the role of coefficients can be exchanged, 
without any loss of accuracy, if coefficients are redefined for each layer and the 
full set of physical constraints is imposed. Anyway, it should be noticed that for 
some lay-ups one interface can coincide with middle reference plane (thickness 
coordinate is ς=0) and apparently not any term could be used to impose the 
continuity conditions. For example, coefficients ic , that multiply 2  within 



 

 
 

transverse shear stress expression, doesn’t seem able to impose its continuity if 

0k  , because their product vanish for k  . Anyway, this issue can be solved 

by assuming a difference reference frame than ZZA, whose distance is / 2dh h  
from the bottom face: 
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            (3.15)   

 
Because of the same results are obtained, results confirm that role of 

coefficients can be changed and a different reference frame can be assumed, 
without any loss of accuracy, if the full set of physical constraints is imposed and 
coefficients are redefined for each layer across the thickness. Moreover, a mixed 
HW version of this theory can be obtained, called HWZZ_RDF, assuming the 
same simplifications of section 2.4. the same results of HWZZ are obtained by 
HWZZ_RDF. 

 

3.4 Effects of the choice of global representation functions 

Before proceeding with generalization of ZZA, it is necessary to study the 
effects to assume different functions to represent variation of displacements across 
the thickness for physically-based adaptive theories. A deeply study about this 
topic was faced by Mantari et al. [79], where trigonometric, exponential and 
hyperbolic functions were used to represent variation of displacements across the 
thickness of theories obtained like particularization of CUF. Results of theories 
demonstrate a strong dependence from the chosen representation and that only a 
sinusoidal representation allow to get an accuracy similar to polynomial one.  

With the intended aim to investigate if this dependence still exists also for 
adaptive physically-based zig-zag theories, ZZA**** was developed [16], whose 
qualitative description is here reported, while details, fields and characteristic 
features are described in following section. In-plane displacements contain a 
sinusoidal representation across the thickness, while a combination of sinusoidal, 
exponential and power of thickness coordinate ς is assumed for transverse 
displacement. Obviously, terms are redefined layer-by-layer across the thickness 
and all physical constraints of ZZA are imposed and zig-zag functions are 
omitted. Results obtained by this theory are surprisingly very close to ZZA ones 
(difference between them is lower than 0.1%), demonstrating that for physically-
based adaptive theories, also functions that describe the representation of 
displacements across the thickness can be changed without any loss of accuracy. 
Obviously, the representation function chosen must be able to describe for each 
layer a cubic and a fourth-order polynomial for in-plane and transverse 
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displacements respectively. Processing time of ZZA**** is similar to those of 
ZZA* and ZZM, resulting more efficient than parent theory ZZA. 

 
ZZA**** 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  with sinusoidal 

representation (redefined coefficients); 
 Piecewise transverse displacement (4)u  , where a combination of 

sinusoidal, exponential and power functions represent variation 
across the thickness (redefined coefficients); 

 
PROS CONS 

Results very close to ZZA; Its expression could be more 
simplified and generalized. 

High accuracy, also for strong 
layerwise effects;  

Very good processing time, 
lower than those of ZZA.  

 

Table 3.7: Characteristic features of ZZA_RDF theory. 

 
3.4.1 ZZA**** theory 

ZZA**** displacement-based zig-zag theory was created in [16] with the 
purpose to investigate the effect of choice of functions used to describe transverse 
representation of displacements. This theory contains the same zig-zag functions 
of ZZA but different global functions than power series are used to represent 
variations of displacement across the thickness. So, the displacement field is: 
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Coefficients are calculated similarly to ZZA, so, i

  , k , k , i
uC  and jC   

impose the continuity of out-of-plane stresses and displacements at layer 
interfaces, while the remaining terms, iC , iD , ib , ic , id  and ie  are obtained by 
enforcing the fulfilment of stress boundary conditions at outer layers and of local 
equilibrium equations at different points across the thickness (1.18). It should be 
noticed that any other role can be assigned to coefficients, according to results of 
section 3.3. 

Numerical results of this theory are practically the same of ZZA (differences 
lower than 0.1%) and other higher-order adaptive theories; so, it is again 
demonstrated that for theories with these features, not only zig-zag functions can 
be changed or omitted, but also global functions, that are used to represent 
variation of displacements across the thickness can be assumed differently, 



 

 
 

without any loss of accuracy. In next two sections, different theories, called 
ZZA_X, are presented as generalizations of ZZA, based on findings described in 
previous sections.  

 

3.5 Generalization of physically-based zig-zag theories 

In this section, DZZ theories with a high degree of generalization are 
developed on the basis of the previous results. Results obtained by theories from 
3.1 to 3.4 affirm that if coefficients are redefined for each layer across the 
thickness and all physical constraints are imposed: 

 Choice of zig-zag function is immaterial, they can be changed or 
omitted without any loss of accuracy; 

 Functions that are used to describe the representation of displacements 
across the thickness can be changed, without any loss of accuracy 
(they only must be able to describe for each layer a cubic and a fourth-
order polynomial for in-plane and transverse displacements, 
respectively). So, exponential, sinusoidal or polynomial 
representations can be assumed (also a combination of them).  

 There is no need to assign a specific role to coefficients; 

On the contrary, accuracy of theories is strongly dependent on zig-zag and 
representation functions if terms are not redefined for each layer or the full set of 
physical constraints is not satisfied. So, new generalized version of ZZA can be 
developed. 

3.5.1 ZZA_X theory 

Thanks to previous results a new physically-based zig-zag theory is 
developed, that is a refined and generalized version of ZZA, called ZZA_X. As a 
consequence, ZZA and all other theories previously described can be obtained as 
its particularizations (section 3.5.2 reports a deeply description of displacements 
fields and other characteristic features of this theory). Displacement field is 
expressed as a truncated series of products of unknown coefficients and a set of 
functions of thickness coordinate. These functions have to be linearly independent 
and their combination must be able to represent at least a cubic and a fourth-order 
polynomial for in-plane and transverse displacements, respectively. So, 
exponential, sinusoidal and power series functions or their combination can be 
assumed. The number of terms can be chosen by user for each displacement (at 
least three terms are necessary for in-plane and four for transverse one, 
accordingly to sections 3.2 and 3.2.2).  

The distinctive feature of ZZA_X is the possibility to choose a different 
representation not only for each displacements, but also differently for any region 
across the thickness (e.g. using a sinusoidal representation for some layers and a 
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polynomial one for the others, see section 3.5.2 for details). So, user can choose 
an appropriate and proper representation for each region of each displacements 
and choose the more suited functions depending on the problem, with the intended 
aim to ensure the maximal efficiency, because these decisions can provide 
numerical advantages. For these reasons, the level of generalization of ZZA_X is 
very high and it is able to compete with more famous and used examples in 
Literature, such as [14]. Moreover, processing time of this theory is very low 
(using the same order of expansion of ZZA), demonstrating also a high degree of 
efficiency, because the number of unknown d.o.f. is not increased compared to the 
parent theory. Different expansion orders (thus a different number of terms) could 
be assumed, but a higher number of terms is unnecessary and a lower one can 
cause loss of accuracy for challenging benchmarks.  

Nevertheless this theory offers a high degree of generalization, it still contains 
the same linear contribution of FSDT. So, another general model is created in 
section 3.5.3, where this latter limiting assumption is omitted, with the intended 
aim to test if it is important to get accurate results.  

 
ZZA_X 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise transverse displacement (4)u  (redefined coefficients); 
 The number of terms for each displacements can be chosen by user 

as an input; 
 The functions that are used for representation can be freely chosen; 
 Different representations can be assumed for each displacements 

and for each region across then thickness 

 
PROS CONS 

Generalized and refined version 
of ZZA; 

It still contains linear 
contribution by FSDT. 

All theories of previous sections 
can be obtained from ZZA_X as 
particularizations; 

Bounded only by the limits of 
the imagination. 

If the same number of terms of 
ZZA is chosen, similar results are 
always achieved; 

 

Very low processing time (high 
efficiency).  

 
 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 3.8: Characteristic features of ZZA_X theory. 

3.5.2 Displacement field of ZZA_X  

This theory was developed in [18], with the intended aim to create a 
generalized version of ZZA. This theory is adaptive, so, its coefficients are 
redefined for each layer across the thickness. Moreover, it does not contain any 
layerwise function and a general representation of variables is assumed across the 



 

 
 

thickness. Thus, the displacement field is expressed as a truncated series of 
products of general functions of ς, indicated as kF  and kG , which must be 
linearly independent, and unknown amplitudes: 
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It should be noticed that this theory is still zig-zag adaptive, like ZZA and 

other theories of this chapter. 0[...]  is the same of FSDT and contains the same 

d.o.f. (middle plane displacements 0u , 0w  and shear rotations 0
 , see section 

1.7 and (1.21)). Superscript i  indicates the layer, while the superscript k  
indicates the k-th term of summation. So, n   and n  represent the number of 

components of transverse representation of in-plane and transverse displacements 
respectively, which are chosen as an input by user; it should be noticed that they 
coincide with the degree of polynomial if power series k  are assumed. If 3n   

and 4n   the same number of conditions of ZZA can be imposed, so, 

indistinguishable results are obtained, irrespective the chosen functions for i
kF  

and i
kG .  

Unknown amplitudes i
kC   and i

kD  are obtained by enforcing the fulfilment 
of stress boundary conditions, of local equilibrium equations at different points 
across the thickness and of continuity of out-of-plane stresses and of the gradient 
of transverse normal stress at the interfaces between two layers (1.15)-(1.19). 
Finally, coefficients iC  and iC  enable the continuity of displacements (1.20). A 

specific role is not assigned to any coefficients, because it is demonstrated that it 
is not necessary (see section 3.3). So, all physical constraints are enforced in 
strong form and an algebraic system is obtained, whose solutions are explicit 
expressions of i

kC  , i
kD , iC , iC . Use of this theory is very advantageous, 

because it allows to test different functions to represent global transverse variation 
of quantities. Furthermore, it is also possible to assume different representations 
for each variables and from region to region across the thickness. Moreover, time 
calculation decreases, because computational time for integration of strain energy 
is lower.  

As previously explained, to be comparable to ZZA and theories obtained from 
it, k  will vary from 1 to 3 and from 1 to 4 for in-plane and transverse 
displacements, respectively, unless otherwise stated. In accordance of choice of 
global functions kF  and kG , ZZA_X assumes different names; in Table 3.9 
particularizations retaken from [18] are reported:  

 



 

67 
 

Theory name Function 
ZZA_PP34 
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h k

F G
h k
h k






 









  




 

 

ZZA_PMTP34 
3 ,  4n n    

                                 if 1
exp( / )                    if 2

( )
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

i
k

k
h k

F
h k
h k
















 



 

 
sin(( 1) / 2 )         if  is odd

( )
cos( / 2 )                 if  is even

i
k

k h k
F

k h k








 


 

 

 ( ) ki
kG    

 

Table 3.9. Particularizations of ZZA_X theory retaken from [18]. 

 
Results obtained by these theories are indistinguishable from those of ZZA 

and other adaptive higher-order theories obtained from it, confirming that zig-zag 
functions can be changed or omitted without any loss of accuracy and also the 
representation functions can be changed and assumed differently for each 
displacement (see ZZA_PMTP34). Moreover, there is no need to assign a specific 
role to coefficients, for this kind of theories, whose coefficients are redefined 
layer by layer and obtained by imposing the full set of physical constraints (1.15)-
(1.20). Processing time of ZZA_X theories is lower than ZZA, ZZM, ZZA****, 
HWZZ, HWZZM and HWZZM*, resulting the most efficient theories here 
presented. Moreover, the following new nine further particularizations are 
developed: 

 
Theory name Function 

ZZA_XN1 
3 ,  4n n    

 ( ) ( )                                                             if    3

sin(( 1) / 2 )         if  is odd
( ) ( )          if    3

cos( / 2 )                 if  is even

ki i
k k

i i
k k

F G i

k h k
F G i

k h k





  


 



  


  



 

ZZA_XN2 
3 ,  4n n    

sin(( 1) / 2 )         if  is odd
( ) ( )          if    2

cos( / 2 )                 if  is even

( ) ( ) ( )                                                             if    2

i i
k k

i i k
k k

k h k
F G i

k h k

F G i






 



  


  



  

 



 

 
 

ZZA_XN3 
3 ,  4n n    

 ( ) ( )                                                             if    4

sin(( 1) / 2 )         if  is odd
( ) ( )          if    4 6

cos( / 2 )                 if  is even

ki i
k k

i i
k k

i

F G i

k h k
F G i

k h k





  


 



  


   



                                 if 1
exp( / )                    if 2

( ) ( )            if    6
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

i
k k

k
h k

F G i
h k
h k






 









  




 

ZZA_XN4 
3 ,  4n n    

 ( ) ( )                                                             if    3

                                 if 1
exp( / )                    if 2

( ) ( )
sin( / 2 )               

ki i
k k

i i
k k

F G i

k
h k

F G
h





  




 



  




             if    3 6

 if  is odd
cos( / 2 )                 if  is even

sin(( 1) / 2 )         if  is odd
( ) ( )          if    6

cos( / 2 )                 if  is even
i i

k k

i
k

h k

k h k
F G i

k h k





 







 




  



 

ZZA_XN5 
3 ,  4n n    

                                 if 1
exp( / )                    if 2

( ) ( )            if    2
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

( )

i i
k k

i
k

k
h k

F G i
h k
h k

F








 











  




  ( )                                                             if    2 5

sin(( 1) / 2 )         if  is odd
( ) ( )          if    5

cos( / 2 )                 if  is even

ki
k

i i
k k

G i

k h k
F G i

k h k


 


 



  


  


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ZZA_XN6 
3 ,  4n n    

                                 if 1
exp( / )                    if 2

           if    3
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even
( )

             

i
k

k

k
h k

i
h k
h k

F
























                                                  if    3

                                                               if    3
( )

                                 if 1
exp(

k

i
k

i

i
F

k

































/ )                    if 2
           if    3

sin( / 2 )                if  is odd
cos( / 2 )                 if  is even

                                           
( )

k

i
k

h k
i

h k
h k

G





















 







                    if    3

sin(( 1) / 2 )         if  is odd
         if    3

cos( / 2 )                 if  is even

i

k h k
i

k h k










  


 



 

 
 

ZZA_XN7 
3 ,  4n n    

                                 if 1
exp( / )                    if 2

           if    3
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

( )              i k
k

k
h k

i
h k
h k

F









 










                                                   if    3< 6

sin(( 1) / 2 )         if  is odd
         if    6

cos( / 2 )                 if  is even

              

( )

k

i
k

i

k h k
i

k h k

F 





















 









                                                 if    3

                                 if 1
exp( / )                    if 2
sin( / 2 )                if  is odd

cos( / 2 )                 if 

i

k
h k

h k
h k














           if    3< 6

 is even

sin(( 1) / 2 )         if  is odd
         if    6

cos( / 2 )                 if  is even

                                         
( )

k

i
k

i

k h k
i

k h k

G

























 




                      if    3

                                 if 1
exp( / )                    if 2

         if 
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

i

k
h k

h k
h k



















   3i

















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ZZA_XN8 
3 ,  4n n    

                                 if 1
exp( / )                    if 2

           if    3
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

( )              i k
k

k
h k

i
h k
h k

F









 










                                                   if    3< 5

                                 if 1
exp( / )                    if 2
sin( / 2 )                if  is odd

cos( / 2 )                 i

i

k
h k

h k
h














           if    5

f  is even

                                                               if    3

                                 if 1
exp( / )             

( )

k

i
k

i

k

i

k
h

F 





















 








       if 2

           if    3< 6
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

                                                               if    6k

k
i

h k
h k

i





















( )                                                                    for each i k
kG i 









 

ZZA_XN9 
3 ,  4n n    

( )                                                                    for each 

                                                               if    1

                              

( )

i k
k

k

i
k

F i

i

F





 













   if 1
exp( / )                    if 2

           if    1<
sin( / 2 )                if  is odd

cos( / 2 )                 if  is even

                                                 k

k
h k

i nl
h k
h k


















              if    
   is the number of layer   

( )                                                                    for each i k
k

i nl
nl

G i 


















 

Table 3.10. New particularizations of ZZA_X theory. 

 
Also results of new theories ZZA_XN1 to ZZA_XN9 are indistinguishable 

from those of ZZA, confirming that the representation can be assumed differently 
for each displacements and for each region from point to point, without any loss 
of accuracy, if coefficients are redefined across the thickness for each layer and 
the full set of physical constraints of ZZA (1.15)-(1.20) is imposed. Another new 
theory, called ZZA_XN10 is reported in Table 3.11: 



 

 
 

 
 
 

Theory name Function 
ZZA_XN10 

4 ,  3n n     ( ) ( )                                                             for each ki i
k kF G i      

Table 3.11. ZZA_XN10 theory. 

 
This particularization is different because, differently to ZZA, the number of 

terms of in-plane displacements is four, while the number of transverse one is 
three. Again, because of coefficients are redefined for each layer across the 
thickness and at least the same number of physical constraints is imposed, this 
theory obtains results very close to ZZA and other theories obtained from it. It 
should be noticed that the position across the thickness of equilibrium points is 
more important than the previous theories and in particular, more accurate 
findings are obtained if they are assumed near the interfaces, instead of within 
them.  

As shown by accurate theories here developed (see chapters 4 and 5 for 
results), the level of generalization of ZZA_X is very high, because it is possible 
to choose a different representation not only for each displacements, but also 
different for any region across the thickness, with the chance of assuming an 
opportune and a proper representation for each region of displacement field 
depending on problem, thus ensuring efficiency (processing time are very low) 
and accuracy, as long as the same number of physical constraints is imposed and 
coefficients are redefined for each layer. For these reasons, this model is able to 
compete with more famous and used examples in Literature, such as [14]. In the 
next section another general theory is reported, called ZZA_GEN. Differently to 
ZZA_X, it does not contain linear contribution by FSDT. 

 

3.5.3 ZZA_GEN theory 

As previously stated, this theory is created as a generalized version of ZZA_X 
omitting linear contribution across the thickness retaken from FSDT. So, 
expression of ZZA_GEN across the thickness is obtained as a truncated series of 
functions of ς and unknown coefficients.  

Similarly to ZZA_X, coefficients are redefined for each layer across the 
thickness and user can choose the expression of functions and the expansion 
order. In order to test performance of ZZA_GEN under the same conditions of 
ZZA, expansion order is fixed to four for in-plane displacements and five for 
transverse one. Five coefficients of the first layer from below (two for in-plane 
displacements and one for transverse one, similarly to ZZA theory) are chosen as 

new d.o.f of this theory, which assume a similar role of 0u , 0w , 0
 . All other 

coefficients are calculated by imposing the full set of physical constraints of ZZA 
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(1.15)-(1.20). It should be noticed that no zig-zag functions are included into 
displacement field, because this choice does not affect results, being coefficients 
redefined for each layer across the thickness and calculated on a physical basis.  

Similarly to ZZA_X, the distinctive feature of ZZA_GEN is the possibility to 
choose a different representation not only for each displacements, but also 
differently for any region across the thickness (e.g. using a sinusoidal 
representation for some layers and a polynomial one for the others, see section 
3.5.4 for details). Because of numerical applications will show that very accurate 
and indistinguishable results are provided, it is confirmed that this choice is 
immaterial if coefficients are recomputed across the thickness and calculated by 
imposing the full set of physical constraints. It should be noticed that the only 
substantial difference between ZZA_GEN and ZZA_X is the omission of linear 
contribution of FSDT; moreover, d.o.f. are explicitly present only in the first layer  

For these reasons, the degree of generalization of ZZA_GEN is higher than 
ZZA_X. Results obtained by particularizations of ZZA_GEN are very close to 
ones provided by ZZA and other higher-order theories, demonstrating that the 
accuracy of ZZA_X does not even depend by assumption of linear contribution of 
FSDT into displacement field. Similarly to previous findings, previous statement 
is only valid under considered conditions (higher order adaptive theories with 
coefficients redefined for each layer across the thickness and calculated by 
imposing the full set of physical constraints). 

 
ZZA_GEN 

 Displacement-based, physically-based zig-zag theory; 
 Piecewise in-plane displacements (3)u  (redefined coefficients); 

 Piecewise transverse displacement (4)u  (redefined coefficients); 
 The number of terms for each displacements can be chosen by user 

as an input; 
 The functions that are used for representation can be freely chosen; 
 Different representations can be assumed for each displacements 

and for each region across then thickness; 
 No linear contribution of FSDT is included into displacement field. 

 
PROS CONS 

Generalized and refined version 
of ZZA; 

Bounded only by the limits of 
the imagination. 

All theories of previous sections 
can be obtained from ZZA_GEN 
as particularizations; 

 

Similar features than ZZA_X  
Very low processing time (high 
efficiency).  

 
 

( )n  indicates the order of expansion of in-plane and transverse displacements 

Table 3.12: Characteristic features of ZZA_GEN theory. 

 



 

 
 

 

3.5.4 Displacement field of ZZA_GEN 

This theory was developed in a paper that is currently under review as a 
generalized version of DZZ and ZZA_X. This theory is adaptive, so, its 
coefficients are redefined for each layer across the thickness. Being a general 
version of ZZA_X, it has similar features than parent theory, so, this theory does 
not contain any layerwise function and a general representation of variables is 
assumed across the thickness. Indeed, because its coefficients are redefined for 
each layer and calculated by imposing the full set of physical constraints (1.15)-
(1.20), then: 

 The choice of zig-zag functions is immaterial and they can be changed 
or omitted without any loss of accuracy; 

 Functions that are used to describe the representation of displacements 
across the thickness can be changed, without any loss of accuracy, as 
long as they are able to describe for each layer a cubic and a fourth-
order polynomial for in-plane and transverse displacements; under 
these conditions exponential, sinusoidal or polynomial representations 
can be assumed and also a combination of them;  

 There is no need to assign a specific role to coefficients; 

Moreover, linear contribution of FSDT (that is included into ZZA and all 
theories derived from it up to section 3.5.2) is omitted for ZZA_GEN and its 
particularizations, with the intended aim to test if it is essential to get accuracy. 
Anyway, results obtained by ZZA_GEN are indistinguishable from those obtained 
by ZZA_X1 to ZZA_X10, demonstrating that under these same conditions also 
linear contribution of FSDT can be omitted. So, the displacement field is: 

 

     
 
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             (3.18)   

 
Displacements are product of unknown amplitudes ( j iC  and j iC

) and 

generic functions of the thickness coordinate ( )iF   and ( )iG  ), whose 
expressions will be explained in the following part of this section, where j  is the 

layer index. These five coefficients of the first layer 1 0C , 1 1C  and 1 0C  are 

assumed as the only five degrees of freedom of this theory, instead of 0u , 0
  and 

0w  of ZZA and its variants. n  and n  are fixed to three and four for in-plane and 

transverse displacements, respectively, with the intended aim to test this theory 
under the same conditions of ZZA and other models of this chapter. Remaining 
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coefficients j iC  and j iC
 for  or 1i j   are calculated by imposing the full set of 

physical constraints (1.15)-(1.20). Particularly, two equilibrium points are chosen 
for the inner layers (six equations), while only one (three equations) is necessary 
for the outer ones. Eight boundary conditions are enforced (1.15)-(1.18) (four 
equations for each outer layers), while four continuity of out-of-plane stresses and 
of gradient of transverse normal stress and three compatibility conditions of 
displacements are imposed at each interfaces. So, the expressions of 13 5N   
coefficients can be determined. It should be noticed that they depend only from 
geometry, material properties, five d.o.f. 1 0C , 1 1C , 1 0C

 and their derivatives. 

The expression of d.o.f. are calculated by using Rayleigh-Ritz, similarly to ZZA 
and theories obtained from it. 

 Regarding numerical applications, two different particularizations will be 
used. The first one is called ZZA_GEN1 and it is retaken from [20]: 

( ) ( )i i iF G               (3.19)   
 
The second one is called ZZA_GEN2* and it is new: 

/

1                   for 0
                   for 1

( ) ( ) sin( / )     for 2                  for     
               for 3

cos( / )    for 4

( ) ( )     

i i

h

i i i

i
i

F G h i j even
e i

h i

F G





  



  

 


 
 

    
 


 
  

      for     j odd

   (3.20)   

 
As previously stated, results obtained by these theories are very accurate, 

indistinguishable from those of other higher-order theories, and they demonstrate 
that also linear contribution by FSDT is not necessary to obtain precise 
displacements and stresses. Moreover, similarly to ZZA_X these theories are very 
general, efficient, able to compete with more famous and used examples in 
Literature [14] and very interesting, because they require only five d.o.f.  

Figure 3.4 shows the genealogical tree of all theories of chapters 2 and 3 (all 
particularizations of theories are not expressly reported in Figure, for the sake of 
clarity, being their number very high), while Figure 3.5 contains the flow-chart 
that summarizes all steps performed in chapters 2 and 3. 

 



 

 
 

 

Figure 3.4: Genealogy of all theories of chapters 2 and 3 
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Figure 3.5: Flow-chart of all steps needed to develop ZZA_X 

 
 
 
 
 
 
 
 



 

 
 

In the next chapters, theories are assessed considering challenging elastostatic 
and dynamic benchmarks retaken from literature. Tables 3.13a to 3.15i report 
material properties, lay-up and processing time of all elastostatic and dynamic 
cases considered in papers produced during PhD activity. Grey highlighted 
benchmarks are analyzed also into this thesis. Obviously, the same tables are valid 
for natural frequencies benchmarks, but there are no applied loads. 

 
 
 

Material name c1 [iso] c2 [iso] Foam Gr-Ep hh i1 i2 m mc n [iso] p 

E1[GPa] - - 0.035 132.38 250x10-3 6.89 0.1 32.57x103 0.1 - 172.4 

E2[GPa] - - 0.035 10.76 250x10-3 6.89 0.1 1x103 0.1 - 6.89 

E3 [GPa] M1 M2 0.035 1.076 2500x10-3 6.89 0.1 1x103 0.1 M3 6.89 

G12 [GPa] - - 0.0123 5.65 1x10-3 2.59 0.037 6.5x102 0.04 - 3.45 

G13 [GPa] - - 0.0123 5.65 875x10-3 2.59 0.037 8.21x103 0.04 - 3.45 

G23 [GPa] - - 0.0123 3.61 1750x10-3 2.59 0.037 3.28x103 0.04 - 1.378 

σ12 0.34 0.34 0.4 0.24 0.9 0.33 0.33 0.25 0.25 0.33 0.25 

σ13 0.34 0.34 0.4 0.24 3x10-5 0.33 0.33 0.25 0.25 0.33 0.25 

σ23 0.34 0.34 0.4 0.49 3x10-5 0.33 0.33 0.25 0.25 0.33 0.25 

M1  El/Eu=5/4, El/Ec=105          M2  El/Eu=5/4, El/Ec=104       M3  Eu/El=1.6, Eu/Ec=166.6·105        

 [iso]=isotropic     E1=E2=E3     G1=G2=G3 

Table 3.13a: Material properties; part 1. 
 
 
 

Material name pf pvc q r s1 s2 s3 s4 

E1[GPa] 25x103 25x101 0.273 25E2 1 33 25 0.05 

E2[GPa] 1x103 25x101 0.273 E2 1 1 1 0.05 

E3 [GPa] 1x103 25x101 0.273 E2 1 1 1 0.05 

G12 [GPa] 5x102 9.62x101 0.1102 0.5E2 0.2 0.8 0.5 0.0217 

G13 [GPa] 5x102 9.62x101 0.413 0.5E2 0.2 0.8 0.5 0.0217 

G23 [GPa] 2x102 9.62x101 0.413 0.2E2 0.2 0.8 0.5 0.0217 

σ12 0.25 0.3 0.25 0.25 0.25 0.25 0.25 0.15 

σ13 0.25 0.3 0.25 0.25 0.25 0.25 0.25 0.15 

σ23 0.25 0.3 0.25 0.25 0.25 0.25 0.25 0.15 

Table 3.13b: Material properties; part 2. 
 
 
 
 
 
 
 
 
 
 



 

79 
 

 
 
 

Material 
name 

da db dc dd de df dg dh dl1 dl2 dm1 dm2 dm3 dmc 

E1[GPa] M1 30E2 25E2 181 40E2 131 6.89∙10-3 25E2 33.5 139 1 33 0.05 0.1 

E2[GPa] - - - 10.3 - 10.34 6.89∙10-3 - 8 3.475 1 1 0.05 0.1 

E3 [GPa] E2 E2 E2 10.3 E2 10.34 6.89∙10-3 E2 8 3.475 1 1 0.02 0.1 

G12 [GPa] 0.6E2 0.6E2 0.5E2 7.17 0.6E2 6.205 3.45∙10-3 0.5E2 2.26 1.7375 0.02 8 0.0217 0.04 

G13 [GPa] 0.6E2 0.6E2 0.5E2 7.17 0.6E2 6.895 3.45∙10-3 0.2E2 2.26 1.7375 0.02 8 0.0217 0.04 

G23 [GPa] 0.5E2 0.5E2 0.2E2 2.87 0.5E2 6.895 3.45∙10-3 0.2E2 3 0.695 0.02 8 0.0217 0.04 

σ12 0.25 0.25 0.25 0.25 0.25 0.22 0 0.25 0.35 0.25 0.25 0.25 0.15 0.25 

σ13 0.25 0.25 0.25 0.25 0.25 0.22 0 0.25 0.35 0.25 0.25 0.25 0.15 0.25 

σ23 0.25 0.25 0.25 0.33 0.25 0.49 0 0.25 0.33 0.25 0.25 0.25 0.15 0.25 

ρ ρ ρ ρ 1587 ρ 1627 97 ρ 1627 1627 1558.35 1558.35 16.3136 ρ 

Table 3.13c: Material properties; part 3. 

 
 
 
 

Material  
name dm * do1 do2 do3 dp dq dr1 dr2 ds dt du1 du2 dv dw dz 

E1[GPa] E1 206.84 0.138 0.0138 172.4 132.4 33.5 139 6.89 0.035 36.23 190 0.036 0.070 0.020 

E2[GPa] E2 5.171 0.138 0.0138 6.89 10.8 8 3.475 6.89 0.035 10.62 7.7 0.036 0.070 0.020 

E3 [GPa] E2 5.171 0. 138 0. 0138 6.89 10.8 8 3.475 6.89 0.035 7.21 7.7 0.036 0.070 0.020 

G12 [GPa] 0.5E2 2.551 0.1027 0.01027 3.45 5.6 2.26 1.7375 3.45 0.0123 5.6 4.2 0.013 0.019 0.012 

G13 [GPa] 0.5E2 2.551 0.1027 0.01027 3.45 5.6 2.26 1.7375 3.45 0.0123 5.68 4.2 0.013 0.019 0.012 

G23 [GPa] 0.2E2 2.551 0.06205 0.006205 1.378 5.6 3 0.695 3.45 0.0123 3.46 2.96 0.013 0.019 0.012 

σ12 0.25 0.25 0.35 0.35 0.25 0.24 0.35 0.25 0 0.4 0.26 0.3 0.38 0.3 0.3 

σ13 0.25 0.25 0.35 0.35 0.25 0.24 0.35 0.25 0 0.4 0.33 0.3 0.38 0.3 0.3 

σ23 0.25 0.25 0.02 0.02 0.25 0.24 0.35 0.25 0 0.4 0.48 0.3 0.38 0.3 0.3 

ρ 1558.35 1558.35 16.3136 16.3136 1558.35 1443 1627 1627 97 32 1800 1600 32 52.1 39.7 

* El/E2=3,25,40 for case b 

Table 3.13d: Material properties; part 4. 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
BCS Sketch Loading 

Simply Supported beams under 
sinusoidal loading 
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Case Lay-up Layer thickness Material Lx/h Ly/Lx Expansion 

Order 
a [15] 
d [16] 
a [20] 

[0/-90/0/-90] [0.25h]4 [p]4 4 
- 

1 

b [15] 
d [18] [90/05/90] [0.1h2/0.2h3/0.1h2] [pf2/pvc/hh]S 8 - 1 

c [15] [0/90/02/90] [0.3h/0.2h/0.15h/ 
 0.25h/0.1h] [pf3/m/pf] 8 - 1 

d [15] [±45/∓45/0/902/ 
0/∓45/±45] [ h/12 ]12 [pf12] 8 - 1 

n* [15] [0/90/04/90] [0.1h2/0.2h3/ 
0.15h/0.05h] [pf2/pvc/hh]S 8 - 1 

a [16] [0/90/0/0/0/90]S 
[((0.0333h)3/ 

0.35h)2/ 
(0.0333h)3] 

[(p3/q)2/ p3] 5 
- 

1 

b [16] [90/0] [0.5h/0.5h] [r2] 4 - 1 

c* [16] 
i* [18] [ 0 ]11 

[0.01h/0.025h/ 
0.015h/0.02h/ 
0.03h/0.4h]S 

[s1/s2/s3/s1/ 
s3/s4]S 

4 
- 

1 

a [18] [90/0] [0.5h/0.5h] [r2] 4 - 1 

b [18] [0/90/0] [ (h/3)3 ] [p3] 4 - 1 

c [18] [0/90/03/90]S 
[((0.0333h)3/ 

0.35h)2/ 
(0.0333h)3] 

[(p3/q)2/ p3] 5 
- 

1 

b [22] [0/90/0] [ (h/3)3 ] [p3] 4 
- 1 

b1 [17] [0/90/0] [(h/3)]3 [dp]3 10 - 1 

b2 [17] [0/90/0/90] [(h/4)]4 [dp]4 10 - 1 

b3 [17] [0]3 [0.1h/0.8h/0.1h] [dp/dmc/dp] 4,10,20 - 1 

e1 [17] [0/90/0] [0.25h/0.5h/0.25h] [dd]3 5,10,20 - 5 

f [17] [0/90] [(h/2)]2 [dh]2 10 0.1 6 

g [17] [08] 
[0.025h/0.05h/ 
0.125h/0.3h]S 

[dm2/dm1/dm2/dm3]S 5 - 3 

a [19] [0/90/0] [(h/3)]3 [dp]3 4,10,20 - 5 

b (section 5.2) [0/90/0] [(h/3)]3 [dm]3 4 - 5 

* Damaged; in grey cases retaken also in this thesis. 

 

Table 3.14a: List of cases (simply-supported beams) 
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BCS Sketch Loading 

Simply Supported plates under bi-
sinusoidal loading 
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Case Lay-up Layer thickness Material Lx/h Ly/Lx Expansion 

Order 
e [15] [0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 10 1 1 
f [15] 
e [16] 
e [18] 
c [22] 

[0/0/0] [0.2h/0.7h/0.1h] [c1/c1/c1] 4 3 1 

g [15] 
j [16] 
b [23] 

[0/0/0] [0.1h/0.4h]S [p/mc/p] 4 1 1 

l* [15] 
i* [16] 
f* [18] 
b [20] 
f [22] 

[0/0/0] [0.2h/0.7h/0.1h] [c2/c2/c2] 4 3 1 

q* [15] 
j* [18] 
c* [20] 

[0/0/0] [0.05h/0.85h/0.10h] [p/mc/p] 4 1 1 

c [23] [0/90/0] [ (h/3)3 ] [p3] 4 1 1 

c1 [17] [0/90/0/90] [(h/4)]4 [da]4 5 1 1 

c2 [17] [90/0/90/0] [(h/4)]4 [db]4 10/3 1 1 

d1 [17] [0/90/0] [(h/3)]3 [dc]3 4,10,20, 30,50,100 1 1 

d2 [17] [0/90/0] [(h/3)]3 [dp]3 10 1 4 

e3 [17] [0/90/0/0/90] [(h/24)2 / (5h/12)]S [df2/dg]S 10 1 6 

h [17] 
c [19] [0/90/0/0/90] [(h/24)2 / (5h/12)]S [dr1/dr2/ds/dr1/dr2] 5 1 10 

i1 [17] [(45/-45)2/45/0]S [(0.381mm)5/(12.7mm)]S [do15/do2]S 20.8696 1 11 

i2 [17] [0/90/0] [0.25h/0.5h/0.25h] [dq]3 14.941 1 11 

i3 [17] [(0/90)2/02]S [(0.381mm)5 /(12.7mm)]S [do15/do2/do3/do15] 10 1 11 

b [19] [0] [h] ♣ 10 1 10 

d [19] [0/90/0/0/90] [(h/24)2 / (5h/12)]S [dr1/dr2/dt/dr1/dr2] 5 1 10 

e [19] [05] [(h/24)2 / (5h/12)]S [du1/du2/dv/du1/du2] 4 1 15 

f [19] [05] [(h/24)2 / (5h/12)]S [du1/du2/dw/du1/du2] 4 1 15 

g [19] [06] 
[(h/24)2 / (30h/48) /  
(10h/48) / (h/24)2] 

[du1/du2/dv/dz/du1/du2] 4 1 15 

* Damaged; in grey cases retaken also in this thesis. 
♣  material properties are specified in text (section 5.3) 

 

Table 3.14b: Table 3b. List of cases (simply-supported plates) 

 
 
 
 
 



 

 
 

 
BCS Sketch Loading 

Propped-cantilever beam under a 
uniform loading 
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Case Lay-up Layer thickness Material Lx/h Expansion 
Order 

h [15] 
f [16] 
m [18] 
e [21] 
a [23] 

[0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 5.714 9 

t [15] 
d [21] 
a [22] 

[0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 14.286 9 

u [15] 
g [16] 
g [18] 
f [20] 

[0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 20 9 

v [15] [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 50 9 

y* [15] [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 5.714 9 

* Damaged; in grey cases retaken also in this thesis. 

 

Table 3.14c: List of cases (propped-cantilever beams) 

 
 
 
 
 

BCS Sketch Loading 

Simply-supported beams under a 
sinusoidal loading (2 halfwaves) 
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Case Lay-up Layer thickness Material Lx/h Expansion 

Order 
i [15] 
a [21] 
d [22] 

[0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 10 1 

j* [15] 
b* [21] [0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 10 1 

* Damaged; in grey cases retaken also in this thesis. 

 

Table 3.14d: List of cases (simply-supported beams under sinusoidal loading - 
2 halfwaves) 
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BCS Sketch Loading 

Simply-supported beams under step 
loadings  
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Case Lay-up Layer thickness Material Lx/h Expansion 
Order 

k [15] 
c [21] [0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 10 1 

o [15] 
d [20] [90/05/90] [0.1h2/0.2h3/0.1h2] [pf2/pvc/hh]S 8 1 

p* [15] [90/05/90] [0.1h2/0.2h3/0.1h2] [pf2/pvc/hh]S 8 1 
r [15] 
k [18] 
e [20] 
e [22] 
e [23] 

[0]11 
[0.01h/0.025h/ 
 0.015h/0.02h/ 
 0.03h/0.4h]s 

[s1/s2/s3/s1/ 
s3/s4]S 

4 1 

s* [15] [0]11 
[0.01h/0.025h/ 
 0.015h/0.02h/ 
 0.03h/0.4h]s 

[s1/s2/s3/s1/ 
s3/s4]S 

4 1 

* Damaged; in grey cases retaken also in this thesis. 

 

Table 3.14e: List of cases (simply-supported beams under step loadings) 

 
 
 
 

BCS Sketch Loading 

Simply-supported plates under 
uniform localized step loadings  
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Case Lay-up Layer thickness Material Lx/h Ly/Lx Expansion 

Order 
m [15] 
k [16] 
h [18] 
d [23] 

[0/0/0] [0.05h/0.9h/0.05h] [i1/i2/i1] 5 1 20 

 

Table 3.14f: List of cases (simply-supported plates under localized step 
loading) 

 
 
 
 



 

 
 

BCS Sketch Loading 

Simply-supported beams under step 
loadings (2 steps) 
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Case Lay-up Layer thickness Material Lx/h Expansion 
Order 

w* [15] 
f* [23] [0/0/0] [(2h/7)/(4h/7) 

/(h/7)] [n/n/n] 5.714 1 

x* [15] 
l* [18] [0/0/0] [(2h/7)/(4h/7) 

/(h/7)] [n/n/n] 25 1 

* Damaged; in grey cases retaken also in this thesis. 

Table 3.14g: List of cases (simply-supported beams under localized step 
loadings) 

 
 
 

BCS Sketch Loading 

Propped-cantilever beam under a 
uniform loading 
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Case Lay-up Layer thickness Material Lx/h Expansion 
Order 

h [16] [0/0/0] [(2h/7)/(4h/7) 
/(h/7)] [n/n/n] 5.714 9 

* Damaged; in grey cases retaken also in this thesis. 

 
Table 3.14h: List of cases (propped-cantilever beam with support at 0.9Lα) 
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Case Lay-up Layer thickness Material BCS Lx/h Ly/Lx Expansion 
Order 

d2 [17] [0/90/0] [(h/3)]3 [p]3 CCCC 10 1 4 

e2 [17] [0/90/0] [(h/3)]3 [e]3 CCCC 10 1 10 

 

Table 3.14i: List of cases (clamped plates used in the study of natural 
frequencies). 
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Case Lay-up Layer thickness Material BCS Lx/h Ly/Lx Expansion 
Order 

d2 [17] [0/90/0] [(h/3)]3 [p]3 CSCS 10 1 4 

 

Table 3.14j: List of cases (clamped-supported plates). 

 
Processing time of theories 

Preliminarily, Tables 4a to 4c show time calculations for elastostatic and 
dynamic cases, in order to demonstrate that the most advanced, general and 
significant theories show processing time very close to FSDT ones (but with a 
superior accuracy). So, it is demonstrated a major efficiency than HT, MZZ and 
CUF particularizations because they require a high expansion order of variables 
across the thickness. It should be noticed that processing time is reported in [s] 
and includes symbolic computations. A laptop computer with quad-core CPU @ 
2.60GHz, 64-bit operating system and 8.00 GB RAM was used. A graphical, 
condensed comparison of computing times is added for each Table from 3.15a to 
3.15l in Figures 3.6a to 3.6l (processing times are reported normalized to ZZA 
ones). 

 
 

Case a b c d e f g h i j k l m 
 [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] 
ZZA 13.5620 19.9740 16.3883 40.8100 10.5768 10.6297 10.6768 15.0671 4.9770 4.9120 5.6127 10.5392 10.9591 
HRZZ 14.9182 20.9727 17.2077 44.8910 12.1633 11.6926 11.1786 18.2312 5.3990 5.5423 7.4582 11.5234 12.5887 
HRZZ4 14.7821 20.9727 17.5078 44.8801 12.9170 11.6649 11.4805 18.2237 5.4094 5.2737 11.0258 11.8083 12.5681 
HWZZ 12.0193 18.4149 14.5241 32.8215 6.6664 6.6997 6.7164 12.4271 4.4949 4.5726 5.2894 6.4675 6.7755 
MHR 8.1514 11.7768 8.6557 22.2391 6.5138 6.5659 6.5879 6.9574 4.3663 4.5619 4.8186 6.7454 6.6732 
MHR4 8.6564 11.7603 8.9334 22.2916 6.8826 6.4724 6.2271 6.4946 4.3310 4.3291 4.9692 6.5908 6.5056 
MHWZZA 10.7396 16.8825 13.3830 30.0784 8.5096 8.2006 8.1997 7.2359 4.4726 4.6131 5.1828 8.2660 8.6730 
MHWZZA4 10.2451 16.7948 13.9403 30.7918 8.1205 8.6045 8.9273 7.8365 4.6211 4.7301 5.2798 8.5094 8.9862 
FSDT 2.7860 4.2943 3.2548 5.3116 5.4858 4.9372 4.8155 7.3303 2.3014 2.3045 2.4700 4.1470 4.0778 

 
Case n o p q r s t u v w x y 
 [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] [14] 
ZZA 19.7816 19.6433 19.7018 10.3465 17.5977 17.7618 15.0929 15.9719 15.5691 5.1241 5.0712 15.8988 
HRZZ 20.7518 20.2183 20.5618 11.6618 20.9194 20.9960 18.4274 18.2261 18.0730 7.5249 7.9113 18.2287 
HRZZ4 20.6340 20.6428 20.6898 11.4963 21.1942 21.6093 18.9174 18.4891 18.2253 11.8633 11.5603 18.4489 
HWZZ 18.0556 18.4597 18.5196 6.5745 15.1594 15.8755 12.0471 12.8490 12.4573 5.6470 5.1993 12.3960 
MHR 11.3941 11.4933 11.4818 6.8583 12.0285 11.9971 6.7118 6.6258 6.9350 4.1371 4.5774 6.9651 
MHR4 11.2161 11.4761 11.3615 6.2430 12.5987 12.4183 6.1582 6.9702 6.2895 4.1968 4.6969 6.4367 
MHWZZA 16.7661 16.9729 16.1719 8.3921 14.1698 14.3591 7.2626 7.6952 7.2143 5.9613 5.3375 7.9157 
MHWZZA4 16.1256 16.7753 16.4800 8.0087 14.2118 14.8513 7.1210 7.5861 7.6056 5.8986 5.8352 7.8126 
FSDT 6,1726 6,2168 6,1601 5,0712 6,5481 6,6445 5,9211 4,0522 6,1263 1,9067 2.3261 6.1245 

 

Table 3.15a: Processing time of theories from [14] 



 

 
 

 

Figure 3.6a: Graphical, condensed comparison of computing times of 
theories of Table 3.15a. Results are normalized to processing time of ZZA. 

 
Case a1 a2 b1 b2 b3 c1 c2 d1 d2 e1 e2 e3 f 
 [15] [15] [15] [15] [15] [15] [15] [15] [15] [15] [15] [15] [15] 
ZZA 15.0671 15.9719 5.3866 6.8790 5.1194 29.6992 30.6735 26.4457 27.3202 15.2146 49.8998 52.3788 20.9916 
HRZZ 18.2312 18.2261 4.6117 6.1888 4.8988 27.7977 28.4370 24.2019 25.0022 13.9237 45.6660 57.0334 19.2106 
HRZZ4 18.2237 18.4891 5.0138 5.0387 5.0302 34.1087 36.4426 26.3526 27.2240 15.1610 49.7241 53.0857 20.9177 
HWZZ 12.4271 12.8490 4.9640 6.2761 4.8679 27.3591 28.5739 24.5286 25.3396 14.1116 46.2823 37.5954 19.4698 
MHR 6.9574 6.6258 2.8107 4.8288 2.7918 22.1087 23.6429 17.3712 17.9456 9.9939 32.7772 38.6301 13.7886 
MHR4 6.4946 6.9702 2.9093 5.1452 2.6853 23.0599 24.0987 17.8493 18.4395 10.2689 33.6793 44.4327 14.1681 
MHWZZA 7.2359 7.6952 3.7606 5.2613 3.6640 25.6959 25.6960 20.5304 21.2093 11.8114 38.7383 44.4865 16.2963 
MHWZZA4 7.8365 7.5861 3.7602 5.2608 3.6636 25.7012 25.8412 20.5553 21.2350 11.8257 38.7852 47.7931 16.3160 
HWZZM 11.5344 11.7059 4.1887 5.5954 4.0014 27.2368 27.1604 22.0831 22.8133 12.7047 41.6680 46.8301 17.5287 
HWZZMA 11.5265 11.6018 4.1595 5.4061 3.9401 26.7922 26.4161 21.6381 22.3536 12.4487 40.8284 47.2328 17.1755 
HWZZMB 11.5307 11.6289 4.1817 5.5216 3.9819 26.5349 26.8692 21.8242 22.5459 12.5558 41.1795 47.2427 17.3232 
HWZZMC 11.5314 11.6457 4.1869 5.5926 3.9198 26.5605 26.8951 21.8288 22.5506 12.5584 41.1881 47.2981 17.3269 
HWZZMB2 11.5310 11.6389 4.1659 5.5490 3.9905 26.5797 26.9146 21.8544 22.5770 12.5731 41.2365 47.2202 17.3472 
HWZZMC2 11.5317 11.6401 4.1849 5.5951 3.8996 26.5905 26.9255 21.8184 22.5399 12.5524 41.1686 46.4436 17.3186 
HWZZM0 11.4287 11.5912 4.1554 5.5079 3.7994 26.2617 26.3411 21.4596 22.1692 12.3460 40.4915 37.7979 17.0338 
MHR± 6.9574 6.6258 3.0388 4.8770 2.8197 22.1087 23.6429 17.4648 18.0423 10.0477 32.9538 38.8376 13.8629 
MHR4± 6.4946 6.9702 3.0384 5.1967 2.7122 23.0599 24.0987 17.9451 18.5385 10.3241 33.8602 47.7931 14.2442 
ZZA* 11.4951 11.6125 3.8722 5.1722 3.8378 25.3302 25.2592 20.7581 21.6727 12.0695 38.7513 44.4886 16.4770 
HWZZM* 10.9577 11.0035 3.9374 5.3156 3.8013 24.0637 24.5123 19.5104 20.3723 11.2246 37.2096 41.8193 15.4866 
FSDT - - 3.0397 3.8151 2.6100 8.7624 8.8968 11.7092 12.0963 6.7364 22.0938 25.3415 - 
HSDT - - 3.2507 4.1839 2.6134 11.5608 11.6764 13.1811 13.6169 7.5832 24.8711 28.5271 - 

 
Case g h i1 i2 i3 
 [15] [15] [15] [15] [15] 
ZZA 20.4415 57.4363 147.6859 76.1909 143.1814 
HRZZ 18.7072 52.5631 135.1555 69.7264 130.4250 
HRZZ4 20.3696 57.2341 147.1661 75.9227 150.2565 
HWZZ 18.9596 53.2725 136.9795 70.6674 138.1438 
MHR 13.4273 37.7277 97.0092 50.0468 93.0318 
MHR4 13.7968 38.7660 99.6791 51.4242 100.9251 
MHWZZA 15.8692 44.5891 114.6519 59.1487 117.1169 
MHWZZA4 15.8884 44.6430 114.7906 59.2202 116.9716 
HWZZM 17.0694 47.9613 123.3228 63.6220 119.6847 
HWZZMA 16.7254 46.9949 120.8379 62.3400 117.8773 
HWZZMB 16.8693 47.3990 121.8770 62.8761 122.6692 
HWZZMC 16.8728 47.4089 121.9025 62.8892 121.4148 
HWZZMB2 16.8926 47.4645 122.0455 62.9630 125.2797 
HWZZMC2 16.8648 47.3864 121.8446 62.8594 125.6217 
HWZZM0 16.5874 46.6071 119.8407 61.8256 114.0284 
MHR± 13.4996 37.9309 97.5317 50.3164 93.58166 
MHR4± 13.8709 38.9742 100.2145 51.7004 98.46074 
ZZA* 16.2159 44.6040 114.6902 59.8047 112.7978 
HWZZM* 14.7633 42.3786 106.6619 56.2164 106.5141 
FSDT 9.0508 25.4307 65.3900 33.7345 64.1452 
HSDT 10.1885 28.6275 73.6099 37.9752 75.5128 

 
Table 3.15b: Processing time of theories from [15] 
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Figure 3.6b: Graphical, condensed comparison of computing times of 
theories of Table 3.15b. Results are normalized to processing time of ZZA. 

 
 
 

Case d e f g h i h k 
 [16] [16] [16] [16] [16] [16] [16] [16] 
ZZA 13.5620 10.6297 15.0671 15.9719 15.0671 10.5392 10.3465 10.9591 
ZZA1 10.9875 6.0213 10.4752 10.8763 10.6351 5.5423 5.9752 5.9741 
ZZA2 10.9742 6.0317 10.4875 10.8564 10.6241 5.6574 5.8741 6.0244 
ZZA3 10.9657 6.0417 10.4784 10.7419 10.5934 5.5479 5.5369 5.7465 
HWZZ 12.0193 6.6997 12.4271 12.8490 12.4271 6.4675 6.5745 6.7755 
HWZZM 11.0702 6.1781 11.5344 11.7059 11.5359 5.9675 6.1899 6.2402 
HRZZ 14.9182 11.6926 18.2312 18.2261 18.2312 11.5234 11.6618 12.5887 
HRZZ4 14.7821 11.6649 18.2237 18.4891 18.2237 11.8083 11.4963 12.5681 
MHR 8.1514 6.5659 6.9574 6.6258 6.9574 6.7454 6.8583 6.6732 
MHR4 8.6564 6.4724 6.4946 6.9702 6.4946 6.5908 6.2430 6.5056 
MHWZZA 10.7396 8.2006 7.2359 7.6952 7.2359 8.2660 8.3921 8.6730 
MHWZZA4 10.2451 8.6045 7.8365 7.5861 7.8365 8.5094 8.0087 8.9862 
HWZZMA 10.9925 6.1642 11.5265 11.6018 11.5267 5.9249 6.0498 6.0951 
HWZZMB 11.0215 6.1737 11.5307 11.6289 11.5317 5.9423 6.1003 6.1143 
HWZZMC 11.0498 6.1772 11.5314 11.6457 11.5326 5.9543 6.1240 6.1597 
HWZZMB2 11.0314 6.1737 11.5310 11.6389 11.5301 5.9472 6.1157 6.1142 
HWZZMC2 11.0492 6.1772 11.5317 11.6401 11.5334 5.9498 6.1291 6.1457 
HWZZM0 10.9611 6.0856 11.4287 11.5912 11.4873 5.8752 6.0327 6.0475 

 

Table 3.15c: Processing time of theories from [16] 



 

 
 

 

 

Figure 3.6c: Graphical, condensed comparison of computing times of 
theories of Table 3.15c. Results are normalized to processing time of ZZA. 

 
Case a b c d e f g h i j k l m 

 [17] [17] [17] [17] [17] [17] [17] [17] [17] [17] [17] [17] [17] 
ZZA 3.3140 4.3157 13.9569 16.3883 10.6297 10.5392 15.9719 10.9591 17.7618 10.3465 17.5977 5.0712 15.0671 

AT-3D 6.2185 8.5624 27.9147 30.2778 21.5874 20.8736 32.6942 22.3982 34.0219 20.5874 35.6241 9.9517 31.2756 
NOZZG 3.1841 3.6358 11.7996 13.8372 8.9871 8.9160 13.4737 9.3003 14.8997 6.6795 15.1430 4.4821 12.7127 

ZZA_PT34 2.8537 3.3276 10.7164 12.6027 8.1752 8.1083 12.2958 8.4470 13.7159 7.8975 13.5123 3.8861 11.4931 
ZZA_PM34 2.9225 3.4173 11.0321 12.9873 8.3588 8.2848 12.6349 8.6652 13.9970 5.9863 14.7423 5.0158 11.5457 

ZZA_PMTP34 3.4455 3.9915 12.9249 15.1781 9.8828 9.8298 14.8378 10.1431 16.3952 5.5894 16.3230 4.6891 13.9214 
ZZA_PPM34 3.4014 3.9750 12.8176 15.1030 9.8035 9.7254 14.7325 10.0894 16.3853 5.5478 16.1002 4.6682 13.8047 
ZZA_PP34 2.9621 3.4482 11.1867 13.0586 8.5029 8.4040 12.8162 8.7773 13.6458 8.2779 14.5861 4.0354 12.2354 

PP23 3.0645 3.8846 8.2573 9.8624 6.3526 6.2106 9.5893 6.4017 10.9514 4.7226 10.6062 4.5327 10.2339 
ZS1 2.1342 2.7811 9.3182 10.8485 6.8137 7.0037 10.2210 7.3050 10.5897 6.8947 11.9177 3.2592 9.6038 

ZS1_1 1.9396 2.5422 8.0878 9.8260 6.2477 6.0597 9.3034 6.4614 8.9847 6.1258 11.2197 2.9826 8.7055 
ZS1_2 2.2610 2.9537 9.5402 11.2410 7.3884 7.3232 10.9019 7.5649 11.0958 7.1060 12.6351 3.4898 10.1534 
ZS1_3 2.4760 3.3231 10.5969 12.3715 7.9341 8.1695 12.2374 8.3562 11.4867 7.9118 14.7966 3.7896 11.4258 
ZS1_4 2.3205 3.0203 9.5380 11.2525 7.3912 7.3788 11.0865 7.6077 10.9212 7.1585 13.0382 3.4846 10.2185 

ZS2 1.2799 1.6089 5.3337 6.2695 4.0342 4.1021 6.2347 4.1427 6.2634 3.9151 6.9072 1.9100 5.8877 
ZS3 1.5054 1.9549 6.2391 7.3521 4.7385 4.6719 7.1381 5.0099 7.6527 4.6373 7.8870 2.2805 6.9498 

ZS3_1 1.7543 2.3105 7.3627 8.8802 5.6168 5.6890 8.5198 5.8125 8.9873 5.4082 9.4766 2.6976 7.9565 
ZS3_2 3.0435 3.8258 12.5779 15.0670 9.3962 9.5709 14.1009 9.9447 17.4143 9.4686 13.8120 4.6254 13.6422 
ZZAS1 1.7568 2.3206 7.6841 8.8724 5.8794 5.6498 8.6052 5.8420 8.9926 5.5809 9.6497 2.7667 8.1453 
ZZAS2 1.9329 2.4742 7.9767 9.5070 6.0207 6.1254 8.9058 6.2003 9.7453 6.0016 9.9650 2.8867 8.5223 
ZZAS3 2.0550 2.6146 8.8262 10.1530 6.7139 6.4991 9.6984 6.8624 10.3285 6.5148 11.0327 3.1558 9.1218 
ZZAS4 2.7662 3.7225 11.9672 14.3280 9.2482 9.0977 13.6707 9.2956 14.0969 7.5691 14.1913 5.1216 12.4721 
FSDT 1.4502 1.9507 6.1935 3.2548 4.9372 4.1470 4.0522 4.0778 6.6445 5.0712 6.5481 2.3261 7.3303 

 
Table 3.15d: Processing time of theories from [17] 
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Figure 3.6d: Graphical, condensed comparison of computing times of 
theories of Table 3.15d. Results are normalized to processing time of ZZA. 

 
Case h a b d e f g 
 [15] [18] [18] [18] [18] [18] [18] 
ZZA 57.4363 5.3866 7.0182 46.4055 43.3751 45.7840 54.5138 
HRZZ 52.5631 4.6117 6.2076 41.0461 38.3657 40.4964 48.2179 
HRZZ4 57.2341 5.0138 6.7541 44.6591 41.7428 44.0610 52.4623 
HWZZ 53.2725 4.9640 6.4877 42.8977 40.0964 42.3232 50.3931 
MHR 37.7277 2.8107 4.1177 27.2271 25.4491 26.8625 31.9844 
MHR4 38.7660 2.9093 4.2454 28.0714 26.2383 27.6955 32.9763 
MHWZZA 44.5891 3.7606 5.1634 34.1415 31.9120 33.6843 40.1070 
MHWZZA4 44.6430 3.7602 5.1663 34.1607 31.9299 33.7032 40.1295 
HWZZM 47.9613 4.1887 5.6511 37.3664 34.9263 36.8660 43.8954 
HWZZMA 46.9949 4.1595 5.5746 36.8605 34.4534 36.3669 43.3010 
HWZZMB 47.3990 4.1817 5.6134 37.1167 34.6929 36.6197 43.6020 
HWZZMC 47.4089 4.1659 5.6065 37.0715 34.6507 36.5750 43.5489 
HWZZMB2 47.4645 4.1869 5.6175 37.1439 34.7183 36.6464 43.6339 
HWZZMC2 47.3864 4.1849 5.6148 37.1262 34.7018 36.6290 43.6131 
HWZZM0 46.6071 4.1554 5.5491 36.6915 34.2955 36.2002 43.1026 
MHR± 37.9309 3.0388 4.2840 28.3264 26.4767 27.9471 33.2758 
MHR4± 38.9742 3.0384 4.3450 28.7299 26.8538 28.3451 33.7498 
ZZA* 44.6040 3.8722 5.2398 34.6466 32.3841 34.1826 40.7003 
HWZZM* 42.3786 3.9374 5.1532 34.0740 31.8489 33.6177 40.0277 
FSDT 25.4307 3.0397 3.5504 23.4756 21.9426 23.1613 27.5775 
HSDT 28.6275 3.2507 3.8809 25.6612 23.9855 25.3175 30.1449 
ZZ 36.4137 3.7072 5.0165 33.1702 31.0041 32.7259 38.9659 
PP23 28.2542 2.8765 3.8924 25.7375 24.0568 25.3928 30.2345 
ZZA_RDF 48.3134 4.9187 6.6559 44.0099 41.1360 43.4205 51.6997 
ZZA*_43 38.0547 3.8743 5.2426 34.6650 32.4013 34.2008 40.7219 
HWZZ_RDF 44.5274 4.5332 6.1343 40.5611 37.9124 40.0179 47.6483 
HSDT_32 31.3042 3.1870 4.3126 28.5158 26.6537 28.1339 33.4983 



 

 
 

HSDT_33 33.5957 3.4203 4.6283 30.6032 28.6047 30.1933 35.9504 
HSDT_34 37.9586 3.8645 5.2293 34.5775 32.3195 34.1144 40.6191 

 
ZZA_X1 38.3226 3.9015 5.2795 34.9090 32.6294 34.4415 41.0086 
ZZA_X2 39.3223 4.0033 5.4172 35.8197 33.4806 35.3400 42.0784 
ZZA_X3 39.8173 4.0537 5.4854 36.2706 33.9020 35.7848 42.6081 
ZZA_X4 39.7974 4.0517 5.4827 36.2525 33.8851 35.7670 42.5868 
ZZA-XX 96.3194 9.8060 13.2694 87.7398 82.0102 86.5648 103.0703 
ZZA-XX’ 93.6760 9.5369 12.9052 85.3319 79.7595 84.1891 100.2417 

Table 3.15e: Processing time of theories from [18] 
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Figure 3.6e: Graphical, condensed comparison of computing times of 
theories of Table 3.15e. Results are normalized to processing time of ZZA. 

 
 

Case a b c d e f 
 [19] [19] [19] [19] [19] [19] 
FSDT 2.7860 4.1470 5.0712 6.2168 6.5481 4,0522 
ZZA_X_1 10.2237 7.9699 7.7923 14.8450 13.2839 12.0660 
ZZA_X_2 10.4743 8.1551 8.0180 15.2373 13.6303 12.4211 
ZZA_X_3 10.6675 8.3169 8.1517 15.4161 13.8690 12.5162 
ZZA_X_4 10.6481 8.2816 8.1362 15.4323 13.8039 12.6003 
HRZZ 14.9182 11.5234 11.6618 20.2183 20.9194 18.2261 
HRZZ4 14.7821 11.8083 11.4963 20.6428 21.1942 18.4891 
MHR 8.1514 6.7454 6.8583 11.4933 12.0285 6.6258 
MHR± 8.6016 6.7688 6.9558 12.5430 12.3437 6.7160 
MHR4 8.6564 6.5908 6.2430 11.4761 12.5987 6.9702 
MHR4± 9.2370 6.7213 6.3437 12.5583 12.8111 7.0373 
HWZZ 12.0193 6.4675 6.5745 18.4597 15.1594 12.8490 
HWZZ_RDFX 11.8948 9.2171 9.0704 17.2278 15.5294 14.0459 
HWZZM* 10.0139 7.7776 7.6312 14.5394 12.9410 11.7302 
HWZZM 10.9757 8.5366 8.3743 15.9133 14.2983 12.8841 
MHWZZA 10.7396 8.2660 8.3921 16.9729 14.1698 7.6952 
MHWZZA4 10.2451 8.5094 8.0087 16.7753 14.2118 7.5861 
ZZA 13.5620 10.5392 10.3465 19.6433 17.5977 15.9719 
ZZA_RDFX 12.9947 10.0199 9.9030 18.7144 16.7491 15.2775 
ZZA* 10.2076 7.8824 7.7516 14.7835 13.1858 12.0055 
HSDT_34X 10.1359 7.9003 7.7450 14.7167 13.1257 12.0035 
ZZA*_43X 10.2219 7.9368 7.7749 14.6905 13.1698 11.9624 
ZZA-XX 25.7514 20.0141 19.5885 37.1933 33.3160 30.2455 
ZZA-XX’ 25.0131 19.4123 19.2121 36.2402 32.5449 29.5543 

Table 3.15f: Processing time of theories from [19] 

 

 



 

 
 

Figure 3.6f: Graphical, condensed comparison of computing times of 
theories of Table 3.15f. Results are normalized to processing time of ZZA. 

 
Case a b c d e 
 [20] [20] [20] [20] [20] 
FSDT 2.3014 2.3045 2.4710 5.9211 6.1245 
ZZA_X1* 3.7673 3.7015 4.2532 11.4310 12.0417 
ZZA_X2* 3.8680 3.8254 4.3774 11.7316 12.3256 
ZZA_X3* 3.9032 3.8444 4.3979 11.9151 12.5217 
ZZA_X4* 3.8969 3.8535 4.4288 11.8392 12.4289 
HRZZ 5.3990 5.5423 7.4582 18.4274 18.2287 
HRZZ4 5.4094 5.2737 11.0258 18.9174 18.4489 
MHR 4.3663 4.5619 4.8186 6.7118 6.9651 
MHR4 4.3310 4.3291 4.9692 6.1582 6.4367 
HWZZ 4.4949 4.5726 5.2894 12.0471 12.3960 
HWZZ_RDF 4.3621 4.2988 4.9147 13.2034 13.9751 
HWZZM* 3.6891 3.6223 4.1572 11.1507 11.7533 
HWZZM 4.0107 3.9760 4.5548 12.1959 12.8123 
MHWZZA 4.4726 4.6131 5.1828 7.2626 7.9157 
MHWZZA4 4.6211 4.7301 5.2798 7.1210 7.8126 
ZZA 4.9770 4.9120 5.6127 15.0929 15.8988 
ZZA_RDF 4.7548 4.6900 5.3309 14.4480 15.1919 
ZZA* 3.7181 3.6988 4.2332 11.3110 11.9627 
HSDT_34 3.7371 3.6694 4.2077 11.3441 11.9652 
ZZA*_43 3.7393 3.7005 4.2142 11.3391 11.8843 
ZZA*_43PRM 3.7438 3.6955 4.2329 11.3713 11.9072 
ZZA_X1 3.7705 3.7064 4.2545 11.4102 12.0588 
ZZA_X2 3.8508 3.7999 4.3686 11.6656 12.3498 
ZZA_X3 3.9127 3.8502 4.3945 11.9047 12.4688 
ZZA_X4 3.9074 3.8509 4.4108 11.9031 12.4591 
ZZA-XX 9.4659 9.3495 10.6582 28.5583 30.1960 
ZZA-XX’ 9.2262 9.1041 10.3746 28.0411 29.4950 

 
Table 3.15g: Processing time of theories from [20] 
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Figure 3.6g: Graphical, condensed comparison of computing times of 
theories of Table 3.15g. Results are normalized to processing time of ZZA. 

 
 

Case a b c d e f 
 [21] [21] [21] [21] [21] [21] 
FSDT 4.0338 2.2857 4.0928 1.8971 7.2570 4.0293 
Present theory [21] 13.1075 4.1127 8.6521 4.2235 16.2312 9.0803 
ZZA_X1 11.9180 3.7531 7.9473 3.8206 14.7913 8.1602 
ZZA_X2 12.2758 3.8442 8.0691 3.9522 15.1387 8.4179 
ZZA_X3 12.3912 3.8573 8.2443 4.0019 15.4243 8.5103 
ZZA_X4 12.5271 3.8553 8.1855 3.9869 15.3804 8.4476 
HWZZ 12.7078 4.4355 6.4151 5.1020 15.3278 6.6966 
HWZZM 12.7083 3.9657 8.4218 4.0728 15.7581 8.7583 
ZZA 15.7617 4.9446 10.4055 5.0946 19.4522 10.8600 
ZZA* 11.8971 3.6656 7.7602 3.7789 14.6491 8.1071 

 
Table 3.15h: Processing time of theories from [21] 

 
 



 

 
 

 
 

Figure 3.6h: Graphical, condensed comparison of computing times of 
theories of Table 3.15h. Results are normalized to processing time of ZZA. 

 
 

 
Case a b c d e f 
 [22] [22] [22] [22] [22] [22] 
FSDT 4.0464 4.1461 4.1076 4.0520 6.5354 1.9019 
ZZA_GEN0 13.1722 8.7215 8.6962 9.1277 14.6543 4.2907 
ZZA_GEN1 11.9659 8.0067 7.9544 8.2013 13.2670 3.8517 
ZZA_GEN2 11.9921 8.0527 7.9972 8.2408 13.3645 3.8852 
ZZA_GEN3 13.1008 8.7057 8.6441 9.0754 14.6530 4.2603 
ZZA_X_1 12.3557 8.2010 8.1477 8.4441 13.6177 3.9697 
ZZA_X2* 12.4625 8.3430 8.3111 8.5587 13.7859 4.0229 
HWZZ 12.7824 6.4927 6.4554 6.7243 15.0879 5.1318 
HWZZM 12.8223 8.4773 8.4569 8.8433 14.2111 4.1131 
ZZA* 11.9532 7.8892 7.8201 8.1319 13.1593 3.8098 
ZZA 15.8358 10.4631 10.4555 10.9519 17.5553 5.1144 

 

Table 3.15i: Processing time of theories from [22] 

 
 

 

Figure 3.6i: Graphical, condensed comparison of computing times of 
theories of Table 3.15i. Results are normalized to processing time of ZZA. 
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Chapter 4 – Elastostatic assessment 
of theories  

In this chapter, results provided by theories of chapters 2 and 3 are presented. 
Examined cases represent elastostatic benchmarks, retaken from Literature, where 
both simply-supported and clamped edges are assumed as boundary conditions of 
beams and plates under sinusoidal, bisinusoidal or uniform loading. Table 4.1 
collects all data of benchmarks, while Table 4.2 contains trial functions used for 
each case and damage properties, while Table 4.3 shows material properties for all 
cases: 

Case Lay-up Layer thickness Material Sketch Loading Lα/h Lβ/Lα 

a (*) [0/-90/0/-90] [0.25h]4 [p]4 

 

0 0( ) sin( / )  if   0up p L L       
4 - 

b (*) [90/05/90] [0.1h2/0.2h3/0.1h2] [pf2/pvc/hh]S 8 - 

c (§) [0/0/0] [0.2h/0.7h/0.1h] [c1/c1/c1] 

 

0 0( , ) sin( / )sin( / )
if   0   and   0  

up p L L
L L

 

 

   

 



   

 
4 3 

d (§) [0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 10 1 

e (*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 

 

 
0 0( )   if   0up p L     5.714 - 

f (*⸸§) [0/0/0] [0.05h/0.85h/0.10h] [p/mc/p] 

 

0 0( , ) sin( / )sin( / )
if   0   and   0  

up p L L
L L

 

 

   

 



   

 
4 1 

g (§) [0/0]S [0.1h/0.4h]S [Gr-Ep/Foam]S 

 

0 0( ) sin(2 / )  
if   0

up p L
L





 





   
10 1 

h (*§) [0]11 
[0.01h / 0.025h  / 
0.015h / 0.02h / 
0.03h / 0.4h]s 

[1/2/3/1/3/4]s 

 

0
0

0

     if   0 / 2
( )

   if   / 2
u

u

p L
p

p L L


 






  
 

  

 
4 - 

i (*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 

 

0
0

0

     if    / 8 3 / 8
( )

   if   5 / 8 7 / 8
u

u

p L L
p

p L L
 

 






  
 

  

 
5.714 - 

j (*⸸§) [0/0/0] [0.05h/0.9h/0.05h] [i1/i2/i1] 

 

0 0( , )
/ 4 3 / 4

if     
/ 4 3 / 4

up p
L L
L L
 

 

 







 


 

 
5 1 

k (*§) [0/0/0] [(2h/7)/(4h/7)/(h/7)] [n/n/n] 

 

0 0( )   if   0up p L     20 - 

l  [0/0/0] [0.1h/0.8h/0.1h] [qiso/♣/ qiso] 

 

0 0( , ) sin( / )sin( / )
if   0   and   0  

up p L L
L L

 

 

   

 



   

 
3 1 

♣ Functionally graded core (properties in section 4.9) 

Whether Murakami’s function assumption is not satisfied by u  (*), u  (⸸) and u  (§) 

Table 4.1. List of elastostatic cases. 
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Case Trial Functions Expansion 
Order 

a 
b 
 

0

1
( ) cos ;

M

m
m

mu A
L








 
  

 
 0

1
( ) sin ;  

M

m
m

mw C
L






 
  

 
 0

1
( ) cos

M

m
m

mD
L








 
   

 


 1 
1 

c 
d 
f 
j 
l 

0 0

1 1 1 1
( , ) cos sin ; ( , ) sin cos ;

M N M N

mn mn
m n m n

m n m nu A u B
L L L L 

   

   
       

   

      
          

      
 

 

0

1 1
( , ) sin sin ;

M N

mn
m n

m nw C
L L 

 
   

 

  
     

   


 

0 0

1 1 1 1
( , ) cos sin ; ( , ) sin cos ;

M N M N

mn mn
m n m n

m n m nD E
L L L L 

   

   
       

   

      
            

      
 

 

1 
1 
1 

20 
1 

e 
k 

0

1
( ) ;

iI

i
i

u A
L








 
  

 


0

1
( ) ;

iI

i
i

w C
L






 
  

 
 0

1
( )

iI

i
i

D
L








 
   

 


 9 
9 

g 
h 
i 

0

1

2( ) cos ;
M

m
m

mu A
L








 
  

 
 0

1

2( ) sin ;  
M

m
m

mw C
L






 
  

 
 0

1

2( ) cos
M

m
m

mD
L








 
   

 


 
 

1 
1 

Table 4.2. Trial functions and expansion order. 

 
Material name 1 2 3 4 c1 [iso] Foam Gr-Ep hh i1 i2 n [iso] p pf pvc qiso 

E1[GPa] 1 33 25 0.05 - 0.035 132.38 250x10-3 6.89 0.1 - 172.4 25x103 250 70 

E2[GPa] 1 1 1 0.05 - 0.035 10.76 250x10-3 6.89 0.1 - 6.89 1x103 250 70 

E3 [GPa] 1 1 1 0.05 M1 0.035 10.76 2500x10-3 6.89 0.1 M2 6.89 1x103 250 70 

G12 [GPa] 0.2 0.8 0.5 0.0217 - 0.0123 5.65 1x10-3 2.59 0.037 - 3.45 5x102 96.2 26.92 

G13 [GPa] 0.2 0.8 0.5 0.0217 - 0.0123 5.65 875x10-3 2.59 0.037 - 3.45 5x102 96.2 26.92 

G23 [GPa] 0.2 0.8 0.5 0.0217 - 0.0123 3.61 1750x10-3 2.59 0.037 - 1.378 2x102 96.2 26.92 

σ12 0.25 0.25 0.25 0.15 0.34 0.4 0.24 0.9 0.33 0.33 0.33 0.25 0.25 0.3 0.3 

σ13 0.25 0.25 0.25 0.15 0.34 0.4 0.24 3x10-5 0.33 0.33 0.33 0.25 0.25 0.3 0.3 

σ23 0.25 0.25 0.25 0.15 0.34 0.4 0.49 3x10-5 0.33 0.33 0.33 0.25 0.25 0.3 0.3 

M1  El/Eu=5/4, El/Ec=105                        M3  Eu/El=1.6, Eu/Ec=166.6·105                        [iso]=isotropic     E1=E2=E3     G1=G2=G3 

Table 4.3. Material properties. 

 
 

Results will demonstrate what previously stated, that if coefficients are 
redefined for each layer across the thickness and the full set of physical 
constraints (1.15)-(1.20) is imposed: 

 zig-zag functions can be changed or omitted without any loss of 
accuracy; 

 functions that describe variation of displacements across the thickness 
can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 
each displacement and from point to point across the thickness, 
without any loss of accuracy; 

 the role of coefficients can be freely switched; 
 linear contribution by FSDT are not necessary to obtain precise 

displacements and stresses 



 

 
 

On the contrary, accuracy becomes strongly dependent by assumptions made 
and results will also show the superiority of physically-based models than 
kinematic-based ones, when the same expansion order is assumed.  

In order to confirm the previous statements, twelve challenging benchmarks 
(both multi-layered and sandwich structures) will be analysed and both 
symmetrical and strongly asymmetrical lay-ups will be considered. Regarding this 
latter statement, it is very important that theories are able to accurately describe 
also asymmetric displacements and stresses across the thickness, because this 
condition could occur during life-service of a structure as a consequence of a 
damage. 

For all cases, only the most significant results will be reported, while the 
remaining ones will be collected in Appendix 1.  With the intended aim to contain 
this thesis length, results are not reported in tabular form. Normalizations and 
positions where through-the-thickness quantities are plotted are explicitly reported 
in text for each case. For cases a to e the accuracy of all theories of chapters 2 and 
3 is assessed, while only results provided by the most significant adaptive ones 
will be reported for cases f to l.  

 

4.1 Case a 

This case is a simply-supported laminated composite [0/90/0/90] beam under 
a sinusoidal loading, whose layers are made of the same material and have the 
same thickness. This case is interesting because nevertheless the orientation of 
layers changes at each interface, there is no change of the slope of displacements 
in the first interface from above, contrarily to what postulated by Murakami’s 

rule, so 3-D effects rise. Anyway, all theories of chapters 2 and 3 quite accurately 
predict displacements and stresses across the thickness, as shown in Figure 4.1 
(in-plane and transverse normal stresses are reported in Appendix 1, being 
accurately obtained by all theories). The following normalizations are used: 

   2
0 0 0

, 0,0, 2
LuE u

u u
hp hp p






  


 



 
 
 

                          (4.1)   

 
In-plane displacement is not correctly predicted by MHR, MHR4, MHWZZA 

and MHWZZA4 in the first interface from above, because there is no a change of 
the slope of this displacement between the third and the fourth-layer. So, this case 
demonstrate the superiority of physically-based theories, that better predict results 
than Murakami’s ones, if the same expansion order across the thickness is 

assumed.  
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Figure 4.1a: In-plane displacement 
 



 

 
 

 

 

 

Figure 4.1b: Transverse displacement 
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Figure 4.1c: Transverse shear stress 



 

 
 

A greater dispersion of results is shown for transverse displacement and all 
lower order theories make error (both physically and kinematic-based ones, such 
as MHR, MHR4, MHR±, MHR4±, MHWZZA, MHWZZA4, HRZZ, HRZZ4, 
HSDT_32 and HSDT_33). Despite this, all theories of chapters 2 and 3 are able to 
predict accurate stresses, as shown in Figure 4.1c.  

Results of 3-D FEA are very close to exact solution, so, it is demonstrated that 
it can be used as reference if it is not available. Moreover, it is confirmed that all 
theories of chapters 2 and 3, whose coefficients are redefined for each layer across 
the thickness and that impose the full set of physical constraints of ZZA (1.15)-
(1.20) always provide precise results (very close to reference solutions). These are 
also indistinguishable from each other (differences are lower than 0.5%), 
regardless zig-zag or representation functions used (zig-zag functions can be also 
omitted). Anyway, more benchmarks have to be analysed because this case is not 
probative about accuracy of models, because layerwise effects are not too strong. 

4.2 Case b 

A simply-supported laminated beam under a sinusoidal loading, previously 
studied by Groh and Weaver [45] is analysed, whose length-to-thickness ratio is 8. 
This case is interesting, because, nevertheless it is not extremely thick, 
Murakami’s rule is not respected, because slope of displacements does not reverse 
at each interfaces. So, differently to the previous case, MHR and MHR4 appear 
very inaccurate. Figure 4.2 reports the through-the-thickness variation of 
displacements and transverse shear stress, for which the following normalizations 
are assumed: 

   
0 0 0

, ,0, 2
Lu Lu

u u
hp hp p




 

  


 



 
 
 

                         (4.2)   

 
while in-plane ad transverse normal stresses are reported in Appendix 1. For 

this case HSDT_32 is not reported because it provides very inaccurate results.  
Regarding in-plane displacement (Figure 4.2a), all theories with the only 

exception of MHR and MHR4 are able to reproduce it with very low percentage 
errors. Anyway, results of MHR± and MHR4±, which calculate Murakami’s sign 

on physical basis appear accurate and also MHWZZA and MHWZZA4, which 
assume strains and displacements of HWZZ and whose results are post-processed 
using ZZA, appear adequate. So, results by [45] are confirmed. Similar findings 
also apply to transverse displacement (Figure 4.2b), where results by MHR and 
MHR4 are not reported being too wrong. Regarding this latter quantity, 
percentage errors made by HRZZ, HRZZ4, MHWZZA, MHR±, MHR4± and 
HSDT_32 are greater than those provided by other quantities. However, all 
theories are able to get an accurate description of transverse shear stress (Figure 
4.2c). Anyway, an accurate description of transverse deformability is mandatory 
to get precise results if there are strong layerwise effects (see case e), otherwise 
inaccurate results are obtained. 
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Figure 4.2a: In-plane displacement 

 



 

 
 

 

 

 

Figure 4.2b: Transverse displacement 
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Figure 4.2c: Transverse shear stress 

 



 

 
 

Again it is confirmed the high accuracy of adaptive theories obtained starting 
from ZZA, whose coefficients are redefined for each layer across the thickness 
and that impose the full set of physical constraints of ZZA (1.15)-(1.20), 
confirming that zig-zag functions and ones used to describe variation of 
displacements across the thickness can be changed without any loss of accuracy. 
Moreover, the role of coefficients can be freely switched and linear contribution 
by FSDT can be omitted, always obtaining accurate results (differences between 
higher-order adaptive theories are lower than 0.5%). In the next two sections two 
simply-supported sandwich plates will be analyzed, which have mild-layerwise 
effects.  

 

4.3 Case c 

A simply-supported rectangular soft-core sandwich plate (length-to-thickness 
and length-to-side ratios are 4 and 3 respectively) under a bi-sinusoidal loading is 
analysed. This case is retaken from [80] where u , u ,   and out-of-plane 

stresses are reported in Figures 4.3 using the following normalizations: 

 

 

2
1_

23 0 0 0

0 0 0

  0, , , , , ,
2 2 2 2 2
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u u

L p hp L h p
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L h p p p

   
  

  



 
 

  



   



    

  

     
     
       

    
    
       

              (4.3)   

 
Other quantities are reported in Appendix 1. The bottom face has a lower 

thickness and it is made of stiffer material than the upper ones; as a consequence 
of these geometrical and material asymmetries, layerwise effects rise, so a greater 
dispersion of results is shown in Figures 4.3 than previous cases. Regarding in-
plane displacement reported in Figure 4.3a (Murakami’s rule is not respected), all 
lower-order theories expect MHWZZA4 cannot achieve the accuracy of higher-
order adaptive models (ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, 
HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 
to ZZA_XN10). These latter theories predict results that are always in a very good 
agreement (discrepancies are lower than 0.5%) and always very close to 3-D FEA 
and exact solutions, irrespective the representation and zig-zag functions assumed 
(the latter can be also omitted), moreover, it is also unnecessary to assign a 
specific role to coefficients. So, findings of previous chapters are confirmed, 
whenever coefficients are redefined for each layer across the thickness and 
calculated by imposing the full set of physical constraints (1.15)-(1.20), otherwise 
results are strongly dependent by assumptions made. These findings about higher-
order adaptive theories still apply for each displacements and stresses, so, they 
won’t be repeated in this section.  
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A greater dispersion of results is also shown for transverse displacement 
(Figure 4.3b) and also MHWZZA4 is not very accurate; similar findings also 
apply to in-plane stress (Figure 4.3c), where high errors are provided regarding 
lower face. Because of this, transverse shear stresses (Figures 4.3d and 4.3e) are 
quite accurately predicted by all lower-order theories at upper face (with the only 
exception of HSDT_33), while lower-order theories are not very precise at bottom 
face. Nevertheless percentage errors are not very high in this case, it is confirmed 
what widespread in Literature that a precise description of transverse 
deformability is mandatory to get accurate stresses. Lower percentage errors are 
provided for transverse normal stress (Figure 4.3e).  

 
 

 

 



 

 
 

 

Figure 4.3a: In-plane displacement 
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Figure 4.3b: Transverse displacement 

 

 



 

 
 

 

Figure 4.3c: In-plane stress 
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Figure 4.3d: Transverse shear stress 

 

 



 

 
 

 

Figure 4.3e: Transverse shear stress 
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Figure 4.3f: Transverse normal stress 

4.4 Case d 

This case is a simply-supported square sandwich plate under a bi-sinusoidal 
loading and it is retaken from [81]. Length-to-thickness ratio is 10, faces are made 
of Graphite/Epoxy, while the soft core is made of foam. Results provided by 
theories of u , u ,   are reported in Figures 4.4 assuming the following 

normalizations ( u  and   are reported in m and kPa respectively).  
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                      (4.4)   

 
Other quantities are reported in Appendix 1. This case is interesting because, 

nevertheless it is not extremely thick, through-the-thickness displacements and 
stresses cannot be obtained by simplified ESL theories. Results provided by 
theories are compared to LLT solution provided by [81].  

In plane displacement (Figure 4.4a) is accurately predicted by all theories of 
this thesis (low percentage errors are provided by lower-order theories at the 
core), while a greater dispersion of results is obtained for transverse displacement 
(Figure 4.4b). Anyway, errors are not very high and as a consequence transverse 
shear stress (Figure 4.4c) is accurately obtained by all theories (higher percentage 
errors are in the core layer).  

Again, higher-order adaptive theories (ZZA, HWZZ, ZZA_RDF, 
HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, 
ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10) are able to get results in a 
very good agreement with 3-D FEA and reference solution (LLT), so, all findings 
about the choice of functions that represent variation of displacements across the 
thickness and layerwise functions still apply. Anyway, this case is not particularly 
probative because 3-D effects are not very strong. 



 

 
 

 

 

 

Figure 4.4a: In-plane displacement 
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Figure 4.4b: Transverse displacement 



 

 
 

 

 

 

Figure 4.4c: Transverse shear stress 
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4.5 Cases e 

A propped cantilever soft-core sandwich beam under a uniform loading, 
previously studied by Mattei and Bardella [71] is analyzed. Length-to-thickness 
ratio is assumed to be 5.714 and upper face has a thickness that is half the bottom 
one and it is made of a stiffer material. Beam is clamped at 0  , while it is 
restrained at L  . For this case, results are compared to 3-D FEA solution and 
transverse displacement and transverse shear stress are reported using the 
following normalizations [71]: 

   
0 0

, ,u L A L
u

hp L p
   

 



  
                                (4.5)   

 
Like previous benchmarks, other quantities are reported in Appendix 1. 

Differently to previous cases, additional mechanical boundary conditions have to 
be imposed regarding shear force at support and also ( , / 2) 0u L h     have to 

be enforced using Lagrange multiplier method (see section 1.4). It is not necessary 
to impose conditions on bending moment, even if they could be enforced without 
any difficulty. This case is very interesting because geometrical asymmetries, 
uniform loading and the great differences between mechanical properties of 
constituent materials act jointly, strongly increasing layerwise effects. 
Particularly, transverse shear stress assumes different sign for each face. This 
latter features was noticed also for simply-supported damaged sandwiches [54], 
[15] and it is difficult to be captured by theories. Indeed, all lower-order theories 
calculate displacements and stresses with high percentage errors and HSDT_32 is 
not reported being too inaccurate. 

Particularly, transverse displacement is inaccurately reproduced by all lower-
order theories and it is underestimated by HRZZ4, MHWZZA and MHWZZA4, it 
is overestimated by MHR, MHR4, MHR± and MHR4±, while HSDT_33 describe 
a wrong trend across the core. Moreover, HRZZ, which assumes a uniform 
transverse displacement across the thickness, obtains the worst results, calculating 
a wrong null uniform u . Only higher-order adaptive theories (ZZA, HWZZ, 

ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10) are in well 
agreement with 3-D FEA. A greater dispersion of results is shown also for 
transverse shear stress, where again lower-order theories cannot achieve the 
precision of higher-order ones. It should be noticed that MHR± and MHR4±, that 
calculate sign of Murakami’s zig-zag functions on a physical basis, are not able to 
improve the accuracy of their counterparts (MHR and MHR4) and obtain bad 
results because their kinematic is too simple. HRZZ, HRZZ4, MHWZZA, 
MHWZZA4 and HSDT_33 calculate this quantity with lower errors but cannot 
achieve the same accuracy of higher-order adaptive theories (ZZA, HWZZ, 
ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10). This case 



 

 
 

confirms what widespread in Literature, that an accurate description of transverse 
deformability, like those of higher-order theories, is mandatory to get accurate 
results if there are strong layerwise effects. 
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Figure 4.5a: Transverse displacement 

 

 

 



 

 
 

 

Figure 4.5b: Transverse shear stress 

Lower-order theories have proven to be inaccurate for cases with strong 
layerwise effects and they will not be reported for the following cases.  

Instead, higher-order adaptive ones, that have coefficients redefined for each 
layer across the thickness, that are calculated by imposing the full set of physical 
constraints (1.15)-(1.20) are always precise and in very good agreement with 3-D 
FEA or exact solutions. So, it is confirmed that: 

 zig-zag functions can be changed or omitted without any loss of 
accuracy; 

 functions that describe variation of displacements across the thickness 
can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 
each displacement and from point to point across the thickness, 
without any loss of accuracy; 

 the role of coefficients can be freely switched; 
 linear contribution by FSDT are not necessary to obtain precise 

displacements and stresses 

Because of these theories have demonstrated their superiority and provide 
practically indistinguishable results, only ZZA_GEN1 and ZZA_GEN2*  zig-zag 
theories will be reported in the following cases.  

4.6 Case f 

A simply-supported sandwich square plate under a bi-sinusoidal loading is 
analyzed and it is retaken from [15], whose the length-to-thickness ratio is 4. The 
bottom face has a lower thickness than the upper one and it is damaged (E1111 
E1122 E2222 E1212 reduced by 1·10-2), while soft core is partially damaged  up to 
0.15h from below (E1122 E2222 E1212 E1313 E2323 are reduced by 2·10-1). The 
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following normalizations are used for transverse shear stresses, while other 
quantities are reported in Appendix 1. 

0, , ,0,2 2
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   

 

   
   
                             (4.6)   

 
Because of damage and geometrical asymmetries, strong 3-D effects rise and 

an opposite sign of stresses is assumed at each face. As a result, lower-order 
theories cannot achieve the same accuracy of higher-order adaptive ones [15] 
whose coefficients are redefined for each layer across the thickness and calculated 
by imposing the full set of physical constraints by ZZA. These theories are always 
able to reproduce displacements and stresses with very high precision (see [15] 
and Figure 4.6a) irrespective the lay-up, loading and boundary conditions and the 
choices of zig-zag and global representation functions.  

 

 

 

Figure 4.6a: Transverse shear stresses, case f 



 

 
 

4.7 Cases g to j 

Four simply-supported sandwich laminates under non-classical loading are 
analyzed, which are retaken from [15]. Like the previous case, only ZZA_GEN1 
and ZZA_GEN2* are reported in Figures 4.7.  

Regarding case g, it is a simply-supported sandwich beam under a sinusoidal 
loading (two half-waves). The length-to-thickness ratio is 10 and the same lay-up 
of parent case d is assumed. For this case, results of in-plane displacement and 
transverse shear stress are reported in Figure 4.7a (other quantities in Appendix 1) 
and the following normalizations are assumed: 
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                           (4.7)   

 
 

 

 

Figure 4.7a: In-plane displacement and transverse shear stress, case g 
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Differently to case d, because of the effect of loading, 3-D effects rise and 
lower-order theories calculate displacements and stresses with higher percentage 
errors respect to 3-D FEA, used as reference, while higher-order zig-zag adaptive 
theories are again accurate [15].  

Anyway, very strong layerwise effects are shown in the following cases 
because of the application of localized step loading. For the following cases h to j, 
a further mechanical boundary condition on transverse shear stress have to be 
imposed using Lagrange multiplier method (section 1.4), in order to improve 
accuracy. Similarly to case e, there is no need to impose further conditions on 
bending moment, because numerical experiment have shown that this does not 
affect accuracy for these cases.  

Regarding case h, an eleven-layer sandwich beam with a length-to-thickness 
ratio of 4 under a uniform step loading that is applied on the upper layer at 
0 / 2L   and on the bottom one at / 2L L    with an opposite sign is 
analyzed. Each face is laminated (five layers) and made of materials whose 
features are described in section 1.7.1. Results of transverse displacement and 
transverse shear stress (other quantities in Appendix 1) are reported in Figure 4.7b 
and normalized as: 
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Figure 4.7b: Transverse displacement and transverse shear stress, case h 

Localized step loading strongly increase layerwise effects, indeed 
displacements and stresses assume strongly asymmetric trends across the 
thickness. As a result, a great dispersion of results is showed by lower-order 
theories, especially by kinematic-based ones, because the Murakami’s rule is not 
respected [15]. Again, only higher-order adaptive theories are very accurate and 
very close to reference results. 

Case i is a simply-supported sandwich beam with a length-to-thickness ratio 
of 5.714 under a uniform step loading that is applied on the upper layer at 

/ 8 3 / 8L L    and on the bottom layer at 5 / 8 7 / 8L L    with an opposite 
sign. The same materials and lay-up of case e are assumed, but core (E1122 E2222 

E1212 E1313 E2323 are reduced by 1·10-1) and upper face (E1111 E1122 E2222 E1212 
reduced by 4·10-2) are damaged. In-plane and transverse shear stresses (other 
quantities in Appendix 1) are reported in Figure 4.7c and normalized as: 
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Figure 4.7c: In-plane stress and transverse shear stress, case i 

 
Because of lay-up and localized step loading, strong 3-D effects rise and 

displacements and stresses assume very asymmetric behavior across the thickness. 
Similarly to case e, transverse shear stress assumes a different sign for each face 
that is difficult to be described by theories. Similarly to the previous cases of this 
section, lower-order theories cannot reach the accuracy of higher-order adaptive 
ones [15], the only always very close to reference solutions, because of their too 
simple kinematics. 

Case j is a simply-supported square sandwich plate under a uniform localized 
step loading that is applied at the upper face at / 4 3 / 4L L    and 

/ 4 3 / 4L L   . Faces are thin and length-to-thickness ratio is 5. Because of all 

constituent materials are isotropic and geometrical symmetries, the following 
relations apply , ,u u           . Transverse shear stress (other 



 

 
 

quantities in Appendix 1) is reported in Figure 4.7d and the following 
normalization is used: 
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Figure 4.7d: Transverse shear stresses, case j 

Nevertheless lay-up is symmetric and laminate is quite thin, asymmetries are 
shown, because of the application of localized step loading. So, similar findings of 
previous cases still apply [15].  

For all cases of this section, higher-order adaptive theories ZZA_GEN1 and 
ZZA_GEN2* appear always accurate and very close to reference 3-D FEA 
solutions, being the exact one not available. Because of these models do not 
include any zig-zag, assume different functions to describe transverse variation of 
displacements across the thickness, do not include linear contribution by FSDT 
and obtain indistinguishable results, it is again confirmed that these choices are 
immaterial, whenever coefficients are redefined for each layer across the 
thickness and the full set of physical constraints (1.15)-(1.20) is imposed. The 
same findings also apply to other higher-order zig-zag theories (ZZA, HWZZ, 
ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA****, ZZA_XN1 to ZZA_XN10). 

 

4.8 Case k 

Another propped cantilever sandwich beam is analyzed, whose lay-up is the 
same of case e but a length-to-thickness ratio of 20 is assumed. This case is 
retaken from [15] and transverse displacement and transverse shear stress are 
reported in Figure 4.8a, using the following normalizations (other quantities in 
Appendix 1): 
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Figure 4.8a: Transverse displacement and transverse shear stress, case k 

 
This case is very interesting, because, nevertheless it is thin, displacements 

and stresses show strong asymmetries, so, ESL theories cannot describe them 
properly. Again lower order theories cannot reach the same accuracy of higher-
order adaptive theories, but percentage errors are lower than parent case, because 
layerwise effects are not very strong [15].  

Again, ZZA_GEN1 and ZZA_GEN2* are very close to reference results by 3-
D FEA, so, all statements and conclusions about their accuracy still apply also for 
this case. In the next section, a sandwich plate with functionally graded core is 
analyzed. 

 



 

 
 

4.9 Case l 

Accuracy of most advanced ZZA_GEN1 and ZZA_GEN2* higher-order zig-
zag theories is assessed, considering a simply-supported sandwich plate with a 
graded core. This case is very interesting, because material properties of 
constituent layers are not uniform within layer and it is retaken from paper by 
Kashtalyan and Menshykova [82], assuming a length-to-thickness ratio of 3. It 
should be noticed that these results are new, because no functionally-graded 
laminates were considered in previous papers [15] to [23].  

fG  is shear modulus of faces and a strong variation of properties is imposed, 
assuming shear modulus of core at ς=0 as 0.1 c fG G . So, the following through-
thickness variation of modulus is assumed: 

( )  f
i iG G                                   (4.12)   

 
For faces, =1i , while for core, the following i  are assumed: 

1

2

1 1

2 2

 

1 1

 

2 2

( ) ( )             0

( ) ( )             0

2( )              ln

2( )              ln

f
c c

f
c c

c c
h

c f f
c

c c
h

c f f
c

G G for

G G for

G h Ge
G h G

G h Ge
G h G

 

 

   

   

  

  

 

 

 
    

 

 
    

 

                      (4.13)   

 
The through-the-thickness variation of shear modulus is reported in Figure 

4.9a: 
 

 

Figure 4.9a: Through-thickness variation of the shear modulus, case l 

 
The same law is assumed for Young modulus. Because of all constituent 

materials are isotropic and geometrical symmetries, the following relations apply 
, ,u u           . The following normalizations are used for 

displacements and stresses: 
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In order to solve this case, two different strategies are used: 

 the overall laminate is assumed as a unique layer, where mechanical 
properties of constituent layer are assumed to vary approximating 
(4.13) with a polynomial interpolation (up to ninth order). In this case, 
ZZA_GEN1 is expanded across the thickness up to 14th order for 
transverse displacement and up to 13th for in-plane ones and it will be 
indicated as ZZA_GEN1_mono in Figure 4.9b. Results, that are 
compared with 3-D solution by [82] are very accurate, but a very high 
expansion order across the thickness is required. 

 Otherwise, the core is split into two parts that are further subdivided 
into four mathematical layers, in order to increase the number of 
equilibrium points and accuracy. So, using this strategy, the total 
number of layers is ten and no polynomial interpolation of mechanical 
properties is used to approximate transverse variation of Young and 
shear moduli.  

 
Results obtained by parent theory ZZA and by ZZA_GEN1 and ZZA_GEN2* 

are in a very good agreement with those provided by three-dimensional solution 
by Kashtalyan and Menshykova [82], see Figures 4.9b. 
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Figure 4.9b: Normalized displacements and stresses, case l 

 
It should be noticed that higher-order theories (ZZA, ZZA_GEN1, 

ZZA_GEN2*) are always able to accurate calculate displacement and stress 
fields, even when functionally graded and extreme high length-to-thickness ratios 
are considered. Results by ZZA, ZZA_GEN1, ZZA_GEN2* are indistinguishable 
so, also for functionally graded problems, it is demonstrated that if coefficients are 
redefined for each layer across the thickness and the full set of physical 
constraints (1.15)-(1.20) is imposed: 

 zig-zag functions can be changed or omitted without any loss of 
accuracy; 

 functions that describe variation of displacements across the thickness 
can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 



 

 
 

each displacement and from point to point across the thickness, 
without any loss of accuracy; 

 the role of coefficients can be freely switched; 
 linear contribution by FSDT are not necessary to obtain precise 

displacements and stresses 

 
Otherwise accuracy of theories is strongly dependent by assumptions made, 

confirming what widespread in Literature.  
 

4.10 Processing time of elastostatic cases 

Table 4.4 reports processing time for theories of chapter 2 and 3 for 
elastostatic cases. It should be noticed that MHR, MHR4 are very cheap, but since 
they are inaccurate (if Murakami’s rule is not respected or very strong layerwise 

effects occur), their use should be avoided. As a general rule, mixed theories show 
very little cost savings, so, these technique should not be used because they are 
not convenient, neither from the standpoint of accuracy, nor for processing time. 
Mixed HWZZ is accurate, but time calculations are similar to those of ZZA, 
because of its zig-zag functions. Instead, DZZ whose zig-zag functions are 
omitted, show very good processing time. Particularly, the most general 
physically-based higher-order adaptive theories ZZA_GEN and ZZA_X are the 
best theories of this thesis, because their particularizations (such as ZZA_GEN1 
and ZZA_GEN2*) always get accurate results (irrespective layerwise and 
representation functions) with a great efficiency. In the next chapter, the accuracy 
of theories of chapters 2 and 3 is assessed for dynamic calculations. 

 
 a b c d e f g h i j k 

ZZA 13.5620 19.9740 10.6297 10.5768 15.0671 10.3465 4.9770 17.5977 5.0712 10.9591 15.9719 

HWZZ 12.0193 18.4149 9.6997 9.6664 14.4271 9.5745 4.4949 16.1594 5.1993 9.7755 14.8490 

HRZZ 14.9182 20.9727 11.6926 12.1633 18.2312 11.6618 5.3990 20.9194 7.9113 12.5887 18.2261 

HRZZ4 14.7821 20.9727 11.6649 12.9170 18.2237 11.4963 5.4094 21.1942 11.5603 12.5681 18.4891 

MHR 8.1514 11.7768 6.5659 6.5138 6.9574 6.8583 4.3663 12.0285 4.5774 6.6732 6.6258 

MHR4 8.6564 11.7603 6.4724 6.8826 6.4946 6.2430 4.3310 12.5987 4.6969 6.5056 6.9702 

MHWZZA 10.7396 16.8825 8.2006 8.5096 7.2359 8.3921 4.4726 14.1698 5.3375 8.6730 7.6952 

MHWZZA4 10.2451 16.7948 8.6045 8.1205 7.8365 8.0087 4.6211 14.2118 5.8352 8.9862 7.5861 

MHR± 8.4385 12.5376 6.5810 6.6179 9.4716 6.4682 3.1054 10.8977 3.1668 6.8371 9.9350 

MHR4± 8.5114 12.5969 6.6603 6.7103 9.5769 6.5766 3.1022 11.0719 3.2121 6.8344 10.0833 

ZZA_RDF 13.0935 19.1586 10.2809 10.2247 14.4071 9.9657 4.7515 16.8998 4.8881 10.5372 15.4189 

HWZZ_RDF 12.1410 17.8027 9.4631 9.4295 13.2845 9.1373 4.4164 15.6738 4.5312 9.7334 14.1751 

HSDT_32 8.3084 12.2156 6.4949 6.4672 9.2081 6.3308 3.0110 10.7097 3.0605 6.6572 9.6222 

HSDT_33 8.8493 13.0538 6.8598 6.8360 9.8530 6.7005 3.2542 11.3976 3.2998 7.1135 10.4649 

HSDT_34 10.3040 15.1162 8.0368 7.9790 11.4757 7.8000 3.7599 13.2485 3.8450 8.2522 12.1252 

ZZM 10.3149 15.0518 8.0396 7.9872 11.4347 7.8241 3.7988 13.4239 3.8656 8.3257 12.2106 

HWZZM 11.1021 16.4152 8.7214 8.7167 12.3112 8.4187 4.0771 14.4948 4.1248 9.0171 13.0365 
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ZZA* 10.2855 15.1293 8.0794 7.9890 11.5227 7.7923 3.7726 13.4473 3.8660 8.3105 12.0343 

HWZZM* 10.1479 14.7512 7.8923 7.8381 11.2749 7.7784 3.6859 13.1859 3.7557 8.1946 11.9370 

ZZA_GEN1 10.2978 15.2325 8.0963 8.1610 11.4330 7.8830 3.8223 13.3491 3.8652 8.3416 12.1530 

ZZA_GEN2* 10.4859 15.2488 8.1289 8.1568 11.6423 7.8740 3.8564 13.5747 3.8728 8.4149 12.2901 

ZZA_XN1 10.2824 15.1142 8.1034 8.0551 11.3860 7.8793 3.7824 13.3791 3.8552 8.3100 12.2904 

ZZA_XN2 10.6858 15.5807 8.3856 8.2485 11.7541 8.1023 3.9210 13.6985 4.0075 8.6336 12.4686 

ZZA_XN3 10.6999 15.7233 8.4473 8.4404 11.9836 8.2971 3.9464 14.1156 4.0321 8.6869 12.8044 

ZZA_XN4 10.8286 15.9166 8.3966 8.3672 11.8920 8.2454 3.9764 13.9771 4.0290 8.7513 12.6875 

ZZA_XN5 10.3529 15.2664 8.0889 8.0770 11.3887 7.8703 3.7716 13.5314 3.8735 8.3644 12.0899 

ZZA_XN6 10.7037 15.6507 8.3252 8.3356 11.8630 8.0781 3.8961 13.7857 3.9937 8.5530 12.5852 

ZZA_XN7 10.4029 15.3707 8.1084 8.0920 11.5681 7.8424 3.7880 13.4132 3.8802 8.3601 12.1415 

ZZA_XN8 10.6837 15.6680 8.2701 8.2456 11.8590 8.1415 3.9068 13.7022 4.0048 8.5028 12.5226 

ZZA_XN9 10.8340 15.8636 8.4505 8.3288 11.9881 8.1579 3.9839 14.0419 4.0272 8.7323 12.7934 

ZZA_XN10 10.6611 15.7749 8.3820 8.3294 11.8764 8.2384 3.9240 13.9478 4.0316 8.6666 12.7244 

FSDT 2.7860 4.2943 4.9372 5.4858 7.3303 5.0712 2.3014 6.5481 2.3261 4.0778 4.0522 

Table 4.4: Processing time [s] 
 

A graphical, condensed comparison of computing times is reported in Figure 
4.10 (processing times are reported normalized to ZZA ones). 

 

 

 



 

 
 

 

 

Figure 4.10: Graphical, condensed comparison of computing times of 
theories for elastostatic cases. Results are normalized to processing time of 

ZZA. 

 

4.11 Concluding remarks 

In this chapter a lot of challenging elastostatic cases are analyzed considering 
different loading and boundary conditions, that in conjunction with strong 
variation of mechanical properties of constituent layers across the thickness 
enhance strong layerwise effects. Moreover, the accuracy of theories of chapter 2 
and 3 for functionally graded plates is deepened.  

 
Regarding zig-zag theories, kinematic-based ones provide results with low 

processing time. However, because of their coefficients of displacement field are 
not redefined and the full set of physical constraints is not imposed, they cannot 
obtain the same accuracy of ZZA and other higher-order adaptive theories, 
especially when Murakami’s rule is not respected and/or when there are strong 

layerwise effects. 
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MHR±, MHR4± (where Murakami’s slope is determined on a physical basis), 

MHWZZA and MHWZZA4 (where strains and stresses are assumed as like as  
physically-based zig-zag theories) provide better results than MHR and MHR4 
with similar processing time, but accuracy of higher-order theories cannot be 
obtained because of their simplified kinematics. So, also MHR±, MHR4±, 
MHWZZA and MHWZZA4 should be used to analyze quite thick laminates and 
sandwiches, without strong variation of mechanical properties across the 
thickness. Main features of MHR, MHR4, MHR±, MHR4±, MHWZZA and 
MHWZZA4 are reported in Tables 4.5a to 4.5c:  

 
MHR, MHR4 

Type: Kinematic-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Fourth-order  polynomial (transverse displacement of MHR) 
Piecewise fourth-order  polynomial (transverse displacement of MHR4) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Not redefined (no adaptive) 
Accuracy: Strongly case-dependent; particularly, very wrong results could be provided if 

Murakami’s rule is not respected or there are strong layerwise effects 
Recommended usage: Only for cases without strong layerwise effects (e.g. cross-ply laminated thin 

beams and plates) 

Table 4.5a: Main features of MHR and MHR4 

 
MHR±, MHR4± 

Type: Kinematic-based zig-zag theories (slope of Murakami’s zig-zag function is 
obtained on a physical basis) 

Displacement field: Piecewise cubic (in-plane displacements) 
Fourth-order  polynomial (transverse displacement of MHR±) 
Piecewise fourth-order  polynomial (transverse displacement of MHR4±) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Not redefined (no adaptive) 
Accuracy: Strongly case-dependent; better than MHR and MHR4 counterpart but very 

wrong results could be provided if there are strong layerwise effects 
Recommended usage: Only for cases without strong layerwise effects (e.g. not extremely thick laminates 

and sandwiches without strong variation of properties across the thickness) 

Table 4.5b: Main features of MHR± and MHR4± 

 
MHWZZA, MHWZZA4 

Type: Mixed zig-zag theories; displacements from MHR, strains and stresses apart from 
HWZZ 

Displacement field: Piecewise cubic (in-plane displacements) 
Fourth-order  polynomial 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Coefficients of displacement field are not redefined (no adaptive) 
Accuracy: Strongly case-dependent; better than MHR and MHR4 counterpart but very 

wrong results could be provided if there are strong layerwise effects 
Recommended usage: Only for cases without strong layerwise effects (e.g. not extremely thick laminates 

and sandwiches without strong variation of properties across the thickness) 

Table 4.5c: Main features of MHWZZA and MHWZZA4 

 
 
 



 

 
 

Regarding physically-based adaptive zig-zag theories, HSDT_32 and 
HSDT_33 that assume a parabolic and cubic piecewise transverse displacement 
respectively are not always accurate, because the full set of physical constraints of 
ZZA is not enforced. These theories demonstrate that a piecewise cubic-fourth-
order displacement field is the minimum expansion order to get the maximal 
precision. These results are also corroborated by those provided by HRZZ and 
HRZZ4, that are mixed physically-based adaptive lower order theories, where a 
uniform and a polynomial (not piecewise) transverse displacement is assumed. 
For HRZZ and HRZZ4 stresses are assumed apart (transverse normal stress is the 
same of ZZA), but despite this the accuracy of higher-order theories cannot be 
reached because the full set of physical constraints is not imposed and a simplified 
transverse deformability is described. It should be noticed that results provided by 
HSDT_32, HSDT_33, HRZZ and HRZZ4 are a little better than MHR and MHR4 
ones, so, they could be used to analyze laminated and sandwiches with quite 
strong layerwise effects (see Tables 4.6a and 4.6b for their main features).  

 
HSDT_32, HSDT_33 

Type: Displacement-based physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise parabolic (transverse displacement of HSDT_32) 
Piecewise cubic (transverse displacement of HSDT_33) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Coefficients of displacement field are redefined (adaptive) 
Accuracy: Case-dependent; better than kinematic-based theories but wrong results could be 

provided if there are very strong layerwise effects 
Recommended usage: They are able to accurately analyse also thick laminated and sandwiches with 

quite strong layerwise effects; anyway, they should be avoided if a very accurate 
description of transverse deformability is required (e.g. propped cantilever beams) 

Table 4.6a: Main features of HSDT_32 and HSDT_33 

 
HRZZ, HRZZ4 

Type: Mixed physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Uniform (transverse displacement of HRZZ) 
Fourth-order polynomial (transverse displacement of HRZZ4) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Coefficients of in-plane displacement are redefined (no adaptive) 
Accuracy: Case-dependent; better than kinematic-based theories but wrong results could be 

provided if there are very strong layerwise effects 
Recommended usage: They are able to accurately analyze also thick laminated and sandwiches with 

quite strong layerwise effects; anyway, they should be avoided if a very accurate 
description of transverse deformability is required (e.g. propped cantilever beams) 

Table 4.6b: Main features of HRZZ and HRZZ4 

 
Regarding higher-order physically-based adaptive theories ZZA, HWZZ, 

ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to ZZA_XN10, they always provide very 
accurate results, very close to reference results (percentage errors are always 
lower than 3% for all displacements and stresses) for all loading and boundary 
conditions considered. Because of coefficients are redefined for each layer across 
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the thickness (adaptive) and the full set of physical constraints is enforced all 
these theories provide the same results irrespective zig-zag and global 
representation functions assumed. Particularly, particularizations of the most 
general physically-based higher-order adaptive theory (ZZA_GEN) are the best 
theories of this thesis, by virtue of their great efficiency (over 20% time less than 
ZZA). ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, 
ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to ZZA_XN10 can be 
used to successfully analyze both thick and thin laminates and sandwiches with 
also strong layerwise effects. Their features are briefly reported in Tables 4.7a and 
4.7c. Regarding HWZZ, HWZZ_RDF, HWZZM and HWZZM*, which are mixed 
version of other higher-order adaptive theories, the cost saving is too low respect 
to their counterparts, so, mixed theories won’t be used for develop further 
theories.  

 
ZZA, ZZA_RDF, HSDT_34, ZZM, ZZA* 

Type: Displacement-based physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise fourth-order (transverse displacement) 
Physical constraints: Full set of physical constraints of ZZA is imposed 
Coefficients: Coefficients of displacements are redefined (adaptive) 
Accuracy: Always very accurate and close to reference solutions 
Recommended usage: Always 

Table 4.7a: Main features of ZZA, ZZA_RDF, HSDT_34, ZZM, ZZA* 

 
HWZZ, HWZZ_RDF, HWZZM and HWZZM* 

Type: Mixed physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise fourth-order (transverse displacement) 
Physical constraints: Full set of physical constraints of ZZA is imposed 
Coefficients: Coefficients of displacements are redefined (adaptive) 
Accuracy: Always very accurate and close to reference solutions 
Recommended usage: Always; they allow a little cost saving than theories of Table 4.7a 

Table 4.7b: Main features of HWZZ, HWZZ_RDF, HWZZM and HWZZM* 

 
ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to ZZA_XN10 

Type: Displacement-based physically-based generalized zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise fourth-order (transverse displacement) 
 
User can choose layerwise and representation functions as an input of analysis.  

Physical constraints: Full set of physical constraints of ZZA is imposed 
Coefficients: Coefficients of displacements are redefined (adaptive) 
Accuracy: Always very accurate and close to reference solutions 
Recommended usage: Always; they allow a good cost saving (over 20%) than theories of Table 4.7a 

Table 4.7c: Main features of ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to 
ZZA_XN10 

 
 
 



 

 
 

 
 
Finally, equivalent single layer theories, as like as FSDT, provide the lower 

processing time, but their accuracy is too poor, so, they should not be used unless 
very thin laminates are analyzed.  

 
FSDT 

Type: Equivalent single layer theory 
Displacement field: Linear (in-plane displacements) 

Uniform (transverse displacement)  
Physical constraints: No physical constraints are imposed; out-of-plane stresses are post-processed 

after analysis 
Coefficients: No additional coefficients than d.o.f. 
Accuracy: Very poor, they are not able to analyse sandwiches 
Recommended usage: Only for very  thin laminated beams and plates; they should not be used to 

analyse sandwiches 

Table 4.8: Main features of FSDT 
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Chapter 5 – Dynamic assessment of 
theories  

5.1 Introduction 

In this chapter the accuracy of theories of chapters 2 and 3 is assessed for 
dynamic calculations and particularly, their capability to get global quantities such 
as natural frequencies (cases a to k) and their behaviour under impulsive blast 
loading (cases l and m). All cases are retaken from previous papers by author; 
different boundary conditions are assumed and both laminated and sandwich 
beams and plates are considered (both thick and thin). Lay-up, geometry, trial 
functions, expansion order ad material properties of constituent layer are reported 
in Tables 5.1a to 5.1c.  

 
 

Case Lay-up Layer thickness Material BCS Lα/h Lβ/Lα 

a [0/90/0] [(h/3)]3 [p]3 SS 4,10,20 - 

b [0/90/0] [(h/3)]3 [m]3 SS 4 - 

c [0/90/0] [(h/3)]3 [p]3 SSSS 10 1 

d [0/90/0] [(h/3)]3 [p]3 CCCC 10 1 

e [0/90/0] [(h/3)]3 [p]3 CSCS 10 1 

f [0] [h] ♣ SSSS 10 1 

g [0/90/0/0/90] [(h/24)2 / (5h/12)]S [r1/r2/s/r1/r2] SSSS 5 1 

h [0/90/0/0/90] [(h/24)2 / (5h/12)]S [r1/r2/t/r1/r2] SSSS 5 1 

i [05] [(h/24)2 / (5h/12)]S [u1/u2/v/u1/u2] SSSS 4 1 

j [05] [(h/24)2 / (5h/12)]S [u1/u2/w/u1/u2] SSSS 4 1 

k [06] 
[(h/24)2 / (30h/48) /  
(10h/48) / (h/24)2] 

[u1/u2/v/z/u1/u2] SSSS 4 1 

l [(45/-45)2/45/0]S [(0.381mm)5/ (12.7mm)]S [o15/o2]S SSSS 20.8696 1 

m [(0/90)2/02]S [(0.381mm)5 / (12.7mm)]S [o15/o2/o3/o15] SSSS 10 1 

♣  material properties are specified in text (section 5.3)  

Table 5.1a. List of dynamic cases 
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Table 5.1b. Trial functions and expansion order. 

 
Material  

name m * o1 o2 o3 p r1 r2 s t u1 u2 v w z 

E1[GPa] E1 206.84 0.138 0.0138 172.4 33.5 139 6.89 0.035 36.23 190 0.036 0.070 0.020 

E2[GPa] E2 5.171 0.138 0.0138 6.89 8 3.475 6.89 0.035 10.62 7.7 0.036 0.070 0.020 

E3 [GPa] E2 5.171 0. 138 0. 0138 6.89 8 3.475 6.89 0.035 7.21 7.7 0.036 0.070 0.020 

G12 [GPa] 0.5E2 2.551 0.1027 0.01027 3.45 2.26 1.7375 3.45 0.0123 5.6 4.2 0.013 0.019 0.012 

G13 [GPa] 0.5E2 2.551 0.1027 0.01027 3.45 2.26 1.7375 3.45 0.0123 5.68 4.2 0.013 0.019 0.012 

G23 [GPa] 0.2E2 2.551 0.06205 0.006205 1.378 3 0.695 3.45 0.0123 3.46 2.96 0.013 0.019 0.012 

σ12 0.25 0.25 0.35 0.35 0.25 0.35 0.25 0 0.4 0.26 0.3 0.38 0.3 0.3 

σ13 0.25 0.25 0.35 0.35 0.25 0.35 0.25 0 0.4 0.33 0.3 0.38 0.3 0.3 

σ23 0.25 0.25 0.02 0.02 0.25 0.35 0.25 0 0.4 0.48 0.3 0.38 0.3 0.3 

ρ 1558.35 1558.35 16.3136 16.3136 1558.35 1627 1627 97 32 1800 1600 32 52.1 39.7 

* El/E2=3,25,40 for case b 

Table 5.1c. Material properties. 

 
Similarly to the previous chapter, the purpose of these benchmarks is to 

demonstrate that if coefficients are redefined for each layer across the thickness 
and the full set of physical constraints (1.15)-(1.20) is imposed: 

 zig-zag functions can be changed or omitted without any loss of 
accuracy; 

 functions that describe variation of displacements across the thickness 
can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 
each displacement and from point to point across the thickness, 
without any loss of accuracy; 

 the role of coefficients can be freely switched; 
 linear contribution by FSDT are not necessary to obtain precise 

displacements and stresses 
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On the contrary, accuracy becomes strongly dependent by assumptions made 
and results provided by lower-order theories become strongly case dependent.  

 

5.2 Test cases a to e (natural frequencies) 

Firstly, the capability of theories to accurately calculate natural frequencies is 
assessed for standard cases retaken from Literature. For all cases, also results 
provided by FSDT and HSDT theories are reported (see section 1.6), with the 
intended aim to test their capacity to get at least the fundamental frequency. 
Regarding FSDT, a shear correction factor of 5/6 is assumed. For all cases of this 
section, theories that provide very similar results (discrepancies < 1%) are 
grouped together, with the purpose to contain thesis length.  

 
Regarding case a, the first three natural frequencies of a simply-supported 

[0/90/0] laminated beam, retaken from [39], are reported in Table 5.2a, where 
three different length to thickness ratios (4, 10, 20) are assumed, in order to test 
the accuracy of theories to varying thickness of laminates. The following 
normalization is used for this case: 

_

12_

MATp

MATp

h
G


                                   (5.1)   

 
Regarding the thinner case (Lx/h=20), it should be noticed that all theories, 

except that FSDT, HSDT, HSDT_32 are very accurate and in very good 
agreement with 3-D FEA, that is used as reference when exact solution is not 
available, as like as elastostatic cases. Anyway, greater percentage errors are 
provided for the thickest cases, confirming what widespread in Literature. 
Particularly, for Lx/h=4, also MHR, MHR4, MHR±, MHR4±, MHWZZA and 
MHWZZA4 are not able to reach the accuracy of other theories, especially for the 
third frequency, because their kinematics is too simple. FSDT and HSDT are 
unable to get also the fundamental frequencies, also for moderately thick 
laminates (Lx/h=10), so they should not be used. Only HRZZ, HRZZ4, ZZA, 
HWZZ, ZZA_RDF, HWZZ_RDF, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_33, 
HSDT_34 are always accurate for this case. Particularly, indistinguishable and 
accurate results provided by higher-order zig-zag adaptive theories demonstrate 
that they can be successfully used also for dynamic case, irrespective the choice of 
zig-zag functions and ones used to represent the transverse variation of 
displacements across the thickness. 

 
 
 
 
 
 



 

 
 

  Lα/h=4   Lα/h=10   Lα/h=20  

Theories Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

3-D FEA 0.5175 1.1888 1.8911 0.1464 0.3901 0.6490 0.0449 0.1464 0.2653 

♠ 0.5176 1.1954 1.9011 0.1463 0.3897 0.6486 0.0449 0.1461 0.2652 

MHR 0.5235 1.2540 2.0802 0.1463 0.3921 0.6601 0.0449 0.1462 0.2658 

MHR4 0.5246 1.2634 2.1011 0.1463 0.3925 0.6623 0.0449 0.1462 0.2659 

MHR± 0.5235 1.2540 2.0802 0.1463 0.3921 0.6601 0.0449 0.1462 0.2658 

MHR4± 0.5246 1.2634 2.1011 0.1463 0.3925 0.6623 0.0449 0.1462 0.2659 

HRZZ 0.5171 1.1910 1.8978 0.1462 0.3895 0.6475 0.0449 0.1462 0.2651 

HRZZ4 0.5172 1.1920 1.9062 0.1462 0.3895 0.6478 0.0449 0.1462 0.2651 

MHWZZA 0.4331 1.2283 1.8657 0.1458 0.3852 0.6542 0.0449 0.1461 0.2644 

MHWZZA4 0.4523 1.2984 2.2496 0.1459 0.3881 0.6553 0.0449 0.1462 0.2651 

HSDT_32 0.6553 1.7022 2.9648 0.1621 0.4770 0.8447 0.0466 0.1621 0.3111 

FSDT 0.5686 1.2409 1.8951 0.1564 0.4299 0.7057 0.0461 0.1564 0.2907 

HSDT 0.5373 1.2317 2.0517 0.1510 0.4061 0.6700 0.0455 0.1510 0.2763 
♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, 

ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_33, HSDT_34, (error  < 1% ); Modes with 1,2,3 halfwaves 

Table 5.2a. Case a 

 
Regarding case b, the first three natural frequencies of a simply-supported 

[0/90/0] laminated beam, retaken from [39], are reported in Table 5.2b, where 
three different orthotropy ratios (3, 25, 40) are assumed, where the length-to-
thickness ratio is 4. The following normalization is used for this case: 
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  E1/E2=3   E1/E2=25   E1/E2=40  

Theories Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 

3-D FEA 0.4505 1.0912 1.7769 0.5175 1.1888 1.8911 0.5463 1.2337 1.9173 

♠ 0.4504 1.0939 1.7804 0.5176 1.1954 1.9011 0.5467 1.2407 1.9706 

MHR 0.4518 1.1151 1.8553 0.5235 1.2540 2.0802 0.5578 1.3290 2.2076 

MHR4 0.4520 1.1191 1.8676 0.5246 1.2634 2.1011 0.5599 1.3414 2.2332 

MHR± 0.4518 1.1151 1.8553 0.5235 1.2540 2.0802 0.5578 1.3290 2.2076 

MHR4± 0.4520 1.1191 1.8676 0.5246 1.2634 2.1011 0.5599 1.3414 2.2332 

HRZZ 0.4501 1.0885 1.7596 0.5171 1.1910 1.8978 0.5461 1.2373 1.9637 

HRZZ4 0.4501 1.0895 1.7656 0.5172 1.1920 1.9062 0.5462 1.2389 1.9721 

MHWZZA 0.4334 1.0582 1.6250 0.4331 1.2283 1.8657 0.6310 1.3421 1.9666 

MHWZZA4 0.4389 1.1044 1.8119 0.4523 1.2984 2.2496 0.6424 1.4535 2.6059 

HSDT_32 0.5276 1.4123 2.4616 0.6553 1.7022 2.9648 0.7212 1.8585 3.2266 

FSDT 0.4944 1.1846 1.8539 0.5686 1.2409 1.8951 0.5929 1.2560 1.9057 

HSDT 0.4694 1.1268 1.8253 0.5373 1.2317 2.0517 0.5641 1.3021 2.2374 
♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, 

ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_33, HSDT_34, (error  < 1% ); Modes with 1,2,3 halfwaves 

Table 5.2b. Case b 
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A greater dispersion of results is obtained than the previous case and MHR, 
MHR4, MHR±, MHR4±, MHWZZA, MHWZZA4, HSDT_32, FSDT and HSDT 
are inaccurate, with percentage errors that increase with increasing the orthotropy 
ratio and the number of  frequency, confirming what widespread in Literature. 
Instead, HRZZ, HRZZ4, ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, 
ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, 
ZZA_XN1 to ZZA_XN10, HSDT_33, HSDT_34 are in very good agreement with 
results provided by 3-D FEA, used as reference solution. Similar findings about 
the previous case still apply.  

Cases c to e are three laminated [0/90/0] square plates, which are retaken from 
[83] and whose length-to-thickness ratio is 10. Results of fundamental frequencies 
for three different boundary conditions (all simply-supported edges SSSS, all 
clamped edges CCCC, two opposite edges parallel to α-axis supported, while the 
others are clamped CSCS) are reported in Table 5.2c, where the following 
normalizations are used: 
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2 _

 MATp

MATp
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h E
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                             (5.3)   

 
Regarding case c, all theories (except FSDT and HSDT, whose percentage 

errors are greater than 3%) accurately calculate fundamental frequency. 
Nevertheless layerwise effects are not strong and this case is not particularly 
thick, FSDT and HSDT demonstrate that they should not be used, because there 
are not capable to capture even the first natural frequency.  

A bigger scatter of results is obtained for cases d and e, because of clamped 
edges. Particularly, MHWZZA and MHWZZA4 are very inaccurate (percentage 
errors greater than 10%) but also HRZZ, HRZZ4, MHR, MHR4, MHR±, MHR4±, 
HSDT_32, HSDT_33, FSDT and HSDT (errors between 3% and 10%) are not 
able to obtain the precision of higher-order adaptive theories (ZZA, HWZZ, 
ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10), which are in a 
very good agreement with 3-D FEA solution. Anyway, these cases are not 
particularly probative, so, more challenging cases will be considered in the 
following section.  

 
Theories Case c 

SSSS 
Case d 
CCCC 

Case e 
CSCS Theories Case c 

SSSS 
Case d 
CCCC 

Case e 
CSCS 

3-D FEA [48] 11.4306 16.6658 15.3895 MHR4 11.6644 18.4802 16.9713 

♠ 11.4583 16.4575 15.1875 MHR± 11.4647 18.0505 16.6145 

HRZZ 11.4502 17.5659 16.1304 MHR4± 11.6644 18.4802 16.9713 

HRZZ4 11.4569 17.6134 16.1481 HSDT_32 11.4575 18.0908 16.3905 

MHWZZA 9.1000 20.8865 6.0313 HSDT_33 11.4652 18.1088 16.9934 

MHWZZA4 9.1054 21.0304 6.3368 HSDT 11.7900 18.5237 17.4157 

MHR 11.4647 18.0505 16.6145 FSDT 12.1630 17.5603 16.4436 
♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, 

ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_34, (error  < 1% ); 

Table 5.2c. Cases c to e 



 

 
 

5.3 Cases f to k (natural frequencies) 

Regarding case f, a monolayer retaken from [84] is analysed and results of 
first seven modes are reported in Table 5.3a. The following orthotropic stiffness 
properties are assumed: Q11=105MPa, Q12=23319Mpa, Q13=1077.6MPa, 
Q22=54310.3MPa, Q23=9827.6MPa, Q33=53017.2MPa, Q55=26681MPa, 
Q44=15991.4MPa, Q66=26293.1MPa, density=1627 kg/m3 and the following 
normalization is adopted: 

11

h
Q


                                   (5.4)   

 
This case is interesting because nevertheless it is a monolayer, pumping 

modes occur (numbers in bold in Table 5.3a). Pumping modes show asymmetric 
trend of transverse displacement respect to middle plane of laminate and in-plane 
displacements are symmetric. Instead, other modes (bending) show a symmetric 
trend of transverse displacement, while in-plane displacements are asymmetric. 
As a general rule, the latter ones are better represented by theories, because 
transverse deformability could not be of primary importance. Indeed, following 
cases show that very big errors are provided by lower-order theories regarding 
pumping modes, while higher-order zig-zag adaptive models are always accurate.  

 
Theories Mode with (n, m) waves (n,m) 

waves Mode with (n, m) waves (n,m) 
waves 

Exact 0.0474 0.2170 0.3941 1.3077 1.6530  0.1033 0.3450 0.5624 1.3331 1.7160  

♠ 0.0474 0.2169 0.3940 1.3085 1.6543 (1,1) 0.1033 0.3450 0.5624 1.3339 1.7184 (1,2) 

HSDT 0.0474 - - 1.3086 1.6549  0.1031 - - 1.3339 1.7208  

FSDT 0.0473 - - 1.3078 1.6540  0.1031 - - 1.3331 1.7201  

Exact 0.1188 0.3515 0.6728 1.4205 1.6805  0.1694 0.4338 0.7880 1.4316 1.7509  

♠ 0.1188 0.3515 0.6728 1.4215 1.6819 (2,1) 0.1694 0.4338 0.7880 1.4324 1.7535 (2,2) 

HSDT 0.1187 - - 1.4215 1.6826  0.1692 - - 1.4323 1.7560  

FSDT 0.1185 - - 1.4209 1.6817  0.1698 - - 1.4316 1.7554  

Exact 0.1888 0.4953 0.7600 1.3765 1.8115  0.2180 0.5029 0.9728 1.5778 1.7334  

♠ 0.1888 0.4953 0.7601 1.3772 1.8156 (1,3) 0.2180 0.5029 0.9728 1.5788 1.7351 (3,1) 

HSDT 0.1884 - - 1.3772 1.8207  0.2180 - - 1.5788 1.7360  

FSDT 0.1881 - - 1.3764 1.8203  0.2172 - - 1.5782 1.7353  

Exact 0.3320 0.6504 1.1814 1.5737 1.9289        

♠ 0.3321 0.6504 1.1816 1.5744 1.9338 (3,3)       

HSDT 0.3315 - - 1.5744 1.9390        

FSDT 0.3302 - - 1.5736 1.9388        
♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to 

ZZA_XN10, HRZZ, HRZZ4, MHR, MHR4, MHWZZA, MHWZZA4, MHR±, MHR4±, HSDT_32, HSDT_33 
 

Table 5.3a. Case f 

Anyway, because of a monolayer is analyzed, all theories of chapter two are 
very accurate and provide indistinguishable results, so, ZZA, HWZZ, ZZA_RDF, 
HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, 
ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10, HRZZ, HRZZ4, MHR, 
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MHR4, MHWZZA, MHWZZA4, MHR±, MHR4±, HSDT_32, HSDT_33 are in 
very good agreement with exact solution. Regarding FSDT and HSDT, they are 
able to reproduce bending modes, while they cannot calculate pumping ones 
because of their uniform transverse displacement. However, the following cases 
will demonstrate that pumping modes could occur between the first modes for 
thick sandwiches, so,  their use in application should be discouraged. Nevertheless 
this case constitutes a standard test for accuracy of sandwich theories, results 
demonstrate that it is not probative, because 3-D zig-zag effects are disregarded. 

Challenging cases g to k are reported here with the intended aim to test the 
accuracy of theories of chapter two to capture pumping modes and strong 
layerwise effects, for dynamic applications. So, these benchmarks are five soft-
core sandwich plates, whose laminated faces are made up of different materials 
whose mechanical properties are similar to those of materials that are used for 
industrial applications. Low length-to-thickness ratios are considered, so, Lx/h=5 
is assumed for cases g and h, while 4 is adopted for cases i to k. Five different lay-
ups, either symmetrical and non-symmetrical, are considered, for which pumping 
modes occur for cases g, i and k.  

Regarding case g, the first six modes of a simply-supported soft-core 
sandwich plate (retaken from [17]) are reported in Table 5.3b. Its faces are 
laminated while a length-to-thickness ratio of 5 and the following normalizations 
are adopted: 
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Theories Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
Pumping 

3D FEA  1.6882 2.8796 3.4723 4.3033 4.6899 5.7441 

♠ 1.6898 2.8855 3.4777 4.3171 4.7030 5.7500 

HRZZ 1.6823 2.8517 3.3940 4.1648 4.5907 34.3046 

HRZZ4 1.6821 2.8525 3.3965 4.1720 4.5948 34.1832 

MHWZZA 11.7654 2.7153 2.7264 3.7526 6.8737 1.4635 

MHWZZA4 1.1776 3.9325 4.3165 4.3950 4.5656 5.6519 

MHR 12.7147 15.1380 16.4288 27.1626 27.6009 64.6322 

MHR4 12.7626 16.6121 22.2689 27.7771 27.8687 75.2673 

MHR± 1.6959 2.9097 3.4919 4.3405 4.7643 61.7387 

MHR4± 5.1510 5.8356 6.7704 7.2618 7.2672 66.5689 

HSDT_32 1.7083 3.7725 5.5851 6.5974 6.8196 7.6773 

HSDT 3.9263 5.9589 6.8677 8.2366 8.4810 - 

FSDT 11.0783 17.6361 20.9784 25.0619 25.3697 - 

♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_33 (error < 1%) 

Table 5.3b. Normalized natural frequencies, case g 

Thick core is weaker and less stiff than materials of faces, so, as a 
consequence of strong variation of properties across the thickness, strong 
layerwise effects rise. So, all lower-order theories except HSDT_33 (whose 



 

 
 

results are in good agreement those provided by higher-order zig-zag theories) are 
inadequate. 

Particularly, the first five bending modes are inaccurately predicted by 
MHWZZA, MHWZZA4, MHR, MHR4, MHR4±, HSDT_32, FSDT and HSDT, 
while good results are provided by HRZZ, HRZZ4 and MHR±. Anyway, all these 
theories calculate the sixth mode (pumping) with very high percentage errors, 
because their kinematic is too simple, while an accurate description of transverse 
deformability is required to precisely capture this mode.  

Figure 5.3a reports modal transverse shear stress provided by all theories for 
the first mode (bending). For all figures of this chapter, results provided by 
higher-order zig-zag adaptive theories (ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, 
HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA****, ZZA_XN1 to 
ZZA_XN10) are grouped together, because practically indistinguishable results 
are obtained (discrepancies lower than 0.5% from each other). It should be noticed 
that a great dispersion of  results is obtained and a very inaccurate stress is 
calculated by MHR, MHR4, MHR±, MHWZZA, MHWZZA4, FSDT and HSDT 
because of their kinematics, confirming what previously stated. 
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Figure 5.3a: Transverse shear modal stress, mode 1, case g 
 
 

 

Figure 5.3b: Transverse shear modal stress, mode 6, case g 

Figure 5.3b reports modal transverse shear stress of the sixth mode (pumping) 
provided by HSDT_33, HSDT_34 and higher-order adaptive theories (ZZA, 
HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, 
HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10), while results by other models 
are not reported being too inaccurate. Because of higher-order theories always 
obtain results in a very well agreement with 3-D FEA or other reference solutions, 
it is demonstrated that these theories can be successfully used also for dynamic 
calculations, without any loss of accuracy, irrespective the zig-zag and 
representation functions used, demonstrating that these choices are not important 
if the full set of physical constraints is imposed and coefficients are redefined for 
each layer across the thickness (adaptivity). Moreover, under these conditions, it 



 

 
 

is unnecessary to assign a specific role a priori to coefficients. Instead, the 
precision of lower-order theories is strongly case-dependent and pumping modes 
constitute very challenging test cases for theories, because a very accurate 
description of transverse deformability is required. ESL theories, FSDT and 
HSDT, are very inaccurate, so, their use should be avoided and limited to 
structures whose 3-D effects are irrelevant.  

Regarding case h, a simply-supported sandwich plate with a length-to-
thickness ratio of 5 is analyzed. This case is retaken from [19] and the same lay-
up of the previous case is assumed, while a different and less stiff material is used 
for the core. The first six modes are reported in Table 5.3c and the following 
normalizations are assumed: 
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Theories Mode 1 
(1,1) 

Mode 2 
(2,1) 

Mode 3 
(1,2) 

Mode 4 
(2,2) 

Mode 5 
(3,1) 

Mode 6 
(3,2) 

3D FEA 3.1542 5.1028 5.5209 6.8629 7.5472 8.8919 

♠ 3.1633 5.1395 5.5511 6.9273 7.6341 9.0113 

HRZZ 3.1479 5.0779 5.4561 6.7539 7.4598 8.6694 

HRZZ4 3.1514 5.0913 5.4767 6.7941 7.4976 8.7509 

MHWZZA 1.3295 2.3539 2.9193 3.1509 3.5257 8.2946 

MHWZZA4 1.3279 3.6122 3.7515 3.8117 4.1134 5.4391 

MHR 13.8886 16.7596 18.6062 29.6763 30.2885 30.6550 

MHR4 13.9395 18.3181 24.6705 30.3678 30.5640 33.9737 

MHR± 3.1738 5.1859 5.5979 7.0148 7.7790 9.1996 

MHR4± 8.1940 9.0023 10.5224 12.2961 12.5958 14.3421 

HSDT_32 3.3692 5.6590 7.2343 8.6884 9.1652 11.4630 

HSDT 4.9605 7.6850 8.5441 10.4062 10.9805 13.0905 

FSDT 12.1820 19.4765 23.1196 27.6664 28.0848 34.2690 

♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 

ZZA_GEN1, ZZA_GEN2*, ZZA****, ZZA_XN1 to ZZA_XN10, HSDT_33 (error < 1%) 

Table 5.3c. Normalized natural frequencies, case h 

Because of the different material used for the core, there are no pumping 
modes between the first six ones (bending). This suggests that pumping modes 
can occur among the first modes depending on the combination of mechanical 
properties and densities of faces and core. Anyway, there are quite strong 
layerwise effects and Murakami’s rule is not respected, so, MHR, MHR4, 

calculate frequencies with high percentage errors. Anyway, also MHR±, 
MHWZZA, MHWZZA4, HSDT_32, FSDT and HSDT are inaccurate, because 
their too simple kinematic. Only HRZZ, HRZZ4, HSDT_33, MHR± and higher-
order adaptive theories (ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, 
ZZM, HWZZM, ZZA*, HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10) are in 
good agreement with 3-D FEA that is used as reference solution for this case.  

Figure 5.3c shows the through-the-thickness variation of modal in-plane 
displacement for the fourth mode (bending) predicted by theories of chapters 2 
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and 3. A great dispersion of results is showed, like in the previous case and all 
lower-order theories except HSDT_33 and HSDT_34 calculate this quantity with 
a wrong trend. Also HRZZ and HRZZ4 are erroneous across the thickness, 
nevertheless their percentage errors of fourth frequency are not very big.  

 

 

 



 

 
 

 

Figure 5.3c: In-plane modal displacement, mode 4, case h 

Again, higher-order adaptive theories (ZZA, HWZZ, ZZA_RDF, 
HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA****, 
ZZA_XN1 to ZZA_XN10) prove their superiority, being always in very good 
agreement with 3-D FEA, irrespective the choices of zig-zag and representation 
functions. Moreover, zig-zag functions and linear contribution by FSDT can be 
also omitted and role of coefficients can be changed without any loss of accuracy. 

Regarding case i, a simply-supported sandwich plate with a length to 
thickness ratio of 4 (retaken from [19]) is analyzed. Laminated faces are thin, 
whose constituent layers are made of glass/epoxy and rayon/epoxy. Instead, soft 
core is thick and it is made of a foam with more rigid properties than the previous 
case. The first ten normalized natural frequencies are reported in Table 5.3d  
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As a consequence of strong differences among properties of constituent 

layers, very strong layerwise effects rise and similarly to case g, pumping modes 
occur among the first ten frequencies (eighth to tenth, in bold in Table 5.3d).  

 
 

Theories 
Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,4) 
Mode 8 

(1,2) 
pumping 

Mode 9 
(1,3) 

pumping 

Mode 10 
(1,1) 

pumping 
3D FEA 1.8250 2.9115 3.8103 4.3378 4.5581 5.7563 6.1051 6.4866 6.6342 6.7820 

Theories with  
identical results♠ 

1.8302 2.9306 3.8184 4.3758 4.5813 5.7983 6.1442 6.5052 6.6158 6.8955 

HRZZ 1.8116 2.8521 3.6589 4.1144 4.2849 5.1317 5.3547 13.3111 15.6067 22.8002 

HRZZ4 1.8160 2.8702 3.6892 4.1721 4.3456 5.2736 5.5271 15.6428 16.6538 22.9738 

MHWZZA 0.6942 2.3977 2.6214 3.0188 3.9030 4.5651 6.1380 7.7168 10.9624 13.5256 

MHWZZA4 0.6980 2.0240 2.4328 3.2701 3.4373 3.6584 3.8426 6.2970 21.3296 28.1332 
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MHR 9.5006 12.2412 15.1366 17.2619 17.6349 17.9766 18.3084 18.8505 37.6813 52.1934 

MHR4 9.5609 13.3372 18.6770 18.9136 20.7667 24.6293 25.1072 15.6264 25.7609 34.6050 

MHR± 1.8389 2.9673 3.8584 4.4778 4.6501 5.9317 6.3553 16.9912 31.6639 45.3776 

MHR4± 5.0499 5.9727 6.7604 7.1795 7.2376 7.8740 7.9708 31.6309 36.3794 41.6820 

HSDT_32 2.0354 3.1806 4.8855 5.2842 6.0359 7.1412 7.3720 7.5825 8.7272 12.6639 

HSDT_33 1.8301 2.9303 3.8175 4.3750 4.5800 5.7964 6.1428 6.7578 6.8938 7.1157 

HSDT 3.3835 5.1523 6.0926 7.2858 7.3239 9.0389 9.7357 - - - 

FSDT 8.7966 13.4532 17.2541 19.7304 20.0760 24.7239 26.4143 - - - 

♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, 
ZZA_XN1 to ZZA_XN10, HSDT_33 (error < 1%) 

Table 5.3d. Normalized natural frequencies, case i 

So, all lower-order theories are inaccurate and very high percentage errors are 
provided by HRZZ, HRZZ4, MHWZZA, MHWZZA4, MHR, MHR4, MHR±, 
MHR4±, HSDTD_32, HSDT_33 (for this theory, unlike other lower-order ones, 
only pumping modes are wrong), FSDT and HSDT. These latter two ESL models 
confirm their unreliability to analyze thick soft core sandwiches. Anyway, all the 
previous cited models are not precise, because of their too simple kinematics and 
their incorrect description of transverse deformability. It is also confirmed that 
percentage errors increase for higher frequency, so, the only fundamental 
frequency (which is accurately predicted by HRZZ, HRZZ4, MHR± and 
HSDT_32 and higher-order theories) is not probative about the accuracy of 
theories. It should be also noticed that Murakami’s rule is not respected, so, MHR 

and MHR4 are erroneous, but the incorporation of strains and stresses from DZZ 
(MHWZZA, MHWZZA4) or the calculation of sign on a physical basis (MHR± 
and MHR4±) cannot improve performance, for the reason given above. 

Figure 5.3d reports the modal transverse normal stress, for the tenth mode 
(pumping) as predicted by higher-order adaptive theories and by HSDT_32 and 
HSDT_33. These two latter models are the only reported in Figures because other 
ones show very inaccurate trend for pumping modes. Similar findings regarding 
natural frequencies still apply. Results demonstrate that higher-order theories 
(ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, 
HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10) are the only able to accurately 
calculate natural frequencies and modal displacements and stresses, irrespective 
the zig-zag and representation functions chosen, demonstrating that these choices 
are not important if the full set of physical constraints from elasticity theory is 
imposed and coefficients are redefined for each layer across the thickness 
(adaptivity). Moreover, under these conditions, it is unnecessary to assign a 
specific role to coefficients. 

 



 

 
 

 

Figure 5.3d: Transverse normal modal stress, mode 10 (pumping), case i 

 
Regarding case j, a simply-supported sandwich plate with a length-to-

thickness ratio of 4 is analyzed. Like the previous case, faces are laminated and 
made of glass/epoxy and rayon/epoxy, but a more rigid and a more dense core is 
considered. The first tenth natural frequencies are reported in Table 5.3e and the 
following normalizations are adopted: 
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Differently to case i, no pumping modes occur among reported ones, because 

of the different properties of the core and as a consequence percentage errors 
provided by lower order theories are smaller than the previous case, because there 
are less strong layerwise effects. Anyway, because of their simplified kinematics, 
HRZZ, HRZZ4, HSDT_32, FSDT and HSDT are inaccurate, especially for higher 
frequencies. It should be noticed that HRZZ and HRZZ4 give a precise value of 
fundamental frequency, while the tenth is obtained with a mistake greater than 
10%, demonstrating that the first natural frequency is not probative about 
accuracy of theories. Moreover, because of Murakami’s rule is not respected, 

MHR and MHR4 are inadequate and MHWZZA, MHWZZA4, MHR4± are not 
able to improve their performance. Nevertheless this, MHR± appear quite 
accurate, as like as HSDT_33, demonstrating that the precision of lower-order 
theories is strongly case dependent. Only higher-order adaptive theories (ZZA, 
HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, 
HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10) appear always very accurate, 
irrespective the zig-zag and representation functions chosen, demonstrating that 
these choice is not important if the full set of physical constraints from elasticity 
theory is imposed and coefficients are redefined for each layer across the 
thickness (adaptivity).  
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Theories Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,4) 
Mode 8 

(3,1) 
Mode 9 

(3,2) 
Mode 10 

(2,4) 
3D FEA 2.0795 3.3263 4.1141 4.9108 4.9759 6.3078 6.8086 7.4053 8.0236 8.0545 

Theories with 
identical results♠ 

2.0796 3.3265 4.1004 4.9036 4.9648 6.2918 6.7699 7.3228 7.9472 8.0112 

HRZZ 2.0555 3.2287 3.9386 4.6061 4.6658 5.6683 6.0051 6.2595 6.4412 6.6360 

HRZZ4 2.0616 3.2539 3.9753 4.6830 4.7377 5.8248 6.2043 6.4185 6.6973 6.9919 

MHWZZA 0.6897 2.5190 2.8355 3.2094 4.0947 4.7940 5.2636 6.3369 10.2714 11.2195 

MHWZZA4 0.6916 2.1904 2.5936 3.4786 3.6347 3.8856 4.0466 5.6961 8.6553 8.7156 

MHR 9.2783 11.9900 14.8886 17.0729 17.2357 17.6067 18.5309 19.4935 21.3978 21.7227 

MHR4 9.3355 13.0453 18.2477 18.5238 20.3075 24.1139 24.6192 26.5227 28.1148 29.0030 

MHR± 2.0873 3.3592 4.1351 4.9964 5.0251 6.4125 6.9726 7.4450 8.0906 8.2465 

MHR4± 5.1728 6.5043 7.5808 7.6859 7.8535 8.8055 9.2334 8.2442 8.9815 10.1505 

HSDT_32 2.2404 3.5104 5.2991 5.4004 6.2323 7.5868 7.6496 9.6758 10.9591 11.5818 

HSDT 3.4532 5.2974 6.1860 7.4331 7.5539 9.2594 9.6431 10.0533 10.5555 11.4844 

FSDT 8.5977 13.1629 16.8641 19.3114 19.6340 24.1875 25.2568 25.8551 27.2188 29.6662 

♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, 

ZZA_XN1 to ZZA_XN10, HSDT_33 (error < 1%) 

Table 5.3e. Normalized natural frequencies, case j 

 

Regarding case k, a simply-supported sandwich plate is analyzed. Again a 
length-to-thickness ratio of 4 is assumed and faces are made of glass/epoxy and 
rayon/epoxy like cases i and j. Soft core is made of two different industrial foams, 
where the ¾ of thickness from below are made of Rohacell 31 (like case i), while 
the remaining part is made of a less rigid and more dense Rohacell foam. Because 
of these choices, strongly asymmetries (greater than those of cases i and j) rise. It 
should be noticed that sandwich theories in literature are often developed by 
imposing symmetric limitations, anyway, also asymmetries should be considered 
because they could be caused by a damage during service life. A big scatter of 
results is shown in Table 5.3f, that contains the first tenth natural frequencies for 
this case, where the seventh, the ninth and the tenth are pumping modes (in bold 
in Table 5.3f). The following normalizations are adopted: 

2
_ 2

2 _ 2 max max

MATu iji
i ij

MATu i ij

L uu
h E u


 
  


                           (5.9)   

 
Regarding lower-order theories, very large errors, especially for pumping 

modes, are provided by HRZZ, HRZZ4, MHR, MHR4, MHR±, MHR4±, 
MHWZZA, MHWZZA4, HSDT_32, HSDT and FSDT, because their kinematics 
is too simple. HSDT_33 obtain natural frequencies with percentage errors up 5%, 
but the accuracy of higher-order adaptive ones (ZZA, HWZZ, ZZA_RDF, 
HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA****, 
ZZA_XN1 to ZZA_XN10) cannot be reached.  

 
 
 
 



 

 
 

Theories 
Mode 1 

(1,1) 
Mode 2 

(1,2) 
Mode 3 

(2,1) 
Mode 4 

(1,3) 
Mode 5 

(2,2) 
Mode 6 

(2,3) 
Mode 7 

(1,2) 
pumping 

Mode 8 
(1,4) 

Mode 9 
(1,1) 

pumping 

Mode 10 
(1,3) 

pumping 
3D FEA 1.8088 2.8905 3.8226 4.3159 4.5659 5.7612 5.8607 6.0359 6.0584 6.1857 

Theories with 
identical results♠ 

1.8078 2.8887 3.7844 4.3068 4.5319 5.7260 5.8201 6.0452 6.0635 6.1789 

HRZZ 1.8069 2.8837 3.7376 4.2738 4.4553 5.5480 15.8071 5.8823 28.4136 28.7126 

HRZZ4 1.8067 2.8826 3.7339 4.2671 4.4484 5.5302 15.6286 5.8443 27.3772 27.9550 

MHWZZA 0.7246 0.9179 3.3407 3.3479 3.5688 4.3557 6.1238 4.0545 7.9043 16.7350 

MHWZZA4 0.6978 0.8651 3.5557 6.3966 6.8917 9.7175 6.2385 10.1841 6.8404 23.3498 

MHR 10.9702 12.9657 15.3170 17.2175 19.5764 19.5866 12.4103 20.1339 12.9515 25.9401 

MHR4 11.1870 14.7950 22.6656 22.9203 26.2358 33.1135 15.4831 34.9702 27.0792 28.0628 

MHR± 2.1762 3.5080 4.3617 5.2810 5.3128 6.8076 20.4583 7.3859 27.0941 39.0589 

MHR4± 2.4204 4.0933 4.8042 5.9706 6.1081 7.6269 25.1892 8.3280 29.2856 48.0530 

HSDT_32 2.8859 5.3262 6.8437 8.8258 9.9568 34.1067 41.9080 42.6294 50.1473 53.2910 

HSDT_33 1.8076 2.8884 3.7832 4.3069 4.5306 5.7250 5.8278 6.0465 6.3980 6.4500 

HSDT 3.3705 5.1307 6.0685 7.2555 7.2900 8.9979 - 9.6855 - - 

FSDT 8.7728 13.4157 17.2080 19.6752 20.0217 24.6560 - 26.3410 - - 

♠ ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA****, 

ZZA_XN1 to ZZA_XN10 (error < 1%) 

Table 5.3f. Normalized natural frequencies, case k 

 
Figure 5.3e reports the through-the-thickness variation of transverse normal 

stress for the ninth mode (pumping), where only results provided by higher-order 
theories and HSDT_33 are reported (the others are omitted being too inaccurate) 
confirming what previously stated about the accuracy of theories of chapter two 
for natural frequencies. 

 

 

Figure 5.3e: Transverse normal modal stress, mode 9 (pumping), case k 

Again, it is confirmed that only higher-order adaptive theories (ZZA, HWZZ, 
ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, ZZA*, HWZZM*, 
ZZA****, ZZA_XN1 to ZZA_XN10) appear always very accurate, irrespective 
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the zig-zag and representation functions chosen, demonstrating that these choices 
are not important if the full set of physical constraints from elasticity theory is 
imposed and coefficients are redefined for each layer across the thickness 
(adaptivity). Moreover, under these conditions, it is unnecessary to assign a 
specific role to coefficients. All higher-order adaptive theories are able to 
successfully obtain accurate results also for dynamic cases and especially general 
ZZA_GEN theories demonstrates its superiority, being very efficient (see 
processing time of its particularizations ZZA_GEN1 and ZZA_GEN2*) and 
therefore able to compete with more famous and used examples in Literature.  

5.4 Cases l and m: response to blast pulse loading 

In this section, responses of two laminated sandwich plates under impulsive 
blast pulse loadings are reported. Study of this problem is important because this 
pressure pulse creates a shock wave that generates a pressure peak in the 
structures, which comes down with time and that could have harmful effects 
during service life. Papers [85], [86], [87], [88], [89], [90] are reported as 
remarkable examples regarding this argument.  

According to the last cited papers, the following general expression of 
pressure for explosive blast pulse loading is adopted: 

'

( ) 1 p
a t

t
m

p

tP t P e
t

 
   

 

                              (5.10)   

 
where mP  is peak reflected pressure in excess to the ambient one, pt  is the 

positive phase duration of the pulse measured from the time of impact of the 
structure, while 'a  is a decay parameter. Regarding sonic boom problems, the 
following general expression is adopted: 

p

p
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

                         (5.11)   

 
where r  is the shock pulse length factor, while mP  and pt  assume the same 

meaning of (5.10). Impulsive step, triangular, or exponential loading can be 
obtained from (5.10) and (5.11). In numerical applications, loading will be 
uniformly applied to  the upper face of cases l and m. In the following subsection, 
Newmark implicit time integration scheme is briefly described, being used for 
calculations.  
 

5.4.1 Newmark implicit time integration scheme 

In this section, Newmark implicit time integration scheme is presented, 
because it is used for cases l and m. Explicit time integration scheme are not used 



 

 
 

in this thesis, because they could require very small time steps to be stable, even if 
very little ones are also used for this implicit method in numerical applications.  
However, this choice is not particularly heavy for computational costs, because 
only linearity are considered in numerical applications. 

In order to use this method, firstly, dynamic problem is rewritten into matrix 
form, assuming  ( )U t  as the vector that contain the d.o.f. and  ( )P t  as the 

column of vector of applied load, which are function of the time t : 

       ( ) ( ) ( )M U t K U t P t                          (5.12)   

 
 M  is the mass matrix, while  K  is the stiffness matrix (no damping is 

considered in numerical applications). The following boundary conditions on 
displacement vector  ( )U t  and its first time derivative, the velocity vector 

 ( )U t , are assumed: 
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                          (5.13)   

 
So, the following matrix system is obtained: 
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                       (5.14)   

 
Assuming t  as the chosen time step, a total of m  steps are obtained. 

Considering n th  step, the following expressions of velocity and acceleration 
vectors are obtained after t  (they are indicated as  

1n
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
 and  

1n
U


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                (5.15)   

 
where 2  and   are assumed as 0.5, because in order to make this procedure 
unconditionally stable, the following inequality have to be respected [91], [92]: 
2 0.5                         (5.16)   

 
A linear algebraic system of equations is obtained by substituting (5.15) into 

(5.14), obtaining   1n
U


. So, using these same steps is possible to obtain  

2n
U


, 

 
2n

U


,   2n
U


 and so on. 
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5.4.2 Cases l and m 

Results provided by theories for two simply-supported sandwich square plates 
under a step blast pulse are reported in this section. For both cases, the following 
expression of loading (that is uniform and applied on the top face) is assumed: 

0             5
0              5
p if t ms

p
if t ms

 
 


                            (5.17)   

 
For both cases no effect of damping are taken into considerations and 

according to the previous section, Newmark implicit time integration method is 
used, where a time step of 30μs.  

Regarding case l, that is retaken from [88] and has a length-to-thickness ratio 
of 20.8696, sandwich faces are laminated (five layers) and normalized transverse 
displacement is reported in Figure 5.4a and Table 5.4a, where the following 
normalization is used: 

u
u

h


                                (5.18)   

It should be noticed that Murakami’s rule is not respected, so, MHR and 
MHR4 are very inaccurate. For this reasons, their results are reported only in 
Table while they are omitted in Figure 5.4a.  

 

 



 

 
 

 

 

 

Figure 5.4a: Normalized transverse displacement, case l 
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MHR4± is not adequate for this case, while HRZZ, HRZZ4, MHWZZA, 
MHWZZA4 and MHR± are quite accurate during the first instants, but their 
percentage errors increase with increasing time. HSDT_32 and HSDT_33 are 
adequate, because their results are similar to those provided by higher-order 
adaptive theories (ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, 
HWZZM, ZZA*, HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10, ZZA_GEN1 
and ZZA_GEN2*) that are in very good agreement with 3-D FEA ones. Anyway, 
because of layerwise effects are not particularly high, other cases should be 
considered, in order to test the accuracy of theories regarding the response to blast 
pulse. 

 
 

Theories t[s] 0.0009 0.0045 0.0056 0.0065 0.0074 

3-D FEA [48]  2,0268 2.0165 -1.3291 1.3278 -1.3174 

Higher-order adaptive theories  2,0399 2.0179 -1.3298 1.3286 -1.3181 

HRZZ  2,0219 1.9176 -1.6341 1.4543 -1.5171 

HRZZ4  2,0212 1.9175 -1.6332 1.4540 -1.5169 

MHWZZA  1,6544 1.1687 -0.0994 0.1028 -0.0331 

MHWZZA4  1,7847 1.7135 -0.8618 0.8970 -0.8344 

MHR  0,7774 0.9828 -0.4954 -0.0765 0.7464 

MHR4  0,7320 1.0386 -0.2750 -0.2267 0.5604 

MHR±  1,9734 1.9659 -1.2595 1.2568 -1.2586 

MHR4±  1,2527 0.0008 -0.6226 0.8942 -1.0796 

HSDT_32  2.0376 2.0376 -1.2797 1.2803 -1.2809 

HSDT_33  2.0398 2.0396 -1.2744 1.2756 -1.2767 

Table 5.4a. Case l 

 
Regarding case m, that is retaken from [19], a length-to-thickness ratio of 10 

is considered. Similarly to the previous case, faces are laminated (five layers), but 
a different orientation of layers is assumed and core is split into two parts and the 
half from above is made of a very slender material. Results of normalized 
transverse displacement of the middle plane are reported in Figure 5.4b, while 
those of upper and lower faces are reported in Figures 5.4c and 5.4d respectively, 
where the following normalization is assumed:  

       static response
u

u w
w


                            (5.19)   

 
Because of asymmetries and properties of constituent layers, strong layerwise 

effects rise, so, there is a very big scatter of results. Again, MHR and MHR4 are 
very inaccurate and not reported in Figures because they are too inaccurate (since 
Murakami’s rule is not respected), but also MHR±, MHR4±, MHWZZA, 
MHWZZA4, HRZZ, HRZZ4 and HSDT_32 are inadequate, because of their 
kinematic is too poor. Quite accurate results are provided by HSDT_33, even if 
percentage errors increase with increasing time (see Figure 5.4b). Higher-order 
theories (ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, ZZM, HWZZM, 



 

 
 

ZZA*, HWZZM*, ZZA****, ZZA_XN1 to ZZA_XN10, ZZA_GEN1 and 
ZZA_GEN2*) give always very accurate results, very close to 3-D FEA ones and 
indistinguishable from each other. So, it is demonstrated that the choice of zig-zag 
functions is immaterial (they can be also omitted) and that other representations 
across the thickness than polynomial one can be used without any loss of 
accuracy, if the whole set of physical constraints (1.15)-(1.20) is imposed and 
coefficients are redefined for each layer across the thickness. Under these 
conditions, it is confirmed that the role of coefficients can be changed and also 
linear contribution by FSDT can be omitted, otherwise accuracy of models 
depends on these choices and results become strongly case dependent. 
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Figure 5.4b: Normalized transverse displacement, case m 

 
 



 

 
 

 

 

Figure 5.4c: Normalized transverse displacement, ♠ higher-order 
adaptive theories, case l (upper face) 
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Figure 5.4d: Normalized transverse displacement, ♠ higher-order 
adaptive theories, case l (lower face) 

 
 

5.5 Processing time of dynamic cases 

Table 5.5 reports processing time for theories of chapter 2 and 3 for dynamic 
cases. Similar findings of Table 4.4 still apply. Mixed theories, MHR, MHR4, 
MHWZZA, MHWZZA4, HRZZ, HRZZ4, MHR± and MHR4± show low 
processing time but they are very inaccurate, especially when a precise description 
of transverse deformability is required (e.g. for pumping modes). So, the cost 
saving does not justify their usage. Higher-order adaptive DZZ whose zig-zag 
functions are omitted, show very good processing time. Particularly, because of 
the particularizations (ZZA_GEN1 and ZZA_GEN2*) of most general physically-
based higher-order adaptive theory ZZA_GEN are always accurate (irrespective 



 

 
 

layerwise and representation functions chosen) with low processing time, this 
theory represents the best and efficient model of this thesis.  

 
 a b c d e f g h i j k l m 

ZZA 5.1194 5.1194 27.3202 27.3202 27.3202 7.0182 57.4363 46.4055 43.3751 45.7840 54.5138 147.6859 143.1814 

HWZZ 4.8679 4.8679 25.3396 25.3396 25.3396 6.4877 53.2725 42.8977 40.0964 42.3232 50.3931 136.9795 138.1438 

HRZZ 4.8988 4.8988 25.0022 25.0022 25.0022 6.2076 52.5631 41.0461 38.3657 40.4964 48.2179 135.1555 130.4250 

HRZZ4 5.0302 5.0302 27.2240 27.2240 27.2240 6.7541 57.2341 44.6591 41.7428 44.0610 52.4623 147.1661 150.2565 

MHR 2.7918 2.7918 17.9456 17.9456 17.9456 4.1177 37.7277 27.2271 25.4491 26.8625 31.9844 97.0092 93.0318 

MHR4 2.6853 2.6853 18.4395 18.4395 18.4395 4.2454 38.7660 28.0714 26.2383 27.6955 32.9763 99.6791 100.9251 

MHWZZA 3.6640 3.6640 21.2093 21.2093 21.2093 5.1634 44.5891 34.1415 31.9120 33.6843 40.1070 114.6519 117.1169 

MHWZZA4 3.6636 3.6636 21.2350 21.2350 21.2350 5.1663 44.6430 34.1607 31.9299 33.7032 40.1295 114.7906 116.9716 

MHR± 2.8197 2.8197 18.0423 18.0423 18.0423 4.2840 37.9309 28.3264 26.4767 27.9471 33.2758 97.5317 93.5817 

MHR4± 2.7122 2.7122 18.5385 18.5385 18.5385 4.3450 38.9742 28.7299 26.8538 28.3451 33.7498 100.2145 98.4607 

ZZA_RDF 4.7539 4.7601 25.6791 25.4221 25.5688 6.5151 53.4237 43.4723 40.3448 42.6023 50.7220 137.9143 133.4312 

HWZZ_RDF 4.4366 4.4057 23.5791 23.4724 23.3803 6.0751 49.3126 39.7600 37.1489 39.7076 46.6893 127.1806 123.7666 

HSDT_32 3.1214 3.0795 16.5601 16.4988 16.4814 4.2328 34.8655 28.2441 26.2932 27.5588 32.8362 89.4214 86.1535 

HSDT_33 3.3112 3.3242 17.8197 17.7763 17.7350 4.5421 37.5871 30.0267 28.3671 29.7902 35.6805 95.9062 93.3321 

HSDT_34 3.7431 3.7435 20.0323 20.0299 19.9865 5.1326 42.2194 34.2272 31.9077 33.4257 40.2768 108.7112 105.0458 

ZZM 3.8297 3.8680 20.5380 20.5733 20.5855 5.2703 43.1540 34.7094 32.8187 34.5179 41.1493 111.9573 107.9893 

HWZZM 4.0014 4.0014 22.8133 22.8133 22.8133 5.6511 47.9613 37.3664 34.9263 36.8660 43.8954 123.3228 119.6847 

ZZA* 3.8378 3.8378 21.6727 21.6727 21.6727 5.2398 44.6040 34.6466 32.3841 34.1826 40.7003 114.6902 112.7978 

HWZZM* 3.8013 3.8013 20.3723 20.3723 20.3723 5.1532 42.3786 34.0740 31.8489 33.6177 40.0277 106.6619 106.5141 

ZZA_GEN1 3.5569 3.5491 19.0559 18.9772 19.0349 4.8361 40.1153 32.2075 30.0466 31.7805 37.8997 103.1445 98.8547 

ZZA_GEN2* 3.6201 3.5965 19.2806 19.3764 19.3245 4.9542 40.5806 32.5930 30.7501 32.3397 38.3453 104.5919 101.0792 

ZZA_XN1 3.7803 3.7858 20.4074 20.1397 20.1462 5.2368 42.8075 34.3507 32.0218 34.1440 40.1400 109.7420 105.9616 

ZZA_XN2 3.8975 3.8740 20.9015 20.7122 20.8252 5.3416 43.8740 35.4183 33.0627 34.8716 41.4219 111.7069 109.3585 

ZZA_XN3 3.9570 3.9495 21.1959 20.9241 20.9588 5.3773 44.5795 36.0181 33.1871 35.5023 41.9697 114.3735 110.8409 

ZZA_XN4 3.9293 3.9587 21.1564 21.0065 21.0164 5.4229 44.5232 35.7340 33.5520 35.0233 42.2088 112.9965 110.4083 

ZZA_XN5 3.7968 3.8007 20.2992 20.2979 20.3000 5.2353 42.4996 34.3229 32.1621 34.0502 40.4440 108.9201 106.7728 

ZZA_XN6 3.8990 3.8929 20.7787 20.8844 20.8002 5.3402 43.6445 35.4531 33.2025 34.7651 41.4882 112.4237 108.9681 

ZZA_XN7 3.8110 3.8069 20.1892 20.3330 20.3107 5.2042 42.3192 34.6114 32.0761 33.9686 40.3171 109.1296 105.8898 

ZZA_XN8 3.8793 3.8928 20.6669 20.7793 20.8406 5.3412 43.9535 35.1104 33.1230 34.8843 41.2046 112.3614 109.3573 

ZZA_XN9 3.9335 3.9732 20.9319 21.0504 21.1069 5.3733 44.3578 35.7088 33.3426 35.4412 41.8453 113.4169 109.8425 

ZZA_XN10 3.9383 3.9689 21.1843 20.9980 21.1488 5.4134 44.2240 35.8335 33.2524 35.0769 41.8385 114.1747 110.3408 

FSDT 2.6100 2.6100 12.0963 12.0963 12.0963 3.5504 25.4307 23.4756 21.9426 23.1613 27.5775 65.3900 64.1452 

HSDT 2.6134 2.6134 13.6169 13.6169 13.6169 3.8809 28.6275 25.6612 23.9855 25.3175 30.1449 73.6099 75.5128 

Table 5.5: Processing time [s] 

 
Similarly to section 5.5, condensed comparisons of processing time provided 

for dynamic cases are reported in Figure 5.5. 
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Figure 5.5: Graphical, condensed comparison of computing times of 
theories for dynamic cases. Results are normalized to processing time of 

ZZA. 

 

5.6 Concluding remarks 

In this chapter a lot of challenging dynamic cases are analyzed. Particularly 
the capability of theories to accurately provide natural frequencies and calculate 
forced response to blast pulse loadings, as like as pumping modes is thoroughly 
tested.  

 
Differently to elastostatic benchmarks of the previous chapter, all lower-order 

mixed theories, both physically- and kinematic-based, MHR, MHR4, MHWZZA, 
MHWZZA4, HRZZ, HRZZ4, MHR± and MHR4± prove to be inaccurate, 
especially when a precise description of transverse deformability is required. 
despite their processing time is lower than ZZA and other higher-order theories, 
the cost saving does not justify their usage for dynamic analysis of structures, 
especially thick sandwiches (which could have pumping modes among their first 
natural frequencies).  

 
MHR, MHR4, MHR±, MHR4±, MHWZZA, MHWZZA4, HRZZ, HRZZ4 

Type: Mixed zig-zag theories (both physically- and kinematic-based) 
Displacement field: Piecewise cubic (in-plane displacements) 

 
Fourth-order  polynomial (transverse displacement of MHR, MHR±, MHWZZA) 
Piecewise fourth-order  polynomial (transverse displacement of MHR4, MHR4±, 
MHWZZA4, HRZZ4) 
Uniform (transverse displacement of HRZZ) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Not redefined (no adaptive) for MHR, MHR4, MHR±, MHR4±, MHWZZA, 

MHWZZA4 
Redefined only for in-plane displacement for  HRZZ, HRZZ4 

Accuracy: Strongly case-dependent 
Recommended usage: Only for thin laminated and sandwich plates without strong variation of 

mechanical properties of constituent layers across the thickness. 
So, their usage for dynamic analysis of structures should be avoided, especially 
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when a precise description of transverse deformability is required (pumping 
modes).  

Table 5.6: Main features of MHR, MHR4, MHR±, MHR4±, MHWZZA, 
MHWZZA4, HRZZ, HRZZ4 

 
Displacement-based physically-based adaptive zig-zag theories, HSDT_32 

and HSDT_33 that assume a parabolic and cubic piecewise transverse 
displacement respectively are not always accurate, because the full set of physical 
constraints of ZZA is not enforced. These theories demonstrate that also for 
dynamic cases, a piecewise cubic-fourth-order displacement field is the minimum 
expansion order to get the maximal precision. So, similarly to theories of Table 
5.6, their usage should be avoided when a precise description of transverse 
displacement is required (e.g. pumping modes).  

 
 

HSDT_32, HSDT_33 
Type: Displacement-based physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise parabolic (transverse displacement of HSDT_32) 
Piecewise cubic (transverse displacement of HSDT_33) 

Physical constraints: Full set of physical constraints of ZZA is not imposed 
Coefficients: Coefficients of displacement field are redefined (adaptive) 
Accuracy: Case-dependent; better than theories of Table 5.6 but less accurate than higher-

order theories 
Recommended usage: Only for thin laminated and sandwich plates without strong variation of 

mechanical properties of constituent layers across the thickness. 
So, their usage for dynamic analysis of structures should be avoided, especially 
when a precise description of transverse deformability is required (pumping 
modes).  

Table 5.7: Main features of HSDT_32 and HSDT_33 

 
Similar findings of section 4.11 regarding accuracy higher-order physically-

based adaptive theories ZZA, HWZZ, ZZA_RDF, HWZZ_RDF, HSDT_34, 
ZZM, HWZZM, ZZA*, HWZZM*, ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to 
ZZA_XN10 still apply also for dynamic calculations. Because of coefficients are 
redefined for each layer across the thickness (adaptive) and the full set of physical 
constraints is enforced all these theories provide the same results irrespective zig-
zag and global representation functions assumed. Particularly, particularizations 
of the most general physically-based higher-order adaptive theory (ZZA_GEN) 
are the best theories of this thesis, by virtue of their great efficiency (over 20% 
time less than ZZA). Usage of this kind of theories is strongly suggested, in order 
to prevent unacceptable loss of accuracy.  

 
ZZA, ZZA_RDF, HSDT_34, ZZM, ZZA*, HWZZ, HWZZ_RDF, HWZZM and HWZZM* 
Type: Mixed and displacement-based physically-based zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise fourth-order (transverse displacement) 
Physical constraints: Full set of physical constraints of ZZA is imposed 
Coefficients: Coefficients of displacements are redefined (adaptive) 
Accuracy: Always very accurate and close to reference solutions 



 

 
 

Recommended usage: Always; moreover, mixed theories allow a little cost saving than ZZA, 
ZZA_RDF, HSDT_34, ZZM, ZZA* 

Table 5.8: Main features of ZZA, ZZA_RDF, HSDT_34, ZZM, ZZA*, HWZZ, 
HWZZ_RDF, HWZZM and HWZZM* 

 
ZZA_GEN1, ZZA_GEN2*, ZZA_XN1 to ZZA_XN10 

Type: Displacement-based physically-based generalized zig-zag theories 
Displacement field: Piecewise cubic (in-plane displacements) 

Piecewise fourth-order (transverse displacement) 
 
User can choose layerwise and representation functions as an input of analysis.  

Physical constraints: Full set of physical constraints of ZZA is imposed 
Coefficients: Coefficients of displacements are redefined (adaptive) 
Accuracy: Always very accurate and close to reference solutions 
Recommended usage: Always; they allow a good cost saving (over 20%) than theories of Table 5.8 

Table 5.9: Main features of HWZZ, HWZZ_RDF, HWZZM and HWZZM* 

 
 
Similarly to findings of the previous chapter, equivalent single layer theories 

FSDT and HSDT demonstrate their inability to accurately obtain also overall 
quantities, such as first natural frequencies, because of their too simple 
displacement field. So, despite they provide very low processing time, their usage 
should be avoided. 

 
 

FSDT, HSDT 
Type: Equivalent single layer theories 
Displacement field: Linear (in-plane displacements of FSDT) 

Cubic (in-plane displacements of HSDT) 
Uniform (transverse displacement)  

Physical constraints: Regarding FSDT no physical constraints are imposed. 
Regarding HSDT, only boundary conditions on transverse shear stresses are 
enforced. 
Out-of-plane stresses are post-processed after analysis 

Coefficients: No additional coefficients for FSDT 
Two additional no-redefined coefficients for HSDT 

Accuracy: Very poor, they are not able to analyse sandwiches 
Recommended usage: Only for very thin laminated beams and plates; they should not be used to analyse 

sandwiches 

Table 5.10: Main features of FSDT, HSDT 
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Chapter 6 – Theory VK-ZZ for 
impact damage study 

6.1 Introduction 

As stated in the previous chapters, composite are used in a lot of engineering 
fields, thanks to their great specific properties. Composite and sandwiches 
structures are very vulnerable to low-velocity impacts (see [93], [94], [95], [96] 
and [97]) that could occur during the production or service life of component. 
However, even though they are not evident (barely visible impact damages) they 
are always responsible for a relevant strength degradation. Because of warping, 
shearing and straining deformations, local micro-failure and damages may form. 
Their dimensions can increase during service life of components, causing loss of 
strength and stiffness. Although the velocities and the energies indicated in 
literature have a rather large range of variation, all the authors agree that the 
incoming energy is mainly absorbed as strain energy and through local failures. 
They also agree that for this type of impacts strain-rate dependent properties are 
unnecessary.  

Among many others, an in-depth description of damage mechanisms and of 
failure criteria for impacted structures are given by Chai and Zhu [98], Garnich 
and Akula Venkata [99]; Liu and Zheng [100] and Berthelot [101] proposed 
different damage models, while studies on damaged or impacted honeycomb 
sandwiches were proposed by Horrigan and Staal [102]. Interesting studies about 
the effects of stacking sequence on the impact and post-impact behaviour were 
investigated by Aktas et al. [103], those of  the impactor shape by Mitrevski et al. 
[104], while those of multiple impacts by Damanpack et al. [105] and 
Chakraborty [106].  

Papers by by Chakrabarti et al. [107], Chen and Wu [34], Kreja [108], Zhang 
and Yang [109], Tahani [110], Matsunaga [111], Chao and Tu [112] and Zhou 
and Stronge [113] are cited as examples of structural models for impact studies, 
which must have low computational effort, with the intended aim to analyse 
structures of industrial interest. As a consequence, 3-D FEA and discrete layers 
models are less suitable, because of their too many unknowns. For these reasons, 
equivalent single layers and zig-zag theories are more appropriate for impact 
studies (see papers by Icardi and Sola [4], Icardi and Ferrero [10], Palazotto et al. 
[114], Kärger et al. [115], Diaz Diaz et al. [116], Oñate et al. [117], [118].  

Previous studies by Icardi and Sola [4], [119] and by Icardi and Urraci [24], 
proposed modified versions of zig-zag adaptive theory ZZA with additional zig-
zag functions, without any increase of d.o.f., in order to make stresses continuous 
also along in-plane directions. These modifications successfully improved 
accuracy of theories for impact studies and also allow the analysis of structures 



 

 
 

with different mechanical properties along in-plane directions (two material 
wedge problem). In this chapter, a modified version of the theories proposed in 
[4]- [24] is developed, whose formulation is completely new: layerwise functions 
will be omitted, with the intended aim to test if previous statements about the 
immaterial choice of zig-zag and representation functions are still valid. This 
theory, referred as ZZA_GEN_INP will be presented as an extension of general 
formulation ZZA_GEN of chapter 3. Accuracy of its particularizations and of 
VK-ZZ from [24], will be compared for some challenging benchmarks. The 
results show the importance of in-plane stress continuity to obtain accurate 
predictions. It should be noticed that the development of ZZA_GEN_INP 
represents the largest contribution and the main focus of this chapter. 

Regarding the application on impact problems, the analysis makes use of 
stress-based criteria, in order to progressively extend damaged area to portions 
where ultimate conditions are reached for each step. Mesomechanic model by 
Ladevèze et al. [120] is used, that takes into account the effects of discontinuities 
by assuming a modified version of the strain energy. After that transverse 
cracking rate and delamination ratios are calculated by stress-based criteria for 
each step, homogenized energy can be obtained and used to evaluate stresses. 
Modified Hertzian contact law of Icardi and Ferrero [10] is used in numerical 
calculations, because of Yigit and Christoforou [121] and Choi [122] (among 
many others) demonstrate its accuracy and contact model by Palazotto et al. [114] 
is adopted for sandwiches. All geometric nonlinearity is taking into account using 
Lagrangian approach, but also non-linear strains could be assumed, according to 
[10]. Even though low-velocity impact studies could be carried out also in static 
form (Li et al. [123]), the Newmark’s implicit time integration method is used 

because it could be applied in a wider range of applications (e.g. progressively 
increasing velocity of impactor). Moreover, it is not very heavy from the 
computational standpoint of view (see section 5.4.1 for a more detailed 
description of this method). Regarding sandwiches, according to the rest of thesis, 
honeycomb core is modelled as a thick homogenized layer, whose elastic moduli 
during damaging are assumed a part from 3-D finite element analysis, according 
to Icardi and Sola [124].  

 

6.2 Hertzian contact force 

As previously stated, in numerical applications the impactor is assumed 
spherical, while distribution of contact stress is described by Hertzian law [114]: 

 2 2( ) (0) 1 /   if  ( ( ) 0  if  )contact contactr r R r r R                         (6.1)   

 
(0)  is Hertzian stress at centre, while ( )r  is the Hertzian stress far of r  

from the centre. contactR  is the radius of contact area. contactR  is assumed fixed for 
laminates and it is calculated apart by 3-D FEA analysis. Regarding sandwiches, 
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assumption of a constant contactR  is not adequate [114] and a modified version of 
the Newton-Raphson method is used to calculate it for any load increment, 
making impact area conform to impactor shape. Approaches used to solve the 
problem are explained in section 6.3. 

 

6.3 Solution Procedure 

In this section the solution procedure [24] is described. Regarding laminates, 
in the loading phase, the contact force is assumed as: 

cF K                           (6.2)   

cK  is the contact stiffness that is calculated apart by 3-D FEA analysis (see 
Figure 6.1), while   is the indentation depth. The same 3-D FEA analysis is used 
to calculate contactR  for laminates, while for sandwiches it is computed as 
explained in section 6.2 (see [24] for details).  

 
Regarding the unloading phase, contact force is assumed as: 

0

0

q

m
m

F F  

 

 
  

 

                        (6.3)   

 mF  is the maximum of the contact force, m  is the relative indentation 

depth at each loading and 0  is the permanent indentation, while   is still the 
indentation depth. Exponents   and q  are obtained experimentally. 

 
Finally, contact force assumes a different expression for bounces: 

0( )b p
cF K                            (6.4)   

The same procedure previously described is used to calculate the contact 
stiffness b

cK , while   and 0  assume the same meaning of (6.2) and (6.3). 
Again, exponent p  is calculated experimentally.  

 
The following values of exponents are assumed in numerical applications: 

1.5                  2.5p q                           (6.4a)   
 



 

 
 

 

Figure 6.1: Procedure to solve the problem 

 
Regarding sandwiches, because of a constant contactR  is not adequate, the 

iterative algorithm of Palazotto et al. [114], making impact area conform to 
impactor shape, is used to calculate the contact radius for any load increment.  
This is accomplished through a modified version of the Newton-Raphson method:  

 ( 1) ( 1) ( 1) 0i i i i
cS

d d      
 
K F                     (6.4b)   

 
where  ( 1)i

S
d  

 
K  is the secant stiffness matrix computed by using VK-ZZ 

or ZZA_GEN_INP theories, ( 1)id   is the converged solution at the previous load 
increment ( 1)i

c
F , while i  is the residual force and ( 1)id   is the displacement 

amplitude vector. In order to respect the equilibrium with i
cF  it is updated by id , 

so: 

 ( 1)i i i

T
d d   

 
K                       (6.4c)   

 

 ( 1)i

T
d  

 
K  being the tangent stiffness matrix obtained using the VK-ZZ and 

ZZA_GEN_INP theories. 
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The updated displacement amplitude vector is computed as 
( 1)i i id d d                         (6.4d)   

 
This process is repeated until the convergence tolerance is reached. It is 

verified comparing the percentage of variation of the solution, from the current to 
the previous iteration. In applications 1%D   is assumed, whose expression is: 

1i i

i

d d
D

d

 
  

                       (6.4e)   

 

and 
i

d  is the norm of displacements: 

 
2i n

j
n

d d                        (6.4f)   

 
In the next section, stress-based failure criteria are briefly reminded, because 

they are used during analysis in order to progressively extend damaged area to 
portions where ultimate conditions are reached for step by step. 

 

6.4 Stress-based failure criteria 

3-D criterion by Hashin and Rotem [125]: 
It is used to predict fiber/matrix failure. Regarding tensile failure of fibers 

11 0  : 

 
2

2 211
12 132

12 13

1 1 tX S


 


 
   

 
                       (6.5)   

tX  is the tensile strength of fibers, while 12 13S   is the in-situ shear strength of 

the matrix. In-plane and transverse shear stresses on fibers are indicated as 11 , 

12  and 13 . 
 
For compressive failure of fibers ( 11 0  ): 

11
cX                            (6.6)   

cX  is the compressive strength of fibers, while 11  has the same meaning of 
(6.5).  

 
Regarding matrix failure, the following expression is used under traction, 

where 22 33 0   : 
2 22

222 33 1312
23 22 332

23 12 13 12 13

1 ( ) 1tY S S S
  

  
 

    
        

     

                 (6.7)   

While, the following expression is used under compression, where 

22 33 0   : 



 

 
 

2 2 2 2 2
22 33 23 22 33 12 13

22 33 2 2 2
23 23 23 12 13

( ) ( ) ( )1 1 ( ) 1
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c

c

Y
Y S S S S
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 



     
       
   

       (6.8)   

tY  and cY  are tensile and compressive strength of matrix, respectively, while 
other symbols assume the same meaning of (6.6) to (6.8). 

 
 
Criterion for delamination failure by Choi and Chang [126]: 
Is used for delamination failure of laminates under low-velocity impact: 

21 1
2

1 1 1
n n n

d a n n n
i i

e D
S S Y
     

 

 
    

  

            (6.9)   

aD  is an empirical constant that depends from material properties, while the 

following formula is used for calculate the mean stress ij  ( n  is the number of 

layer): 

1

1

1

1 n

n

t
n
ij ij

n t

dt
h

 







                (6.10)   

 
Letter i  in symbols means in-situ property, while 1nY   is assumed 1n

tY   for 

traction ( 0  ) or 1n
cY   for compression ( 0  ). 

 
 
Criterion of Besant et al. for honeycomb core failure [127]: 
It is used for honeycomb core failure under compression and transverse shear 

stresses: 

1
n n n

core
cu lu lu

e     

  

     
        
     

            (6.11)   

cu  is the core compression strength, while lu  is transverse shear strength. 
Exponent n  is assumed as 1.5 in numerical applications. 

 
 
Criterion for failure of foam core by Evonik [128] and  Li et al. [129]: 
It is estimated as: 
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Parameters 1a , 2a , d , k  are determined experimentally, while 11R , 11R , 12R  
are tensile, compressive and shear strength.  

 
 
Criterion for core crushing failure by Lee and Tsotsis [130]: 
It is used to determine core crushing of core under transverse shear and 

compressive stresses: 

1 , 1 , 1yzxzzz
c x yZ S S


                (6.13)   

cZ , xS  and yS  are compressive and transverse shear stresses strength, 
respectively.  

 
As both criteria (6.11) and (6.13) refer to honeycomb failure, the failed region 

is computed as the envelope of failures predicted by each of these two criteria.  
 

6.5 Mesoscale damage model  

With the intended aim to take into considerations discontinuities due to 
impact, Mesoscale model by Ladevèze et al, [120] is chosen, which substitutes the 
discretely damaged portion of laminate with a continuous homogeneous medium 
that have the same energy. Indeed, strain energy contains damage indicators 

22 12 23 13 33, , , ,I I I I I  calculated as the homogenized result of damage micromodels.  

At microscale, displacements mU , strains m  and stress m  fields are 
calculated as superposition of solutions of an undamaged problem and a residual 
one (residual stress around damage).  

According to [120], homogenized potential energy of each ply is calculated 
as: 

1 22 12 33 2 22 12 33 33 3 22 12

2 2 2 2
23 23 13 13 33 33

323 23
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   

   

    
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     (6.14)   

Where 22 12 23 13 33, , , ,I I I I I  are calculated as the integral of the strain energy of 
the elementary cell for each basic residual problem under the five possible 
elementary loads in the directions 22, 12, 23, 13, 33, while 1 2 3[ ],[ ],[ ]M M M  

depend from material properties and symbol .    is the positive part of 2
33 . 

(6.14) is rewritten for interfaces, assuming elastic stiffness coefficients 1 2 3, ,k k k  

and damage indicators 1 2 3, ,I I I : 
1 2 3

13 23 33

1 2 3

2 (1 ) (1 ) (1 )j
p

j

E I I I
k k k

  



  
             (6.15)   



 

 
 

Where j  is the deformation. So, coefficients of (6.14) and (6.15) are elastic 

properties of equivalent model.  
According to [24], 22 12 23 13 33, , , ,I I I I I  are calculated apart by using 3-D FEA to 

simulate elementary cell, assuming discrete values of fibre failure, matrix   and 
  for various load levels, by using (6.5)-(6.9). /L H   is the crackling rate, 
calculated as ratio of distance L  between two adjacent cracks and the length of 
the crack across the thickness H , while /l h   is delamination ratio, obtained as 
the ratio of length of the microcrack. In applications   and    assume values [0; 
0.7] and [0; 0.4] respectively. Once modified elastic properties are calculated, 
they are provided to analytical model.  

At each time step, progressive failure analysis is used and damaged area is 
computed by applying criteria (6.5)-(6.13) under loading (6.1)-(6.4) and it is 
extended at the next step. It should be noticed that with the intended aim to 
simplify calculations, a discrete representation of the domain is assumed (see 
Figure 6.3), which is subdivided into fictitious small square cells, where the 
damage state is computed at the central point and assumed uniform for the rest of 
the cell. So, it is possible to determine damaged area, that is made of cells where 
ultimate stress is reached. Dimension of cells is chosen in order to strike the right 
balance between accuracy and computational effort. More details can be found 
[24], while in the following section, VK-ZZ theory retaken from literature is 
reported.  

 

6.6 VK-ZZ theory  

This adaptive theory is retaken from [24] and its displacement field is: 
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ZZAU , ZZAU  and ZZAU  are the same of ZZA, whose expressions are: 
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(6.17)   

So, similarly to ZZA , , , , , , ,i i i i i i i iC C D D b c d e     are calculated by imposing 

(1.15)-(1.18), while , , ,k k k k
      by (1.19) and ,  , k k k

u uC C C    by (1.20). 

 
Additional zig-zag contributions make continuous the stresses under in-plane 

variation of properties. So, additional zig-zag functions depend from in-plane 
coordinates. The number of in-plane interfaces is assumed to be s  along α-
direction and t  along β-direction. 

, , , , , , , , ,j k j k j k j k j k j k j k j k j k j k
u u u v v v w w w w                    terms are redefined after each in-

plane interface j  and are assumed to be zero in the first in-plane layer before the 

first in-plane interface, both from α- and β-directions. j k
u   and j k

u   are calculated 

by imposing the continuity of in-plane stress   along α and β directions: 
( ) ( )

( ) ( )

( ) ( )

( ) ( )
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j j
 

 

   

   

 

 



        
(6.18a)   

Similarly, the in-plane continuity of   is imposed by j k
v   and j k

v  : 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

j j
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(6.18b)   

 
 
Instead, j k

u   and j k
u   are calculated by imposing: 
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Finally, ,j k j k

w w    are calculated by imposing: 
( ) ( )
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While ,j k j k

w w    impose: 
( ) ( )
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There is no need to impose in-plane continuity of transverse normal stress or 
of its gradient. Obviously, if a beam is considered, j k

u  , j k
u   and j k

w   are null 

because there are no interfaces along β-direction. Numerical results will show the 
importance of in-plane continuity to obtain accurate results. A generalized version 
of VK-ZZ is developed and assessed into this thesis. It should be considered as a 
new original contribution and an extension of ZZA_GEN for applications that 
require in-plane continuity of stresses.  

 

6.7 ZZA_GEN_INP theory 

A generalized version of VK-ZZ can be obtained, considering the following 
displacement field, whose coefficients are redefined for each after each interface 
along α-, β- and ς- directions: 
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(6.22)   

 
Symbols , ,j k l  refers to j-th, k-th and l-th layer along ς-, α- and β-directions. 

Obviously, before the first interfaces along α and β are reached, terms ijB , ijC , 

ijE  and ijF  are null. The following coefficients of the bottom layer 1
1 01A , 1

1 11A , 
1
1 01D  are assumed as fixed d.o.f. and other coefficients are calculated as function 

of 1
1 01A , 1

1 11A , 1
1 01D  and their derivatives. In order to compare results by 

ZZA_GEN_INP and VK-ZZ, 1
1 01A , 1

1 11A , 1
1 01D  are assumed as: 

1 0 1 0 0 1 0
1 01 1 11 1 01   ,    ,    ,    A u A w D w  

      
     

  (6.23)   
 
Moreover, the following choices are made for particularization of 

ZZA_GEN_INP for numerical calculation: 
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(6.24)   

 
Differently to ZZA_GEN, there is no need to change reference frame position, 

because terms ijB , ijC , ijE  and ijF  can’t vanish.  

As previously stated, in the portion of laminate before any interface along α- 
and β- directions, ijB , ijC , ijE  and ijF  are null and the remaining terms 1

1 ijA  and 
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1
1 ijD , are calculated for 1   or    1i j   by imposing the fulfilment of (1.15)-(1.20) 

as function of d.o.f. 1
1 01A , 1

1 11A , 1
1 01D  and their derivatives.  

For the other portions of laminate where 1   or    1k l  , additional terms ijB

, ijC , ijE  and ijF  are calculated by imposing (6.17)-(6.21), while terms 1
1 ijA  and 

1
1 ijD  are obtained still by imposing (1.15)-(1.20). Differently from the previous 

portion of laminate, for the bottom layer, additional equations that restore the in-
plane continuity of displacements along α- and β- directions are needed to 
determine 1

1 01
k
l A

  and 1
1 01

k
l D

 : 
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An additional equilibrium point is needed to calculate 1

1 11
k
l A

 . This is done to 
keeping the number of d.o.f. fixed to five, like VK-ZZ theory. It should be noticed 
that the only substantial differences between ZZA_GEN_INP and the parent 
theory is omission of explicit zig-zag functions and summations. This latter 
feature allows ZZA_GEN_INP to be more efficient than parent theory, because it 
obtains indistinguishable results than VK-ZZ, with lower processing time (see 
section 6.9), demonstrating that the choice of zig-zag functions is immaterial and 
they can be also omitted also for in-plane continuity, obviously, if coefficients are 
redefined after each interface along in-plane and transverse directions. Obviously, 
terms that restore in-plane continuity along y-direction are not taken into account 
if a beam is considered.  

For both previous theories, in order to account for core crushing mechanism, a 
finite element analysis is done, to determine the apparent elastic moduli of the 
core at each magnitude of transverse loading. It is done apart once and for all and 
then results are provided to the VK-ZZ model for the analysis. Honeycomb 
structure is accurately simulated using a very refined mesh, where elastic-plastic 
isotropic material and (6.8)-(6.11) are used for each loading. Solid elements are 
used for foam core, whose material has nonlinear properties determined from 
experiments and materials databases. An in-depth description of this technique 
can be found in [124] and it is used because obtains accurate predictions for 
sample cases.  

Similarly to previous application, Rayleigh-Ritz method is used where the 
following trial functions are assumed for simply-supported edges: 
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The following trial functions are assumed for clamped edges: 
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Where also the following mechanical boundary conditions are imposed 

uniformly on the contour C  (it should be noticed that this hypothesis is valid only 
for thin laminates): 
 ;     

C C
Q d d Q d d                 

(6.28)   

 
As previously stated, Newmark’s time integration scheme is used and 

amplitudes are computed and for each step and used as input of damage analysis, 
while  (6.21) and (6.21) are used to calculate linear, secant and tangent stiffness 
matrices. The consistent mass matrix is used, because according to [24], this 
choice guarantees accuracy. In the following sections, accuracy of VK-ZZ and 
ZZA_GEN_INP is assessed for numerical applications retaken from [10] and 
[131]. 

 

6.8 Assessment of VK-ZZ and ZZA_GEN_INP for two 
material wedge 

Accuracy of theories is firstly tested for two material wedge problem. This 
problem was previously studied by Hein and Erdogan [132], where a 3-D beam is 
analysed. Beam is subdivided into two plates, which have a length-to-width ratio 
of 50. One plate is made of a rigid isotropic material ( 1 730       =0.3E GPa  ), 

while the other one is made of an elastic material ( 1 7.3       =0.3E GPa  ). Two 
semi-infinite sectors are bonded together to form an interface angle at the free 
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edge of 90°, as shown in the figure 6.1. For this reason, the variation of 
displacements and stresses along thickness direction is not important. Results of 
in-plane shear stress provided by VK-ZZ and ZZA_GEN_INP are compared to 
exact solution by [132] and reported in Figure 6.1, which impose the continuity of 

  along x-direction. The following normalization is used: 

max( )












        
(6.29)   

 
It should be noticed that there is a strong stress concentration between the two 

plates, because of singularity of material properties, which can cause loss during 
service life if it is not taken into account. Thanks to additional terms of (6.16) and 
(6.22) VK-ZZ and ZZA_GEN_INP are very accurate and indistinguishable results 
are obtained, demonstrating that also in-plane zig-zag functions are immaterial 
and they can be omitted, once coefficients are redefined after each interface along 
α-, β- and ς- directions. In the next section, more challenging cases are analyzed, 
in order to test accuracy of new ZZA_GEN_INP theory. 

 

Figure 6.1: Normalized in-plane stress for two material wedge problem 

6.9 Assessment of VK-ZZ and ZZA_GEN_INP for 
impacted panels 

6.9.1 Case a 

In order to show the importance of in-plane continuity to predict accurate 
results, an impact study, whose results are compared to analytical and 
experimental ones retaken from paper by Icardi and Zardo [131] is now 
performed. 

The intended aim of this study is to replicate the numerical analysis, 
preserving all the previous formulations [131], [24] with the same procedures 
[24], without trying to improve any of them. Indeed the goal is to highlight the 



 

 
 

effects of assuming in-plane continuities omitting them by discarding in-plane 
zig-zag functions. 

Panel is composite with I stiffeners having a length of 800mm (Lα), a width of 
330mm (Lβ) and an overall thickness (h) of 3mm and its short edges are clamped, 
while the others are free. The panel is impacted at its centre with a steel spherical 
impactor (E= 210GPa, ν= 0.3, radios=12.7mm, mass=5.45kg) with a velocity of 
3.83m/s and an energy of 40J. All layers have the same thickness (0.25mm) and 
are made of the same material, whose properties are E1=130GPa, E2= E3=8GPa, 
G12= G13=5GPa, G23=2.5 GPa, ν12= ν13= ν23=0.3, ρ= 1557 kg/m

3. The following 
lay-up is used [45°/-45°/0°/0°/45°/-45°/-45°/45°/0°/0°/-45°/45] and the following 
strengths are assumed: 

 Tensile strengths Stii along i-direction: 
o St11=1.67GPa, St22=0.06GPa 

 Compressive strengths Scii along i-direction: 
o Sc11=1.08GPa, Sc22=0.17GPa 

 Shear strengths Sij: 
o S12=S13=S23=0.07GPa 

Results of contact force estimated by present simulation and by those of [131] 
are reported in Figure 6.2. Because of the only difference between VK-ZZ of 
[131] and ZZA_GEN_INP is that this latter theory omits zig-zag functions (that 
are substituted with power series functions of in-plane coordinates, which it has 
been proven in the previous case to provide completely identical results) and the 
same procedure of the reference paper is followed, the same estimated contact 
force is obtained, which is in a well agreement with experimental one.  

 

 

Figure 6.2: Contact force 

Accordingly to [24], in this case the results with and without enforcement of 
the target to conform the shape of the impactor are undistinguishable, as is to be 
expected because laminates do not shrink like the faces of sandwiches which rest 
on a soft core. Figure 6.3 shows the estimated damaged area, which is calculated, 
according to sections 6.2 to 6.5. The overall area is subdivided into square sub-
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regions, where criteria of section 6.3 are applied to the centre point of each square 
and if any of the damage criteria predicts failure, all the sub-region is considered 
damaged. It should be noticed that stresses are calculated by using mesoscale 
model through a modified strain energy expression, where damage indicators are 
calculated apart, accordingly to section 6.5. Capability of VK-ZZ and ZZA_GEN 
to calculate damaged area is compared to that of theory by [131] (where in-plane 
continuity of stresses was not enforced) and to experimental results, which are 
used as reference solutions (see Figure 6.3). It should be noticed that 
indistinguishable results provided by VK-ZZ and ZZA_GEN (light grey) are in 
very good agreement with experimental results (dashed lines). Note that just 
delamination damage is reported. So, the previous findings about the choice of 
zig-zag functions are confirmed. Instead, a minor precision is obtained not 
considering in-plane continuity of stresses (dark grey) [131], even if errors are not 
very big for this case. 

 

 

Figure 6.3: Overlap induced damage 

 
This is also corroborated by delaminated area predicted at each interface and 

compared to experimental one (see Table 6.1): 
 

Physical interface Experimental 
 [131] 

VK-ZZ 
ZZA_GEN_INP 

VK-ZZ 
No in-plane  
continuity 

Analytical 
[131] 

1st 960 950 930 950 

2nd 790 758 740 258 

3rd 430 400 380 376 

4th 310 250 210 143 

5th 160 115 107 114 

6th 135 102 98 108 

7th 95 75 62 75 

8th 50 44 38 43 

Table 6.1. Delaminated area [mm2] predicted by various theories 



 

 
 

It should be noticed that better results are obtained by VK-ZZ and 
ZZA_GEN_INP, demonstrating that in-plane stress continuity is important to get 
accurate results. Moreover, ZZA_GEN_INP has demonstrating to be more 
efficient than the parent theory, with a reduction of processing time of 40%. 

6.9.2 Case b 

This case is retaken from [10] and it is a [0]8 laminated plate (dimensions are 
100x100x2mm). The plate is supported at the sides along a strip 1.3 cm wide. 
Material properties of constituent layers are E1=53.7GPa, E2=53.88GPa 
E3=10.00GPa, G12= G13=4.462GPa, G23=3.0 GPa, ν12= ν13= 0.0502 ν23=0.06. The 
plate is impacted by a steel sphere (radius of 6.35mm, mass of 0.36kg) with a 
velocity of 4.49m/s and an energy of 3.63J. The time history of contact force, 
retaken from [10] is reported in Figure 6.4.  

 

Figure 6.4: Contact force [10] 

The curve indicated as ―Previous‖ in Figure 6.4 represents the contact force 

obtained with a different contact law (from a former paper than [10]), while the 
light-grey curve indicated as ―Current‖ in figure, represents the results obtained in 

[10] using an improved contact law. It should be noticed that this latter one is in a 
quite well agreement with experimental results.  

Again, the capability of ZZA_GEN_INP to calculate damaged area is 
compared to that of theory by [10] and reported in Figure 6.5.  

 

 

Figure 6.5: Overlap damage 
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Results obtained by ZZA_GEN_INP are in very good agreement with 

experimental ones (dashed lines), while a minor precision is obtained by previous 
theory [10] (dark grey), so, the importance to consider also in-plane continuities is 
reiterated.  
  



 

 
 

Chapter 7 – Approximate 3-D 
solutions 

A lot of 3-D exact solutions for multi-layered structures were proposed in 
Literature. Papers by Pagano [57] and [133] (for beams and plates), Ren [134] 
(plates in cylindrical bending), Brischetto [135] (multi-layered plates and shells),  
Icardi [54] (damaged sandwich beams), Kashtalyan and co-workers [82], [136], 
[137], [138] (3-D elasticity solution for graded isotropic plates, sandwich panels 
with functionally graded cores, distributed, concentrated and point loadings) are 
cited as notable examples. 

Even though these solutions are very useful terms to comparisons in order to 
test accuracy of theories, they often show strong limitations regarding the choice 
of loading, boundary conditions and material properties of constituent layers. 
Indeed, lay-ups are usually symmetric and simply-supported beams and plates 
under sinusoidal or bi-sinusoidal loading are analysed. Anyway, closed-form 3-D 
solutions should be obtained for other more realistic loading and boundary 
conditions and for industrial lay-ups, that can be used as reference solutions in 
addition to finite elements solutions. Indeed displacement-based 3-D FEA cannot 
a priori satisfy local equilibrium equations, while mixed finite elements are very 
sensitive to local effects and some boundary conditions, such as clamped edges.  

With the intended aim to overcome limitations of exact 3-D solutions, Reddy 
and Chao [139] and Yakimov [140] proposed approximate 3-D solutions. So, to 
obtain solutions that can be used as further reference to finite element results, 
accuracy of approximated theories is in-depth evaluated in this chapter, according 
to [20], [21], [23], renouncing to have exact solutions. Symbolic calculus is used 
to develop this approximate 3-D theory, starting from results of previous chapters, 
whose coefficients are redefined for each layers, in order to preserve adaptivity. 
Expression of displacements is completely general, similar to ZZA_GEN one. 
Anyway, differently to zig-zag theories, all coefficients are d.o.f. of this theory, 
some of which are calculated by imposing the fulfillment of physical constraints 
of theory of elasticity as function of the remaining ones, calculated  by applying 
Rayleigh-Ritz method (Vel and Batra [25]). So, the solution is sought by 
assuming an appropriate in-plane expression for each displacement, that a priori 
fulfill kinematic boundary conditions. Also natural ones can be enforced without 
any difficulty; it should be noticed that Lagrange multiplier method is not 
mandatory, because these boundary conditions could be obtained through an 
adequate expansion across the thickness. Two different approaches are shown, 
with the aim to contain the number of d.o.f.  

Results will demonstrate that an approximate 3-D theory can be obtained, able 
to analyze structures with any loading and boundary conditions. Similarly to 
previous chapters, thanks to symbolic calculus, analytical expression of loading is 
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used in numerical applications and a series expansion is not needed. So, these 
approximate 3-D theories assume different and more d.o.f. than zig-zag theories 
of chapters 2 and 3. It should be noticed that DL are not used because their high 
number of unknowns.  

In the next section, approximate 3-D theory (3D-AP) is reported, while results 
of some challenging benchmarks of chapter 4 are reported in section 7.2.  

 

7.1 Approximate 3-D theory 

A general approximate 3-D theory, referred as 3D-AP, with features similar to 
ones previously presented by author in [18], [21] and [23] is developed. The main 
purpose is to obtain solutions that can be used as further reference to finite 
element results, whose displacement field is: 
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                                (7.1)   

  
n  and n  represent the expansion order across the thickness of in-plane and 

transverse displacements. Their choice is free and performed by user, anyway, 
4n   and 5n   are assumed in numerical applications because it is sufficient to 

get accurate results. Coefficients j
ka  and j

kb  are redefined for each layer across 

the thickness, while the following expressions of ( )kH   and ( )kH   are used 

for its particularization of numerical assessment of section 7.3: 
( 1)( ) ( ) k

k kH H                                  (7.2)   

 
Any other expressions of ( )kH   and ( )kH   could be assumed, anyway, 

their assessment will be performed in future studies. Trial functions  ,F    and 

 ,G    a priori respect boundary conditions. They are assumed as a series 

expansion, whose expression is: 
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                                 (7.3)   

 
M and P are two index of series of functions  ( , )p mF    and  ( , )p mG    along 

α and β axes, while  p mA  and  p mB  are the amplitudes constitute d.o.f. of this 

theory. So, the explicit expression of 3D-AP is: 
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                      (7.4)   

 
and two different approaches can be used to solve the boundary value 

problems.  
 
Using the first procedure, amplitudes  p mA  and  p mB  constitute the d.o.f. of the 

problem. All coefficients j
ka  and j

kb  are calculated as functions of  p mA  and 

 p mB  by imposing the full set of physical constraints of ZZA (1.15)-(1.20). It 

should be noticed that the total number of j
ka  and j

kb  is greater than the number 
of coefficients of ZZA, so, they are saturated by imposing the fulfillment of local 
equilibrium equations for more equilibrium points. When the computation of all 
coefficients j

ka  and j
kb  is obtained,  p mA  and  p mB  are calculated by using 

Rayleigh-Ritz method. Anyway, this procedure should be avoided, even tough is 
possible to solve the algebraic system, because the products of  

j
p m kA a  and 

 
j

p m kB b  are non-linear and a lot of time could be required to compute them. 

Alternatively j
ka  and j

kb  could be calculated for each amplitude  p mA  and  p mB  

by imposing M x P times physical constraints (1.15)-(1.20), however, further 
conditions have to be imposed for all no-homogenous conditions using Lagrange 
multiplier technique, so, also this alternative method is discarded. 

 
So, the second procedure is performed, in order to overcome algebraic issue, 

assuming the products   
j j

p m k p m kA a c   and   
j j

p m k p m kB b d   as new unknowns of 

this problem, so, (7.4) is rewritten as: 
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                       (7.5)   

 
This passage may appear trivia, but it is sufficient to remove all algebraic 

non-linarites and to reduces time required for computations. Differently to 
ZZA_GEN and other zig-zag theories particularized starting from ZZA, any 
number of  coefficients  

j
p m kc  and  

j
p m kd   could be assumed as d.o.f. However, in 

numerical applications, a part of  
j

p m kc  and  
j

p m kd   are calculated by imposing the 

full set of physical constraints of ZZA (1.15)-(1.20), so, the remaining ones 
constitute the d.o.f. of this problem that are obtained similarly to previous theories 
by Rayleigh-Ritz method. There is no need to assign a specific role to 
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coefficients, so, user can freely decide which are used to impose physical 
constraints and which are d.o.f., differently to ZZA and other zig-zag theories.  

Thanks to symbolic calculus, it is again possible to assume the exact formula 
of the load acting on upper or lower faces, without any series expansion. In the 
following section, some results obtained by this theory for some challenging cases 
of chapter 4 are reported. 

 

7.2 Application of 3D-AP 

Results obtained by present 3D-AP theory is compared to findings provided 
by 3-D FEA and ZZA for cases a, c, e and h retaken from chapter 4. The same 
lay-up, loading, boundary conditions are assumed, as well as the same trial 
functions and in-plane expansion order. For all cases, n  and n  are assumed as 

three and four respectively, because numerical assessment of [18], [21] and [23] 
demonstrate that these choices are sufficient to get accurate results,  

 
Regarding case a, that is a simply-supported laminated [0/90/0/90] beam 

under a sinusoidal loading, the following results are obtained (Figure 7.1): 

 

 

Figure 7.1: Normalized displacements and stresses, case a 

 
Results obtained by 3D-AP, where M=1 (one term along x-axis) is assumed, 

are very close to 3-D FEA solutions, so, it could be used as reference solution, 
along with mixed finite elements by Icardi and Atzori when exact solution is not 
available. This is also reiterated for case c, that is a simply-supported asymmetric 
sandwich plate under a bisinusoidal loading (Figure 7.2): 

 



 

 
 

 

 

 

Figure 7.2: Normalized displacements and stresses, case c 

 
In this case M=1 and P=1 but it is confirmed that 3D-AP can compete with 

mixed 3-D FEA, because of indistinguishable results are obtained. However, the 
next two cases are considered, with the intended aim to test accuracy of 3D-AP 
also for other loading and boundary conditions. 

 
The same propped cantilever sandwich beam of case e of chapter 4 is 

considered and results are reported in Figure 7.3: 
 

 

Figure 7.3: Normalized displacements and stresses, case e 

 
For this case, M=9 is assumed, in order to compare results under the same 

conditions of ZZA, but it should be noticed that a good level of accuracy is 
already obtained with M=3, thanks to higher number of d.o.f. and redefinition of 
coefficients of 3D-AP for each term of in-plane expansion respect to zig-zag 
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theory. Again, 3D-AP is in well agreement with 3-D FEA, also for this very 
challenging case. Particularly, 3D-AP is able to accurately describe transverse 
displacement and deformability and accordingly to [71], accurate transverse shear 
stress is obtained. This demonstrate that 3D-AP is able to describe displacements 
and stresses also when a high in-plane expansion is assumed. Obviously, 
processing time required is quite high for this case, having a lot of more d.o.f. 
than ZZA. However, good results obtained confirm that this theory can be used as 
reference if exact solution is not available, also for other boundary conditions than 
ZZA. In the next case h, an eleven-layer simply-supported sandwich beam under a 
uniform loading that is applied on the top face for half of beam and on the bottom 
face for the remaining part, but with an opposite sign (Figure 7.4): 

 

 

Figure 7.4: Normalized displacements and stresses, case h 

 
Again, M=1 is assumed also for this case and the same findings on accuracy 

of 3D-AP still apply also for this case.  
 
Because of 3D-AP demonstrates its great accuracy for considered cases, 

according to [18], [21] and [23], it is demonstrated that 3-D approximate solutions 
can be used as alternative references when exact results are not available, 
irrespective loading and boundary conditions of analyzed lay-up. It should be also 
noticed that this approach is able to overcome strong limitations of exact 3-D 
solutions, which are in any case an important instrument of validations of 
numerical procedures.  

 
 
 
 
 
 
 
 
 

  



 

 
 

 

Chapter 8 – Strain Energy Update 
Technique  

As shown in previous chapters, accuracy of ZZA (and higher-order theories 
obtained from it) is very high. Anyway, it is not able to analyse complex 
structures of industrial interests, e.g. wings, as like as any other analytical model. 
In order to overcome this issue, finite elements can be obtained by this theory. 
However, because of its layerwise and higher-order terms that impose physical 
constraints there are a lot of derivatives into strain energy (see Icardi and Ferrero 
[5]). As a consequence, finite elements obtained from theories of chapters 2, 
should contain a high number of nodal d.o.f., so, they could require very high 
computational burden if very complex structures are analyzed. Mixed finite 
elements able to obtain accurate displacements and stresses can be developed (see 
Icardi and Atzori [6]). Anyway, even though their shape functions are simple, 
they still require a greater number of d.o.f. than commercial ones.  

Over the years, various techniques were proposed to eliminate derivatives of 
d.o.f., see Zhen and Wanji [141] and Sahoo and Singh [142]. Strain Energy 
Update Technique (SEUPT) proposed by Icardi and Sola [13] is discussed in this 
chapter because of its efficiency. Regarding its original form (see Icardi [9] and 
Icardi and Ferrero [10]), precision of results by commercial finite elements was 
improved using an iterative post-processing tool. This procedure was modified 
and upgraded by Icardi and Sola (see [11], [12], [13]). Unlike the previous 
version, the intended aim is to update the strain energy and the work of forces 
through a priori calculation of corrective terms. In this way, energy contributions 
of an original theory (e.g. ZZA or ZZA_GEN) are equalled to ones of an 
equivalent theory without derivatives of d.o.f. In this way, a C0 finite element can 
be obtained; its shape functions are the same of commercial elements, but its 
precision is similar to a layerwise model [13].  

A further and new version of SEUPT is also theorized into this section. It 
consists of a novel approach that strongly integrates commercial finite elements 
software in the improvement process, without any iterative post-processing tool. 

It should be noticed that all these techniques will be applied to a 
particularization of ZZA_GEN, thanks to its particular efficient and optimized 
expression of displacements. Application of SEUPT technique will be assessed 
considering benchmarks retaken from literature. This chapter contains only 
preliminary studies and results regarding the application of this technique.   
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8.1 Iterative SEUPT technique   

Firstly, the iterative original form of SEUPT [9]- [10] is here retaken. The 
purpose is to increase accuracy of results by commercial finite elements; in order 
to apply this version of SEUPT, the next steps have to be followed: 

 User choices the region to which apply SEUPT; 
 Polynomial spline of results (displacements, strains, stresses) by finite 

elements; 
 Energy contributions are calculated by an accurate zig-zag theory, 

using finite element results; 
 Also energy contributions of finite elements are calculated; 
 Corrective terms are introduced into energy contribution by finite 

elements and are calculated through an iterative process and an energy 
balance; 

 When the convergence has been achieved, nodal d.o.f. of finite 
elements are updated; 

 A great improvement of results is obtained. 

It should be noticed that this technique will not be used into this thesis. In the 
next chapter, a modified version of SEUPT will be discussed to obtain an accurate 
C0 finite element. 

 

8.2 Modified SEUPT technique by Icardi and Sola  

This version of SEUPT (see Icardi and Sola [11], [12], [13]) is a modified and 
an upgraded version of that presented in section 8.1 with the intended aim to 
obtain an accurate C0 Lagrangian finite element.  

Firstly a higher-order theory (ZZA_GEN in applications) is chosen as 
―original theory‖ and it will be indicated with the superscript 

OT. Displacement 
field, which is explained in (3.18) can be rewritten as: 
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           (8.1)   

 
Where 0  OTU  and 0  OTU  contain all terms that are functions of d.o.f., while 

1  OTU  and 1  OTU  contain terms that are functions of derivatives of d.o.f. These 

latter ones appear into displacement field as a consequence of enforcement of 
physical constraints. For this reason, the development of a finite element starting 
from (8.1) is not considered. 

 



 

 
 

Another theory is designated as equivalent theory (and indicated as ET), whose 
displacement field does not contain any derivative of d.o.f.: 
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So, the purpose is to obtain a modified expression of ET displacements, 

without any d.o.f. derivatives, through corrective terms 0  ETU  and 0  ETU  able 

to balance strain energy and work of external and inertial forces between OT and 
ET. So, the following displacement field is assumed for ET: 
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The following balances are imposed: 

   
0

0OM u EME E                             (8.4)   

 
From which a corrective terms for each d.o.f. ( 0u , 0w , 0

  and so, 
0  ETU  and 0  ETU ) are obtained. E  in (8.4) is the sum of strain energy and 

work of external and inertial forces: 
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It should be noticed that modified expression of displacements of ET (8.3) 

have the same amount of energy, so, the same functional d.o.f. are calculated. 
Differently from the previous techniques, corrective terms are calculated once and 
for all, in closed form by using symbolic calculus and no iterative post-processing 
technique is required. So, the following steps have to be followed: 

 Coefficients of OT are calculated in closed form by imposing physical 
constraints; 

 D.o.f. derivatives are substituted with unknown corrective terms (ET); 
 Strain energy and the works of external and inertial forces are 

computed; 
 Corrective terms are calculated, once and for all in a closed form, 

using symbolic calculus tool, by energy balances between OT and ET. 

Corrective terms are calculated by integrating by part energy balance. In this 
way, strain energy of OT is rewritten without any d.o.f. derivatives. As a 
consequence, a C0 finite element can be obtained. Its shape functions are the same 
of commercial elements (Lagrangian polynomial), but its precision is similar to a 
layerwise model. It should be noticed that these elements provide a very good 
approximation of the correct value of functional d.o.f. of ZZA_GEN along in-
plane directions, but, because of their intrinsic simplicity, they are not able to 
reproduce trend of displacements and stresses across the thickness. So, in order to 
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accurately reproduce them a post-processing is needed. Results provided by these 
elements are substituted into a higher-order theory (ZZA or ZZA_GEN) and 
assumed as trial functions (both amplitudes and trend along in-plane directions)  
in order to plot trend of displacements and stresses across the thickness. It should 
be noticed that analytical model is only used to plot quantities across the 
thickness. 

 

8.2.1 Development of finite element 

Accordingly to Icardi and Sola [11], the following vector of nodal d.o.f. is 
assumed for the eight-node finite element obtained by energy of ET: 
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A polynomial Lagrangian representation is assumed to increase accuracy and 

to obtain precise results also for coarse meshing. The separate representations of 
0
  and 0w  prevent shear locking (see Prathap [143]) while the following shape 

functions are assumed: 
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Similarly to section 1.8, the topological transformation from physical  to 

natural volume is used, in order to simplify and harmonize calculus of integrals of 
strain energy, so: 

 ix Q N                                                                                                          (8.8)   

 
As regards derivative, the following relations apply: 
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where  J  is Jacobian matrix and  
1J   its inverse: 
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So, strains and stresses are expressed as: 
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And the following expression of stiffness and mass matrixes and of vector of 

nodal loads are gotten, using standard techniques: 
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                                                                                      (8.12)   

 
Regarding  Fe , also punctual forces or ones applied to a surface could be 

considered with a few changes. In the next sections, accuracy of finite elements 
obtained by ZZA_GEN (assuming the particularization of (8.13)) will be 
compared to results provided by finite elements obtained from ZZA. 

1 0 0 1 1 0 0 1 0 0
,d.o.f. :   , ,

( ) ( )i i i

C u C w C w

F G
     

   

    

 
                                                     (8.13)   

 
Moreover, also a mixed version of this finite element could be obtained [11].  

8.3 Numerical results of C0 finite element generated from 
ZZA_GEN 

Case a 
This case is retaken from [141] and it is a square sandwich plate under a 

bisinusoidal loading, whose mechanical properties are reported in Table 8.1: 
Material name Face Core Lay-up 

E1[GPa] 172.4 0.276 
[Core/Face/Core] 
[0.1h/0.8h/0.1h] 

 
Lβ=Lα 

Lα/h=4,10,20 
 

ρ=1558.35 kg/m3 

E2[GPa] 6.89 0.276 
E3 [GPa] 6.89 345 

G12 [GPa] 3.45 0.1104 
G13 [GPa] 3.45 0.414 
G23 [GPa] 1.378 0.4141 

σ12 0.25 0.25 
σ13 0.25 0.25 
σ23 0.25 0.25 

Table 8.1. Material properties and Lay-up, case a. 

As previously explained, finite elements described in section 8.2 obtain an 
approximate value of d.o.f. of ZZA_GEN that are suddenly substituted into parent 
theory, in order to compute displacements and stresses (without solving analytical 
problem). Results reported in Table 8.2 are compared to those provided by finite 
elements obtained from ZZA by Icardi and Sola, where the following 
normalizations are used: 
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Lx/h  σαα
U σαα

L σας σβς 

4 

[141] 1.5622 -1.5622 0.1505 0.1325 
ZZA 1.5622 -1.5300 0.1505 0.1363 

Icardi and Sola  
(9x9 mesh) 1.5622 -1.5250 0.1505 0.1375 

Present  
(9x9 mesh) 1.5622 -1.5250 0.1505 0.1375 

10 

[141] 1.1686 -1.1686 0.2957 0.0506 
ZZA 1.1686 -1.1650 0.2957 0.0506 

Icardi and Sola  
(9x9 mesh) 1.1686 -1.1599 0.2957 0.0506 

Present  
(9x9 mesh) 1.1686 -1.1599 0.2957 0.0506 

20 

[141] 1.1101 -1.1101 0.3174 0.0360 
ZZA 1.1101 -1.1101 0.3174 0.0360 

Icardi and Sola  
(9x9 mesh) 1.1101 -1.1101 0.3174 0.0360 

Present  
(9x9 mesh) 1.1101 -1.1101 0.3174 0.0360 

Table 8.2. Results for case a. 

Results confirm that there is no shear locking and indistinguishable findings 
are provided by present finite elements obtained by ZZA_GEN and finite 
elements by Icardi and Sola. It should be noticed that a 9x9 mesh (only a quarter 
of plate is analysed because of its in-plane symmetric properties) is sufficient to 
obtain accuracy comparable to ZZA. These findings still apply to case b for 
natural frequencies. 

 
Case b 
Natural frequencies of a simply-supported laminated square plate from [144] 

are analysed, where different orthotropic ratios are assumed: 
Material name p Lay-up 

E1[GPa] E1 

[p4] 
[(0.25h)4] 

 
Lβ=Lα 
Lα/h=5 

E2[GPa] E2 
E3 [GPa] E2 

G12 [GPa] 0.6 E2 
G13 [GPa] 0.6 E2 
G23 [GPa] 0.5 E2 

σ12 0.25 
σ13 0.25 
σ23 0.25 

Table 8.3. Material properties and Lay-up, case b. 

 
Results of natural frequencies are normalized as: 

2

2

xLf f
h E


                                                                                                        (8.15)   

 
 



 

 
 

E1/ E2  f E1/ E2  f 

3 

[144] 6.618 

20 

[144] 9.560 
ZZA 6.506 ZZA 9.351 

Icardi and Sola  
(9x9 mesh) 6.599 Icardi and Sola  

(9x9 mesh) 9.558 

Present  
(9x9 mesh) 6.599 Present  

(9x9 mesh) 9.558 

10 

[144] 8.210 

30 

[144] 10.272 
ZZA 8.096 ZZA 10.107 

Icardi and Sola  
(9x9 mesh) 8.225 Icardi and Sola  

(9x9 mesh) 10.275 

Present  
(9x9 mesh) 8.225 Present  

(9x9 mesh) 10.275 

Table 8.4. Results for case b. 

Finite elements of section 8.2 are again in good agreement with those 
obtained from ZZA by Icardi and Sola. Accuracy of finite elements obtained 
starting from other particularizations of ZZA_GEN or to other more challenging 
cases are left for future research. However, it is important to emphasize that 
SEUPT technique demonstrate that it is possible to obtain a simple and efficient 
finite element, which could be used also to analyse structures of industrial 
interests. A preliminary study about a new version of SEUPT is reported in the 
next chapter. 

 

8.4 New direct version of SEUPT 

A further version of SEUPT, reported into this section, consists of a novel 
approach that strongly integrates commercial finite elements software in the 
improvement process. Firstly, structure is analyzed by using commercial tools, so, 
the next steps are followed: 

 Choice of the region to which apply SEUPT; 
 Polynomial spline interpolation of displacements calculated by finite 

elements; 
 Spline functions are normalized and then they are assumed as trial 

functions of a higher-order theory (e.g. ZZA or ZZA_GEN), whose 
amplitudes are unknowns; 

 Equivalent external load are applied to the model; 
 Amplitudes are calculated by applying Rayleigh-Ritz method; 
 Corrective elastic moduli (as material properties of a fictitious 

material) are calculated, in order to equal strain energies of higher-
order theory and of finite elements;  

 Corrective elastic moduli are substituted into commercial finite 
elements software; a new calculation is done, improving results 
because the same energy of a higher-order models is obtained. 
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8.4.1 Preliminary assessment of commercial finite element 
software 

Firstly, results by commercial finite element software are compared to 
ZZA_GEN (the following  functions ( ) ( )i i iF G     are assumed) and 3D-
FEA ones for simply-supported square plates. Regarding 3-D FEA, a mesh of 8x8 
elements along α and β directions is adopted, because it is sufficient to get 

accurate results for examined benchmarks.  
 
Regarding case c, the following lay-up and mechanical properties are 

assumed: 
 

Material Name q Lay-Up 

E1= E2= E3 [GPa] 73 [q] 
[h] 

Lβ=Lα 
Lα/h=4 to 100 

G12=G13=G23 [GPa] 28.076 
σ12=σ13=σ23 0.3 

Table 8.5. Material properties and lay-up, case c. 

The following results are obtained for transverse displacement at the center of 
the plate (a mesh of 120x120 elements is used to discretize the plate using 
commercial finite elements tool), where a L=100mm is assumed for each edge: 

 
Lα/h 3D-FEA ZZA_GEN Commercial FEA 

4 3.38∙10-3 3.38∙10-3 3.38∙10-3 
10 3.92∙10-2 3.92∙10-2 3.92∙10-2 
25 5.62∙10-1 5.62∙10-1 5.62∙10-1 
50 4.40 4.40 4.40 

100 3.48∙101 3.48∙101 3.48∙101 

Table 8.6. Transverse displacement [mm], case c. 

Regarding isotropic plates, there is no need of post-processing, because 
commercial finite elements are able to correctly provide an accurate solution 
irrespective length to thickness ratios considered. 

 
Regarding cases d and e, the following lay-ups and material properties are 

assumed: 
  

Material name p Case d Case e 

E1[GPa] 172.4 

[p3] 
[(h/3)3] 

 
Lβ=Lα 

Lα/h=4 to 50 

[p2] 
[(h/2)2] 

 
Lβ=Lα  

Lα/h=4 to 50 

E2[GPa] 6.89 
E3 [GPa] 6.89 

G12 [GPa] 3.45 
G13 [GPa] 3.45 
G23 [GPa] 1.378 

σ12 0.25 
σ13 0.25 
σ23 0.25 

Table 8.7. Material properties and Lay-up, case b. 

 



 

 
 

The following results are obtained for transverse displacement at the center of 
plate, where a length of L=100mm is assumed for each edge: 

 
 Lα/h 3D-FEA ZZA_GEN Commercial FEA 

C
as

e 
d 4 1.89∙10-2 1.86∙10-2 1.90∙10-2 

10 1.11∙10-1 1.09∙10-1 1.02∙10-1 
25 1.11 1.10 1.00 
50 8.10 8.07 7.29 

C
as

e 
e 4 1.95∙10-2 1.92∙10-2 1.98∙10-2 

10 1.80∙10-1 1.78∙10-1 1.83∙10-1 
25 2.50 2.47 2.32 
50 19.6 19.4 17.8 

Table 8.8. Transverse displacement [mm], cases d and e. 

It should be noticed that percentage errors increase than previous case, 
anyway, commercial finite element software is still able to quite accurately predict 
transverse displacement.  

 
This does not apply for case f, where the same sandwich of section 4.4 is 

analyzed (again a length of L=100mm is assumed for each edge where a length to 
thickness ratio of 10 is assumed): 

 
Lα/h 3D-FEA ZZA_GEN Commercial FEA 
10 3.93 3.93 2.7 

Table 8.9. Transverse displacement [mm], case f. 

In this case, very inaccurate results are obtained by plate elements. Three-
dimensional finite elements could be used, but a lot of elements are required to get 
precise results, so SEUPT technique will be applied in the next section, with the 
intended aim to increase accuracy of results obtained by commercial tools.  

 

8.4.2 Updating of results by direct version of SEUPT 

Firstly, the region to which apply SEUPT technique is chosen. Regarding case 
f, the entire plate is chosen and results of in-plane and transverse displacements 
are interpolated by using polynomial spline. Results obtained are normalized and 
assumed as trial functions, whose amplitudes are unknowns and are calculated by 
solving the structural problem. Interpolated trial function is indicated with symbol 

 0
int ,erw    in this section.   

Since Rayleigh-Ritz method is used, the convergence of results is guaranteed 
if natural boundary conditions are fulfilled by trial functions. The original trial 
functions (indicated as  0 ,origw   ) for simply-supported plates under a bi-

sinusoidal loading are: 

 0 , sin sinorigw
L L 

 
 

  
     

   

                                                                                   (8.16)   
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 0 ,origw    is able to a priori fulfill all the following natural boundary 

conditions: 
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(8.17a)   
 
The polynomial trial function obtained through spline interpolation of results 

provided by finite elements  0
int ,erw    is reported in Figure 8.1a (in red) and 

compared to  0 ,origw    (in black) of (8.16): 

 

 

Figure 8.1a: Comparison between interpolated trial function and original 
one (8.16) 

 
 0

int ,erw    is very close to  0 ,origw    of (8.16) and it is able to fulfill the 

following boundary conditions: 
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However, also boundary conditions on the first and second derivatives of trial 

functions of (8.17a) have to be fulfilled, in order to get convergent results through 
the application of Rayleigh-Ritz method.  

 
Comparisons of the first and the second derivatives of  0 ,origw    respect to 

the first and the second derivatives of the interpolated one  0
int ,erw    (in red) are 

reported in Figure 8.1b: 



 

 
 

 

 

Figure 8.1b: Comparison between first and second derivatives of trial 
function and original one (8.16) 

 
First and second derivatives of  0

int ,erw    cannot guarantee the fulfilment 
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Moreover, their trend along in-plane directions is also wrong, compared to 

those of first and second derivatives of  0 ,origw   . As a consequence, 

 0
int ,erw    cannot be used directly as trial functions for Rayleigh-Ritz method. 

Indeed, six additional corrective terms have to be added to  0
int ,erw   , in order 

to get the following corrected trial function: 

 0 0 2 3 0 2 3
int 0 1 2 int 0 1 2, , ,

2 2corr er er

L Lw w C C C w D D D          
     

           
    

               (8.17d)   

 
These corrective terms are calculated by imposing (8.17c), through symbolic 

calculus tool. In this way,  0 ,corrw    is able to fulfil all boundary conditions 

(8.17a) and it can be used as trial function. Indeed, Figure 8.2 shows that 
 0 ,corrw    and its first and second derivatives are able to reproduce  0 ,origw    

and its derivatives: 
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Figure 8.2: Comparison between corrected trial function and original one 

 

So, new corrected trial functions  0 ,corrw    can be used for calculation and 

substituted into ZZA_GEN symbolic procedure. An equivalent external loading is 
applied and amplitudes of corrected trial functions are calculated by Rayleigh-Ritz 
method. Results obtained by ZZA_GEN (with ( ) ( )i i iF G    ), assuming the 
previous corrected trial functions are reported in Table 8.10: 

 

Lα/h 3D-FEA ZZA_GEN Commercial FEA 
ZZA_GEN  

with trial functions obtained from  
commercial finite elements 

10 3.93 3.93 2.70 3.92 

Table 8.10. Transverse displacement [mm], case f. 

 

Moreover, the following displacements and stresses are obtained: 

 

Figure 8.3: Displacements and stresses, case f 

A great improvement of results is obtained, so, approach here preliminary 
proposed can be used to increase accuracy of results obtained by commercial 
finite elements. The same procedure could be also applied also to other structures, 
such as wings. On-going studies are in progress, whose purpose is to obtain a 
modified expression of elastic moduli as the next step of this procedure, through 
strain energy balances, which could be used into commercial finite element 
software to increase their performances when complex structures (e.g. wings) are 
analyzed. However, this will be developed in future studies.  
  



 

 
 

Conclusions and major findings 

The accuracy of several zig-zag theories, developed as variants of the 
adaptive zig-zag one by Icardi and Sola (ZZA) is assessed. The purpose was the 
development a simplified and generalized version of ZZA, with low 
computational cost but keeping the accuracy of the parent theory. Many 
challenging benchmarks were considered, both elastostatic and dynamic, 
assuming different boundary conditions. Both distributed and localized loading, 
symmetric and strongly asymmetric lay-ups (also with damaged properties of 
constituent layers) were taken into account, because these choices could increase 
layerwise effects. Moreover, the precision of theories to describe pumping modes, 
response to blast pulse loading, material wedge and impact problems are tested. 
Results are compared to exact solutions, if available, or to 3-D FEA by Icardi and 
Atzori.  

Moreover, also approximate 3-D theories were created, for which (differently 
to zig-zag theories) user can a priori choose the number of d.o.f. as an input of 
analysis and any expansion order along in-plane and thickness directions. A 
portion of coefficients is calculated through fulfilment of physical constraints, 
while the remaining part is assumed as d.o.f. of this theory, whose number 
depends on expansion orders chosen and physical constraints enforced. These  
theories are more expensive than zig-zag theories, but they can be used as 
reference results if exact ones are not available. 

 
 
Results confirm that higher-order theories, whose coefficients are redefined 

for each layers across the thickness and calculated by imposing the same full set 
of physical constraints of ZZA provide results that are indistinguishable from 
those obtained by the parent theory. Moreover, under these conditions: 

 zig-zag functions can be changed or omitted without any loss of 
accuracy; 

 functions that describe variation of displacements across the thickness 
can be changed, so, exponential, power series and sinusoidal 
functions, or a combination of them,  can be assumed differently for 
each displacement and from point to point across the thickness, 
without any loss of accuracy; 

 there is no need to assign a specific role to each coefficient and so, 
there is no need to calculate coefficients in order to fulfil a specific 
physical constraint. In other words, differently to ZZA, there is no 
need to a priori subdivide coefficients into categories (e.g. higher-
order, continuity terms, …) because numerical results have proved that 
their role can be switched.  
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 linear contribution by FSDT is not necessary to obtain precise 
displacements and stresses 

Otherwise, the accuracy of different approaches is strongly dependent on the 
simplifying assumptions made and on the choices of layerwise and global 
representation functions. Particularly, lower-order mixed theories that assume a 
simplified kinematics are not able to get the same precision of higher-order 
theories, when an accurate description of transverse deformability is required. 
Moreover, the superiority of mixed physically-based theories on kinematic-based 
ones is demonstrated if Murakami’s rule is not respected. For such cases the 
kinematic-based theories require very high expansion order across the thickness to 
get comparably accurate results. Furthermore, numerical tests demonstrate that a 
piecewise cubic and a piecewise fourth-order description for in-plane and 
transverse displacements respectively is sufficient to get precise results, as long as 
coefficients are redefined for each layer and physical constraints are imposed. 

 
 
Generalized version of ZZA, here referred as ZZA_GEN, is the best theory of 

this thesis, because its particularizations have the same accuracy of parent theory 
but very low computational burden. This theory is very interesting, because, 
thanks to its simple expression of  displacements it requires very low expansion 
order across the thickness and this is optimal for the SEUPT and advantageous 
compared to similar widespread formulations in literature. Moreover, it was 
demonstrated that thanks to SEUPT technique is possible to develop Lagrangian 
C0 finite elements with accuracy of a layerwise models and to improve the results 
obtained by commercial finite elements, without any iterative process.  

Summarizing, ZZA_GEN and its particularizations represent very appealing 
numerical tools by virtue of their accuracy and efficiency, which can provide 
considerable support for design and analysis of structures of industrial interest.  

 

 

 

 

 



 

 
 

Appendix 1 

In this appendix are reported displacements and stresses not previously 
included into chapter 4, where comments and analysis of results are reported. 

 

 

 

Figure A1.1: Normalized displacements and stresses, case a 

 

 

 

Figure A1.2: Normalized displacements and stresses, case b 
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Figure A1.3: Normalized displacements and stresses, case c 

 

 

 

 

 



 

 
 

 

Figure A1.4: Normalized displacements and stresses, case d 

 

 

 

 

Figure A1.5: Normalized displacements and stresses, case e 
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Figure A1.6: Normalized displacements and stresses, case f 

 

 

Figure A1.7: Normalized displacements and stresses, case g 

 

 

Figure A1.8: Normalized displacements and stresses, case h 

 

 

Figure A1.9: Normalized displacements and stresses, case i 

 

 



 

 
 

 

Figure A1.10: Normalized displacements and stresses, case j 

 

 

Figure A1.11: Normalized displacements and stresses, case k 

 
 

Appendix 2 

This appendix was created as guideline in order to help aerostructural 
engineers to choose appropriate models depending on problem. 

 
Firstly, use of Equivalent Single Layer theories should be avoided. Indeed, 

they are very simple, but they are not able to accurately describe displacements 
and stresses. It should be noticed that they cannot obtain accurate trend of 
stresses, even if they are post-processed by recalculating out-of-plane stresses 
through local equilibrium equations, especially when thick laminates or 
sandwiches are analysed. Moreover they are not suitable to get also overall 
quantities such as fundamental frequencies. 

 
Regarding zig-zag theories, as a general rule, use of kinematic-based should 

be avoided, being proved to be less efficient than physically-based ones. 
Moreover, it should be noticed that very high expansion order of displacements 
across the thickness are required, in order to limit errors when Murakami’s rule is 
not respected, whose fulfilment is not easily deducible a priori. However, 
displacements could be wrongly calculated also when very high orders are 
assumed across the thickness [80]. Lower-order physically-based zig-zag theories 
are more accurate than kinematic-based counterparts, if the same expansion order 
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across the thickness is used, anyway, they cannot accurately describe transverse 
deformability. As a consequence, use of these lower-order ones should be limited 
to elastostatic calculations of not extremely thick cross-ply laminates and thin 
sandwiches (without strong variation of mechanical properties of constituent 
material across the thickness) or to get first natural frequencies of these lay-ups.  

 
Anyway, it should be also noticed that an accurate description of transverse 

displacement or deformability could be required: 

 for elastostatic cases: 
o to analyse thick composite and sandwich laminates; 
o to analyse lay-up with very strong variation of mechanical 

properties of constituent layers; 
o to analyse very asymmetric lay-ups; 
o under boundary conditions (e.g. clamped edges); 
o under localized step loadings; 

 for dynamic benchmarks: 
o to get high frequency vibrations; 
o also to get first natural frequencies, if pumping modes are 

present among the first modes of thick sandwiches; 
o for transient response to impulsive loadings, such as blast 

pulse; 
 for piezo-actuating loadings; 
 under temperature gradients; 
 for impact damage analysis; 
 delamination; 

 
For these cases use of physically-based higher-order theories is mandatory to 

prevent any loss of accuracy caused by simplifications and assumptions.  
 

Appendix 3 

In this appendix the symbolic procedure that is used for all physically-based 
zig-zag theories is reported in Figure A3.1: 

 
 
 
 
 



 

 
 

 
 

 

Figure A3.1: Normalized displacements and stresses, case k 

 
Firstly, symbolic variables (e.g. in-plane and thickness coordinates, symbolic 

amplitudes) that are used in all next steps are created. In this step, the number of 
halfwaves along in-plane directions is chosen by user. 

 

 
 
Subsequently, user choices the expansion order of displacements across the 

thickness (note that three different expansion order could be assumed), the 
functions that represent the variation of displacements across the thickness, the 
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number of physical constraints that have to be imposed and the in-plane function 
of loading.  

 

 
 
As a consequence, displacements are developed automatically, so, strain and 

stress fields are calculated. 
 

 
 
Afterwards, physical constraints can be imposed and coefficients can be 

calculated, which depend on d.o.f. and their derivatives. 
 

 



 

 
 

 

 
 
 
Once all coefficients are calculated, Rayleigh-Ritz method is used to calculate 

d.o.f. It should be noticed that, thanks to symbolic calculus, work of external 
forces is computed exactly, regardless its expression, and no series expansions 
(e.g. Fourier series) are needed.  

 

 
 
 
Once d.o.f. are obtained, problem is solved and results can be plotted and 

analysed.  
 
 
 



 

215 
 

  

References 

1. E. Carrera, E. Zappino, T. Cavallo. Accurate Free Vibration Analysis of 
Launcher Structures Using Refined 1D Models. s.l. : International Journal of 
Aeronautical and Space Sciences , 2015. pp. 206-222. Vol. 16. 

2. E. Carrera, A. Pagani. Evaluation of the accuracy of classical beam FE 
models via locking-free hierarchically refined elements. s.l. : International Journal 
of Mechanical Sciences, 2015. pp. 169-179. Vol. 100. 

3. E. Carrera, M. Boscolo. Classical and mixed finite elements for static and 
dynamic analysis of piezoelectric plates. s.l. : International Journal for numerical 
methods in engineering, 2007. pp. 1135-1181. Vol. 70. 

4. U. Icardi, F. Sola. Development of an efficient zig-zag model with variable 
representation of displacements across the thickness. s.l. : J. of Eng. Mech., 2014. 
pp. 531-541. Vol. 140. 

5. U. Icardi, L. Ferrero. Layerwise zig-zag model with selective refinement 
across the thicknes. s.l. : International Journal for numerical methods in 
engineering, 2010. pp. 1085–1114. Vol. 84. 

6. U. Icardi, A. Atzori. Simple, efficient mixed solid element for accurate 
analysis of local effects in laminated and sandwich composites. s.l. : Advances in 
Eng. Software, 2004. pp. 843-859. Vol. 35. 

7. Icardi, U. Layerwise mixed element with sublaminates approximation and 
3D zig-zag field, for analysis of local effects in laminated and sandwich 
composites. s.l. : International Journal for Numerical Methods in Engineering , 
2006. pp. 94-125. Vol. 70. 

8. U. Icardi, F. Sola. Variable Singularity Power Wedge Element for 
Multilayered Composites. s.l. : Universal Journal of Engineering Science, 2014. 
pp. 16-29. Vol. 2. 

9. Icardi, U. C0 plate element based on strain energy updating and spline 
interpolation, for analysis of impact damage in laminated composites. s.l. : 
International Journal of Impact Engineering, 2007. pp. 1835–1868. Vol. 34. 

10. U. Icardi, L. Ferrero. Impact analysis of sandwich composites based on 
a refined plate element with strain energy updating. s.l. : Composite Structures, 
2009. pp. 35-51. Vol. 89. 

11. U. Icardi, F. Sola. C0 Mixed Layerwise Quadrilateral Plate Element with 
Variable in and Out-Of-Plane Kinematics and Fixed D.O.F. s.l. : International 
Journal of Computational Engineering Research, 2015. pp. 6-25. Vol. 5. 

12. —. C0 Layerwise Model with Fixed Degrees of Freedom and Variable In- 
and Out-of-Plane Kinematics by Strain Energy Updating Technique. s.l. : 
Aerospace, 2015. pp. 637-672. Vol. 2. 



 

 
 

13. —. C0 Fixed Degrees of Freedom Zigzag Model with Variable In-Plane 
and Out-of-Plane Kinematics and Quadrilateral Plate Element. s.l. : Journal of 
Aerospace Engineering, 2015. Vol. 28. 

14. E., Carrera. Developments, ideas, and evaluations based upon Reissner’s 

mixed variational theorem in the modeling of multilayered plates and shells. s.l. : 
Appl. Mech. Rev., 2001. pp. 301–329. Vol. 54. 

15. U. Icardi, A. Urraci. Novel HW mixed zig-zag theory accounting for 
transverse normal deformability and lower-order counterparts assessed by old 
and new elastostatic benchmarks. s.l. : Aerospace Science and Technology, 2018. 
pp. 541–571 . Vol. 80. 

16. —. Elastostatic assessment of several mixed/displacement-bases 
laminated plate theories, differently accounting for trasverse normal 
deformability. s.l. : Aerospace Science and Technology, 2020. Vol. 98. 

17. —. Free and Forced Vibration of Laminated and Sandwich Plates by Zig-
Zag Theories Differently Accounting for Transverse Shear and Normal 
Deformability. s.l. : Aerospace, 2018. p. 108. Vol. 5(4). 

18. —. Considerations about the choice of layerwise and through-thickness 
global functions of 3-D physically-based zig-zag theories. s.l. : Under Review, 
2019. 

19. —. Free Vibration of flexible soft-core sandwiches according to layerwise 
theories differently accounting for the transverse normal deformability. s.l. : Latin 
American Journal of Solids and Structures, 2019. pp. 1-35. Vol. 16. 

20. A. Urraci, U. Icardi. New 3-D zig zag theories: elastostatic assessment of 
strategies differently accounting for layerwise effects of laminated and sandwich 
composites. s.l. : International Journal of Engineering Research and Application, 
2019. pp. 1-25. Vol. 9. 

21. —. Approximate 3-D model for analysis of laminated plates with 
arbitrary lay-ups, loading and boundary conditions. s.l. : International Journal of 
Engineering Research & Science, 2019. pp. 21-39. Vol. 5. 

22. —. Zig-zag theories differently accounting for layerwise effects of 
multilayered composites. s.l. : International Journal of Engineering Research & 
Science, 2019. pp. 21-42. Vol. 5. 

23. —. Approximate 3-D models for laminated plates with arbitrary lay-ups, 
loading and constraints. s.l. : Under Review. 

24. U. Icardi, A. Urraci. Impact Damage Analysis with Stress Continuity 
Constraints Fulfilment at Damaged-Undamaged Regions and at Layer Interfaces. 
s.l. : Latin American Journal of Solids and Structures, 2017. pp. 1416-1442. Vol. 
14. 

25. Reddy, J.N. Mechanics of laminated composite plates and shells: theory 
and analysis. 2nd Edition. Boca Raton : CRC Press, 2003. 

26. J.N. Reddy, D.H. Robbins. Theories and computational models for 
composite laminates. s.l. : Appl Mech Rev 1994, 1994. pp. 147-169. Vol. 47. 

27. J.N. Reddy, R.A. Arciniega. Shear deformation plate and shell theories: 
from Stavsky to present. s.l. : Mech Adv Mater Struct, 2004. pp. 535–582. Vol. 
11. 



 

217 
 

28. V.V. Vasilive, A.A. Lur’e. On refined theories of beams, plates and 
shells. s.l. : J Compos Mat, 1992. pp. 422–430. Vol. 26. 

29. A.K. Noor, S.W. Burton, C.W. Bert. Computational model for sandwich 
panels and shells. s.l. : Appl Mech Rev , 1996. pp. 155–199. Vol. 49. 

30. E., Carrera. Historical review of zig-zag theories for multilayered plates 
and shells. s.l. : Appl. Mech. Rev., 2003. pp. 1-22. Vol. 56. 

31. Carrera, E. On the use of the Murakami’s zig-zag function in the 
modeling of layered plates and shells. s.l. : Compos. Struct., 2004. pp. 541–554. 
Vol. 82. 

32. Qatu, M.S. Recent research advances in the dynamic behavior of shells: 
1989–2000, part 1: laminated composite shells. s.l. : Appl Mech Rev, 2002. pp. 
325–50. Vol. 55. 

33. M.S. Qatu, R.W. Sullivan, W. Wang. Recent research advances on the 
dynamic analysis of composite shells: 2000–2009. s.l. : Compos Struct, 2010. pp. 
14–31. Vol. 93. 

34. C. Wanji, W. Zhen. A selective review on recent development of 
displacement-based laminated plate theories. s.l. : Recent Pat. Mech. Eng., 2008. 
pp. 29–44. Vol. 1. 

35. R. Khandan, S. Noroozi, P. Sewell, J. Vinney. The development of 
laminated composite plate theories: a review. s.l. : J Mater Sci, 2012. pp. 5901-
5910. Vol. 47. 

36. Burlayenko VN, Altenbach H, Sadowski T. An evaluation of 
displacement-based finite element models used for free vibration analysis of 
homogeneous and composite plates. s.l. : Journal of Sound and Vibration, 2015. 
pp. 152–175. Vol. 358. 

37. Jun L, Xiang H, Li Xiaobin L. Free vibration analyses of axially loaded 
laminated composite beams using a unified higher-order shear deformation 
theory and dynamic stiffness method. s.l. : Composite Structures, 2016. pp. 308–

322. Vol. 158. 
38. Zhen W, Wanji C. Free vibration of laminated composite and sandwich 

plates using global–local higher-order theory. s.l. : Journal of Sound and 
Vibration, 2006. pp. 333–349. Vol. 298. 

39. Kim, J. S. Free vibration of laminated and sandwich plates using 
enhanced plate theories. s.l. : Journal of Sound and Vibration, 2007. pp. 268–286. 
Vol. 308. 

40. J.N. Reddy, E.J. Barbero, J.L. Teply. A plate bending element based on 
a generalized laminate theory. s.l. : Int J Numer Meth Eng, 1989. pp. 2275–2292. 
Vol. 28. 

41. F.G. Rammerstorfer, K. Dorninger, A. Starlinger. Composite and 
sandwich shells. s.l. : Nonlin An Shells Finite Elem, 1992. pp. 131–194. Vol. 328. 

42. Sciuva, M. Di. A refinement of the transverse shear deformation theory 
for multilayered orthotropic plates. s.l. : L’Aerotecnica Missili e Spazio, 1984. 

pp. 84–9. Vol. 62. 
43. Murakami, H. Laminated composite plate theory with improved in-plane 

responses. s.l. : ASME Appl Mech, 1986. pp. 661–666. Vol. 53. 



 

 
 

44. Gherlone, M. On the use of zigzag functions in equivalent single layer 
theories for laminated composite and sandwich beams: a comparative study and 
some observations on external weak layers. s.l. : ASME Appl. Mech., 2013. pp. 1-
19. Vol. 80(6). 

45. R.M.Jr, Groh, P.M.Weaver. On displacement-based and mixed-
variational equivalent single layer theories for modeling highly heterogeneous 
laminated beams. s.l. : Int J Solids and Struct, 2015. pp. 147-170. Vol. 59. 

46. G. Giunta, D. Crisafulli, S. Belouettar, E. Carrera. Hierarchical 
theories for the free vibration analysis of functionally graded beams. s.l. : Comp 
Struct, 2011. pp. 68–74. Vol. 94. 

47. E. Carrera, A.G. de Miguel, A. Pagani. Hierarchical theories of 
structures based on Legendre polynomial expansions with finite element 
applications. s.l. : Int J Mech Sci, 2017. pp. 286-300. Vol. 120. 

48. A. Catapano, G. Giunta, S. Belouettar, E. Carrera. Static analysis of 
laminated beams via a unified formulation. s.l. : Comp. Struct., 2011. pp. 75-83. 
Vol. 94. 

49. A. G. de Miguel, E. Carrera, A. Pagani, E. Zappino. Accurate 
Evaluation of Interlaminar Stresses in Composite Laminates via Mixed One-
Dimensional Formulation. s.l. : AIAA Journal, 2018. pp. 4582-4594. Vol. 56. 

50. S. Candiotti, J.L. Mantari, J. Yarasca, M. Petrolo, E. Carrera. An 
axiomatic/asymptotic evaluation of best theories for isotropic metallic and 
functionally graded plates employing non-polynomic functions. s.l. : Aerospace 
Science and Technology, 2017. pp. 179–192. Vol. 68. 

51. S. Brischetto, E. Carrera, L. Demasi. Improved response of 
asymmetrically laminated sandwich plates by using Zig-Zag functions. s.l. : J. 
Sandwich Struct. & Mat, 2009. pp. 257- 26. Vol. 11. 

52. U. Icardi, F. Sola. Assessment of recent zig-zag theories for laminated 
and sandwich structures. s.l. : Composites Part B, 2016. pp. 26-52. Vol. 97. 

53. Pagano, J M Whitney and N J. Shear deformation in heterogeneous 
anisotropic plates. s.l. : ASME J. Appl. Mech., 1970. pp. 1031-1036. Vol. 37. 

54. Icardi, U. Higher-order zig-zag model for analysis of thick composite 
beams with inclusion of transverse normal stress and sublaminates 
approximations. s.l. : Comp. Part B, 2001. pp. 343-354. Vol. 32. 

55. U. Icardi, F. Sola. C° fixed degrees of freedom zigzag model with 
variable in-plane and out-of plane kinematics and quadrilateral plate element. 
s.l. : Journal Aerosp. Eng., 2014. pp. 040141351 - 0401413514. Vol. 28. 

56. Reddy, J N. A simple higher-order theory for laminated composite plates. 
s.l. : ASME J. Appl. Mech., 1984. pp. 745-752. Vol. 51. 

57. Pagano, N.J. Exact Solutions for Composite Laminates in Cylindrical 
Bending. s.l. : Journal of Composite Materials, 1969. pp. 398-411. 

58. X.Y. Li, D. Liu. Generalized laminate theories based on double 
superposition hypothesis. s.l. : Int. J. Num. Mech. Eng., 1997. pp. 1197–212. Vol. 
40. 

59. W. Zhen, C. Wanji. A study of global–local higher-order theories for 
laminated composite plates. s.l. : Comp. Struct., 2007. pp. 44–54. Vol. 79. 



 

219 
 

60. S. Kim, M. Cho. Enhanced first-order theory based on mixed formulation 
and transverse normal effect. s.l. : International Journal of Solids and Structures, 
2007. pp. 1256–1276. Vol. 44. 

61. A. Tessler, M. Di Sciuva, M. Gherlone. A refined zigzag beam theory for 
composite and sandwich beams. s.l. : J. Compos. Mat., 2009. pp. 1051–1081. Vol. 
43. 

62. L. Iurlaro, M. Gherlone, M. Di Sciuva. The (3,2)-mixed refined zigzag 
theory for generally laminated beams: theoretical development and C° finite 
element formulation. s.l. : Int J of Solids and Struct, 2015. pp. 1–19. Vols. 73–74. 

63. Shariyat, M. A generalized global-local higher order theory for bending 
and vibration analyses of sandwich plates subjected to thermo-mecanical loads. 
s.l. : Int J MechSci, 2010. pp. 495-514. Vol. 52. 

64. W. Zhen, C. Wanji. A global higher-order zig-zag model in terms of the 
HW variational theorem for multi-layered composite beams. s.l. : Compos. 
Struct., 2016. pp. 128–136. Vol. 158. 

65. Demasi, L. Mixed plate theories based on the generalized unified 
formulation. Part IV: zig-zag theories. s.l. : Compos. Struct., 2009. pp. 195–205. 
Vol. 87. 

66. J.D. Rodrigues, C.M.C. Roque, A.J.M. Ferreira, E. Carrera, M. 
Cinefra. Radial basis functions-finite differences collocation and a unified 
formulation for bending, vibration and buckling analysis of laminated plates, 
according to Murakami's zig-zag theory. s.l. : Compos. Struct., 2011. pp. 1613–

1620. Vol. 93. 
67. E., Carrera. An assessment of mixed and classical theories on global and 

local response of multilayered orthotropic plates. s.l. : Compos Struct, 2000. pp. 
183-198. Vol. 50. 

68. —. A priori vs. a posteriori evaluation of transverse stresses in 
multilayered orthotropic plates. s.l. : Composite Structures, 2000. pp. 245-260. 
Vol. 48. 

69. E. Carrera, A. Ciuffreda. Bending of composites and sandwich plates 
subjected to localized lateral loadings: a comparison of various theories. s.l. : 
Composite Structures, 2005. pp. 185–202. Vol. 68. 

70. C.S Rekatsinas, C.V. Nastos, T.C. Theodosiou, D.A. Saravanos. A 
time-domain high-order spectral finite element for the simulation of symmetric 
and anti-simmetric guided waves in laminated composite strips. s.l. : Wave 
Motion, 2015. pp. 1-19. Vol. 53. 

71. O. Mattei, L. Bardella. A structural model for plane sandwich beams 
including transverse core deformability and arbitrary boundary conditions. s.l. : 
European Journal of Mechanics Part A Solids, 2016. pp. 172-186. Vol. 58. 

72. E. Carrera, M. Filippi, E. Zappino. Laminated beam analysis by 
polynomial, trigonometric, exponential and zig-zag theories. s.l. : European 
Journal of Mechanics Part A/Solids, 2013. pp. 58-69. Vol. 41. 

73. Matsunaga, H. Interlaminar stress analysis of laminated composite 
beams according to global higher-order deformation theories. s.l. : Composite 
Structures, 2002. pp. 105-114. Vol. 55. 



 

 
 

74. K. Surana, S. Nguyen. Two-dimensional curved beam element with 
higher order hierarchical transverse approximation for laminated composites. 
s.l. : Computers and Structures, 1990. pp. 499-511. Vol. 36. 

75. M.K. Rao, Y. Desai, M. Chistnis. Free vibrations of laminated beams 
using mixed theory. s.l. : Composite Structures, 2001. pp. 149-160. Vol. 52. 

76. L. Jun, H. Hongxing. Dynamic stiffness analysis of laminated composite 
beams using trigonometric shear deformation theory. s.l. : Composite Structures, 
2009. pp. 433-442. Vol. 89. 

77. P. Vidal, O. Polit. Assessment of the refined sinus model for the non-
linear analysis of composite beams. s.l. : Composite Structures, 2009. pp. 370-
381. Vol. 87. 

78. M. Karama, K. Afaq, S. Mistou. Mechanical behaviour of laminated 
composite beam by the new multi-layered laminated composite structures model 
with transverse shear stress continuity. s.l. : International Journal of Solids and 
Structures, 2003. pp. 1525-1546. Vol. 40. 

79. J. Mantari, A. Oktem, C.G. Soares. A new higher order shear 
deformation theory for sandwich and composite laminated plates. s.l. : 
Composites: Part B, 2012. pp. 1489-1499. Vol. 43. 

80. Brischetto S, Carrera E, Demasi L. Improved Response of 
Unsymmetrically Laminated Sandwich Plates by Using Zig-zag Functions . s.l. : J. 
Sandw. Struct. Mater., 2009. pp. 257-267. Vol. 11. 

81. T.S. Plagianakos, D.A. Saravanos. Higher-order layerwise laminate 
theory for the prediction of interlaminar shear stresses in thick composite and 
sandwich com-posite plates. s.l. : Compos. Struct., 2009. pp. 23-35. Vol. 87. 

82. M. Kashtalyan, M. Menshykova. Three-dimensional elasticity solution 
for sandwich panels with a functionally graded core. s.l. : Composite Structures, 
2009. pp. 36-43. Vol. 87. 

83. M. Di Sciuva, U. Icardi. Numerical studies on bending, free vibration 
and buckling of multilayered. s.l. : L'aerotecnica, Missili e Spazio, 1993. pp. 1-2. 
Vol. 72. 

84. K.N. Cho, C.W. Bert, A.G. Striz. Free vibrations of laminated 
rectangular analyzed by higher order individual-layer theory. s.l. : Journal of 
Sound and Vibration, 1991. pp. 429-442. Vol. 145. 

85. L. Librescu, S.Y. Oh, J. Hohe. Linear and non-linear dynamic response 
of sandwich panels to blast loading. s.l. : Composites PartB: Engineering, 2004. 
pp. 673-683. Vol. 35. 

86. L. Librescu, S. Na, P. Marzocca, C. Chung, M.K. Kwak. Active 
aeroelastic control of 2-D wing-flap systems operating in an incompressible 
flowfield and impacted by a blast pulse. s.l. : Journal of Sound and Vibration, 
2005. pp. 685-706. Vol. 283. 

87. L. Librescu, S.Y. Oh, J. Hohe. Dynamic response of anisotropic 
sandwich flat panels to underwater and in-air explosions. s.l. : International 
Journal of Solids and Structures, 2006. pp. 3794-3816. Vol. 43. 



 

221 
 

88. T. Hause, L. Librescu. Dynamic response of anisotropic sandwich flat 
panels to explosive pressure pulses. s.l. : International Journal of Impact 
Engineering, 2005. pp. 607-628. Vol. 31. 

89. —. Dynamic response of doubly-curved anisotropic sandwich panels 
impacted by blast loadings. s.l. : International Journal of Solids and Structures, 
2007. pp. 6678-6700. Vol. 44. 

90. O. Song, J.S. Ju, L. Librescu. Dynamic response of anisotropic thin-
walled beams to blast and harmonically oscillating loads. s.l. : International 
Journal of Impact Engineering, 1998. pp. 663-682. Vol. 21. 

91. Bathe, K.J. Finite element procedures. Englewood Cliffs : Prentice-Hall, 
1996. 

92. O.C. Zienkiewicz, R.L. Taylor. The Finite Element, Sixt Edition, Volume 
1: The basis. Oxford : Butterworth-Heinemann, 2000. Vol. 1. 

93. M.O.W. Richardson, M.J. Wisheart. eview of low-velocity impact 
properties of composite materials. s.l. : Composites Part A. pp. 1123-1131. Vol. 
27. 

94. F.D. Morinière, R.C. Alderliesten, R. Benedictus. Modelling of impact 
damage and dynamics in fibre-metal laminates-A review. s.l. : International 
Journal of Impact Engineering, 2014. pp. 27-38. Vol. 67. 

95. Abrate, S. Modeling of impacts on composite structures. s.l. : Composite 
Structures, 2001. pp. 129-138. Vol. 51. 

96. —. Impact on composite plates in contact with water. s.l. : Procedia 
Engineering, 2014. pp. 2-9. Vol. 88. 

97. D.J. Elder, R.S. Thomson, M.Q. Nguyen, L. Scott. Review of 
delamination predictive methods for low speed impact of composite laminates. 
s.l. : Composite Structures, 2004. pp. 677–683. Vol. 66. 

98. G.B. Chai, S. Zhu. A review of low-velocity impact on sandwich 
structures. s.l. : Journal of Materials: Design & Applications, 2011. pp. 207-230. 
Vol. 225(4). 

99. M.R. Garnich, M.K. Akula Venkata. Review of degradation models for 
progressive failure analysis of fiber reinforced polymer composites. s.l. : Appl. 
Mech. Reviews, 2009. pp. 1-35. Vol. 62. 

100. P.F. Liu, J.Y. Zheng. Review on methodologies of progressive failure 
analysis of composite laminates. New York : Continuum mechanics, 2009. 

101. Berthelot, J.M. Transverse Cracking and Delamination in Cross-Ply 
Glass-Fiber and Carbon-Fiber Reinforced Plastic Laminates: Static and Fatigue 
Loading. s.l. : Appl. Mech. Reviews, 2003. pp. 111–147. Vol. 56. 

102. D.P.W. Horrigan, R.A. Staal. Predicting failure loads of impact 
damaged honeycomb sandwich panels- A refined model. s.l. : J of Sandwich 
Structures and Materials, 2011. pp. 111-133. Vol. 13. 

103. A. Aktas, M. Aktas, R. Turan. he effect of stacking sequence on the 
impact and post-impact behaviour of woven/knit glass/epoxy hybrid composites. 
s.l. : Composite Structures, 2013. pp. 119-135. Vol. 103. 



 

 
 

104. T. Mitrevski, J.H. Marshall, R. Thomson, R. Jones, B. Whittingham. 
The effect of impactor shape on the impact response of composite laminates. s.l. : 
Composite Structures, 2005. pp. 139–148. Vol. 67. 

105. A.R. Damanpack, M. Shakeri, M.M. Aghdam. A new finite element 
model for low-velocity impact analysis of sandwich beams subjected to multiple 
projectiles. s.l. : Composite Structures, 2013. pp. 21–33. Vol. 104 . 

106. Chakraborty, D. Delamination of Laminated Fiber Reinforced Plastic 
Composites Under Multiple Cylindrical Impact. s.l. : Materials & Design, 2007. 
pp. 1142-1153. Vol. 28. 

107. A. Chakrabarti, H.D. Chalak, M.A. Iqbal, A.H. Sheikh. A new FE 
model based on higher order zig-zag theory for the analysis of laminated 
sandwich beam soft core. s.l. : Composite Structures, 2011. pp. 271-279. Vol. 93 . 

108. Kreja, I. A literature review on computational models for laminated 
composite and sandwich panels. s.l. : Central European Journal of Engineering, 
2001. pp. 59–80. Vol. 1. 

109. Y. Zhang, C. Yang. Recent Developments in Finite Element Analysis for 
Laminated Composite Plates. s.l. : Composite Structures, 2009. pp. 147–157. Vol. 
88. 

110. Tahani, M. Analysis of laminated composite beams using layerwise 
displacement theories. s.l. : Composite Structures, 2007. pp. 535-547. Vol. 79. 

111. Matsunaga, H. A comparison between 2-D single-layer and 3-D 
layerwise theories for computing interlaminar stresses of laminated composite 
and sandwich plates subjected to thermal loadings. s.l. : Composite Structures, 
2004. pp. 161-177. Vol. 64. 

112. C.C. Chao, C.Y. Tu. Three-dimensional contact dynamics of laminated 
plates: Part 1. Normal Impact. s.l. : Composites Part B, 1999. pp. 9-22. Vol. 30. 

113. D.W. Zhou, W.J. Stronge. Low velocity impact denting of HSSA 
lightweight sandwich panel. s.l. : International Journal of Mechanical Sciences, 
2006. pp. 1031–1045. Vol. 48. 

114. A.N. Palazotto, E.J. Herup, L.N.B. Gummadi. Finite Element Analysis 
of Low- Velocity Impact on Composite Sandwich Plates. s.l. : Composite 
Structures, 2000. pp. 209–227. Vol. 49. 

115. L. Kärger, J. Baaran, J. Teßmer. Rapid Simulation of Impacts on 
Composite Sandwich Panels Inducing Barely Visible Damage. s.l. : Composite 
Structures, 2007. pp. 527–534. Vol. 79. 

116. A. Diaz Diaz, J.J. Caron, A. Ehrlacher. Analytical Determination of 
the Modes I, II and III Energy Release Rates in a Delaminated Laminate and 
Validation of a Delamination Criterion. s.l. : Composite Structures, 2007. pp. 
424–432. Vol. 78. 

117. E. Oñate, A. Eijo, S. Oller. A numerical model of delamination in 
composite laminated beams using the LRZ beam element based on the refined 
zigzag theory. s.l. : Composite Structures, 2012. pp. 270–280. Vol. 104. 

118. —. Delamination in laminated plates using the 4-noded quadrilateral 
QLRZ plate element based on the refined zigzag theory. s.l. : Composite 
Structures, 2012. pp. 456–471. Vol. 108. 



 

223 
 

119. U. Icardi, F. Sola. Analysis of bonded joints with laminated adherends 
by a variable kinematics layerwise model. s.l. : Int. J. of Adhesion & Adhesives, 
2014. pp. 244-254. Vol. 50. 

120. P. Ladevèze, G. Lubineau, D. Marsal. Towards a bridge between the 
micro- and mesomechanics of delamination for laminated composites. s.l. : 
Compos. Sci. & Tech., 2006. pp. 698-712. Vol. 66. 

121. A.S. Yigit, A.P. Christoforou. On the impact between a rigid sphere 
and a thin composite laminate supported by a rigid substrate. s.l. : Composite 
Structures, 1995. pp. 169-177. Vol. 30. 

122. Choi., I.H. Contact force history analysis of composite sandwich plates 
subjected to low-velocity impact. s.l. : Composite Structures, 2006. pp. 582–586. 
Vol. 75. 

123. Y. Li, A. Xuefeng, Y. Xiaosu. Comparison with Low-Velocity Impact 
and Quasi-static Indentation Testing of Foam Core Sandwich Composites. s.l. : 
International Journal of Applied Physics and Mathematics, 2012. pp. 58-62. Vol. 
2. 

124. U. Icardi, F. Sola. Indentation of sandwiches using a plate model with 
variable kinematics and fixed degrees of freedom. s.l. : Thin-Walled Structures, 
2015. pp. 24-34. Vol. 86. 

125. Z. Hashin, A. Rotem. A Fatigue Criterion for Fiber-reinforced 
Materials. s.l. : Journal of Composite Material, 1973. pp. 448–464. Vol. 7. 

126. H.Y. Choi, F.K. Chang. A model for predicting damage in 
graphite/epoxy laminated composites resulting from low velocity point impact. 
s.l. : Journal of Composite Materials, 1992. pp. 2134–2169. Vol. 26. 

127. T. Besant, G.A.O. Davies, D. Hitchings. inite element modelling of low 
velocity impact of composite sandwich panels. s.l. : Composites Part A, 2001. pp. 
1189-1196. Vol. 32. 

128. WF, ROHACELL. Product Information. s.l. : Evonik Röhm GmbH, 
2011. 

129. Q.M. Li, R.A.W. Mines, R.S. Birch. The crush behaviour of Rohacell-
51WF structural foam. s.l. : International Journal of Solids and Structures, 2000. 
pp. 6321– 6341. Vol. 37. 

130. S.M. Lee, T.K. Tsotsis. Indentation failure behaviour of honeycomb 
sandwich panels. s.l. : Composites Science and Technology, 2000. pp. 1147–

1159. Vol. 60. 
131. U. Icardi, G. Zardo. C0 plate element for delamination damage 

analysis, based on a zig-zag model and strain energy updating. s.l. : International 
Journal of Impact Engineering, 2005. pp. 579-606. Vol. 31. 

132. V.L. Hein, F. Erdogan. Stress singularities in a two-material wedge. 
s.l. : International Journal of Fracture Mechanics, 1971. pp. 317-330. Vol. 7 . 

133. Pagano, N.J. Exact Solutions for Rectangular Bidirectional Composites 
and Sandwich Plates. s.l. : Journal of Composite Materials, 1970. pp. 20-34. Vol. 
4. 

134. Ren, J.G. Exact solutions for laminated cylindrical shells in cylindrical 
bending. s.l. : Composites Science and Technology, 1987. pp. 169-187. Vol. 29. 



 

 
 

135. Brischetto, S. Exact three-dimensional static analysis of single- and 
multi-layered plates and shells. s.l. : Composites Part B Engineering, 2017. pp. 
230-252. Vol. 119. 

136. B. Woodward, M. Kashtalyan. 3D elasticity analysis of sandwich 
panels with graded core under distributed and concentrated loadings. s.l. : 
International Journal of Mechanical Sciences, 2011. pp. 872-885. Vol. 53. 

137. B. E. Abali, C. Voellmecke, B. Woodward, M. Kashtalyan, I. Guz, 
W.H. Mueller. Three-dimensional elastic deformation of functionally graded 
isotropic plates under point loading. s.l. : Composite Structures, 2014. pp. 367-
376. Vol. 118. 

138. B. Woodward, M. Kashtalyan. Three-dimensional elasticity analysis of 
sandwich panels with functionally graded transversely isotropic core. s.l. : 
Archive of Applied Mechanics, 2019. pp. 1-22. 

139. J.N. Reddy, W.C. Chao. A comparison of closed-form and finite 
element solutions of thick laminated anisotropic rectangular plates. s.l. : Nuclear 
Engineering and Design, 1981. pp. 153-167. Vol. 64. 

140. Yakimov, A.S. Analytical Solution Methods for Boundary Value 
Problems. 1st Edition. s.l. : Academic Press, 2016. 

141. Wanji, W. Zhen and C. A C0-type higher-order theory for bending 
analysis of laminated composite and sandwich plates. s.l. : Composite Structures, 
2010. pp. 653-661. Vol. 92. 

142. R. Sahoo, B. N. Singh. A new shear deformation theory for the static 
analysis of laminated composite and sandwich plates. s.l. : International Journal 
of Mech. Sci., 2013. pp. 324-336. Vol. 75. 

143. Prathap, G. The displacement-type finite element approach—from art to 
science. s.l. : Prog. Aerospace Sci., 1994. pp. 295 - 405. Vol. 10. 

144. Mantari, J L, Oktem, A S and Guedes Soares, C. Static and dynamic 
analysis of laminated composite and sandwich plates and shells by using a new 
higher-order shear deformation theory. s.l. : Composite Structures, 2011. pp. 37-
49. Vol. 94. 
 
 

 
 


