
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Finite Fracture Mechanics crack initiation from a circular hole / Sapora, A.; Torabi, A. R.; Etesam, S.; Cornetti, P.. - In:
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - 41:(2018), pp. 1627-
1636. [10.1111/ffe.12801]

Original

Finite Fracture Mechanics crack initiation from a circular hole

Wiley preprint/submitted version

Publisher:

Published
DOI:10.1111/ffe.12801

Terms of use:

Publisher copyright

This is the pre-peer reviewed version of the [above quoted article], which has been published in final form at
http://dx.doi.org/10.1111/ffe.12801.This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions..

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2703596 since: 2020-04-24T10:17:46Z

Blackwell Publishing Ltd



Finite Fracture Mechanics crack initiation from a circular hole 
 

A. Sapora a*, A.R. Torabib, Siavash Etesamb, P. Cornettia 
 

a Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, 10129, Torino, Italy 

b Fracture Research Laboratory, Faculty of New Sciences & Technologies, University of Tehran, P.O. Box 14395-1561, 

Tehran, Iran 

 

* Corresponding Author: alberto.sapora@polito.it 

 

 

Abstract 

 

The brittle crack initiation from a circular hole in an infinite slab under uniaxial remote tensile load 

is investigated. The analysis consists of two parts. The former is focused on the difference between 

symmetric and asymmetric crack propagation. Different criteria in the framework of Finite Fracture 

Mechanics (FFM) are implemented, and the potentiality of coupled stress and energy approaches is 

highlighted from a theoretical point of view. The latter presents the experimental results obtained by 

carrying out ad-hoc tensile tests on PMMA and GPPS notched samples, and the related FFM 

investigation. 
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1. Introduction 

 

Finite Fracture Mechanics (FFM) investigates brittle failure of cracked or notched structures by 

assuming that fracture propagates (at least at the first step) by a finite crack extension .  Different 

criteria have been proposed in this framework since the middle of the nineties, although the idea of 

a discretely propagating crack was put forward even before (Neuber 1953, Novozhilov 1969, 

Ritchie et al. 1973).  

 

FFM approaches can be classified into three main categories: i) stress-based approaches (Taylor 

1999, Seweryn 1994); ii) energy based approaches (Lazzarin and Zambardi 2001, Seweryn and 

Lukaszewicz 2002); iii) coupled stress and energy approaches (Leguillon 2002, Carpinteri et al. 

2008).  Criteria belonging to the first two groups involve a unique equation and the crack advance  
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results to be a material constant, depending merely on the material tensile strength σu and on the 

fracture toughness KIc. On the other hand, coupled stress and energy based approaches are described 

by a system of two equations: the crack advance  becomes a structural parameter, and it represents 

one of the output of the FFM system, together with the failure load.  

 

FFM approaches have been applied to different geometries, materials, and loading conditions. Some 

recent applications include, among the others, the failure behaviour of metals even under moderate 

or large scale yielding (Madrazo et al. 2012, Torabi and Alei 2016, Torabi et al. 2016a, Sapora and 

Firrao 2017), the investigation of three dimensional effects (Saboori et al. 2016, Yosibash and 

Mittelman 2016), the description of T-stress effects on the straight and curved crack deflection 

(Cornetti et al. 2014, Sapora et al. 2017),  and the study of crack nucleation in negative geometries 

(Weißgraeber et al. 2016). From the comparison between theoretical predictions and experimental 

data it is generally difficult to determine which criterion predicts more accurately the failure 

initiation, changing the situation for each experimental test. From one point of view, the 

implementation of stress or energy criteria generally results more simple, since only one equation 

has to be solved. Furthermore, the stress field or the stress intensity factor (SIF, providing the crack 

driving force) functions can be derived easily, either analytically from the Literature or numerically 

from a simple Finite Element Analysis (FEA). From another point of view, these approaches 

present some drawbacks overcome by the coupled criteria (Carpinteri et al. 2008): they can be 

considered more physically sound, since both stress and energy requirements are satisfied, and their 

extension to more complex geometries (i.e., interfacial cracks, see (Munoz-Reja et al. 2016)) results 

straightforward. Finally, recent studies show that coupled approaches provide results very close to 

those by the cohesive zone model, once the constitutive law is properly defined (Henninger et al. 

2007, Cornetti et al. 2016).   

In the present work, a circular hole with radius R in an infinite plate under remote tensile load σ will 

be taken into account (Figure 1). Despite it represents one of oldest geometry analyzed in Fracture 

Mechanics, whose stress solution was obtained analytically by Kirsch more than one century ago, 

there remain some open questions from both the theoretical and the experimental points of view.  

 

As concerns the first aspect, the novelty of the present work lies on the comparison between 

symmetric (Figure 1a) and asymmetric (Figure 1b) crack propagation. Although the difference is 

not high  in terms of failure stress, the potentiality of coupled approaches will emerge once again, as 

already outlined by similar studies on different notched geometries (Garcia et al. 2015, Rosendahl et 

al. 2017). 



 

As regards the experimental aspect, only few test results are available in the Literature (Li and 

Zhang 2006, Camanho et al. 2007). Furthermore, some of them present some drawbacks. Tensile 

tests on PMMA notched samples, for instance, were carried out by Li and Zhang (2006) and 

analyzed through different FFM criteria. The related FFM predictions were in rather poor 

agreement with experimental failure stresses, and it was concluded that only considering an 

additional material parameter (named as “material fracture toughness under tension”) would lead to 

accurate predictions. The poorness of FFM results was observed also by Leguillon et al. (2007). On 

the other hand, in order to improve theoretical predictions, both the material properties of PMMA 

(i.e., σu and  KIc) were fitted by Hebel et al. (2010): it was however concluded that the implemented 

values were “unrealistic” from a physical point of view. Maimi et al. (2013) performed a very 

accurate analysis, implementing also some cohesive zone models, mentioning but not implementing 

the data presented by Li and Zhang (2006).  

Indeed, more comforting experimental results were carried out by Camanho et al. (2007) on Hexcel 

IM7-8552 carbon epoxy unidirectional laminates. In this case, the coupled FFM criterion was found 

to provide the most accurate predictions (Camanho et al. 2012).  

According to the situation mentioned above, the second goal of the present paper is to provide a 

new set of experimental results for homogeneous polymeric materials by testing tensile PMMA and 

GPPS notched samples. Unfortunately, we were not able to verify the symmetric vs. asymmetric 

controversy with our testing instruments, but it will be shown that FFM predictions are in almost 

perfect agreement with experimental results, differently from those obtained by Li and Zhang 

(2006). 

 

 2. FFM approaches 

 

Different FFM approaches are now briefly summarized. The notation will refer to the present 

geometry (Figure 1), for the sake of simplicity: thus, the notch tip will coincide with the point 

having coordinates x=|R|, y=0. 

 

2.1 Stress based approaches 

 

The most simple criterion is the point stress method (PM), according to which failure takes place 

when the stress σy at a finite distance  from the notch tip reaches the critical value σu. In formulae, 

we have: 
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To the Author’s best knowledge, the punctual stress idea dates back to Ritchie et al. (1973), where 

the elasto-plastic stress field was involved to take the failure micromechanics of metals into account 

and the well known RKR model was put forward. The criterion was later adapted to the linear 

elastic framework by Taylor (1999). 

  

On the other hand, if the considered stress is averaged over , the criterion is named line method 

(LM): 
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The line method dates back to Neuber (1953) and Novozihlov (1969), and it was formalized for V-

notches by Seweryn (1994). 

Note that Eqs. (2) and (4) are not arbitrary: their expressions must be necessarily assumed to get 

KI=KIc (i.e, Linear Elastic Fracture Mechanics) for a cracked geometry.  

  

2.2 Energy based approaches 

 

According to the energy approach put forward by Seweryn and Lukaszewicz (2002), failure  is 

achieved when the averaged energy available over a crack of length  reaches the fracture energy 

Gc: 
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where a is the crack length and  
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The constant  c is equal to 1 in case of a centre crack, and to 1.122 in case of an edge crack. 

Equation (6) must be necessarily implemented to get σ=σu for a plain, un-notched geometry.  

 

According to Irwin’s relationship, it is possible to express Eq. (5) in terms of the SIF related to a 

crack of length a stemming from the notch tip KI(a) and the fracture toughness KIc, namely: 
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The approach described by Eq. (7)  is also known as  Quantized Fracture Toughness (QFM, Pugno 

and Ruoff 2004) .  

 

Although not be implemented in this work, it is important to remind in this frameowrk the Strain 

Energy Density criterion (Lazzarin and Zambardi 2001), according to which the strain energy in a 

small volume surrounding the notch tip is responsible for crack initiation. The approach provides 

good results (e.g., Berto et al. 2013), but it generally requires a numerical implementation. 

   

2.3 Coupled stress and energy approaches 

 

Coupled  approaches were proposed to overcome some drawbacks related to the criteria described 

above, especially as concerns size effects (Carpinteri et al. 2008). The coupled criteria can be 

expressed by coupling Eq. (7) either with Eq. (1) (Leguillon 2002) 
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or with Eq. (3) (Carpinteri et al. 2008) 
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From a mathematical point of view, both Eqs. (8) and (9) represent a system of two equations in 

two unknowns: the critical failure stress σf, implicitly embedded in the stress field and the SIF 

functions, and the crack advance , which results to be a structural parameter, thus able to interact 

with the specimen size. Past studies on notched structures (Sapora et al. 2013, Campagnolo et al. 

2016) showed that the former coupled criterion (Eq. (8)) provides higher failure loads and lower 

crack extensions than the latter approach (Eq. (9)). Furthermore, in case of mixed mode loading 

conditions, the crack propagation angle by Eq. (8) is generally a little higher. 

 

From a physical point of view, coupled approaches state that fracture is energy driven, but a 

sufficiently high stress must act in order to trigger crack propagation. They are often simply referred 

to as FFM in the Literature. This nomenclature will be adopted hereafter. 

 

 3. Circular hole in an infinite plate under remote tensile load 

 

In order to implement the FFM criteria described in the previous section, the stress field and/or the 

SIF functions are required.  

For a circular hole in an infinite plate under remote tensile load σ (Figure 1), the stress field in the 

loading direction can be expressed as: 
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providing the well-know stress concentration factor 3 for x=R. Far from the notch tip x>>R, the 

stress field keeps constant and equal the applied load σ. 

 

On the other hand, the SIF function related to a crack of length a stemming from the notch root can 

be expressed as (Tada et al. 1985) 
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The shape function F related to the symmetric crack propagation (Figure 1a) 
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differs from that corresponding to the asymmetric crack case (Figure 1b): 
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For a very large hole (R>>a, s→0) the notch-crack problem reverts to an edge crack subjected to 

the local peak stress, and F=1.122*3. On the other hand, for a vanishing radius (R<<a, s→1), we 

have that F=1 for the symmetric case and F=1/2 for the asymmetric one. 

 

The previous shape functions (Eqs. (11-14)) were obtained through a mapping function method by 

Tada et al. (1985), and the related accuracy was estimated to be better than 1%. 

 

 3.1 Symmetric vs. asymmetric crack propagation 
 

Let us now compare some results by different FFM approaches starting from the case of a 

symmetric crack propagation (Figure 1). Predictions related to PM, QFM, and FFM (Eqs. (1), (7), 

and (8), respectively) are reported in Figure 2.  

 

As can be seen, the limit / 3f u   for very large radii is respected by all the criteria. On the other 

hand, for a vanishing root radius, QFM is not able to predict 
f u  . The inconsistency is related to 

the fact that c=1.12 is implemented in Eq. (6), overestimating the real failure load. The problem can 



be overcome by setting c=1, but in this case the criterion fails to catch the other limit case, 

underestimating σf  for large radii. 

 

On the other hand, as regards the case of asymmetric crack propagation the curves are similar to the 

those depicted in Figure 2, with the following comments: 

 

1) Predictions related to PM are exactly the same. As a matter of fact, the stress field does not vary 

and thus stress-based criteria (1) and (3) are not able to reveal any differences between symmetric 

and asymmetric crack propagation. 

 

 2) Predictions by the coupled criterion are a little higher than those corresponding to the symmetric 

case. Thus, from a theoretical point of view, the symmetric crack propagation has to be preferred. 

The situation is represented in Figure 3, where the curves related to the two different cases are 

plotted both by implementing both Eq. (8) and Eq. (9). Note that according to Eq. (9) the maximum 

percent deviation is nearly 5.3% (R/lch ~ 0.16) and it decrease as larger radii are considered. 

Differences related to Eq. (8) are even lower (nearly 3%). The FFM crack advance   is plotted in 

Figure 4, for both symmetric and asymmetric configurations. As stated before, in case of coupled 

criteria, the extension results to be a structural parameter, depending also on the radius R. The 

values for   lie between 4/ and 2/ (1.12)2 (R<<lch and R>>lch, respectively) for the asymmetric 

case, and between 2/ and 2/ (1.12)2 for the symmetric case. 

 

3)  Predictions related to QFM are a little higher than those corresponding the symmetric case. 

Nevertheless, QFM presents another drawback, since for R=0 (but only in this case) the value 

4 / chl   should be implemented instead of Eq. (6) in order to achieve 
f u  . This is because, for 

a vanishing radius, the problem reverts to an infinite plate with a (virtual) centre crack of length a 

and not 2a. Note that this inconvenient is overcome by the coupled criteria, where a regular 

transition for the crack advance between the extreme values is achieved (Figure 4). 

 

Finally, it is important to point out that similar FFM studies were recently proposed. Garcia et al. 

(2015) solved the controversy about the symmetry of the debond onset at the fibre-matrix interface 

in single-fibre specimens under transverse tension. Through the coupled FFM criterion, it was 

predicted that an asymmetric (i.e. with a single debond)  post-failure configuration refers to a lower 

critical remote tension than the symmetric one, the difference being above 10% in some cases. This 

result was imputable to the shielding effect between the two debonds in the symmetric solution, 



confirming the experimental evidences found in the literature. On the other hand, the analysis 

performed by Rosendahl et al. (2017) was more sophisticated than the present one, considering a 

combined tensile and in-plane bending loading. It was found that the bending contribution plays a 

crucial role in determining whether the crack configuration results to be symmetric or asymmetric.  

  

4. Experimental investigation 

 

Two series of tensile tests were carried out on notched structures made of PMMA and GPPS, 

respectively. Notched specimens were obtained from a PMMA sheet with the following dimensions 

(Figure 5): l = 100mm, w =  40 mm, and t = 10 mm. The GPPS sample dimensions were exactly the 

same, except for t = 8 mm. In both cases, the thickness was large enough to get plane strain 

conditions. Four different geometries were considered for each material, machining a circular hole 

with diameter 2R=0.5, 1, 2, 4 mm. With the present assumption (w/2R > 10), the hypothesis of an 

infinite plate is reasonable and the formulae presented in Section 3 can be applied without loss of 

accuracy.  

Three different specimens were considered for each geometry, both for PMMA and GGPS, for a 

total of 24 tensile tests. Critical values of the load under which crack starts to propagate from the 

notch tip, recorded on the tensile testing machine, are provided in Table 1.  

The experimental fracture was of brittle character and no plastic strains were observed during tests: 

the force-displacement curves recorded for 2R=0.5 mm (PMMA, test 1) and for 2R=4 mm (GPPS, 

test 1) during failure are reported in Figures 6 and 7, respectively, along with related tested 

specimens. 

 

The material properties had been already evaluated experimentally by one of the Author in some 

previous works (Ayatollahi and Torabi 2010,Torabi et al. 2016b), following the procedure 

described in ASTM standard codes. According to the values reported in Table 1,  0.773mmchl  for 

PMMA (thus / chR l  lies between 0.32 and 2.6), and 2.18mmchl  for GPPS (thus / chR l  lies between 

0.12 and 0.92). The whole / chR l  range of practical interest was thus covered (Figure 3). 

 

4.1 FFM results  

 

Unfortunately, it was not possible to distinguish precisely between symmetric and asymmetric crack 

initiation with our instruments, since a sophisticated recording camera would be needed. The crack 

propagation appeared to be symmetric at naked eye. On the other hand, from a practical point of 



view, an asymmetric propagation would have probably to be preferred (especially for large radii, 

see Figure 3) due to the influence of micro-defects which generally affect the material behaviour. 

In any case,  due to the small difference between the two types of propagation in terms of failure 

load and coherently to what already presented in the Literature (Leguillon et al. 2007, Hebel et al. 

2010, Camanho et al. 2012), symmetric FFM results were implemented. For PMMA, they are 

reported in Figure 8 together with experimental data. According to both coupled approaches (Eq.(8) 

and Eq.(9)),  the maximum percentage error with respect to the experimental average failure stress  

does not exceed 10%, which can be considered more than satisfactory. Indeed, the value of σu to be 

used could be not that obtained by testing plain specimens, since their failure behaviour is affected 

by the presence of micro-cracks/defects or crazing phenomena (Taylor 2007). As a matter of fact, 

the real σu can be larger than the experimental value and its value has to be fitted (often the 

parameter is re-termed as σ0) according to theoretical predictions. FFM results (Eq.(9)) by 

implementing a tensile strength corresponding to σu = 82.5 MPa are reported in Figure 8: the 

maximum percentage error decreases to 5%. 

Analogous considerations hold for GPPS tested samples. FFM results and experimental failure 

stresses are reported in Figure 9. Predictions are again satisfactory. Indeed, those related to Eq. (9) 

seem to be generally more precise, the maximum percentage error with respect to the experimental 

average failure stress being nearly 7% (2R=0.5 mm). It decreases to less than 5% by implementing 

a fitted tensile strength value, namely σu = 31.5 MPa.   

 

Finally, some comments should be added on the similar experiments carried out by Li and Zhang 

(2006): the sample geometry was similar (actually w=30 mm instead of 40 mm), and the material 

was PMMA (KIc = 1.00 MPa m, σu = 72 MPa). Four different radii were machined, corresponding 

to 2R= 0.6, 1.2, 2 and 6 mm. On the other hand, FFM predictions underestimate the experimental 

data by more than 30%, except for the largest radius hole size, where it decreases to 15%. A 

possible explanation, looking also at the apparent nonlinear stress-displacement curves shown in the 

paper, could be related to some nonlinear/ductile mechanisms which took place and influenced 

significantly the recorded results, as suggested also by Hebel et al. (2010). 

 

 5. Conclusions 
 

The crack initiation from a circular hole in an infinite plated under uniaxial tension was investigated 

through different FFM approaches, by comparing symmetric and asymmetric crack propagation. 

From a theoretical point of view, stress based criteria are not able to reveal any differences, but  

coupled criteria predict that a symmetric crack propagation has always to be preferred, since it leads 



to a lower failure load. Similar results are provided by energy approaches such as QFM, which 

however is not able to provide, at the same time, the correct results for the limit cases of vanishing 

and large holes. 

PMMA sand GPPS samples containing holes with different radii, sufficiently small with respect to 

the specimen width in order to reproduce an infinite geometry, were tensile tested. If, from one 

point of view, we were not able to realize with precision if crack propagation was symmetric or not, 

from another point of view, size effects were well caught by FFM. These data thus form a new 

reliable set of experimental results in the Literature for what concerns homogeneous polymeric 

materials containing a circular hole. 
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Figure 1. Circular hole in an infinite plate under remote tensile load σ: symmetric (a) vs. 

asymmetric (b) crack propagation. 

 

 

Figure 2. Symmetric crack propagation: dimensionless predictions according to different theoretical 

models. 

a) b) 



 

 

 

Figure 3. FFM dimensionless failure stress related to  symmetric (continuous line)  and  asymmetric 

(dashed line) crack propagation according to both Eq. (8) (Leguillon 2002) and Eq. (9) (Carpinteri 

et al. 2008). The relative difference between predictions related to Eq. (9)  is represented in the 

upper-right box. 

 

Figure 4. FFM dimensionless crack advance related to  symmetric (continuous line)  and  

asymmetric (dashed line) crack propagation according to both Eq. (8) (Leguillon 2002) and Eq. (9) 

(Carpinteri et al. 2008). 



 

Figure 5. Geometry for the tensile notched sample. 

 

 

 

Figure 6. PMMA notched samples (2R=1mm, test 1): tensile test (a), broken specimen (b), recorded 

force-displacement curve (c).  
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Figure 7. GPPS notched samples (2R=4mm, test 1): specimen before testing (a), recorded force-

displacement curve during failure (b).  

 

 

 

Figure 8. Tensile tests on PMMA notched samples: experimental failure stresses  vs. FFM 

predictions. 
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Figure 9. Tensile tests on GPPS notched samples: experimental failure stresses  vs. FFM predictions 

 

2R (mm) –  

Test index 

PMMA 

KIc = 1.96 MPa m, σu = 70.5 MPa 

GPPS 

KIc = 1.40 MPa m, σu = 30 MPa 

Pcr (kN) Average value (kN) Pcr (kN) Average value (kN) 

0.5-1 24.100 

22.200 

9.050 

8.730 0.5-2 21.600 8.580 

0.5-3 20.900 8.560 

1-1 17.800 

17.250 

7.400 

6.950 1-2 17.700 6.900 

1-3 16.250 6.550 

2-1 14.900 

14.600 

6.210 

5.800 2-2 14.650 5.780 

2-3 14.250 5.410 

4-1 11.800 

12.200 

5.250 

5.050 4-2 12.250 4.900 

4-3 12.550 5.000 

 

Table 1. Experimental results: critical failure load Pcr (kN) for PMMA and GPPS specimens with 

different hole sizes. The material properties evaluated in (Ayatollahi and Torabi 2010,Torabi et al. 

2016b) are also reported. 


