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Abstract—Compressed sensing (CS) is often applied at the
digital level. We consider the case where CS follows a ΔΣ data
converter and we show that CS can be practiced directly on
the ΔΣ stream. In the proposed scheme, an appropriate sensing
matrix incorporates the ability to get rid of the quantization
noise from the ΔΣ modulator. We also show that a suitable
sparsity basis enables the CS information recovery to be practiced
directly at the Nyquist rate and that decimation, which is typically
inherent in ΔΣ data acquisition, is not needed. Furthermore, the
low depth of ΔΣ streams allows CS measures to be taken without
multipliers, streamlining arithmetic blocks. A test case based on
electrocardiograms is used to validate the approach.
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I. Introduction

Compressed sensing (CS) [1] consists in a set of mathematical
methods enabling the recovery a signal from a set of measurements
whose time density is much lower than the Nyquist rate. Such
undersampling is permitted by an a priori knowledge of the signal
structure, formalized through a sparse signal model [2]. A character-
izing aspect is the quest for a strong asymmetry in the measurement-
reconstruction process, where the resources needed by the former
are minimized at the cost of supplemental computational/power
requirements on the reconstruction side [3]. This is consistent with
the asymmetry of centralized sensor networks where peripheral
nodes send data to a collector counting on larger resources [4].

CS employs measurements taken on signal segments in the
discrete-time domain by projecting them onto a set of sensing vectors.
On the recovery side, reconstruction relies on numerically solving
an optimization problem based on the sparsity model. CS is often
presented as an analog to information technique [5] but many CS
applications take the projections once the signal has been acquired in
the digital domain. Digital CS is particularly frequent when reading
biological data, as in electrocardiograms (ECGs) [6]. In this area,
commercial solutions often employ ΔΣ modulators (ΔΣMs) for A/D
conversion [7]. In digital CS, the arithmetic cost of projections
can be reduced by adopting binary, ternary or otherwise low res-
olution sensing vectors [8], [9]. Among other CS developments,
it has recently been realized that in addition to sparsity, more a
priori knowledge on the input signals may exist, expressed by their
average energy distribution over frequency. Rakeness based CS [10],
uses such knowledge to design sensing vectors that collect more
energy from the signal segments, further reducing the number of
measurements needed to reach some target reconstruction accuracy.
Complementary to rakeness, denoising CS uses sensing vectors [11]
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Figure 1. Measurement chain in a CS setup operating on a ΔΣ stream. The
input x(t) enters the sample and hold block SH operating a frequency osr
times larger than the Nyquist frequency fs before digitalization by the ΔΣM
and chunking into vectors ξ. The latter are multiplied by the sensing matrix
Φ0 to get the measurements y. In the illustration, the input vector for the CS
machinery is ternary, and the sensing matrix is low pass.

that limit energy collection at frequency ranges where the signal is
known to be corrupted by noise.

This manuscript provides a proof of principle of how digital
CS can be directly practiced on the output of a ΔΣM (Fig. 1).
Recall that ΔΣMs are oversampled feedback systems capable of
delivering a low depth output thanks to their ability to spectrally
shape quantization noise until its power is pushed almost completely
out of the signal band. Their deployment requires the embedding
system to ultimately discard such noise [12]. In A/D conversion this
is typically the task of a decimation filter [13], [14], that also gets
rid of the oversampling. In this proposal, decimation is not needed
since CS itself is used to deliver an equivalent result, thanks to
denoising sensing vectors. Furthermore, it is shown that under suit-
able conditions CS can inherently undo the oversampling, practicing
reconstruction directly at the Nyquist rate. Since oversampling does
not change the information content on which CS focuses, the required
number of measurements is substantially unaltered with respect to an
equivalent Nyquist rate CS system. As a further advantage, because
the proposed approach applies the projection operator to segments of
the ΔΣ stream that have a low depth nature, the projection arithmetic
can be simplified as in setups using binary/ternary sensing vectors,
but in a “reversed” fashion requiring no such constraint. Finally,
the approach can incorporate rakeness-based adaptation and further
denoising strategies.

A test case based on the readout of synthetic ECG waveforms is
presented for validation.

II. Background
To define a notation, recall that in classical CS m measures are

taken on an Rn vector x by multiplying it by an Rm×n sensing
matrix Φ, with m < n so obtaining an Rm measurement vector

y = Φx . (1)
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In reconstruction, one relies on the assumption that a basis exists
onto which vectors x have a sparse representation, namely

x = Ψα (2)

where Ψ ∈ Rn×n is a matrix containing the basis vectors as its
columns and α ∈ Rn has only a few nonzero entries. Reconstruction
is practically achieved by solving a minimization problem

argmin
α̃∈Rn

‖α̃‖`1 so that ‖y −ΦΨα̃‖`2 < ε (3)

where ε is a suitable small constant, so obtaining

x̃ = Ψα̃ (4)

as an estimate of x. All this works as long as Φ has features
enabling it to collect sufficiently rich and diverse measures of x.
This requirement can be formalized in various ways, from bounds
on the incoherence between Φ and Ψ to complex geometrical con-
siderations [10, chapters 1 and 2]. Using random entries for the rows
of Φ is generally an appropriate choice. The problem (3) is known
as basis pursuit with denosing and ε is meant to tune robustness
to noise. When dealing with physical signals, the framework above
is generally applied assuming that x is obtained from some signal
x(t) by sampling it at some frequency fs and by chunking it into
n sample windows. Frequency fs is generally assumed to be the
Nyquist one.

III. Compressed sensing of oversampled streams
As a starting point for applying CS to ΔΣ stream, CS of oversam-

pled streams is considered. Intuitively, if one substitutes xo ∈ Rosr·n

for x, where xo is x sampled at osr · fs — i.e., at an oversampling
ratio osr — the framework can still work. This requires the use of
a new basis matrix Ψo, and a new sensing matrix Φo (ideally, with
columns and rows in Rosr·n, respectively) so that the basis spans the
space covering all the possible vectors xo. An interesting aspect to
consider is whether a relationship can be established between Ψo

and Ψ and what properties may derive from it.

A. Idealized case: sampling rate change after signal chunking
To begin, assume that the oversampling does not add information

to the signal segments, namely that an upsampling operator O exists
such that xo can be expressed as Ox. In such situation, from x =
Ψα one gets xo = OΨα = Ψoα, with Ψo = OΨ. In other
words, if Ψ is a sparsity basis for x, then Ψo is a sparsity basis
for xo. Furthermore, with this specific choice for the basis, after a
measurement-reconstruction process done on xo — leading to the
estimation of some vector α̃ (and thus to some estimate x̃o = Ψoα̃
of xo) — one can readily get x̃ = Ψα̃ as a Nyquist rate estimate
of the signal segment.

For what concerns O, the obvious expectation is that upsampling
followed by downsampling is a no-op. Formally, O should be a right
inverse matrix of the uniform downsampling operator U described
by an n× osr · n matrix with entries ui,j equal to 1 for j = osr · i
and null otherwise (under the assumption of 0-based vector/matrix
indexing), so that UO = I , where I is the identity operator. While
there is not a unique O satisfying such requirement, it is easy to
find one by an appropriate domain restriction on U . For instance,
one may restrict to signals that do not have any energy at frequency
components above fs/2. This would lead to:

O = osr · F−1ZFUT (5)

where (·)T indicates transposition, F is the osr ·n× osr ·n discrete
Fourier transform (DFT) matrix, F−1 is its inverse, and Z is in

charge of nullifying all the Fourier components above the fs/2, so
that its entries zi,j are: 1 for i = j ∧

(
i < n

2 ∨ i > n
2 (2osr − 1)

)
;

2−1/2 if i = j ∧
(
i = n

2 ∨ i = n
2 (2osr − 1)

)
; and null otherwise.

Other choices are obviously possible.
For what concerns the sensing matrix, if UO = I , letting Φo =

ΦU makes Φoxo = Φx. In other words, for this particular choice
of Φo measurements taken by CS on the oversampled signal stay the
same as those taken by the original CS system operating on signals
sampled at fs. The same holds for any Φo = ΦM , as long as
Mxo = Uxo for any xo in the image set of O. The M matrices
for which this happens are those satisfying MOx = UOx for all
x, namely the left inverse matrices of O.

This means that for the oversampled system, there is no need
for the sensing matrix to be random. On the contrary, measurements
sufficient for decoding can certainly be gathered via a Φo containing
rows whose entries are strongly correlated, as long as they are
obtained by upsampling the rows of a sensing matrix Φ known to
work at the Nyquist rate via a suitable M . Clearly, the sensing
vectors can also be generated ad hoc. Yet, there is an obvious a
potential advantage in getting Φo by upsampling Φ as ΦM . In this
case, thanks to the measurements staying the same as in the Nyquist
rate CS system, it is not even necessary to introduce an oversampled
sparsity basis, and the decoding can be directly practiced at the
Nyquist rate by the minimization in (3), or its noise-robust variant.

As a particular case, consider upsampling operators O that satisfy
OTO = I , namely where O is column orthonormal. For such
operators OT belongs to the previously introduced family. Column
orthonormal upsampling operators clearly include O = UT and
most standard interpolations belong to the class (at least with some
approximation or adjustment). For instance, the O matrix in Eqn. (5)
has this property, apart from a scaling factor 1/

√
osr that can be

corrected on the measurement vectors. The adoption of Φo = ΦOT

with the O in Eqn. (5) or given by other interpolations makes
the measurement vectors inherently low-pass. This choice provides
automatic denoising in case a practical implementation causes xo to
include disturbances above fs/2, because it makes negligible or null
the energy collectible in that frequency range [11]. Such property
will be of utter importance in Sect. IV, where CS is practiced on
ΔΣ streams, to automatically treat quantization noise.

B. Real case: different sampling rates before chunking

Unfortunately, the discussion so far is challenged when one tries
to apply it to real world problems where x and xo both derive from
a single physical signal x(t) that extends arbitrarily long in time.
To consider such case, assume that x(t) is bandlimited to fs/2,
so that it can be sampled at any frequency equal or larger than fs
without aliasing. Also assume that two different samplings of it exist,
x̂[j] = x(j/fs) and x̂o[j] = x(j/(osr · fs)). Finally, define x and
xo as two windows of x̂[j] and x̂o[j]. Even if x and xo are fully
aligned (namely, if the entries in x are x̂[i+ ̄] for i = 0, . . . , n− 1
and the entries of xo are x̂o[i+ ̄ ·osr] for i = 0, . . . , osr ·n−1), the
relationship from xo to x is not injective. In a nutshell, there can
be different vectors xo for the same x and it is impossible to define
an operator O such that xo = Ox, because the information in x
alone is insufficient to determine xo. It is so because the different
sampling rates exist already before the signal chunking. Furthermore,
one does not have any control on them because in the context of the
current application the faster one is the sampling practiced by the
ΔΣM data converter and the slower one is the reference sampling
that one would get out of the converter decimation filter.
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Figure 2. Synthetic ECG used for validation (one segment).

Incidentally, a related issue can be observed in the frequency
domain noticing that the DFTs of x and xo cannot overlap up to
frequency fs/2, with the DFT of xo being null elsewhere. This
is because the multiplication of x(t) by the rectangular chunking
window used to get x and xo corresponds to a convolution operator
in the frequency domain causing leakage [15]. Not only the two
DFTs differ in band: at the higher rate leakage pushes energy above
fs/2.

The lack of an unequivocally defined oversampling operator
O calls into question the applicability of the idealized results in
Sect. III-A. In fact it now appears not fully rigorous to attempt
CS on xo using sensing vectors with no energy above frequency
fs/2. Furthermore, if there is not an unambiguous way to get the
CS matrices Φo and Ψo used at the higher sampling rate from the
matrices Φ and Ψ used in the Nyquist rate system, the possibility
to use the CS measurements taken at the higher rate to directly get
an estimate of the signal at the Nyquist rate via x̃ = Ψα̃ as in
Sect. III-A becomes dubious.

Still, if the signal segments are long enough and the oversampling
is not too large, one may expect the results in Sect. III-A to remain
applicable with good approximation when a standard kernel O is
used for the upsampling of the basis matrix Ψ into Ψo and as OT

for the oversampling of the sensing matrix Φ into Φo. Certainly,
one shall expect performance to become somehow sensitive to the
specific oversampling operator being used. For instance, the one in
Eqn (5) may not be the best one (because of the complete erasure of
high frequency components). Similarly, the choice of an appropriate
denoising parameter ε in basis pursuit may become more cogent.

C. Validation of performance expectations in the real case

Since the purpose of this paper is mainly to offer a proof of
principle, the exploration of the best choices for O and ε will
be left to further works. Conversely, the focus will be on a mere
validation of the previous expectations by a practical test case. The
latter involves synthetic ECG signals with rates from 50 bpm to
75 bpm (fig. 2) and a 50 dB SNR for the Nyquist rate system. For the
oversampled system, the input SNR is set to be 10 log10 osr dB lower
with noise spreading uniformly on the whole available bandwidth,
in order to test the denoising ability of CS at frequencies above
the signal bandwidth. For the reference Nyquist rate system, signal
segments are 256-samples long and osr = 64 and a symmlet wavelet
sparsity basis is employed.The setup includes two types of tests. The
first one relies on random sensing vectors, while the second one uses
vectors designed following the rakeness-based CS paradigm [10].
In either case, for the system working on oversampled streams the
sensing matrix and the basis are obtained from the corresponding
matrices of the Nyquist rate system by standard interpolations.

Fig. 3 compares the performance of the oversampled CS setup to
that of Nyquist rate CS in terms of reconstructed SNR (estimated
over 64 runs) for growing numbers of measures m. As evident
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Figure 3. Comparison of CS practiced on Nyquist rate and oversampled signals
in terms of reconstruction SNR (RSNR). Black solid curve is the baseline for
CS practiced at the Nyquist rate with random sensing vectors. Solid curves
always correspond to using random vectors in the sensing matrix while dashed
curves correspond to using sensing matrices optimized for rakeness. Curves
with the circle marker measure the SNR on Nyquist rate reconstructed signals
x̃, while those with the triangular marker measure SNR on the oversampled
reconstructed signals x̃o.

from the plots, the performance of the system operating on the
oversampled signal is consistent with that of the Nyquist rate system
and a performance loss is only seen at large SNR levels (for
the particular case above 35 dB, which can be set as a target for
being often considered the minimum value for medical diagnosis of
ECG waveforms [16]). Most important, the system operating on the
oversampled streams is capable to approximately get to the same
performance of the non-oversampled one notwithstanding the input
SNR being worse by about 20 dB. This follows from the ability
to automatically discard the out of band noise. Surprisingly, the
higher rate system does even better than the Nyquist rate one when
the number of measurements is particularly low. In the rakeness
optimized setup one always gets better performance than in the
corresponding non optimized test, showing that the advantages of
the rakeness approach are preserved. In this case, the performance
loss of the higher rate system is already evident at a lower number
of measurements, though, due to the higher SNRs. Finally, the
possibility to directly decode at the Nyquist rate after CS is practiced
on the oversampled stream is also validated, showing a slightly larger
performance loss. All this is quite consistent with the expectations
from Sect. III-B.

IV. Compressed sensing of ΔΣ streams
The framework for CS of oversampled signals may have some

interest by itself but not a significant practical value. Its opportunity
lays in setting the basis for the CS of ΔΣ streams. Recall that ΔΣM
is often adopted in data acquisition because it enables the use of
quantizers with a quite limited number of levels (often just 2 or 3),
so relaxing linearity related issues [13]. Low resolution is paid by
the introduction of a large amount of quantization noise. However,
ΔΣM smartly use oversampling to push such noise above the signal
bandwidth, so that it can be removed later on in the processing chain.

Given the proof of principle nature of this work, as the sole
example Fig. 4 shows a 2nd order single quantizer ΔΣM, with a 3
level output. Fig. 5, illustrates the kind of spectra that can be obtained
from its application to ECG signals at osr = 64. While much more
sophisticated forms of noise shaping can in principle be pursued [12],
[13], profiles such as those in the plot are common as a reasonable
trade-off with the cost of the modulator. Because of this compromise,



Figure 4. Second order, single quantizer, 3-level ΔΣM modulator used for
validation.
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Figure 5. Power spectral density (PSD) plot showing Quantization noise
shaping by the ΔΣM in Fig. 4 operating on the test ECG signals.

residual quantization noise in the signal band can significantly cap
SNR. For ECG signals (that sit most of the time around zero to
only occasionally peak, so representing an unfavourable case), the
ΔΣM in Fig. 4 can provide an in-band theoretical SNR just over
40 dB at osr = 64, i.e., slightly above the minimum required by the
application.

Following the theory in Sect. III, one can treat the ΔΣ stream
as a case of an oversampled stream that is particularly noisy above
the Nyquist frequency. Because the ability of CS to remove high
frequency noise has already been validated, one can think of feeding
the ΔΣ stream directly into the CS system. With this, the deci-
mation filter becomes unneeded. More interestingly, the projection
arithmetic gets simplified from a multiply-and-accumulate process
into a conditional-sum process by the ternary nature of the ΔΣM
output. This is similar to [8], [9], but without imposing constraints
on the sensing matrix. Furthermore, the downsampling is also saved,
since — as already shown — it can be done implicitly during signal
reconstruction.

Fig. 6 validates these concepts by providing SNR curves directly
comparable to those in Fig. 3. The plots are totally consistent, with
the sole exception that the curves in Fig. 6 reach their plateau earlier,
at about 40 dB, this being the intrinsic SNR cap imposed by the
ΔΣM used for the tests. Reconstruction SNRs at about 35 dB remain
achievable at a reasonable compression factor.

V. Conclusions
The possibility of practicing CS directly on ΔΣ stream has been

validated both by experiments and through the development of a
framework for CS of oversampled signals. The presented examples
showed that measurement matrices suitable for ΔΣ streams can be
readily obtained from others known to work at the Nyquist rate,
including matrices for rakeness-based CS. In future work, the ad hoc
crafting of sensing matrices for the task will likely be addressed, as
part of an ongoing effort in evaluating the suitability and potential
of pulse-based signals in processing tasks.
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