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Abstract Surface electromyogram (EMG) has a relatively large pick-up vol-
ume, reflecting the activity of muscle tissue placed quite far from the elec-
trodes. This could be beneficial when the global muscle activity is of interest,
but it is a limitation when selective information is needed. The EMG from
muscles that are neighbors of the one of interest is called crosstalk. Its inter-
pretation, identification, quantification and removal have been the objectives
of many works in the literature. However, it is still considered as an open
problem, with effects that are difficult to predict.

In this paper, the problem of crosstalk is discussed and the main literature
is reviewed. Finally, a few recent techniques are introduced that are potentially
relevant to quantify or reduce it.

Keywords Surface EMG · Crosstalk · Spatial Filter · Inverse Problem ·
Source Localization

1 Introduction

Crosstalk in surface electromyogram (EMG) is defined as the signal recorded
from electrodes placed on the skin above a muscle of interest (referred to as
target muscle), but produced by another. It can pose limitations to different
applications of EMG in which selective information from a specific muscle
is needed. For example, the detrimental effect of crosstalk was indicated in
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the following applications: muscle coordination [1], prosthetic control [2], gait
analysis [3], ergonomics for task evaluation [4] and reflexes [5].

Crosstalk was studied in many simulated [6][7][8][9][10] and experimental
[11][12][13][14] conditions and different methods were proposed to quantify or
to reduce it [15]. The first idea that could be explored to quantify it is that
of interpreting the recorded signal as the sum of the EMG from the muscle of
interest and crosstalk. Then, the EMG from the muscle producing crosstalk
can be recorded (by placing another detection channel over it) and compared
to the signal acquired from the muscle of interest (e.g., by cross-correlation).
However, this simple idea fails, as surface EMG from the same source changes
when recorded from electrodes placed in different locations, due to volume
conductor filtering. Furthermore, the filter due to the tissue strongly depends
on the anatomy. Moreover, its effect depends on some details of motor unit
(MU) action potentials (MUAP), which can be interpreted as the sum of two
contributions, one reflecting the propagation of the action potential along the
muscle fibres and the latter related to the limited extension of the fibres (and
thus to generation and extinction of the action potentials). These problems
affected the study of crosstalk and the attempts to interpret it in the literature.

Here, a brief discussion of crosstalk is provided, introducing different no-
tions needed to understand its origin and the rationale behind the processing
methods that have been introduced to quantify or reduce it. Specifically, the
main results from the literature are mentioned in Section 2. Then, structure-
based volume conductor models of surface EMG are discussed, providing some
hints for the interpretation of crosstalk (Section 3). Spatial filters are then in-
troduced in Section 4, as a tool for improving selectivity of acquisition. Finally,
advanced processing methods are discussed: in the opinion of the author, they
are the most promising approaches that have been proposed to quantify or re-
duce crosstalk (Section 5). Some conclusions and future perspectives are finally
given (Section 6).

2 State of the art

The relatively large detection volume of surface EMG questioned the reliability
of the information extracted from a target muscle, due to the crosstalk from
other muscles. Such a signal may originate from muscles which are located
either deeper (ankle flexors and extensors [16], soleus and gastrocnemius [17]),
or adjacent (vastus medialis and lateralis [11]) or all around the target muscle
(forearm muscles [4][18]).

In applications, crosstalk may be an important concern. For example, the
following outcomes were documented in the literature.

1. The appropriateness of using EMG recordings for studying muscle coordi-
nation depends on the possibility of decoding neural control strategies of
movements, which is hindered by crosstalk [1].
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2. In gait analysis, surface EMG indicated activity of rectus femuris even in
phases in which intramuscular recordings showed that it was relaxed: this
was due to the crosstalk from the vasti [3].

3. The level of crosstalk degraded the extraction of neural control information
used to guide myoelectric prostheses with multiple degrees of freedom [2].

4. The study of canine diaphragm EMG was largely affected by crosstalk from
the abdominal and intercostal muscles [19].

5. The assessment of human nociceptive withdrawal reflex is usually based
on mapping the reflex receptive field by using surface EMG. However,
crosstalk can cause erroneous results so that more selective detection sys-
tems (called spatial filters, see Section 4) were suggested [20]. The use of
such filters was also proposed in many other applications as a way to in-
crease the selectivity of surface EMG (Section 4). However, this improved
selectivity may decrease the representativeness of the activity of the target
muscle [17].

More examples can be found in a recent review on crosstalk in myograms
(EMG and mechanomyogram) [15]. The detrimental and unpredictable effect
of crosstalk in applications, promoted technical studies to better observe it
and investigate how to quantify or reduce it. The following main indications
resulted from these studies.

1. An increase of crosstalk was experimentally observed in the case of a thicker
subcutaneous layer [21] (this observation was later justified by simulation
models, Section 3).

2. Crosstalk depends strongly on electrode location [22].
3. Based on the assumption that it is produced by muscles at a relative large

distance from the recording system (with respect to the target muscle),
crosstalk was thought to be highly filtered by the interposed tissue. This
suggested that it mainly included low frequency components, which could
be removed by a high-pass filter. However, this is not true, as crosstalk is
mostly related to non-propagating components reflecting generation and
extinction phenomena, which have short duration and include also high
frequency contributions [23].

4. Surface EMG is largely affected by the relative position of the detection
system and the source (within the active muscles). Thus, crosstalk cannot
be quantified by studying the cross-correlation between the EMGs recorded
over the two muscles involved [24].

5. Selective spatial filters can reduce the detection volume and hence also the
effect of crosstalk [12][25]. However, the optimal configuration of the filter
depends on the specific anatomical and physical parameters of the tissues
under investigation (studied in many simulation studies, e.g., [6][7][8][9][10]).
Thus, the optimal filter could be estimated only by adapting to the specific
conditions under study [26].

In summary, most of the literature was limited to observe crosstalk (by mea-
suring it in specific experimental conditions, possibly requiring synchronous
acquisition of intramuscular data, or investigating how it changed when the
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recording system was moved or inter-electrode distance was changed). Simple
attempts to quantify (by cross-correlation) or to reduce it (by high-pass filters)
were later criticized. The main idea to reduce its effect in applications is to use
selective spatial filters, but there is not an optimal configuration, as perfor-
mances depend on the specific conditions under investigation (e.g., anatomy
of the considered subject, conductivity of the tissues, etc.). For a further un-
derstanding of these problems and to gain an idea on how to progress in the
development of feasible methods for crosstalk management, a deeper under-
standing of the biophysics behind EMG generation is needed. In the following
sections, the generation of surface EMG and the effect of the application of
spatial filters are discussed. Then, some advanced methods for crosstalk inves-
tigation are introduced.

3 The biophysical interpretation of the generation of surface EMG

Modelling surface EMG is useful to test ideas on simulated experiments and to
check accuracy of signal processing algorithms. It supports the estimation of
not accessible parameters (inverse problem, [27]), the optimization of spatial
filters [9][28][29], the design of algorithms [30][31] and the interpretation of
experiments [7][32][33][34].

Some EMG models are phenomenological, which means that they simulate
a signal with similar properties, but without describing the underlying deter-
ministic laws of the system generating it. For example, autoregressive linear
models adapt the parameters of a non-stationary stochastic process to the
data to be represented [35].

Here, we are interested in structure-based models, which describe the bio-
physical mechanisms of the simulated system. The contraction of fibres of a
striated muscle is primed by the intra-cellular action potential (IAP), which
is generated at the endplate of a muscle fibre, propagates along it in opposite
directions toward the two fibre ends (usually, the tendons), where it extin-
guishes. The IAP is a bioelectric source constituted by ionic fluxes across the
fibre membrane (sarcolemma) that, due to nonlinear diffusion (described by
cable theory), induces the excitation of subsequent portions of the membrane
over time, thus travelling along the sarcolemma [36]. The IAP induces a poten-
tial in the surrounding physiological tissues, as it is a current source embedded
into electrically conductive tissues. The diffusion of the electric potential in
the tissues leads to a volume conduction problem. As frequencies involved in
the problem are small (so that they don’t reach the range in which tissue per-
mittivity is relevant [38]), a quasi-static approximation is usually considered.
Thus, the equation of electrostatics (Poisson equation) is studied to simulate
the potential induced by the IAP into the tissues, under conditions of in-
sulation at the skin surface (conductivity of air is neglected). The potential
computed over the skin is finally used to simulate surface EMG corresponding
to an IAP. In this way, considering the generation, propagation and extinction
of the IAP, a single fibre action potential (SFAP) can be obtained. Adding
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Fig. 1 Example simulations of single fibre action potentials for fibres aligned to the detec-
tion array and placed at two different transversal distances from it (plane layer model; skin
thickness 1 mm and conductivity 0.022 S/m, fat thickness 3 mm and conductivity 0.04 S/m,
muscle extending to minus infinity with transverse and longitudinal conductivities of 0.09
and 0.4 S/m, symmetrical fibre with 60 mm of semi-length, 3 mm deep within the muscle,
rectangular electrodes of 3 mm x 1 mm, inter-electrode distance of 5 mm, 16 channels of
different spatial filters). A) Monopolar potential, for a fibre placed under the electrodes. B)
Monopolar potential of a fibre at a transversal distance of 15 mm from the detection array.
C) Single Differential (SD) potential, for a fibre placed under the electrodes. B) SD potential
of a fibre at a transversal distance of 15 mm from the detection array.

more SFAPs, a MUAP can be simulated. Then, by describing the spatial and
temporal recruitment strategy of MUs, an interference EMG can be simulated
[39].

For a better understanding of crosstalk, we are especially interested in the
description of the IAP (mainly, its generation and extinction) and volume
conductor. Indeed, the effects on single MUAPs are simply summed-up when
more MUs are considered in an interference EMG.

The volume conductor is not homogeneous (it includes layers of different
tissues, with different electrical properties, like skin, fat, bone and muscle,
possibly including inhomogeneity due to complex geometry or variation of
parameters) and anisotropic (in particular, muscle fibres are more conduc-
tive along than across their direction). Both analytical [40][41] and numerical
methods [7][42][43] have been proposed to simulate different volume conduc-
tors. The general indication is that the recorded signal is largely affected by the
geometry and conductivity of the volume conductor, which could include in-
homogeneities, different thickness of tissues and directions of the fibres (which
could be curved or go deep). An extensive review of volume conductor simula-
tion is provided in [44] and many applications of models in the interpretation
of EMG are discussed in [45].

The simplest volume conductor that can be considered is a homogeneous
and isotropic tissue. It is very far from real physiological tissues, but it allows
to get preliminary indications on how the potential decays in space. The im-
pulse response (or Green function) of Poisson equation for a homogeneous and
isotropic volume conductor is inversely related to the distance from the detec-
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tion point to the source. A propagating IAP can be approximated by a tripole
that, at some distance from it (much larger than the extension of the tripole,
which is in the order of 5 mm), i.e., in far field conditions, shows a potential
which is about the second derivative of the impulse response. This means that
it decays proportionally to the cubic of the distance. On the other hand, gen-
eration and extinction of the IAP can be approximated as dipole sources [44].
The far field effect of a dipole is the first derivative of the impulse response, so
that it decays in space with the square of the distance. Thus, when increasing
the distance from an active muscle fibre, the corresponding potential waveform
that could be recorded is distorted, with the propagating contribution decaying
rapidly and the non-propagating one (related to generation/extinction) reduc-
ing slowly. This reflects into different shapes of MUAPs recorded from different
locations and thus to the difficulty in quantifying crosstalk by cross-correlation
of EMGs recorded over the muscle producing it and the one of interest. More-
over, the non-propagating components increase their relative importance when
the EMG is recorded more and more distant from the active muscle. For this
reason, crosstalk EMG is largely constituted by non-propagating components.
Examples of simulated monopolar and single differential (SD) SFAPs obtained
considering a fibre either under the detection system or transverse displaced is
shown in Figure 1. The relative contribution of non-propagating components
is largely increased when the fibre is displaced.

4 Spatial filters

More electrodes placed close to each other are used to detect high-density sur-
face EMG. The potentials under these electrodes can be linearly combined,
obtaining what is called a spatial filter. The name is appropriate when record-
ing a potential travelling under the electrodes, as this propagation allows the
filter to apply a convolution operation on the action potential. However, for
the action potential waveform to propagate without distortion, the volume
conductor should be space invariant [42] and the length of the muscle fibres
should be infinite. As these conditions cannot be perfectly matched, predicting
the effect of the application of a spatial filter is not trivial. In particular, the
effect on generation and end of fibre components (or other perturbations to
the propagating waveform) should be tested carefully.

Different filters have been proposed [46]: the single differential (SD) com-
putes the difference between the potentials of two electrodes, approximating a
spatial derivative; the double differential (DD) approximates the second deriva-
tive (with a negative sign); the Laplacian or normal double differentiating filter
(NDD) approximates (up to the sign) the Laplacian operator.

Different spatial filters can be compared in terms of their selectivity [47]. It
can be intended as the ability of recording the potentials from sources located
in a specific region. We call detection volume the region from which a reliable
potential can be recorded (i.e., with amplitude much larger than the noise,
so that the activation of a specific source can be identified). A selective filter
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is focused on a small detection volume. Usually, by increasing the number of
electrodes (whose recorded potentials are linearly combined) and reducing the
inter-electrode distance, the detection volume of the filter is reduced. However,
as mentioned above, this is not true in general, as performances depend on the
specific case under study. Selectivity can be measured in terms of the ability of
removing contributions from deep sources or from regions that are transversely
displaced with respect to the center of the detection channel. A longitudinal
selectivity can also be defined, in terms of the ability of recording a short spike
corresponding to a single source, so that it can be better separated from other
asynchronous contributions in the signal [46].

Spatial filters may have different selectivity to propagating and non-propagating
terms [48]. For example, in Figure 1, notice the ability of SD filter to reduce the
non-propagating components, which are much more evident in the monopolar
recordings. However, this selectivity depends on the specific anatomy [9][47]:
thus, as mentioned above, a recording system which is optimal in all cases can-
not be designed. A filter to be optimal should be adapted to the case under
investigation [26].

Selectivity is beneficial to focus on a specific muscle region under the de-
tection channel, thus reducing crosstalk. However, the small selected muscle
region could provide poor information on the activity of the whole muscle, as
other portions could behave differently [49]. Thus, improved selectivity may
decrease the representativeness of the activity of the target muscle [17]. This
could be due either to the use of selective detection systems or even to a
localized amplitude distribution of MUAPs, as in the case of some pinnate
muscles like gastrocnemius [50][51]. The problem of representativeness was
also noted for the intramuscular recordings, which are indeed very selective:
multiple recordings were suggested to better represent the activity of some
muscles [52].

5 Signal processing

As basic methods to face crosstalk, trying to reduce it (by high-pass filtering)
or to quantify it (by cross-correlation or coherence), were not so effective,
alternatives were proposed, based on advanced signal processing techniques. In
the following, three main ideas are discussed: blind source separation, adaptive
spatio-temporal filtering and inverse modelling.

5.1 Blind Separation of EMG from target and crosstalk muscles

Blind Source Separation (BSS) is a statistical theory aiming to separate differ-
ent sources from available data in which their contributions are mixed (mix-
tures or observations) [53][54]. Different models for the data have been studied,
e.g., the linear instantaneous [13] and the convolutive [55]. In the problem to
be solved, both the sources and their weights (or impulse responses, in the
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convolutive model) are unknown for each mixture. However, successful sepa-
ration can be achieved by imposing some statistical property of the sources
to be found, if the number of mixtures is at least equal or (better) larger
than that of the sources. Popular requirements imposed to the sources are to
be either uncorrelated (considered in principal component analysis, PCA) or
independent (independent component analysis, ICA).

An example of BSS technique to separate crosstalk from the EMG of the
target muscle was proposed in [13]. The method assumes that the recorded
data are linear instantaneous mixtures of the signals produced by the investi-
gated muscles, which are the sources to be separated. Thus, the model is the
following

x[t] = As[t] + n[t] (1)

where x[t] = [x1[t], · · · , xm[t]]T is the vector ofmmixtures, s[t] = [s1[t], · · · , sn[t]]T

is the vector of n sources, A is the full rank mixing matrix of size m× n with
m ≥ n and n[t] is the additive white Gaussian noise vector, assumed to have
same power σ2 in all mixtures. Notice that the order of the sources and their
amplitudes cannot be determined, as the two unknowns are multiplied (ambi-
guities of the BSS problem).

In principle, the sources could be computed by (pseudo-)inverting the mix-
ing matrix, once it is estimated. The mixing matrix is factorized as WA = U,
where W is orthogonal and U is unitary. The method is called second order
blind identification (SOBI) and extends PCA by applying a whitening trans-
formation W and then by recovering the rotation matrix U [56]. It can be
split into the following two steps.

– Whitening. The whitening matrix W is constructed such that

WAATWT = I (2)

The matrix AAT can be determined from the covariance matrix of obser-
vations

R̂xx =
1

T

T∑
t=1

x[t]x[t]T (3)

which can be written as

R̂xx ≈ AR̂ssA
T + σ2I (4)

where R̂ss is the covariance of the sources. In [13], it was assumed to be
the identity matrix (thus, PCA is considered, so that sources are assumed
to be orthogonal; moreover, their arbitrary energy was fixed to 1). Thus,
the matrix AAT in equation (2) can be written as

AAT ≈ R̂xx − σ2I (5)

An estimate σ̂2 of the noise variance is the average of the m − n smallest
eigenvalues of R̂xx. The spatial whitening matrix W can now be writ-
ten in terms of the n largest eigenvalues λ1, · · · , λn, corresponding to the
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eigenvectors h1, · · · ,hn of R̂xx

W =

[
1√

λ1 − σ̂2
h1, · · · ,

1√
λn − σ̂2

hn

]T
(6)

– Rotation. The application of the whitening matrix W to the observations
provides the whitened observations

z(t) = Wx(t) = Us(t) + Wn(t) (7)

The rotation matrix U is obtained by diagonalizing the covariance matrix
of the whitened observations (thus, imposing that the sources are uncorre-
lated for each time lag)

R̂zz ≈ UR̂ss(τ)UT , τ 6= 0 (8)

Notice that the time lag was assumed to be different from zero to remove
the noise contribution. The matrix U could be obtained from a single arbi-
trary choice of the time lag. More stable alternatives were introduced, e.g.,
sampling more time lags and choosing the matrix that allows to get their
joint diagonalization which is the best under some optimality condition
(like the reduction of a norm of the off diagonal elements [54]; an opti-
mization problem in the time-frequency domain was considered in [13]).
Once obtained the whitening and rotation matrices, the mixing matrix is
obtained as

A = W#U (9)

(where W# is the Moore-Penrose pseudoinverse of W) and the sources
can be estimated.

This algorithm was applied in [13] to separate the contributions of two forearm
muscles, which allow rotation and flexion of the wrist (i.e., pronator teres and
flexor carpi radialis). As these muscles are close, the separation of their EMG
is very difficult. Signals were detected over the two muscles and in between.
The algorithm was able to largely reduce crosstalk, allowing to better identify
the periods in which different muscles were either active or silent.

In the example shown in Figure 2, two distinct muscles were simulated with
force level of 20% MVC. Three mixtures were available, taken from monopolar
channels placed over each of the two muscles and in between. SOBI method
was applied to the 3 mixtures to separate the contributions of the two muscles.
Notice the partially overlapped spectra, that would make very complicated the
separation with simple filtering techniques.

The considered BSS method has some limitations. It is based on the as-
sumption that recorded data are linear, instantaneous mixtures of uncorre-
lated sources. The assumption of linearity and instantaneity is not strictly
valid: MUAPs have shapes that strongly depend on the detection points of the
channels recording the different mixtures (as discussed in Section 3). Moreover,
sources could be correlated in some applications, as in the case of functional
coordination or synergy reflecting the presence of common descending drive
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Fig. 2 Second order blind identification (SOBI) method applied to reduce crosstalk between
two muscles (both with contraction levels of 20% MVC). Simulations of monopolar signals
detected over the two muscles and in between were considered (same simulator as in Figure
3, considering the 3 central channels). Signals from single muscles (from 2 electrodes) and
the PSDs (of EMGs from both single muscles recorded from 2 electrodes) are shown on the
left, the three mixtures in the middle and the result of the reconstruction superimposed to
the single muscles signals on the right (1 s is shown out of the 5 simulated EMGs). The
same figure is shown in [37].

shared by MU pools of the different muscles. Moreover, the algorithm cannot
be easily integrated in real time applications involving non-stationary data, as
the mixing matrix changes in time and should be updated processing the data
that are acquired. Thus, the method is quite difficult to employ in applications
and it haven’t found great outcome till now.

5.2 Optimal spatio-temporal filter

The main approach to reduce crosstalk in applications consists in using selec-
tive spatial filters, as they are simple to use and process data in real time. Due
to their small detection volume, these filters largely reduce the signal from
other muscles. However, also most of the EMG produced by the target muscle
is discarded. As mentioned above, this poses a problem of representativeness
[17]. Moreover, selective filters could be not available for some applications in
which a few, large electrodes are commonly used. An innovative approach was
followed in [26], where three principles were considered.
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1. The EMG of the muscle of interest had to be retained and the one coming
from nearby muscles had to be reduced as much as possible.

2. The method had to be simple and stable in order to be feasible for ap-
plications (i.e., real time and useful also for simple experimental protocols
using a few not selective detection channels).

3. The method had to be adapted to the considered condition (depending
on anatomy, conductivity of the volume conductor, electrode type and
location, etc.).

A filter was considered, in order to get a real time processing. The filter was
optimized on a training set of signals, including selective activations of the
different muscles involved (target and crosstalk muscles). An optimization
problem was implemented, reducing crosstalk, but still maintaining the sig-
nal from the target muscle. An energetic measure was considered to define the
cost function for the optimization problem, which allowed to get a solution in
analytical form.

Specifically, indicate with Si(t) and Ci(t) (with the subscripts indicating
the ith channel) the signals recorded either during a selective contraction of the
target or of the crosstalk muscles, respectively. Notice that the channels should
be placed over both the target muscle and the one(s) producing crosstalk, in
order to record useful information for the filter to work properly. The signal
to crosstalk ratio (SCR) was defined as

SCR = 10 log10

∥∥∥∥NT∑
i=1

wiSi(t)

∥∥∥∥∥∥∥∥NT∑
i=k

wkCk(t)

∥∥∥∥ (10)

where {wi} is the set of weights of the filter, whose sum is imposed to be zero,
unless the considered channels already removed common mode interference.
Now, an optimal spatial filter (OSF) can be obtained choosing the weights in
order to maximize the SCR on the training set. Maximizing the argument of
the logarithmic function is sufficient (as the logarithm is monotonic), so that
the problem can be converted into the maximization of the following functional

J(w) =

∥∥∥∥NT∑
i=1

wiSi(t)

∥∥∥∥∥∥∥∥NT∑
i=k

wkCk(t)

∥∥∥∥ =
wSTSw

wCTCw
=

wRSw

wRCw
(11)

where RS and RC are the autocorrelation matrices of signal and crosstalk, re-
spectively. As this functional is invariant under scaling of the vector of weights,
its maximization is equivalent to the following constrained optimization prob-
lem {

argmax
w

1
2wRSw

subject to wRCw = 1
(12)
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which can be solved studying the following Lagrangian

Lp =
1

2
wRSw +

1

2
λ(1−wRCw) (13)

Karush-Kuhn-Tucker (KKT) conditions lead to the eigenvalue problem

RSw = λRCw ⇒ R−1
C RSw = λw (14)

The change of variables v = R
1/2
S w allows to obtain a problem involving

a symmetric and positive matrix with orthogonal eigenvectors and positive
eigenvalues

R
1/2
S R−1

C R
1/2
S v = λv (15)

The eigenvectors indicate directions of projections along which the functional
becomes

J(wk) = wkRSwk
wkRCwk

= J(R
−1/2
S vk) =

=
vkR

−1/2
S RSR

−1/2
S vk

vkR
−1/2
S RCR

−1/2
S vk

= 1
1/λk

= λk
(16)

where w = R
−1/2
S v and λk - vk is the kth eigenvalue - eigenvector pair of (15).

From (16), the weights corresponding to a maximal SCR are the elements of
the eigenvector associated to the largest eigenvalue.

The OSF was generalized including also past values of the EMG data, so
that, for each channel, a FIR filter was used instead of a simple amplitude
scaling [26]. The filter obtained maximizing the SCR including present and
past data was called Optimal Spatio-Temporal Filter (OSTF), as it operates
both in time and in space [26]. The delay between subsequent samples and the
order of the temporal filters are two parameters that can be tuned, e.g., by
improving the performances on a validation set.

The possibility of choosing the weights allows to adapt the filter to the
specific anatomy under study. In the specific simulations shown in [26], the
FIR filters processing data acquired over the target and crosstalk muscles were
stop-band, reducing high frequency noise and keeping the signal of interest. In
particular, the filter processing the signal over the muscle producing crosstalk
selected the frequency band of its contribution recorded over the target muscle.
Thus, the filter appeared to have the effect of estimating the contribution of
crosstalk to be subtracted from the EMG recorded over the target muscle.

If the training data are representative of the test signals (e.g., they were
recorded during contractions with similar range of motion, force, velocity, etc.),
the filter should be optimal also for them. In [26], the filter showed to be robust
also to perturbations of the training set. The following conditions were tested:
1. reduced force level so that only some MUs were recruited during training, 2.
not selective contractions so that the muscle assumed to be at rest produced
a low level activity, 3. reduction of conduction velocity (CV) as a myoelectric
manifestation of fatigue. Thus, during the optimization procedure, the filter
seemed to adapt to the anatomy and geometry of the volume conductor, with-
out being much affected by the specific training EMG, which depended on the
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specific temporal and spatial recruitment of MUs and on their fatigue level
(reflected in their CV).

Two examples of application were shown in [26]. The method showed to
be able to reduce the bias on CV estimation induced by crosstalk. Moreover,
it was able to improve the estimation of the simulated force level of the target
muscle in the presence of crosstalk. Preliminary tests on experimental data
were also shown.

This method is real time and stable. It has the limitation of requiring a
preliminary phase of training, during which selective contractions of the in-
volved muscles should be investigated. However, it works even considering a
few detection channels, having the potentiality of finding applications also in
conditions in which simple recording systems are used (i.e., in many applica-
tive studies in ergonomics, sport science, clinics, gait analysis, or myoelectric
prosthesis, in which usually the sophisticated research recording systems are
not used).

An example of application of the OSTF is shown in Figure 3. The filter was
trained on simulated selective contractions of either of two muscles, consider-
ing epochs of stationary EMG at different force levels. Then, it was applied
on simulated contractions with variable force levels. The contribution of the
crosstalk muscle was reduced: the envelope of the surrogate channel clearly
indicates the three bursts of activity, whereas a raw SD channel reflected the
contributions of both muscles.

5.3 Estimation of crosstalk by inverse modelling

In principle, crosstalk could be removed if the different contributions of the
recorded EMG could be associated to specific sources within the muscles. In
such a case, the contributions reflecting the activity of MUs not located in the
target muscle could be removed.

The position of the active regions could be extracted from high-density
surface EMG by estimating the location of the current sources generating the
surface potential. This is an inverse problem, which could be considered as
the reverse of the problem of simulating the signal given the sources (Section
3). This latter problem is considered as the direct one, as it simulates the
effect once the cause is known. In inverse problems, given the effect (i.e., the
recorded data), the cause generating it (i.e., the activity of current sources
within the muscle) is sought. This problem was extensively studied in the field
of surface electroencephalogram (EEG) [57]. In the field of EMG, some studies
have been proposed [58][59][60][61][62][63][64][65]. Most of these methods are
computationally intensive. For example, the position of the MU generating a
specific MUAP (extracted by a decomposition algorithm) was estimated in [62]
considering that the amplitude decay of the potential in a direction transverse
to the fibres is slower for deeper MUs. To apply this method to an interference
signal, the contributions of different MUs should be first identified, which
requires the application of algorithms with high computational cost. Other
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Fig. 3 Application of the optimal spatio-temporal filter (OSTF) to reduce crosstalk (only
two samples in time were included in the FIR filter). A) Volume conductor used for the
simulations. Interference EMGs from two muscles (M1 and M2) were simulated as in [26].
Monopolar signals were acquired from 9 electrodes, placed over either of the two muscles
and in between. B) Force levels of the two muscles. C) Assuming the signal from M1 is of
interest, the raw signal from the single differential (SD) channel placed over M1 and closer
to the innervation zone is shown, together with the corresponding SD EMG produced by
M1 only and the surrogate data obtained by the OSTF (trained using selective, stationary
EMGs of 5 s at 20, 40, 60, 80% MVC, for each muscle). D) Envelope (absolute value low-pass
filtered at 2 Hz) of the SD raw data and of the surrogate over time, compared to that of the
SD signal from M1.

approaches are based on intensive simulations by the finite elements method
(FEM), which were fit to experimental data to locate the sources producing
interference EMG [58][59][60][63][64][65].

As a low cost alternative, a method was proposed to search for a fit of
the data using a set of available waveforms, each representing the activity of a
specific portion of the muscle [61]. It is interesting, as it is feasible for real time
applications, like prosthesis control, rehabilitation guidance with a biofeedback
or crosstalk removal for improving the estimation of EMG indexes (amplitude,
spectral properties, CV), force level, muscle synergies or load sharing. The
method is based on the following modelling assumption

b (x, t) =

NR∑
n=1

Nτ∑
k=1

Xn,kan (x, t− τnk) (17)

where b (x, t) is the recorded EMG, x is the space variable (indicating the posi-
tion of the recording channels), t is the time variable, τnk is a delay (Nτ is the
number of considered delays) and an(x, t) are NR basis waveforms, each repre-
senting the EMG response to the activity of a source with a specific location.
They can be obtained by either simulations or experimental measurements
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(e.g., by spike triggered averaging technique, i.e., averaging epochs of surface
EMG centred on the spikes identified by decomposing the intramuscular EMG
jointly acquired). The unknowns are the coefficients {Xn,k}. If the coefficient
Xn,k is positive, it indicates that there is an activity from the nth region at a
delay τnk.

Equation (17) can be rewritten in matrix form

AX = b, (18)

where the columns of A contain the basis waveforms, b is the vector of the
measurements and X collects the unknowns. This problem cannot be solved,
as A is not square (as more recordings than unknowns are usually considered
to get more robust estimations). Moreover, the measurement vector b cannot
be represented as the sum of the basis waveforms, as it includes noise and
only few basis waveforms are considered. Thus, the problem was solved in the
least mean squared sense after introducing Tikonov regularization to improve
stability to noise

min
X
‖AX − b‖2 + α‖X‖2 (19)

where the first term is the residual norm (measuring the error in data fit-
ting) and the second is the solution norm, imposing the energy of the solution
to be small (hindering the selection of an oscillating solution, reflecting large
phase cancellations; on the other hand, the essential solution including only
few sources is selected, accepting a larger residual variance in fitting the data,
with such a residual error ideally reflecting the contribution of noise). The
solution was imposed not to show large oscillations by properly choosing the
penalization parameter α which was set to be one thousandth of the maxi-
mum eigenvalue of the matrix ATA. The problem has the following analytical
solution

X = (ATA+ αI)−1AT b (20)

This solution can have unphysical negative values. To avoid this problem,
it was constrained to be non-negative by the projected Landweber method,
employing the following iterative algorithm

Initialization : X0

yk+1 = Xk − µAT (AXk − b), µ = 0.9
λmax(ATA)

Xk+1 = max(yk+1, 0)

(21)

where the initialization for X0 is given by the Tikonov method (equation (20)),
λmax(ATA) is the maximum eigenvalue of the square matrix ATA, the step
size parameter µ is chosen to reach convergence in a few iterations (5 iterations
were considered here) and the maximum operator in the definition of Xk+1 is
evaluated component-wise.

To improve efficiency of the algorithm, the matrix A was fixed. Moreover,
the matrix M = (ATA+αI)−1AT (needed to compute the Tikonov solution),
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the matrix ATA and its maximum eigenvalue were computed before the appli-
cation of the method to the signals. Thus, the algorithm required only a few
matrix multiplications, which could be performed in real time.

This method has the limitation of requiring a preliminary phase, in which
the waveforms representing the activity of different muscle regions are chosen.
Moreover, it requires using high-density surface EMG detection systems with
tens of electrodes. However, it is promising due to its low cost and the valu-
able output, decomposing the EMG into contributions from different muscle
regions. By selecting the cross-sectional region corresponding to either the tar-
get or the crosstalk muscles, the two contributions could be separated (allowing
both to quantify and to remove crosstalk).

An example of crosstalk quantification is shown in Figure 4. Simulated
EMGs are considered. They were generated by two adjacent muscles and then
summed. The signals were acquired by a linear array of electrodes placed in
direction orthogonal to the fibres, covering both muscles. The algorithm for in-
verse modelling was applied (without imposing the non-negativity constraint,
in order to better fit the data). The basis waveforms were SFAPs from fibres
uniformly distributed in the cross-section covered by the two muscles. Then,
the sources either on the left or on the right were considered to estimate the
signals generated by either of the two muscles. The RMSs of the two estimated
signals were used to quantify the amount of crosstalk. As the data were sim-
ulated, the estimation could be compared with the simulated signals. A good
accord was obtained, even if the number of detection channels was quite small.

6 Conclusions

Crosstalk can pose limitations in many applications of surface EMG, when
the activity of a specific muscle of interest is investigated. For many years, it
was studied, showing how it was difficult to quantify and remove. Simulation
models gave a fundamental contribution for its interpretation and have allowed
to develop and test new ideas to face it. In most applications, researchers
still rely on selective spatial filters to reduce it. However, this approach has
limitations, as selecting the optimal filter is not possible without adapting
to the specific case under investigation. Moreover, using very selective filters,
there could be a problem of representativeness, as even the signal of the target
muscle is largely discarded.

Recent approaches have been proposed to either estimate or reduce crosstalk.
Some of them (e.g., BSS approaches) are quite difficult to implement and to
run in real time. Maybe, for this reason, they didn’t find many applications be-
yond the laboratory. However, some real time techniques have been proposed
recently (e.g., OSTF, inverse modelling). They still have some limitations, as
they require a preliminary phase in which the methods are fit to the specific
conditions. Moreover, they were developed on theoretical basis and require
tests in experimental conditions. However, they indicated a new promising
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Fig. 4 Example of identification of muscle active regions to quantify crosstalk. A) A cylin-
drical volume conductor model (with radius of 50 mm) including bone, muscle, fat and skin
tissues was used (same conductivities as for Figure 1, bone conductivity 20 mS/m). Single
fibre potentials were simulated and summed-up to generate MUAPs (with MU dimensions
given by the size of the circles). For each muscle, 400 MUs were simulated. Monopolar po-
tentials were recorded by the indicated linear array of electrodes, placed transversally to
the fibres, at 35 mm from the innervation zone (symmetrical fibres with semi-length 70 mm
were simulated). B) Portion of simulated data (1 s of EMG was processed), considering the
total signal and those generated by either of the two muscles. The simulated signals are su-
perimposed to those estimated by inverse modelling based on 90 simulated fibres, uniformly
distributed on the muscle regions (angle between ±45o, depth between 1 and 9 mm). C)
The contribution of crosstalk is quantified as the ratio between the RMS of the signals of
the two muscles, either simulated or estimated.

path (basically, by stressing the importance of adapting to the investigated
condition) that could be followed to deepen the research on crosstalk. Being
also feasible for real time running on test data, they have the potential of being
applied in the field in the near future.
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