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Remodelling in Statistically Oriented1

Fibre-Reinforced Materials and Biological Tissues∗2

Alfio Grillo†, Gabriel Wittum‡, Aleksandar Tomic§, Salvatore Federico¶
3

Abstract4

We present a mathematical model of structural reorganisation in a fibre-reinforced composite5

material in which the fibres are oriented statistically, i.e., obey a probability distribution of6

orientation. Such a composite material exemplifies a biological tissue (e.g., articular cartilage or7

a blood vessel) whose soft matrix is reinforced by collagen fibres. The structural reorganisation8

of the composite takes place as fibres reorient, in response to mechanical stimuli, in order to9

optimise the stress distribution in the tissue. Our mathematical model is based on the Principle10

of Virtual Powers and the study of dissipation. Besides incompressibility, our main hypothesis11

is that the composite is characterised by a probability density distribution that measures the12

probability of finding a family of fibres aligned along a given direction at a fixed material13

point. Under this assumption, we describe the reorientation of fibres as the evolution of the14

most probable direction along which the fibres are aligned. To test our theory, we compare15

our simulations of a benchmark problem with selected results taken from the literature.16
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1 Introduction18

One of the properties of biological tissues is the capability of adapting their internal structure in19

response to the interactions with the environment in which they are placed. In Biomechanics, the20

evolution of the internal structure of a tissue is sometimes referred to as “remodelling” [26, 60].21

We consider a purely mechanical framework, and focus on tissues that can be modelled as22

fibre-reinforced composite materials with fibres oriented according to a given probability distribu-23

tion. Examples of tissues of this type are arteries and articular cartilage. Our approximation of24

these tissues is quite simplified in this work, since we regard them as solid bodies comprising two25

constituents only: a soft matrix and collagen fibres. The structure of real tissues is much more26

complicated than that addressed in our work.27

The arterial wall comprehends several fibre-reinforced layers, in each of which the fibres are28

oriented according to rather well defined patterns [35]. Three main strata can be detected. These29

are referred to as intima, media, and adventia, and represent, respectively, the inner, the middle,30

and the outer stratum of an artery. The intima is the thinnest stratum. It comprises a single layer31

of endothelial cells located on a basal membrane. The media consists of muscle cells and collagen32

fibrils. It features several fibre-reinforced layers, in each of which the fibres are coiled helically. The33

direction of the helix in a layer is opposite to that in the consecutive one. Finally, the adventia34

consists of thick bundles of collagen fibres, arranged helically, which have the task of reinforcing35

the outermost stratum of the arterial wall. More details about the mechanics of arterial walls can36

be found in the papers by Holzapfel et al. [35] and Gasser et al. [29].37

Articular cartilage is a multiphasic, multi-species material. The species can be identified with38

solid particles, fluids, chemicals and, in particular, ions [42]. The overall mechanical behaviour of the39

solid phase of articular cartilage is influenced by the presence of inclusions. These are identified40

with chondrocytes (i.e., the cells that synthesise extra-cellular matrix) and collagen fibres [see,41

e.g., 49, and references therein]. The latter ones contribute to the tissue overall capability of42

bearing loads, and are arranged in a way that adapts to the mechanical loading. Given a sample of43

articular cartilage, three zones can be identified, based on histological features (chondrocyte shape44

and collagen fibre orientation): the deep zone, which is proximal to the tidemark (bone-cartilage45
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interface), the middle zone, and the superficial zone, which is close to the articular surface. A46

property of articular cartilage is that the arrangement of collagen fibres depends on the location47

at which the fibres are placed inside the tissue. The fibres are nearly parallel to the tissue depth48

in the deep zone, randomly oriented in the middle zone, and parallel to the articular surface in49

the superficial zone [2, 48]. A linear elastic model of articular cartilage based on a statistical50

orientation of collagen fibres was proposed by Federico et al. [23], where the tissue was studied as a51

transversely isotropic, transversely homogenous, multiphasic composite material. The theoretical52

tools were developed by in a previous work [22] on the basis of Walpole’s algebra of fourth-order53

tensors [63].54

Under the action of mechanical stimuli, the body deforms and the fibres reorient. While the55

first process is the standard change of shape of a body subjected to applied loads, prescribed56

displacements, or combination of both, the second process triggers a reorganisation of the internal57

structure of the body and, in this sense, represents a type of remodelling.58

In many cases of interest, the reorientation of the collagen fibres should be investigated in59

conjunction with the secretion and removal of the fibres themselves. Grillo et al. [31] presented60

a more comprehensive framework in which growth, interphase mass transfer, and remodelling in61

fibre-reinforced, multi-constituent materials were studied. This model remained, however, at the62

theoretical level, since the solution of the determined equations requires a detailed mathematical63

analysis and is, for this reason, still work in progress. Hence, in order to test the theory presented64

in the present work by handling quite manageable numerical examples, we focussed here on some65

aspects of remodelling that are conceptually independent on growth.66

One reason for studying remodelling is to determine how the effective quantities characterising a67

tissue evolve in time. Examples of such quantities are the mechanical stiffness and the permeability68

of the tissue, cf. e.g., [19, 20, 21].69

In the case of hyperelastic materials undergoing large deformations, the presence of fibres is70

accounted for by introducing the structure tensor in the list of arguments of the body strain energy71

function. For example, this approach was adopted by Holzapfel et al. [35] and Menzel [46, 47] for72

arterial walls. The structure tensor is defined by a := m⊗m, where m is a unit vector describing73
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the local alignment of a fibre along a prescribed direction of space. If m follows the deformation74

of the body, its evolution is determined by Lvm = −dmm [9], where Lv is the Lie-derivative75

operator, v is the velocity, dm := m(dm), and d is the symmetric part of the velocity gradient.76

This identity, being purely kinematic, contains neither phenomenological parameters nor material77

properties.78

Imatani and Maugin [37] developed a mathematical model of growth and reorientation of fi-79

bres in anisotropic hyperelastic media in which the Kröner-Lee decomposition of the deformation80

gradient tensor [5, 38, 40, 56], and the concept of reference crystal [16] were used to modify81

Lvm = −dmm.82

Driessen et al. [15] studied changes in the content and orientation of collagen fibres in soft83

connective tissues due to mechanical interactions, and related the configuration of the fibres to the84

macroscopic stress in the tissue. Ohsumi et al. [52] performed simulations of anisotropic collagen85

gel compaction.86

Recently, studies on the biomechanical behaviour of biological tissues reinforced by collagen87

fibres, such as the abdominal aorta, have been performed, e.g., by deBotton and Shmuel [13],88

Schriefl et al. [58], and Gasser et al. [28]. A review on the subject was written by [62]. In studying89

the reorientation of fibres in arteries, Olsson and Klarbring [53] proposed a model in which the90

angles defining the local fibre orientation were treated as additional degrees of freedom of the91

body, rather than as internal variables, and were determined by solving specific balance laws. A92

comparison of the results of Olsson and Klarbring [53] with those of Imatani and Maugin [37] was93

done by Grillo et al. [32].94

In this work, we propose a model that aims to extend the treatment of remodelling given by95

Olsson and Klarbring [53] to the case of a composite material featuring a statistical distribution96

of reinforcing fibres. We assume that the composite material is transversely isotropic with respect97

to a given symmetry axis, and that the fibres are oriented according to a Gaussian probability98

density distribution. We denote by Q the angle around which the Gaussian distribution is peaked,99

and refer to it as to the “remodelling variable”. We treat Q as an additional kinematic descriptor.100

The implications of this choice and the differences between the work of Olsson and Klarbring [53]101
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and ours are discussed in sections 4 and 8. Other authors who have used the concept of probability102

density distribution for modelling fibre-reinforced composite materials are, e.g., [4], and [39].103

The remainder of this work is organised as follows. In section 2 we introduce the notation.104

In section 3, we discuss the composite materials with statistical orientation of fibres. In section105

4, we present the Principle of Virtual Powers. In section 5, we study the dissipation and develop106

the constitutive theory. In section 6, we present in detail a demonstration problem. Results are107

presented in section 7 and summarised in section 8.108

2 General Notation109

For the sake of generality, the covariant formalism is adopted throughout this paper and the nota-110

tion introduced by Truesdell and Noll [61] and Marsden and Hughes [45], with slight modifications,111

is employed.112

Let B and E be a body and the three-dimensional Euclidean space, respectively. The reference113

configuration of the body is denoted by C ⊂ E. The set [t0, tf ) ⊂ R is the interval of time over114

which the evolution of the body is observed. The motion of the body is described by the smooth115

function χ : C× [t0, tf )→ E. The set Ct = χ(C, t) ⊂ E is the region of space occupied by the body116

at time t. It holds that χ(X, t) = x, with x ∈ E and X ∈ C.117

The spaces TxE and TXC are said to be the tangent spaces attached, respectively, to E and C118

at the points x and X. Their dual spaces, T ?xE and T ?XC, are referred to as cotangent spaces. The119

tangent and cotangent bundles associated with C are defined by TC :=
⋃
X∈C TXC and T ?C :=120 ⋃

X∈C T
?
XC, respectively. The tangent and cotangent bundles associated with E, TE and T ?E, are121

defined in a similar fashion.122

Let A be a linear vector space, and let A? be its dual space. Then, A ⊗ A denotes the space123

of all real-valued, second-order tensors a : A? ×A? → R, whereas (A⊗A)S is the subspace of all124

symmetric second-order tensors belonging to A ⊗ A. Moreover, given two linear spaces A and Z,125

A⊗ Z? represents the space of all two-point tensors f : A? × Z→ R.126

The spaces TE and TC are assumed to be equipped with the metric tensors g ∈ T ?E ⊗ T ?E127
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and G ∈ T ?C⊗ T ?C, respectively. For all pairs (u,v) ∈ TxE× TxE and (U ,V ) ∈ TXC× TXC, the128

scalar products u.v and U .V are defined by u.v = uagab(x)vb and U .V = UAGAB(X)V B .129

The identities in TE and TC are denoted by i ∈ TE ⊗ T ?E and I ∈ TC ⊗ T ?C, respectively. It130

holds that i = g−1g and I = G−1G.131

The two-point tensor F ∈ TE ⊗ T ?C, with components F aA = ∂χa/∂XA and determinant132

J = det(F) > 0, is the deformation gradient tensor. The Cauchy-Green deformation tensor is133

defined as C = FTgF = FT .F ∈ T ?C⊗ T ?C, with FT ∈ T ?C⊗ TE. The inverse of C is denoted by134

B := C−1 ∈ TC⊗ TC.135

The deformation gradient tensor F can be decomposed into a volumetric and an isochoric136

part [25, 51], that is F = J1/3F. The isochoric part, F, has unitary determinant, i.e., det(F) =137

1. Consequently, the Cauchy-Green deformation tensor becomes C = J2/3C, with C = F
T
.F.138

Furthermore, let Υ(C) := [det(C)]−1/3C = C be an auxiliary function defined for all symmetric,139

non-singular tensors of T ?C⊗ T ?C, and valued in the set of symmetric, unimodular tensors of the140

same type. By definition, Υ is homogeneous of degree zero. Its derivative reads141

∂Υ

∂C
(C) = [det(C)]−1/3[M(C)]T , M(C) = I− 1

3B⊗C. (1)

The fourth-order tensor I is the identity in (TC⊗ TC)S (please, see Appendix).142

The measures of stress used in this work are the first and the second Piola-Kirchhoff stress143

tensors, i.e., P ∈ TE⊗ TC and S = F−1P ∈ (TC⊗ TC)S . The tensor144

Sd := M(C) : S = S− 1
3 tr[CS]B (2)

represents the distortional part of S and satisfies identically the condition tr[CSd] = 0, i.e., Sd is145

deviatoric with respect to the metric induced by C. The distortional part of P is defined by146

Pd := FSd = P− 1
3 tr[gPFT ]g−1F−T . (3)

Finally, by introducing the Cauchy stress tensor σ = J−1PFT = J−1FSFT , and post-multiplying147
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(3) by FT , the expression of the deviatoric part of Cauchy stress148

σd := J−1PdFT = σ − 1
3 tr[gσ]g−1 (4)

is arrived at. The tensor σd is deviatoric with respect to the metric generated by g.149

3 Composite materials with statistical orientation of fibres150

The fibre-reinforced composite materials studied in this paper are assumed to comply with the151

following hypotheses: (a) they can be modelled as saturated biphasic mixtures featuring a matrix152

(phase m) and several families of fibres (phase f), (b) both phases are constrained to move with153

the same macroscopic velocity, and (c) each phase is intrinsically incompressible and exhibits154

hyperelastic material behaviour. Moreover, the fibres are assumed to be oriented in space according155

to a probability density distribution whose functional form is prescribed from the outset on the156

basis of experimental data [2, 48].157

The knowledge of the internal structure of composite materials of the kind described above158

can be encapsulated into two pieces of information: the volumetric fraction of the fibres and a159

distribution that measures the probability density of finding a family of fibres aligned along a160

chosen direction at a given material point. In general, one has to speak of “a family of fibres”161

rather than of “a fibre”, since fibres with different geometric and/or mechanical properties may be162

aligned along the same spatial direction.163

3.1 Consequences of the hypotheses (a), (b) and (c)164

At a sufficiently coarse scale of observation, a composite material of the kind considered in this work165

can be viewed as a mixture of solids [3]. For the purposes of this article, the mixture is assumed to166

comprise only two solid phases, which are characterised by different mechanical properties and are167

separated by an interface. The physical fields that determine the amount of a given phase in the168

mixture are the true, or intrinsic, mass density and the volumetric fraction of the considered phase.169

The true mass densities are denoted by %f and %m. The volumetric fractions are indicated by ϕf170
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and ϕm. The saturation constraint is expressed by ϕf + ϕm = 1, which must be satisfied at all171

times and at all points of the mixture. Moreover, the admissible values of each volumetric fraction172

range in the interval [0, 1]. The mass density of the composite material as a whole is defined by173

% = ϕf%f + ϕm%m. All fields are defined here according to the Eulerian (or spatial) description of174

Continuum Mechanics.175

Assuming that matrix and fibres move with the same velocity places the restriction that the176

mass balance law of each constituent must comply with the chain of equalities177

div(v) = −Dtϕf
ϕf
− Dt%f

%f
=

Dtϕf
1− ϕf

− Dt%m
%m

, (5)

with v and Dt being the velocity and the convective derivative operator, respectively.178

Requiring each constituent of the mixture to be incompressible means to set the ratios Dt%f/%f179

and Dt%m/%m equal to zero in (5). This yields180

div(v) = 0, (6a)

Dtϕf = 0. (6b)

Since (6a) implies J = 1, the Piola transformation of ϕf reads Φf := Jφf = φf , with φf ( · , t) =181

ϕf ( · , t) ◦ χ( · , t). The quantity Φf is the volumetric fraction of the “fibres” as measured in the182

reference configuration. It follows from (6a) and (6b) that Φ̇f = 0. The volumetric fractions Φf and183

Φm = 1− Φf may generally depend on the point of C at which they are evaluated.184

The condition (6a) can be rephrased as185

˙
ln(J) = tr[(Gradu)F−1] = 0, (7)

with u : C × [t0, tf ) → TE being defined by u( · , t) = v( · , t) ◦ χ( · , t), and Gradu being the186

material velocity gradient. The conditions (6) also imply Dt% = 0.187
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3.2 Probability density distribution (PDD)188

A fibre-reinforced composite material with statistically oriented fibres is generally an anisotropic189

medium. To model anisotropy for materials of this kind, one has to introduce the set of all directions190

in space and a probability density distribution (PDD) defined on it. The set of all directions is191

locally identified with the unit hemisphere H2 := {M ∈ TXC : ‖M‖ = 1, and M .Ξ ≥ 0}192

attached to X ∈ C, where Ξ is the local axis of symmetry of transverse isotropy. If {NA}3A=1 ⊂ TXC193

is an orthonormal vector basis of TXC, and N3 is chosen as the polar axis, the unit vector M194

can be expressed in terms of the co-latitude α from the polar axis and the longitude β from the195

N1-N2 plane:196

M = sin(α) cos(β)N1 + sin(α) sin(β)N2 + cos(α)N3. (8)

The PDD ℘ of finding a fibre locally oriented along the direction M is defined on the set H2,197

and is determined by a set of parameters that describe the internal structure of the composite.198

Depending on the addressed problem and the modelled material, several choices of ℘ are possible.199

For example, a Gaussian distribution has been proposed by Federico et al. [22, 23], while π-periodic200

von Mises distributions have been used by Gasser et al. [29]. Any choice of the PDD has to comply201

with the following restrictions: (i) ℘ has to fulfill the normalisation condition; (ii) it has to be an202

even function of M ; and (iii) it has to reflect the material symmetries of the composite that it203

models.204

In this work, the composite material is assumed to exhibit transverse isotropy with respect205

to the axis determined by N3, which is thus taken as symmetry axis for the whole reference206

configuration C. To be consistent with this feature, ℘ cannot depend on the latitude β. Furthermore,207

℘ is postulated to be a Gaussian distribution. This requirement implies that ℘ depends on two208

parameters only, which are the variance,$2, and the angleQ defining the most probable direction of209

fibres’ alignment. In general, both parameters should be regarded as functions of time and position210

of material particles. Their dependence on X supplies information about the inhomogeneity with211

which the fibres are oriented in the composite, whereas their evolution in time accounts for the212

time-dependent structural adaptation of the composite in response to some remodelling force. In213
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the following, however, $ shall be regarded as a given constant and assigned from the outset.214

Although this is a strong assumption for some practical cases, it allows to keep the model at an215

acceptable level of complexity. On the basis of the considerations above, the PDD is taken as216

℘(M , Q) :=
g(M , Q)∫

H2 g(M ′, Q)dS′
. (9)

If the re-parameterisation (8) is used, the definition (9) can be reformulated as217

℘(α,Q) :=
g(α,Q)∫ 2π

0

{ ∫ π/2
0

g(α′, Q) sin(α′)dα′
}

dβ′
, (10a)

g(α,Q) := exp

[
− (α−Q)2

2$2

]
. (10b)

4 Principle of Virtual Powers and Field Equations218

In the model developed by Olsson and Klarbring [53] for the reorientation of fibres in arteries,219

the law governing the time-dependent alignment of the fibres was deduced from the Principle of220

Virtual Powers and the Principle of Maximum Dissipation. The model was based on the theories221

developed by DiCarlo and Quiligotti [14] for tissue growth, Cermelli et al. [8] for rate-independent222

plasticity, and Gurtin [33] for a generalisation of the Allen-Cahn and Cahn-Hilliard models. Al-223

though these theories were conceived for quite different modelling purposes, they have common224

features and —to the best of our understanding— their most relevant aspects are the treatment of225

kinematics and the concept of force (a linear, continuous, real-valued functional defined on the set226

of test velocities, cf. DiCarlo and Quiligotti [14]). In summary, a body undergoing both changes of227

shape and transformations of internal structure necessitates two types of independent kinematic228

descriptors: the first type is given by the velocity v (or u); the second type comprehends the229

descriptors associated with the body structural changes. In the problem analysed by Olsson and230

Klarbring [53], the kinematic descriptors of the second type were the angular velocities with which231

the fibres reoriented.232

It is important to remark that, in the framework outlined above, the structural descriptors233
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are not treated as the rates of internal variables. Rather, they are viewed as generalised velocities234

that, as such, must be power-conjugate to properly defined generalised forces. These forces must,235

in turn, satisfy balance laws.236

In the following, a purely mechanical context is considered and only the structural reorganisa-237

tion due to the reorientation of fibres is studied. Moreover, the structural change of the composite238

material under investigation is characterised by a single kinematic descriptor, which is referred to239

as “remodelling variable”, whereas its power-conjugate forces are said to be “remodelling forces”.240

These can be both internal and external, and are required to satisfy a balance law. Under suitable241

hypotheses, the internal forces are determined constitutively, and it is shown that they feature a242

dissipative contribution that is related to the remodelling variable.243

While the methods discussed above supply the bases for our theory, our paper addresses the244

structural reorganisation of statically oriented composites. To this end, the kinematic descriptor of245

remodelling chosen in our approach is the generalised velocity Ω := Q̇, i.e., the time derivative of246

the angle Q that parameterises the PDD (10a), and determines the most probable direction along247

which the fibres are aligned at a given point X ∈ C and instant of time t ∈ [0, tf ).248

Formally, the set of kinematic descriptors of the body under consideration may be defined as249

G := {(u,Ω) : C× [t0, tf )→ TE× R | u = χ̇aea, and Ω = Q̇}, (11)

where {ea}3a=1 is a vector basis in TE. Here, Ω is assumed to belong to L2(C,R), i.e., the Lebesgue250

space of real-valued, square-integrable functions over C, whereas u is an element of the Sobolev251

space (H1(C))3 := {w ∈ (L2(C, TE))3 | Gradw ∈ (L2(C, TE))3,3}, i.e., the set of all vector fields252

w, defined in C and valued in TE, that are square-integrable over C and whose first derivatives in253

the sense of distribution are square-integrable over C too [57].254

The set of generalised virtual (test) velocities is the collection of all admissible realisations255

G̃ := {(ũ, Ω̃) : C× [t0, tf )→ TE× R | ũ|∂CD
= 0}, (12)

where ũ|∂CD
is the restriction of ũ to the Dirichlet boundary of C (i.e., the portion of the boundary256
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where position boundary conditions are imposed). The test velocity ũ is an element of the space257

(H1
0 (C))3 = {w̃ ∈ (H1(C))3 | w̃|∂CD

= 0}.258

The virtual power done by external forces is defined by the linear functional Pe : G̃→ R,259

Pe(ũ, Ω̃) :=

∫
C

b.ũ+

∫
∂CN

f .ũ︸ ︷︷ ︸
Standard terms

+

∫
C

ZeΩ̃ .︸ ︷︷ ︸
Remodelling

(13)

In (13), b groups together all body forces per unit volume of the reference configuration (i.e., inertia260

and long-range interactions), f denotes contact forces measured per unit area of the Neumann-261

boundary ∂CN , i.e., the portion of the boundary where traction boundary conditions are imposed),262

and Ze comprehends all remodelling forces due to interactions of the body with its environment.263

In some biomechanical applications of tissue remodelling, forces of this kind are identified with the264

target values of the internal forces that drive the structural reorganisation of the considered tissues.265

In some cases, the introduction of these target forces facilitates the determination of the stationary266

states of the studied remodelling processes. More details about this issue and its connection with267

our work shall be outlined in section 5.268

The virtual power done by the internal forces is defined by the linear functional Pi : G̃→ R,269

Pi(ũ, Ω̃) :=

∫
C

tr[P(gGradũ)T ]︸ ︷︷ ︸
Standard term

+

∫
C

ZiΩ̃︸ ︷︷ ︸
Remodelling

. (14)

In (14), P is the first Piola-Kirchhoff stress tensor, and Zi is the internal remodelling force. The270

physical meaning and the functional form of Zi are discussed in section 5. The assumption of271

incompressibility, as stated in (7), implies that P takes the form272

P = Pv + Pd = −Jpg−1F−T + Pd, (15)

where Pv = −Jpg−1F−T and Pd are, respectively, the volumetric and distortional parts of P, and273

the hydrostatic pressure p is the Lagrange multiplier associated with (7). Furthermore, the space274

P̃ ⊂ L2(C,R) of virtual pressures p̃ is introduced, and the constrained virtual power Pc : P̃→ R is275
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defined as276

Pc(p̃) := −
∫
C

tr[Jp̃(Gradu)F−1]. (16)

The Principle of Virtual Powers can be expressed by means of the condition [36]277

Pe(ũ, Ω̃) = Pi(ũ, Ω̃) + Pc(p̃). (17)

By substituting (13)–(16) into (17), using the relation tr[P(gGradũ)T ] = Div(PT .ũ)−Div(P).ũ,278

applying Gauss’ Theorem, and invoking a well-established localisation argument, one obtains279

Div(P) + b = 0, in C, (18a)

P.N = f , on ∂CN , (18b)

tr[J(Gradu)F−1] = 0, in C, (18c)

Zi = Ze, in C. (18d)

The equations to be solved are (18a), (18c), and (18d). These constitute a set of five independent280

equations. The functional form of the forces b, f and Ze is assumed to be given from the outset,281

while Pd and Zi should be specified constitutively. By doing so, one obtains a closed mathematical282

problem consisting of a system of five equations in the five unknowns {χa}3a=1, p, and Q.283

5 Dissipation and constitutive theory284

Let M ⊂ C be a fixed part of C. The dissipation associated with M is defined by285

∫
M

D = −
˙∫

M

Ψ + Pn(M) ≥ 0, (19)
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where D and Ψ are, respectively, the dissipation density and stored energy function measured per286

unit volume of the reference configuration, and Pn(M) is referred to as net power, i.e.,287

Pn(M) :=

∫
∂M

(P.N).u+

∫
M

b.u+

∫
M

ZeΩ (20)

=

∫
M

tr[P(gGradu)T ] +

∫
M

ZiΩ.

Since M is fixed, it holds true that
˙∫

M
Ψ =

∫
M

Ψ̇. Moreover, by using the chain of identities288

tr[P(gGradu)T ] = tr[Pd(gGradu)T ] = 1
2 tr[SdĊ], and localising the result, one obtains289

D = −Ψ̇ + 1
2Sd : Ċ + ZiΩ ≥ 0. (21)

The triples (C, Q,Ω) ∈ (T ?C⊗T ?C)S ×R×R are the independent constitutive variables of our290

theory. The angle Q describes the changes of the most probable direction of local fibres alignment,291

whereas the velocity Ω captures the dissipative aspects of this process.292

Constitutive functions must comply with the following requirements: (i) objectivity, (ii) locality,293

and (iii) criterion of maximum dissipation. Moreover, they are supplied in the form294

Ψ = Ψ̂(Φf ,C, Q), (22a)

Sd = Ŝd(Φf ,C, Q), (22b)

Zi = Ẑi(Φf ,C, Q,Ω), (22c)

In general, (22c) holds true for all Ω 6= 0. It should be remarked that, although the axiomatic295

theory of constitutive laws prescribes that all dependent constitutive functionals depend on the296

same list of arguments, the elimination of Ω from the list of arguments of Ψ̂ and Ŝd does not affect297

the results determined below.298

To be more specific, Ψ̂ and Ŝd are required to be continuous with respect to the whole list of299

their arguments, and Ψ̂ is assumed to be smooth in Φf , C, and Q. Moreover, Ẑi is prescribed to300

be bounded and continuous when Ω 6= 0, but it is allowed to be constitutively indeterminate when301
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Ω vanishes.302

By setting Ω 6= 0, and inserting (22) into (21), the dissipation inequality is rewritten as303

D =
1

2

[
Ŝd − 2

∂Ψ̂

∂C

]
: Ċ +

[
Ẑi −

∂Ψ̂

∂Q

]
Ω ≥ 0. (23)

Following the prescription Ψ̂(Φf ,C, Q) = Ŵ (Φf ,Υ(C), Q), with Υ(C) = C [6], the distortional304

part of the second Piola-Kirchhoff stress tensor is defined constitutively by305

Sd = Ŝd(Φf ,C, Q) = [det(C)]−1/3M(C) :

(
2
∂Ŵ

∂C
(Φf ,C, Q)

)
. (24)

To obtain the expression of the total second Piola-Kirchhoff stress tensor, the volumetric part306

Sv = −JpB must be added to Sd. Since J is equal to unity, it follows that B = B, and S becomes307

S = Sv + Sd = −pB + M(C) :

(
2
∂Ŵ

∂C
(Φf ,C, Q)

)
. (25)

By introducing the dissipative remodelling force308

Y := Zi −
∂Ŵ

∂Q
, (26)

the dissipation inequality (23) reduces to D = Y Ω ≥ 0, whenever Ω 6= 0. Since dissipation has309

to vanish when Ω is null, but the force Y might be constitutively indeterminate in this case, one310

arrives at311

D = Y Ω =

 Ŷ (Φf ,C, Q,Ω) Ω ≥ 0, if Ω 6= 0,

0, if Ω = 0.
(27)

The scope of the study of the residual dissipation inequality is to individuate a constitutive law312

Y = Ŷ (Φf ,C, Q,Ω) that is in harmony with the criterion of maximum dissipation. When this law313

can be found, the force balance (18d) yields314

Ŷ (Φf ,C, Q,Ω) = Ze −
∂Ŵ

∂Q
(Φf ,C, Q). (28)
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Since the functional forms of Ŷ and Ŵ are provided constitutively and the interaction Ze is known315

from the outset, the parameter Q can be determined by solving (28). Once the variables Q and Ω316

are known, the remodelling force Zi can be expressed by means of (26).317

As remarked by Cermelli et al. [8], when Ze is zero or negligibly small, the force balance (18d)318

implies that the internal force Zi is zero too, which, in turn, implies that Ŷ is given by319

Ŷ (Φf ,C, Q,Ω) = −∂Ŵ
∂Q

(Φf ,C, Q). (29)

5.1 Elastic strain energy function and stress320

The fibre-reinforced composite material under investigation is assumed to be hyperelastic. Follow-321

ing Federico and Grillo [21], the elastic strain energy density of the material is constructed by322

superposing the elastic contribution of the matrix to that of the fibres, i.e.,323

Ŵ (Φf ,C, Q) = (1− Φf )Ŵm(C) + ΦfŴf (C, Q), (30)

where Ŵm and Ŵf denote the stored energy functions of the matrix and fibres, respectively. The324

combination (30) is based on the assumption that the matrix consists of an isotropic material325

whose mechanical behaviour does not depend on Q. Due to incompressibility, the stored energy326

function defined in (30) is taken to be independent of the volumetric part of deformation in order327

to ensure that the volumetric part of stress remains constitutively indeterminate [61]. Moreover,328

the dependence of Ŵ on Φf and Q accounts for the micro-structural contribution of the composite329

to the overall energy.330

The energy Ŵf is written as the sum of an isotropic and an anisotropic contribution, i.e.,331

Ŵf (C, Q) = Ŵfi(C) + Ŵfa(C, Q). (31)

The energy Ŵfa represents the sum of all contributions given by the fibres to the elastic energy of332

the composite. Since the fibres are assumed to be oriented statistically, as described by the PDD333
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℘, Ŵfa can be defined as follows334

Ŵfa(C, Q) =

∫
H2

℘(M , Q)ŵfa(C,A(M))dS, (32)

where A(M) := M ⊗M is the structure tensor attached at X, and ŵfa is the stored energy335

function contributed by those fibres that are aligned along M .336

If the fibres are regarded to be active only when they are stretched, ŵfa can be written as337

ŵfa(C,A(M)) = H(I4(C,A(M))− 1)ŵfb(C,A(M)), (33)

where ŵfb is the “actual” contribution to the elastic energy of the fibres aligned along M , the338

invariant I4(C,A(M)) is given by I4(C,A(M)) = tr(CA(M)), and H( · ) is the Heaviside distri-339

bution (it returns one when its argument is strictly positive, and zero otherwise). In this paper,340

Ŵm, Ŵfi and ŵfb are defined by the expressions341

Ŵm(C) = 1
2cm

[
I1(C)− 3

]
, (34a)

Ŵfi(C) = 1
2cfi
[
I1(C)− 3

]
, (34b)

ŵfb(C,A(M)) = 1
4cfb

[
I4(C,A(M))− 1

]2
, (34c)

where cm, cfi, and cfb are material constants, and I1(C) = tr(G−1C). Thus, the differentiation of342

Ŵ with respect to C yields the distortional part of the second Piola-Kirchhoff stress tensor, i.e.,343

Sd = c(Φf )
[
G−1 − 1

3I1(C)C
−1]

(35)

+

∫
H2

0(C)

℘(M , Q)ζ(Φf ,C,A(M))Âd(M ,C)dS,
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where the following notation has been introduced:344

c(Φf ) := (1− Φf )cm + Φfcfi, (36a)

ζ(Φf ,C,A(M)) := Φfcfb
[
I4(C,A(M))− 1

]
, (36b)

Âd(M ,C) := A(M)− 1
3I4(C,A(M))B, (36c)

H2 ⊃ H2
0(C) := {M ∈ H2| I4(C,A(M)) > 1}. (36d)

5.2 Principle of Maximum Dissipation345

The results reported in this section follow closely the theory developed by Hackl and Fischer[34].346

In the residual dissipation inequality (27), D is assumed to admit the constitutive form347

D = D̂(Λ,Ω) ≥ 0, (37)

where Λ := (Φf ,C, Q) collects all variables other than Ω. Our hypotheses are that D̂(Λ,Ω) is zero348

at Ω = 0, that D̂ is continuous for all Λ and for all real values of Ω, but differentiable only for349

Ω 6= 0, and that D̂ can be expressed as a homogeneous function of degree n ∈ N with respect to350

Ω, i.e., D̂(Λ, αΩ) = αnD̂(Λ,Ω) for all values of Ω, and for all α > 0.351

If the requisite Ω 6= 0 is fulfilled, an expression defining Y constitutively, i.e., Y = Ŷ (Λ,Ω), is352

sought for. This expression maximises the dissipation over the space of all admissible velocities Ω.353

To achieve this result under the condition that D̂ maintains the structure D̂(Λ,Ω) = Y Ω (cf. (27)354

and Hackl and Fisher [34] for explanations about this issue), a constrained optimisation problem355

has to be solved. This is done by setting equal to zero the partial derivatives of356

L̂(Λ,Ω, γ) := D̂(Λ,Ω) + γ[D̂(Λ,Ω)− Y Ω], (38)

where L̂ is the Lagrangian function of the constrained optimisation problem, and γ is an unknown357
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Lagrangian multiplier. This procedure leads to:358

∂L̂

∂Ω
(Λ,Ω, γ) = (1 + γ)

∂D̂

∂Ω
(Λ,Ω)− γY = 0, (39a)

∂L̂

∂γ
(Λ,Ω, γ) = D̂(Λ,Ω)− Y Ω = 0. (39b)

Solving the set (39) for γ and Y yields359

γ = γn =
n

1− n
, n 6= 1, (40a)

Y = Ŷn(Λ,Ω) =
1

n

∂D̂

∂Ω
(Λ,Ω). (40b)

When the degree of homogeneity of the dissipation function is unitary (e.g., for rate-independent360

materials), the multiplier γn is not defined. In this case, (40b) is valid as long as Ω 6= 0 holds true,361

since Y is constitutively indeterminate at Ω = 0.362

5.3 Rate-dependent remodelling363

We assume here that the dissipation function (37) admits the form364

D̂(Λ,Ω) = Ŷ (Λ,Ω)Ω ≥ 0, (41)

where Ŷ (Λ,Ω) is constitutively determinate at Ω = 0. Moreover, we require that Ŷ (Λ,Ω) vanishes365

for vanishing Ω, which implies the even stronger condition Ŷ (Λ, 0) = 0, for all Λ. Conditions366

of this type can be found in the derivation of Fourier’s law of heat conduction, e.g., [17]. These367

derivations meet the characterisation of thermodynamic equilibrium of Glansdorff and Prigogine368

[30] and Rajagopal and Srinivasa [54], which requires both flux-like variables and affinities to be369

zero. In the theory presented in our work, the flux-like variable is the remodelling force Y , while370

the affinity is the velocity Ω.371

In the cases in which a linearisation of the constitutive function Ŷ (Λ,Ω) in a neighbourhood of372
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Ω = 0 is physically acceptable, the force Y may be assigned through the constitutive expression373

Ŷ (Λ,Ω) = Γ(Λ)Ω, (42)

where Γ(Λ) is a positive function of Λ. Substitution of (42) into (41) leads to define the dissipation374

as a positive definite quadratic function of Ω, i.e., D̂(Λ,Ω) = Γ(Λ)Ω2. Since a function of this type375

is homogeneous of degree two with respect to Ω, the formula (40b) yields (42).376

Substituting (42) into the force balance (28) leads to the evolution equation for Q, i.e.377

Γ(Φf ,C, Q)Ω = Ze −
∂Ŵ

∂Q
(Φf ,C, Q). (43)

Equations (43), (18a) and (18b), equipped with initial conditions, describe the problem of remod-378

elling in a fibre-reinforced material. When Ze is identically zero, the condition Ω = 0, which implies379

the vanishing of the left-hand side of (43), is attained for those physically meaningful values of Q380

solving the stationary problem381

−∂Ŵ
∂Q

(Φf ,C, Q) = 0. (44)

For given Φf and C, the existence of stationary points of Ŵ (Φf ,C, · ) restricts the choice of the382

admissible forms of the strain energy function.383

5.4 Remodelling force384

In order to evaluate the evolution of the remodelling variable Q according to (43), we have to385

compute the derivative of the Helmholtz free energy density Ŵ with respect to Q. Looking at the386

definition of ℘ given in (10a) and at the form of Ŵ given in (34), we notice that Ŵ depends on Q387

through ℘.388

By plugging (10b) into (30), we obtain389

∂Ŵ

∂Q
(Φf ,C, Q) = Φf

∫
H2

0(C)

∂℘

∂Q
(M , Q)ŵfb(C,A(M))dS, (45)
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where390

∂℘

∂Q
(α,Q) = ℘(α,Q)

α− 〈α〉(Q)

$2
, (46)

and 〈α〉 denotes the directional (statistical) average of α. For any function f defined on the unit391

hemisphere, the directional average of f is defined by:392

〈f〉(Q) :=

∫
H2

℘(M , Q)f(M)dS. (47)

With this notation, the derivative (45) can be written in compact form as393

∂Ŵ

∂Q
(Φf ,C, Q) = Φf

〈αŵfa〉(C, Q)− 〈α〉(Q)〈ŵfa〉(C, Q)

$2
. (48)

6 Study of a benchmark problem394

In order to test the approach proposed above, we propose a modified version of the benchmark395

problem solved by Olsson and Klarbring [53]. The problem, originally conceived for studying re-396

modelling in arteries, considered a fibre-reinforced, thick-walled, growing cylindrical body made of397

hyperelastic material and subjected to pure inflation. The problem was axial symmetric and was398

solved under the constraint of isochoric elastic deformations.399

We made four main modifications to the original problem. The first one deals with the general400

approach to remodelling, since our composite material is reinforced by statistically oriented fibres,401

whereas the composite material studied by Olsson and Klarbring [53] features a given pattern402

of fibre orientation. Secondly, we do not consider growth here. Thirdly, we do not specifically403

study remodelling in blood vessels (we recall that the PDD defined in (10), on which the following404

calculations are based, was introduced for studying articular cartilage [22, 23]). Finally, we set the405

external remodelling force equal to zero (this choice and its consequences are discussed below).406

In the present framework, the body forces b are disregarded, and the equation that governs407

remodelling is given by (43), with Γ being a known, strictly positive constant. An essential differ-408

ence with respect to the paper by Olsson and Klarbring [53] is that, in our approach, the external409
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remodelling force Ze is switched off from the outset (i.e., Ze = 0). Because of the balance of remod-410

elling forces (18d), this amounts to say that the internal remodelling force Zi vanishes identically411

too and, consequently, the dissipative force, which is constitutively determined by (42), is compen-412

sated by the derivative of the stored energy function with respect to Q (cf. (29)). In this case, the413

balance laws (18a)–(18d), augmented with an initial condition for Q, become414

Div(P) = 0, in C, (49a)

P.N = f , on ∂CN , (49b)

J = 1, in C, (49c)

ΓQ̇ = −∂Ŵ
∂Q

, in C, (49d)

Q(X, 0) = Q0(X), in C. (49e)

6.1 Deformation under the incompressibility constraint415

The coordinates parameterising the reference configuration, C, are denoted by (R,Θ, Z), with416

R ∈ [Ri, Ro], Θ ∈ [0, 2π] and Z ∈ [0, L]. Here, Ri and Ro are the values of the inner and outer417

radius of the cross-section of the body, and L is the axial length of the cylinder. The coordinates418

associated with the current configuration are indicated by (r, ϑ, z). Since the deformation is assumed419

to be a pure inflation, we obtain420

(R,Θ, Z) 7→ (r, ϑ, z) = (χr(R, t),Θ, Z). (50)

For notational convenience, it is set χr ≡ ξ from here on, and ξ′ denotes the derivative ∂χr/∂R.421

With respect to the orthonormal bases {ER,EΘ,EZ} and {er, eϑ, ez}, which are associated422

with the reference and current configuration, respectively, the deformation gradient is expressed423

by424

F = ξ′er ⊗ER +
ξ

R
eϑ ⊗EΘ + ez ⊗EZ . (51)

Because of incompressibility, the radial deformation ξ has to comply with the constraint det(F) = 1,425
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which results into the differential equation with separable variables426

ξ′(R, t)ξ(R, t) = R. (52)

This condition determines ξ up to an unknown function of time K, i.e.,427

ξ(R, t) =
√
R2 +K(t). (53)

6.2 Boundary conditions428

The boundary of the current configuration is given by ∂Ct = ∂Cto ∪ ∂Cti, where the subscripts “o”429

and “i” define the “outer” and “inner” surface of the inflated cylinder, respectively. The boundary430

conditions are written as431

τ |o = −λono on ∂Cto, τ |i = −λini on ∂Cti, (54)

where τ denotes the distribution of imposed contact forces, no ≡ er(ro, t) and ni ≡ −er(ri, t)432

are the unit vectors normal to the outer and inner walls, respectively, and λo and λi are scalar433

constants having the physical dimensions of pressure. With these boundary conditions, ∂Ct and434

∂C are entirely Neumann boundaries.435

The force f featuring in (49b), and defined per unit surface of the reference configuration436

of the body, is given by f = τJ
√
N .C−1.N [6], where the factor J

√
N .C−1.N accounts for the437

change of area when passing from the boundary of the current configuration to that of the reference438

placement, and τ is the contact force defined per unit area of ∂Ct. Using Nanson’s formula, and439

accounting for incompressibility yield440

P.N |o = −λog−1F−T .N , on ∂Co, (55a)

P.N |i = −λig−1F−T .N , on ∂Ci. (55b)

Under the assumption that the components of the stress tensor do not depend on the coordinates441
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Θ and Z, the boundary conditions (55a) and (55b) as well as the symmetry requirement of the442

Cauchy stress tensor, PFT = FPT , are sufficient to ensure that the only nonzero components of443

P are P rR and PϑΘ. Therefore, conditions (55a) and (55b) can be reformulated as444

p(Ro, t) = λo +
R2
o

R2
o +K(t)

SRRd (Ro, t), on ∂Co, (56a)

p(Ri, t) = λi +
R2
i

R2
i +K(t)

SRRd (Ri, t), on ∂Ci. (56b)

6.3 Pressure and time-dependent integration constant K445

Pressure can be determined by solving the balance of momentum446

∂P rR

∂R
+
P rR − PϑΘ

R
= 0 (57)

together with (56a) and (56b). Indeed, direct integration of (57) leads to447

p(R, t) =

[
R

ξ(R, t)

]2

SRRd (R, t) + λi(t)−
∫ R

Ri

1

ξ(A, t)
η(A, t)dA, (58)

where η is the auxiliary function defined by448

η(A, t) :=
ξ(A, t)

A
SΘΘ

d (A, t)−
[

A

ξ(A, t)

]3

SRRd (A, t). (59)

Equation (58) defines pressure up to the (still unknown) function of time K. To determine K,449

the pressure is evaluated at R = Ro, and the boundary condition (56a) is enforced. Under the450

simplifying assumption λo = 0, the following consistency condition is arrived at451

λi(t) =

∫ Ro

Ri

1

ξ(R, t)
η(R, t)dR. (60)
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6.4 Initial-boundary-value problem and numerical implementation452

The benchmark problem investigated in our work considers a thick-walled cylinder reinforced by453

fibres, and subjected to a uniformly distributed hydrostatic load applied to the inner wall of the454

cylinder. At each material point X, identified by the triple (R,Θ, Z), the direction of the most455

probable fibre orientation is represented by the unit vector Mp := sin(Q)ER + cos(Q)EZ , with Q456

being the angle that the symmetry axis of the cylinder (parallel to EZ) forms with Mp. In order457

to preserve the axial symmetry of the problem, the angle Q is required to be independent of the458

tangential coordinate. At the same material point, a generic fibre is aligned along the direction459

specified by the unit vector M = sin(α) cos(β)ER + sin(α) sin(β)EΘ + cos(α)EZ , where α is the460

angle that M forms with EZ , and β is the angle that the projection of M onto the plane ER-EΘ461

forms with ER. The set of all space directions emanating from X, H2, is obtained by varying462

α ∈ [0, π/2] and β ∈ [0, 2π). Furthermore, the directional distribution of the fibres is governed by463

the PDD defined in (10), with the parameter Q satisfying the evolution law (49d). In (49e), the464

initial distribution Q0(X) = π/4, for all X ∈ C, is used.465

We remark that, in order to simulate the pattern of fibre orientation in an artery, Olsson and466

Klarbring [53] considered, at each material point X, two unit vectors M1 and M2 lying on the467

plane EΘ-EZ . According to the description given above, the directional distribution of the fibres468

assumed in our work is different from that considered by Olsson and Klarbring [53].469

The initial-boundary value problem (IBVP), given by (49a)–(49e), is reformulated and put in470

terms of the system of equations (53), (58), (60) and (49d), which determine ξ, p, K, and Q.471

Equations (53) and (58) can be decoupled from (60) and (49d). Thus, the deformed radius ξ and472

the remodelling angle Q can be determined by solving the subsystem resulting from (60) and (49d).473

Once ξ and Q are known, K is found by inverting (53), and the pressure p is provided by (58).474

Equations (53), (58), (60) and (49d) are solved numerically for a given initial distribution of475

the remodelling variable Q. The solution is based on the remodelling equation (49d), with the476

angle Q being treated as primary unknown. Thus, stress, energy, and deformed radius are viewed477

as functions of Q. The external remodelling force Ze was set equal to zero in our calculations. This478

ensured that there was no external influence on the remodelling of the system, and that remodelling479
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was purely driven by internal forces.480

From the numerical point of view, a difficulty arises because the right-hand-side of (49d) ne-481

cessitates, at each time step, the evaluation of the integral given in (45), which, in turn, requires482

the knowledge of the integration set H2
0(C). To specify H2

0(C), we have to detect the subset of the483

unit hemisphere in which the argument of the Heaviside distribution is strictly positive, i.e., we484

have to look for the directions and deformations that satisfy the condition485

f(C,M) := I4(C,A(M))− 1 > 0. (61)

By accounting for (53), and noting that the unit vector M depends on the angles α and β, we can486

rephrase (61) as487

f(K(t), R, α, β) = K
[sin(α)]2[cos(β)]2

R2

{
[tan(β)]2 − R2

R2 +K(t)

}
> 0. (62)

If K is strictly positive (which is consistent with the assumption that the cylinder is being inflated),488

and α is different from zero, the condition (62) is respected when489

β ∈ (β0, π/2) ∪ (π/2, π − β0) ∪ (π + β0, 3π/2) ∪ (3π/2, 2π − β0), (63)

with β0(R, t) = arctan[R/ξ(R, t)]. Furthermore, we introduce the auxiliary quantity490

I(R, t) :=

∫ R

Ri

1

ξ(A, t)
η(A, t)dA. (64)

Since ξ depends on time through K, while the stresses SRRd and SΘΘ
d depend on time through both491

K and Q, we may write492

I(R, t) = ÎRA=Ri
(K(t), Q(A, t), R), (65)

where ÎRA=Ri
is a functional of Q.493

The material parameters used in our simulations are listed in Table 1. The implementation of494
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the mathematical problem was performed in MATLABR©. The algorithm is presented in Table 2,495

and amounts to apply the explicit Euler method to the system of equations (53), (58), (60) and496

(49d). To proceed, we denote by tf the final time of observation of the system, and discretize497

the interval [0, tf ], with tf < +∞, by selecting (N + 1) time instants {t0, t1, . . . , tN}, such that498

t0 = 0, tN = tf and, for n = 0, . . . , (N − 1), tn+1 = tn + ∆tn, where ∆tn > 0 is the length of499

the subinterval Tn,n+1 = [tn, tn+1]. In an analogous fashion, the interval [Ri, Ro] is discretized500

with a one-dimensional grid of (M + 1) nodes {R0, R1, . . . , RM}, such that R0 = Ri, RM = Ro.501

The intervals Ik,k+1 := [Rk, Rk+1], with k = 0, . . . , (M − 1), are disjoint and cover [Ri, Ro]. The502

length of Ik,k+1 is denoted by ∆Rk > 0. If ψ denotes a function that depends on time and radial503

coordinate, we use the notation ψ(Rk, tn) ≡ ψk,n. We write ψ(tn) ≡ ψn, when ψ depends on time504

only, and ψ(Rk) ≡ ψk, when ψ depends on the radial coordinate only.505

Table 1: Material parameters used in the implementation of the model for the reorientation of fibres
in the benchmark problem. The fibres are oriented statistically. To allow for a direct comparison,
the parameters were selected to closely approximate the model of Olsson and Klarbring [53]. The
parameter Γ was selected equal to unity in order make the evolution speed computable.

Parameter Value or range Units

Ri 1.0 mm
Ro 2.0 mm
α ∈ (0, π/2) rad
β ∈ (0, 2π) rad
Φm 0.8 —
Φf 0.2 —
cm 0.03574 MPa
cfi 0.03574 MPa
cfb 0.35740 MPa
λi 0.02000 MPa
$ 0.5 rad
Γ 1 N ·m−2 · rad−2 · s
Ze 0 N ·m−2 · rad−1

Q0 π/4 rad
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Table 2: The algorithm used for the implementation of the remodelling constitutive model for the
remodelling of the fibres in the benchmark problem, with a statistically oriented fibre distribu-
tion. The model was implemented in MATLABR© due to simplicity of the implementation and the
flexibility with array manipulations.

GIVEN:
Discretized radial profile Ri ≤ Rk ≤ Ro, k = 0, . . . ,M
Inner boundary pressure λi
Initial value Q0

DO: n = 1, . . . , N
Use the boundary constraint to find K(tn) Eq. (60)
Find the deformed radius for all values of R Eq. (53)
Find the hydrostatic pressure pn Eq. (58)
Find the first Piola–Kirchhoff stress P rRn
Find the first Piola–Kirchhoff stress PϑΘ

n

Find the next time step value of Qn+1 Eq. (69)
END DO

In discretized form, the system of equations (60), (53), (58), and (49d) become506

λi(tn) = ÎMj=0(Kn, Qj,n, Ro), (66)

ξk,n =
√
R2
k +Kn, (67)

pk,n =

[
Rk
ξk,n

]2

(SRRd )k,n + λi(tn)− Îkj=0(Kn, Qj,n, Rk), (68)

Qk,n+1 = Qk,n +
∆tn

Γ

[
(Ze)k,n −

∂Ŵ

∂Q
(Φf ,Ck,n, Qk,n)

]
. (69)

For a given distribution Qk,n, the code computes the integration constant Kn, the deformed radius507

ξk,n and the radial profile of the hydrostatic pressure by solving (66), (67), and (68), respectively.508

Determining these quantities allows to calculate the radial profiles of the stresses, (SRRd )k,n and509

(SΘΘ
d )k,n. The computed values of ξk,n are then substituted into (69) in order to determine Qk,n+1.510

Then, the whole procedure is iterated.511

All integrals were calculated by using the trapezoidal rule. This could be done because the512

integral functions were separable. The deformed radius was calculated by applying a “brute-force”513

approach to (66). Even though it would be possible to use the “brute-force” approach for deter-514

mining Kn (rather than ξk,n) from (66), and compute then ξk,n analytically from (67), we decided515
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Figure 1: The first Piola–Kirchhoff stress in the radial and tangential directions for the initial
loaded configuration and the remodelled configuration.

to implement the inverse path because it is more versatile and easy to extend to more difficult516

cases without essential modifications to the algorithm.517

7 Results518

The state of stress at each radial point is an important parameter to consider when dealing with519

remodelling of biological tissues. In the case of the benchmark problem addressed in this paper, the520

change in both the radial and tangential stresses, before and after remodelling, is plotted versus521

the deformed radius as depicted in Figure 1. The change in the radial stress is not significant,522

due to the boundary conditions and the thin profile of the radial geometry. The tangential stress,523

on the other hand, changes significantly. We observed that, due to the evolution of Q at different524

radii, the tangential stress changes non-uniformly with respect to the radius and, in fact, becomes525

more constant. This is in good agreement with the results of Olsson and Klarbring [53], but526
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Figure 2: The fibre distribution as a function of the deformed radius, where this angle is formulated
as the angle between the fibre direction vector and the axis of symmetry.

there are several differences. Since Olsson and Klarbring [53] modelled growth in addition to fibre527

remodelling, they observed a slightly different state of tangential stress after remodelling.528

Figure 2 depicts Q as a function of the current radius before and after remodelling. Since529

the initial value of the most probable angle is constant, Q is homogeneous before remodelling530

has occurred. This feature changes when Q is observed after remodelling, since it becomes quite531

inhomogeneous. It can be observed that Q is maximum at the inner surface, and minimum at the532

outer surface of the hollow cylinder. Since the most probable fibre angle is measured from the533

symmetry axis, this behaviour might be explained by the fact that, in order to compensate for the534

higher state of stress at the inner surface, the fibres reorient in a manner that results in higher535

fibre engagement.536

In order to observe the remodelling of the composite material as governed by the remodelling537

equation, it is important to observe how the most probable fibre angle changes over time. This is538

shown in Figure 3, which illustrates Q as a function of time for three different points on the radius:539
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Figure 3: The evolution of the fibre angle over time for three different radii: the inner radius, the
outer radius, and the middle radius.

at the inner surface, midway between the inner and the outer surface, and at the outer surface.540

The initial value of Q is the same for all three points on the radius, and that angle was set541

equal to π/4. As time progresses, the fibre angle evolves differently at each radial point. This can542

be attributed to the different states of stress at each point, as the stress is one of the driving forces543

of remodelling. In fact, the tangential stress is highest on the inner surface of the artery studied544

by Olsson and Klarbring [53], and this is the point at which the mean fibre angle changes the545

most. Thus, it could be concluded that the fibres attempt to optimise the state of stress through546

remodelling.547

It is also important to note that the mean fibre angle at each radial point is supposed to reach548

a steady state value, as illustrated in Figure 3. This steady state value represents the optimal fibre549

orientation. In Figure 3, it can be observed that Q at the inner surface reaches the steady state550

the slowest, and this could be attributed to the magnitude of the stress at this material point. In551

other words, the variation of the most probable fibre angle takes a longer time to reach a steady552
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Figure 4: The evolution of the derivative ∂Ŵ/∂Q of the strain energy potential with respect to
the remodelling parameter, Q, over time.

state when there is a large change in the driving force behind remodelling, which is, in this case,553

stress.554

8 Discussion and outlook555

We studied the structural reorganisation of an incompressible composite material, in which the556

reinforcing fibres were oriented according to a Gaussian probability distribution. The variance of557

the Gaussian was given from the outset and assumed to be constant, whereas the angle Q was558

taken as the only remodelling variable of the problem. The geometry of the system was taken to559

be a hollow, thick-walled cylinder.560

In addition to the standard balance of momentum, equipped with boundary conditions and561

the incompressibility constraint, we exploited the Principle of Virtual Powers and the Principle of562

Maximum Dissipation to determine an admissible constitutive expression for the dissipative force563
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that drives the reorientation of the fibres. Then, we retrieved the same type of evolution law for564

the remodelling variable as that found by Olsson and Klarbring [53] and solved numerically the565

mathematical problem, closed by the specification of the initial distribution of the remodelling566

variable, according to the scheme presented in equations (66)–(69) and in Table 2.567

Beyond the choice of the remodelling variable, the treatment of the external remodelling force568

features a relevant difference with respect to that done by Olsson and Klarbring [53], who expressed569

the external remodelling force Ze (with the notation adopted here) as570

Ze :=
∂Ŵ

∂Q
(Φf ,C, QT ), (70)

where QT represents a target angle. Substituting (70) into (43) yields571

Q̇ =
1

Γ

(
∂Ŵ

∂Q
(Φf ,C, QT )− ∂Ŵ

∂Q
(Φf ,C, Q)

)
, (71)

which means that the choice (70) of Ze leads to a stop of fibre reorientation when Q reaches the572

target value QT . In our study, we do account for the external force Ze in the presentation of the573

mathematical model, but we set it equal to zero in numerical simulations. Since this amounts to574

describing the case in which the interaction with the environment is either switched off or so weak575

that the contribution of external forces is fairly negligible, we are actually solving576

Q̇ =
1

Γ

(
− ∂Ŵ

∂Q
(Φf ,C, Q)

)
. (72)

Still, looking at (48), which defines the right-hand-side of (72), and at its evolution over time577

(cf. Figure 4), we see that the force triggering structural reorganisation, i.e., −∂Ŵ/∂Q, tends578

towards zero as time progresses. Thus, granted the balance of internal forces, our system naturally579

tends towards a stationary value of Q, which depends only on deformation and volumetric fraction580

of the fibres. One might argue that the result (72) is closely related to the choice of Ŵ , whereas581

using an appropriate Ze (e.g., as in (70)) supplies a criterion that, independently on the choice of582

Ŵ , determines the conditions under which remodelling ceases, i.e., when Q approaches one of all583
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the physically meaningful solutions of the stationary equation Ze = ∂Ŵ/∂Q. However, if we rely584

on such a criterion, we must be always able to compute a physically sound Ze.585

Another concern addresses the hypotheses that the dissipation function is differentiable for586

all Ω, and homogeneous of degree two in this variable. Although these hypotheses are usually587

dictated by computational simplicity, the resulting model may be too restrictive, for it leads to588

(42), meaning that Ŷ (Λ,Ω) vanishes with vanishing Ω, and that remodelling starts as soon as Y589

is different from zero. Perhaps, in some circumstances, a more realistic assumption could be to590

assume that remodelling starts when the dissipative force reaches a positive target value Y0(Λ),591

which plays the role of a yield “stress”. In this case, much inspiration can be taken from the theory592

of rate-independent plasticity [59]. By doing so, it can be shown that, if the mechanical behaviour593

of a material is independent on Ω, neither Ŵ nor Ŝd may depend on Ω (cf., e.g., [8]), and the594

force Ŷ depends on the sign of Ω rather than on Ω itself. To this end, the dissipation can be595

specified constitutively as a homogeneous function of degree one, i.e., D̂(Λ,Ω) = Y0(Λ)|Ω| (as in596

perfect rate-independent plasticity), with D̂ being smooth in Λ, continuous for all values of Ω, but597

non-differentaible at Ω = 0. Hence, applying (40b) in the regions of differentiability of D̂ leads to598

Y = Ŷ (Λ,Sign(Ω)) =

 Y0(Λ), if Ω > 0,

−Y0(Λ), if Ω < 0,
(73)

and the reorientation of fibres, i.e., Ω 6= 0, occurs as long as the condition599

y(Y,Λ) := |Y | − Y0(Λ) = 0 (74)

is satisfied. Since the sign of Ω is the same as the sign of Y , one can write600

Ω = κ
∂y

∂Y
= κ Sign(Y ), Y 6= 0, κ ≥ 0, (75)

together with the Karush-Kuhn-Tucker conditions κ ≥ 0, y(Y,Λ) ≤ 0, and κy(Y,Λ) = 0. The601

multiplier κ is then determined by means of the consistency condition κẏ(Y,Λ) = 0. Equation (74)602
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defines a “yield”-criterion, with y being the yield-function, and Y0(Λ) being the target value of Y603

that determines the onset of fibre re-orientation. If Ω is zero, the dissipation vanishes identically,604

Y belongs to the subdifferential of D̂ at Ω = 0, i.e., Y ∈ ]− Y0(Λ), Y0(Λ)[ [55, 8], and y(Y,Λ) < 0.605

Using models of fibres reorientation inspired by formal analogies with the Theory of Plasticity is606

still part of our current investigations.607

The main limitation of our model is that the functional form of the PDD is assumed to be608

known from the outset. Thus, given ℘ at the instant of time t0, the structural reorganisation of the609

material preserves the functional form of the original distribution throughout the whole remodelling610

process. This could be too restrictive for some applications. In order to solve this problem, we are611

currently investigating the feasibility of a model of structural reorganisation in which the PDD612

itself plays the role of the remodelling variable, and is determined by an appropriate balance law.613

A natural generalisation of the results presented in this paper could be achieved by studying the614

reorientation of fibres in a growing medium, while considering the structural remodelling induced615

by growth. The resulting framework could be extended to a constitutive description involving the616

second gradient of deformation and/or the gradient of the tensor of inelastic distortions due to617

growth. Such a programme requires the formulation of constitutive models featuring higher-order618

tensors. To handle these, the tools and suggestions presented by Auffray et al. [1] and Ferretti et619

al. [24] should be considered and perhaps adequately further developed.620

It should be remarked that second gradient theories have been recently proposed, for example,621

by Lekszycki and dell’Isola [41], Madeo et al. [43, 44] for different purposes. Synthesis and resorption622

phenomena in bone reconstructed with bio-resorbable material have been investigated by Lekszycki623

and dell’Isola [41]. The biomechanical interactions between living bone and a bio-resorbable graft624

after reconstructive surgery have been studied by Madeo et al. [43]. Finally, Madeo et al. [44], by625

means of Hamilton’s Principle of Stationary Action, deduced a set of equations for deformable,626

second gradient porous media partially saturated by compressible fluids. A relevant aspect of627

their results is that the evolution of the volumetric fractions of the fluids are neither prescribed628

constitutively (cf., for example, [50]) nor computed by solving balance laws in the sense of [64].629

Rather, the volumetric fractions are regarded as “Lagrangian parameters” of a suitably defined630
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Lagrangian density function and, as such, must satisfy the Euler-Lagrange equations obtained by631

means of Hamilton’s Principle.632

In addition to growth, a careful thermodynamic study of tissue damage should be performed.633

Studies in this direction have been recently done by Gasser [27] with application to abdominal634

aneurysms, whereas some theoretical tools have been proposed by Cuomo and Contraffatto [11]635

and Contraffatto and Cuomo [10] within the framework of Elastoplasticity and Damage. To tackle636

biomechanical problems in which a tissue is viewed as a multi-phasic mixture featuring solids637

and fluids, these concepts should be re-formulated in the context of Mixture Theory in order638

to account for solid-fluid interactions and a treatment of the related dissipative effects. To this639

end, it is perhaps interesting to remark that the dissipative dynamics of a system regulated by a640

scalar quantity (such as Q in our work) satisfying an evolution equation of the type (43) could be641

generalised as done by Carcaterra and Akay [7].642

A Appendix. Fourth-order tensors643

Let a ∈ (TE⊗ TE)S and A ∈ (TC⊗ TC)S . Then, the fourth-order tensors644

I := 1
2 (i⊗ i + i⊗ i), Iabmn = 1

2 (δamδ
b
n + δanδ

b
m), (76)

I := 1
2 (I⊗I + I⊗I), IABMN = 1

2 (δAMδ
B
N + δANδ

B
M ) (77)

define the identities in (TE ⊗ TE)S and (TC ⊗ TC)S , respectively. Indeed, it holds that I : a = a,645

for all a ∈ (TE ⊗ TE)S and I : A = A, for all A ∈ (TC ⊗ TC)S . The notation “:” means double-646

contraction of indices, i.e., [I : a]ab = Iabmna
mn and [I : A]AB = IABMNA

MN . The symbols ⊗ and647

⊗ were introduced by Curnier et al. [12]. The tensors I and I admit the decompositions648

I = K + M, K := 1
3 (g−1 ⊗ g), M := I− K, (78)

I = K + M, K := 1
3 (C−1 ⊗C), M := I−K. (79)
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Here, K and M extract, respectively, the volumetric and deviatoric parts of a with respect to g, i.e.,649

av = K : a = 1
3 tr[ga]g−1, (80a)

ad = M : a = a− 1
3 tr[ga]g−1, (80b)

whereas K and M determine, respectively, the volumetric and deviatoric parts of A with respect650

to the pulled-back metric induced by C (which is the pull-back of g), i.e.,651

Av = K : A = 1
3 tr(CA)B, (81a)

Ad = M : A = A− 1
3 tr(CA)B. (81b)

The tensors K and M are orthogonal, i.e., K : M = M : K = O (O is the zero in the space of fourth-order652

tensors), and idempotent, i.e., K : K = K and M : M = M. Analogous properties are satisfied by K653

and M. The transposed tensors654

IT := 1
2 (IT⊗ IT + IT⊗ IT ), KT := 1

3C⊗B, (82a)

MT := IT −KT (82b)

are applied on second-order tensors of the type Z ∈ (T ?C⊗ T ?C)S and have properties analogous655

to those shown above. The notations K and M correspond to K∗ and M∗ introduced by Federico656

[18] in order to emphasise that these tensors are the pull-back of the spatial true volumetric (or657

spherical) and deviatoric operators K and M, respectively (cf. (80a) and (80b)).658
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[1] Auffray N, Bouchet R and Bréchet Y. Strain gradient elastic homogenisation of bidimensional667

cellular media. International Journal of Solids and Structures 2010; 47(13):1698–1710.668

[2] Aspden RM and Hukins DWL. Collagen organization in articular cartilage, determined by X-ray669

diffraction, and its relationship to tissue function. Proc Roy Soc Lond Ser B 1981; 212:299–304.670

[3] Ateshian GA. On the theory of reactive mixtures for modeling biological growth. Biomechan671

Model Mechanobiol 2007; 6:423–445.672

[4] Barocas VH and Tranquillo RT. An anisotropic biphasic theory of tissue-equivalent mechanics:673

the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact674

guidance. J Biomech Eng 1997; 119:137–145.675

[5] Bilby AB, Gardner LRT and Stroh AN. Continuous distributions of dislocations and the theory676

of plasticity. Proceedings of XI ICTAM (Brussels, 1957) Vol. III, Presses de l’Université de677
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