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Abstract

Safety improvements in mountaineering gear have enabled the increasing popularity of rock climbing

as a sport. Both amateurs and experts want to know the condition of their equipment with a high

degree of reliability. For climbing ropes, diagnostics are only carried out qualitatively by visual

inspection. The assessment is left to the personal judgment of the user, thus leaving considerable

margins of uncertainty on the rope’s condition. To address this shortcoming, this paper explores the

possibility of estimating fatigue damage from the impact force on the rope. This value is estimated

from the measurements of the climber’s acceleration using a wearable device. Then, force data

are correlated to the fatigue characteristic of the rope. In this study, three ropes were used by

professional climbers through different routes. After this field conditioning, the ropes were tested

following the UIAA standard and compared to a control rope. The results show that the proposed

method can estimate the rope cumulative damage, but it relies on the accuracy of the damage model.

In particular, the parameter describing the contact between the rope and the runner is important for

a correct estimate.
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Introduction

Climbing has recently gained popularity as both an indoor and outdoor sport.1 A decisive factor of this

diffusion can be attributed to the safety improvements in the rigging equipment in the last two decades.

The user’s confidence in the reliability of the safety chain when in sport climbing routes allows him/her

to take the risk of a fall, knowing that the risk of injury willbe minimized in the vast majority of the

cases. Furthermore, mountaineering equipment safety standards have become more stringent.2–4 In this

evolution, technology improvements have played a substantial role in the sport’s popularity.

In general, climbers take conservative safety measures to preserve the health of their mountaineering

equipment. However, a failure in this context may still leadto severe consequences for the user. Therefore,

many researchers have investigated the behavior of climbing gear in terms of safety.5 Studies on the

strength and failure of anchor points have been conducted.6 Blair et al. have analyzed the fatigue failure

in D-shaped carabiners.7 The failure of the quickdraw, consisting of carabiners and sling, has also been

evaluated.8 Other works demonstrate that the change in rope paths has a relevant effect on the belay

point.9 In addition, Maninet al. model the climber fall arrest dynamics10 and present a method to

characterize the belay device and analyze the impact load.11

The climbing rope is one of the most important parts of the climber’s safety equipment, since it is the

only anchor point between the climber harness and the rock. Ropes present a kernmantle construction

type with nylon fibers that constitute the core and a sheath envelope that covers them. The visual

inspection of the sheath can reveal the rope’s condition to alimited extent. This qualitative evaluation

is useful when evident signs of deterioration are present, such as superficial abrasion.

Much of the scientific literature in the mountaineering fieldhas investigated the climbing rope. Some of

these works focus on the experimental validation through dynamic loading and fall transients.12,13 Other

efforts have dealt with exposition to environmental factors, such as moisture.14,15 Studies regarding rope

material aging have also been conducted.16

Diverse attempts have been devoted to a proper understanding of the lifespan of ropes. In the marine

industry, Mandell17 and Kenney et al.18 characterized the rope load-cycle behavior and studied different

effects, such as abrasion and frequency. Beltran and Williamson developed a computational model to
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Galluzzi et al. 3

predict the response of synthetic-fiber ropes under both monotonic and cyclic loads.19 Johnson and

Klonowsky studied the role of abrasive particles on the lifespan of nylon ropes.20 In a more general

effort, Pavier conducted experimental tests to build a fatigue characteristic for climbing ropes.21

Recently, Leuthäusser has dealt with the elongation dynamics of the climbing rope when under

heavy load.22 More importantly, he has studied the mechanisms that intervene in the fracture process

of climbing ropes.23 He determined a useful load-cycle characteristic validated with more than twenty

commercial climbing rope specimens of different types and arrangements (single, twin and half). This

information opens the possibility of estimating the residual life of a rope by knowing the load history

acting upon it. Interestingly, a real-time estimate of the rope damage after the fall event would give the

climber a better insight on the health status of the equipment, thus going beyond the reliability limitations

of visual inspection. The availability of more informationabout the remaining useful life of the rope can

boost the climber’s confidence in the adopted equipment.

This scenario highlights the advances in safety equipment and ropes in particular, both from technology

and methodology standpoints. In this context, the present paper aims to analyze the feasibility of damage

estimation in climbing ropes through activity tracking. Previous works have shown that it is possible to

detect climbing falls with a reasonable level of accuracy bymeans of wearable data logging devices

equipped with off-the-shelf motion sensors.24,25 A further simple enhancement of the fall detection

algorithm would allow for the extraction of the acceleration peak at the instant of impact. This information

is useful to calculate the force amplitude acting on the rope; a subsequent correlation of this information to

a fatigue curve could lead to an estimate of the rope damage. Despite the growing popularity of wearable

devices for monitoring athletes’ performance, no studies or applications regarding fatigue monitoring of

climbing ropes are available.

This study presents the calculation of cumulative damage onthree ropes used by professional climbers

going through mixed difficulty climbing routes. A subsequent verification of the technique was carried

out by estimating the residual life of the ropes through destructive tests following the UIAA standard.26

Method

The present research aims to monitor the fatigue of climbingropes. For this purpose, users were equipped

with a wearable device able to detect climbing falls and estimate the impact force (i.e. the maximum

force exerted to the rope during a fall event). As presented in previous works, the combination of triaxial

acceleration and altimetry measurements allows the detection of climbing falls through different post-

processing algorithms with the possibility of working in real time.24,25 Assuming the implementation of

such techniques, one can find the acceleration peak due to a fall impact. Therefore, the force acting on
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4 Proc IMechE Part P: J Sports Engineering and Technology XX(X)

the rope in a fall event is given by Eq. (1)

F̂ = m |~a| , (1)

wherem is the mass of the climber and~a is the measured acceleration vector at the instant of impact.

To assess the rope fatigue, these force impact events must beassociated to a force-cycle curve such as

those used in material science. Characterizations like those introduced by Pavier21 or Leuthäusser23 are

useful for this purpose.

The validation of the method requires gathering the data from different climbers. Their recorded

activity logs were merged and post-processed to identify the fall events and extract the impact acceleration

peaks, which were used to determine the impact forces using Eq. (1). One can predict the damage of the

rope by associating these data with a force-cycle characteristic through a suitable damage rule.

For safety reasons, the ropes were partially utilized and then tested in a laboratory to quantify their

residual lifespan. After field conditioning sessions, the ropes were segmented and validated according to

the UIAA standard26 to assess the damage prediction.

Fatigue model

For the purposes of this research, Leuthäusser’s phenomenological approach23 is a valid, useful tool.

He determined a model able to reproduce the load-cycle characteristic of more than twenty commercial

climbing ropes. The model requires the identification of a limited number of parameters. This generality

is of great importance to the present work. It facilitates the implementation of a reliable experimentally-

validated fatigue model from which the proposed method can estimate the rope damage.

Leuthäusser’s approach subdivides the rope fracture process into two mechanisms: plastic deformation

and local damage of the rope corresponding to the contact zone of the runner.

When stretched, the rope is subject to an elastic force as shown in Eq. (2)

F = a1
x

Le
+ a3

( x

Le

)3

(2)

wherex is the axial length coordinate of the rope,Le is its maximum possible elongation anda1, a3 are

characteristic force coefficients. Hence, this force has a maximum value as shown in Eq. (3) at

Fmax = a1 + a3 (3)
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Similarly, the energy that the rope absorbs is given by the integral ofF over the infinitesimaldx, with

a maximum strain energy value shown in Eq. (4)

U =
Le

2

(

a1 +
a3
2

)

(4)

The relationship between energy and force variables can be also expressed in power law notation as

shown in Eq. (5)

(

F̂

Fmax

)m

∼=
(

U fall

U

)

m

m+1

(5)

whereF̂ is the force exerted to the rope andU fall is the energy stored after a fall event.

For practical values of coefficientsa1 anda3, the following approximation in Eq. (6) holds:

F̂

Fmax
∼=
(

U fall

U

)

3
4

(6)

When dealing with the fracture phenomenon, the plastic deformation can be attributed to a

homogeneous relationship also present in the phenomenological Bingham model. It involves the impact

stresŝσ, the yield stressσy and a viscosity parameterη as shown in Eq. (7)

εp
n
=

σ̂n − σy

η
(7)

provided that̂σ1 ≥ σy for the first event and̂σn ≥ σ̂n−1 for successive ones. This plasticity reduces the

maximum possible elastic deformation as shown in Eq. (8)

Le
n+1 = Le

1 (1− εpn) (8)

and, because the maximum energy storage is proportional toLe
n
, the elastic energy content is ruled by

Eq. (9)

U e
n+1 = U (1− εp

n
) (9)
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Equations (6) to (8) can be combined to describe the dynamics of the plastic strain under stress cycling

of amplitudeσ̂1 as shown in Eq. (10)

εp
n+1 =

σ̂1

η

(

1

1− εpn

)
3
4

− σy

η
(10)

The outlined plastic behavior employs the yield stress as a threshold that activates a process. In the first

fall, polymeric units that overcomeσy cross an energy barrier and remain trapped in a new potentialstate

after load release. In subsequent falls, the yield effect isincreasingly smaller because more elastic units

are trapped in the unfolded state. Macroscopically, this leads to a phenomenon called strain hardening.23

By converse, the localized damage on the contact area between the rope and the anchor point can be

described by the Weibull failure probability as shown in Eq.(11)

Pf(x) = 1− exp

(

−µ
( x

L

)mλ
)

(11)

whereµ = 0.09 is a damage parameter inversely proportional to the anchor point radius andλ = 2.5 is a

geometrical parameter from contact mechanics. These parameters were identified by Leuthäusser when

fitting the behavior of more than twenty different ropes in UIAA tests.

The integration of both damage mechanisms yields to the critical number of falls which a rope can

hold before it fails (falls to failure minus one) as shown in Eq. (12)

n∗ =

⌈

1

µλ

(

(

U e
n

U fall

)
mλ

m+1

− 1

)⌉

(12)

For the purely elastic case,U e
n
= U . In addition, for a large number of fall eventsn, Eq. (13) holds

true

1− µλ

n
∑

i=1

(

U fall
i

U

)

mλ

m+1

≈ 0 (13)

This expression allows one to establish the Palmgren-Minerrule for fatigue as shown in Eq. (14),

whereDn is the cumulative damage aftern events.

Dn =

n
∑

i=1

di (14)
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The damage component due to the singleith fall event is shown in Eq. (15), whenDn > 1, the rope

reaches the fracture condition.

di = µλ

(

F̂i

Fmax

)λ

(15)

The Palmgren-Miner approach is a linear damage rule with load-level and load-sequence

independence. It assumes that the damage done by each stressrepetition at a given level is equal, meaning

that the first stress cycle at a uniform level is as damaging asthe last. To account for plasticity, this rule

must be modified by using dynamic Eqs. (9) and (10).

Assuming a constant probability (Eq. (11)), the standard deviation that describes the fluctuations in the

obtained fatigue characteristic is given by Eq. (16)

Σ(n) = CVWb
√
n∗ (16)

whereCVWb = 0.4 is the coefficient of variation of the Weibull distribution for λ = 2.5.

Fatigue behavior of the control rope

For test control purposes, a new Beal Joker Unicore 9.1 rope was segmented into three samples and tested

following the UIAA guidelines.26 One end of the specimen was fixed, while the other was attachedto a

falling mass of80 kg. The body of the rope slipped through a support runner with a fillet radius of5 mm.

During the tests, the mass was dropped at a fall factor as shown in Eq. (17)

f =
2h

L
= 1.77 (17)

with h being the distance fallen andL the length of the rope available to absorb the fall. Environment

temperature and humidity were monitored to ensure compliance with the UIAA standard.

The test rig was equipped with a force transducer to measure the impact force for each run. The

position of the falling mass was also recorded. These data were used to produce the force-deformation

characteristic of the tested samples. To compute the deformation, the elongation variablex was

normalized with respect toLe
i
. Then, the curves were fitted according to Eq. (2). Experimental and fit

results for the three samples are shown in Fig.1. This procedure helped to identify force coefficientsa1

anda3.

The yield stressσy and the viscosity parameterη were obtained from the fatigue characterization of

the control rope, whereas damage and geometrical parameters (µ andλ, respectively) were taken from
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8 Proc IMechE Part P: J Sports Engineering and Technology XX(X)

Figure 1. Force-deformation characteristic of a Beal Joker 9.1 climbing rope tested according to the UIAA
standard for the present research. Experimental loops of three rope samples (dash-dot) are fitted according to
Eq. (2) (solid).

Table 1. Beal Joker 9.1 rope parameters.

Description Symbol Value Unit

First-degree force coefficient a1 6.2 kN

Third-degree force coefficient a3 7.8 kN

Yield stress σy
95 MPa

Viscosity parameter η 650 MPa

Damage parameter∗ µ 0.09 −

Geometrical parameter∗ λ 2.5 −

∗ fitted by Leuthäusser 23 for UIAA tests

Leuthäusser’s theory. Hence, the parameters listed in Table 1 were used to reproduce the force-cycle

characteristic of the control rope, first for the purely elastic case and then including the plastic behavior,

as outlined in the “Fatigue model” subsection. Both curves are illustrated in Fig.2.

Afterwards, the force peak registered for each run was correlated to the obtained characteristic to

compute its damage component.

Field conditioning of ropes

Three professional climbers were equipped with wearable data loggers and new Beal Joker Unicore

9.1 ropes from the same production batch as the control rope.For simplicity, they are identified by the

number of their rope (1,2,3). These climbers ascended slab and overhang routes with mixed difficulty

levels ranging from 6B to 8A+ in the French numerical gradingsystem. It is expected that the end of
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Galluzzi et al. 9

Figure 2. Force-cycle characteristic of a Beal Joker 9.1 climbing rope. The purely elastic curve (solid) is
compared to the behavior that accounts for plasticity (dashed). According to Eq. (16), the standard deviation of
the characteristic with plasticity is also displayed (dotted).

the rope attached to the climber is prone to greater wear due to usage. Hence, one end of each rope was

labeled to anchor the user and ensure similar wear distributions among sessions.

The wearable devices were set to record the climbing activity from triaxial acceleration and altitude

measurements sampled at 100 Hz. After the climbing sessions, time histories were extracted from the

loggers and fed into a fall detection algorithm. This approach to identifying the climbing falls can be

executed in real time if embedded into the data logger microcontroller, or it might be an offline post-

processing routine. Details regarding this step have been investigated in the past by the authors.

In a first attempt, a Kalman filter was implemented to combine acceleration and altitude

measurements.24 By means of sensor fusion, this allowed for reconstructing the kinetic energy density as

shown in Eq. (18)

E =
v2

2
(18)

wherev is the velocity of the falling body. The fall event can be determined by simply applying a

threshold to this quantity.

Recently, the authors also applied a pattern recognition neural network trained to detect the fall event

from the same data set.25 Because of its adaptive learning ability, this method does not require any fixed

threshold on the studied variables.

A frequency characterization of the data logger24 demonstrates that the device has a linear sensitivity

behavior up to15g, i.e. 10 kN considering a user of68 kg. These measurements showed a relative
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Rope 1

Rope 2

Rope 3

Figure 3. Rope segmentation for fatigue tests. The black stripe indicates the end attached to the user.

deviation lower than±3% in the worst case. Furthermore, the attenuation at100 Hz is−2.72 dB, which

matches the desired bandwidth.

In practice, the acceleration measurement performed by thedata logger might contain spurious

components due to the climbing motion and interaction with the environment. These activity disturbances

lead to slightly higher acceleration spikes that overestimate the actual impact force applied to the rope.

Nevertheless, the acquired signal was kept unfiltered to provide a conservative estimate.

Once the fall events were identified, the acceleration peaksassociated with those occurrences were

extracted. Subsequently, the impact load on the rope was determined through Eq. (1). This result could

be fed into Eq. (15) to estimate the rope damage.

The application of contact stresses and subsequent localized damage in the field may differ

significantly from the stress and damage that occur in the UIAA drop tests. Consequently, different values

of the damage parameterµ are also expected between these two conditions. Since single and cumulative

damage terms are directly proportional toµ, they were prorated asdi/µ andDn/µ, respectively. A

suitableµ parameter will be found in a subsequent UIAA test campaign using the field-conditioned

ropes.

Fatigue behavior of field-conditioned ropes

The field conditioning was followed by an experimental characterization of the ropes according to UIAA

to determine their residual life. As the control rope, the climbers’ ropes were segmented into four-meter

samples according to Fig.3. For consistency, all the ropes present an age prior to the laboratory tests of

approximately 300 days. The ropes were tested with the same fall factor as the control rope (1.77).

Results

Figure4 illustrates both the cumulative damage and the impact forcefor the three control rope specimens.

Since the attained forces go beyond6 kN, plastic behavior must be taken into account.
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Figure 4. Measured impact force (top) and calculated cumulative damage (bottom) for three segments of the
Beal Joker 9.1 control rope from UIAA tests. Data are plotted for 0 < n ≤ n∗. Failure occurs at n = n∗

+ 1.
Cumulative damage error bars are also displayed.

The implemented model is able to reproduce the fatigue behavior for the three rope samples. For two

of the rope samples, nine falls were necessary to reach a fracture condition (n∗ = 8). The third sample

required an additional run (n∗ = 9). Impact force and cumulative damage present very similar trends

among specimens.

Subsequently, Figs.5 to 7 illustrate the results for the field conditioning of the three analyzed ropes.

For display convenience, all the fall event data of a single climber are cut and merged into one plot, where

acceleration, fall height andµ-normalized damage are presented as time histories.

From the measured acceleration peaks, one can notice that the impact forces do not exceed4 kN and

hence, the simpler, purely-elastic fatigue curve could be used to estimate the damage.

Finally, the knowledge of the load history from the test bench allows the computation of the cumulative

damage on each segment, as seen in Fig.8. The damage computed atn∗ was adopted as the residual life

of the segment. Ideally, the sum of the field damage and the residual life from UIAA tests should yield

Dn = 1. This assumption allows the identification of a suitable value forµ in the field.

Table2 reports relevant information from the complete experimental characterization. For each rope

(Column 1), theµ-normalized cumulative damage was indicated from field conditioning (Column 2).

After the rope segmentation (Column 3) and UIAA tests, the authors introduced the critical number of
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Figure 5. Rope 1 data. Top: acceleration magnitude (solid) and peaks (asterisk). Middle: fall height profile
(solid). Bottom: single-event damage (bar) and cumulative damage (dot), both normalized with respect to µ.

fallsn∗ registered on the test bench for each rope sample (Column 4).The cumulative damage computed

with n∗ represents the residual life of each rope segment, as reported in Column 5. Finally, in Column

6, µ was estimated to match a total damageDn = 1 when adding the field conditioning results and the

residual life. It is worth noting that this new value ofµ only affects the field test results; UIAA data use

the valueµ = 0.09, as denoted by Leuthäusser.23

Discussion

As previously stated, the behavior of the control rope was used to tune the fatigue model in UIAA tests.

The cumulative damages plotted in Fig.4 confirm a successful tuning of the model.

During field conditioning (Figs.5 to 7), most falls occurred at the end of a pitch, with the climber

close to the final anchor point. Therefore, they are predominantly characterized by a fall factor below
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Figure 6. Rope 2 data. Top: acceleration magnitude (solid) and peaks (asterisk). Middle: fall height profile
(solid). Bottom: single-event damage (bar) and cumulative damage (dot), both normalized with respect to µ.

Table 2. Fatigue characterization results.

Rope
Cumulative damage/µ

Segment
Critical number of falls n⋆ Residual life Required µ

field UIAA tests UIAA tests field

control −

c.1 8 0.9± 0.08 −

c.2 8 0.89 ± 0.08 −

c.3 9 1.05 ± 0.09 −

1 0.45 ± 0.03

1.1 5 0.48 ± 0.04 1.14

1.2 7 0.78 ± 0.07 0.48

1.3 7 0.78 ± 0.07 0.49

1.4 7 0.76 ± 0.07 0.54

1.5 7 0.74 ± 0.07 0.58

2 0.44 ± 0.03
2.1 3 0.2± 0.02 1.81

2.2 6 0.6± 0.05 0.92

3 0.05 ± 0.003
3.1 8 0.93 ± 0.08 1.32

3.2 7 0.74 ± 0.07 4.92
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14 Proc IMechE Part P: J Sports Engineering and Technology XX(X)

Figure 7. Rope 3 data. Top: acceleration magnitude (solid) and peaks (asterisk). Middle: fall height profile
(solid). Bottom: single-event damage (bar) and cumulative damage (dot), both normalized with respect to µ.

unity and a low impact force. This fact justifies why the simpler purely elastic fatigue model can be used

to evaluate rope damage. However, plastic behavior could beeasily adopted. An indication to the user

that plastic deformation has taken place could be relevant as a warning about the intensity of the last fall

and the remaining number of falls to failure.

For Ropes 1 and 2, the relatively large number of falls (21) leads toµ-normalized cumulative damages

of 0.454 and0.441, respectively. Conversely, Rope 3 was stressed in only three events for a total damage

of 0.053.

The implementation and validation of Leuthäusser’s approach on the control rope allowed the

determination of the rope damage after each drop test, as seen in Fig. 8. The obtained fatigue model

suits the behavior of the field-conditioned ropes because their residual life after the critical number of

falls is always less than one.
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Figure 8. Measured impact force (top) and calculated cumulative damage (bottom) for the climbers’
segmented ropes from UIAA tests. Data are plotted for 0 < n ≤ n∗. Failure occurs at n = n∗

+ 1. Cumulative
damage error bars are also displayed.

From Table2, it is seen that Rope 1 requires a lower amount of falls to reach the critical numbern∗

when compared to the control rope. This particularity also translates into a lower cumulative damage

calculated from the drop test results. Furthermore, the rope sample attached to the climber exhibits larger

wear than the remaining segments. To accomplish unitary damage,µ = 1.14 is required for the first

segment and0.48 ≤ µ ≤ 0.58 for the others. This value is well above the one used for the UIAA tests

(µ = 0.09), which suggests that, on average, the rope is subject to varied and more demanding contact

stress conditions when used in the field. However, the attained impact loads are significantly lower in the

field when compared to the UIAA tests. This leads to a fairly contained damage of the rope during field

conditioning.

Rope 2 exhibits a similar condition to Rope 1. It attains similar damage during field tests and its

portion closer to the climber shows increased cumulative damage. However, this damage process seems

much faster and largerµ coefficients were necessary to fit the results with the cumulative damage model.

According to the user, Rope 2 was exposed to salty and moist environments. Research in this context

has demonstrated that humidity has a negative influence on the load-cycle capability of a mountaineering
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rope.15 For marine ropes, Beltran and Williamson state that the failure of a rope element is a complicated

process that could depend on a variety of factors, one of thembeing the environment interaction.19

Finally, Rope 3 was used for a very limited number of falls, and hence, the field damage results are not

a reliable indicator. The first portion of the rope shows lessdamage than the second. Also, the calculated

µ coefficients are very different because they have to compensate for the inaccuracy of a very small

number.

Conclusions

The present study explored the feasibility of estimating the fatigue damage of a climbing rope due to

fall events. This estimate is based on the determination of the impact force, which is evaluated from

the measurement of the acceleration by means of a wearable device. This information was subsequently

correlated with a known rope fatigue characteristic from literature. The obtained results show that the

lifespan of the rope can be monitored in real time. Furthermore, experimental data confirmed that the end

portion of the rope attached to the climber is prone to greater wear than the rest of the rope.

Moreover, the present research sheds light on the importance of assessing the contact between the rope

and the runners when used in the field. In particular, the damage parameterµ varies significantly between

field conditioning and UIAA tests. Further dedicated experiments in the field are required to produce

reliableµ parameters that suit the behavior in such conditions.
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