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A closed-form 3D shell solution for multilayered

structures subjected to different load combinations

Salvatore Brischetto∗

Abstract

Multilayered composite and sandwich plates and shells are typical aerospace structures. They intro-
duce complicating effects such as in-plane and transverse anisotropy which lead to zigzag forms of
displacement and interlaminar continuity problems. The present closed-form 3D shell solution allows
the static analysis of simply-supported cross-ply laminated and sandwich plates, cylinders and cylindri-
cal/spherical shell panels subjected to different harmonic load types. It is possible to consider transverse
normal and transverse shear loads simultaneously or separately applied at the top and at the bottom of
the considered structure. The present work extends the previous exact 3D shell model developed for the
static analysis of plates and shells in the case of transverse normal load applied at the top or at the
bottom of the investigated structure. This new extension is still based on the 3D equilibrium equations
written in general orthogonal curvilinear coordinates. The obtained system is solved using simply sup-
ported boundary conditions, harmonic forms for loads and displacements, a general layer wise approach
and the exponential matrix method for the solution of the differential equations in z. However, the load
boundary conditions introduced in the proposed shell model have been opportunely modified in order to
allow the combination of different transverse normal and transverse shear loads applied at the external
surfaces. The new proposed benchmarks fill the gap present in the literature where the proposed 3D
exact models always use a transverse normal load applied at the external surfaces. The present paper
investigates the zigzag effects, the interlaminar continuity, the equilibrium and compatibility conditions,
the load boundary conditions, the symmetry characteristics, the thickness ratio effect and the 3D be-
havior in laminated and sandwich plates and shells in the case of different load applications. The new
proposed benchmarks will be fundamental for the validation of those new refined 2D shell models which
want to capture all these features for different load types.

Keywords: transverse shear and transverse normal loads, shells and plates, closed-from solution,
multilayered structures, 3D model, layer-wise approach.

1 Introduction

The principal betterments in the construction of aircraft and spacecraft have been obtained using mul-
tilayered structures. Typical configurations include: isotropic layers, such as aluminum and titanium
alloys, which could be stacked with other materials in multilayered structures; carbon fiber reinforced
laminates where the fiber orientation of each lamina can be changed to obtain the opportune strength
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and stiffness for the requested application; sandwich structures embedding a core made of honey-
comb or metallic foam and external skins which can be made of isotropic alloy layers or composite
laminates (sandwich structures are lightweight with high bending stiffness) [1]- [3]. Described layers
can be combined in different numbers and ways to fulfill several structural requirements. In differ-
ent aerospace structural applications, the described multilayered structures appear as two-dimensional
and they are called plates or shells. The use of advanced materials and multilayered configurations
in aerospace structures have led to a significant increase in the study and development of opportune
three-dimensional (3D) or refined two-dimensional (2D) plate and shell models. Advanced multilay-
ered structures introduce new complicating effects which are not present in the isotropic one-layered
plates and shells [1]- [3]. The possibility of including these effects in the developed theories is funda-
mental for a correct implementation of 3D or refined 2D plate/shell models. The main complicating
effects connected with the use of multilayered structures are the in-plane anisotropy and the transverse
anisotropy [4], [5]. High in-plane anisotropy is shown in laminated panels including anisotropic layers,
these structures have different mechanical-physical properties in the in-plane directions. Moreover, mul-
tilayered composite structures have higher transverse shear/normal flexibility with respect to in-plane
deformability. This in-plane anisotropy gives a coupling between shear and axial strains which leads
to several complications in the solution procedure for the analysis of anisotropic structures [6]- [8]. A
second complicating effect of multilayered plates and shells is the transverse anisotropy which leads to
different mechanical-physical properties through the thickness direction. This discontinuity in terms
of mechanical properties produces a displacement field which has a rapid change of the slope in the
thickness direction in correspondence to each layer interface [6]- [8]. This characteristic is known as the
zigzag form of the displacement field in the thickness direction. The zigzag form of displacements in
multilayered structures can be evaluated by means of opportune layer-wise approaches [9] or including
appropriate zigzag functions in the equivalent single layer models. In-plane stresses can be discontinu-
ous through the interfaces between the several layers included in the multilayered structure. Transverse
stresses must be continuous at each layer interface in order to fulfill the equilibrium conditions. Dis-
placements must be continuous at each layer interface in order to fulfill the compatibility conditions.
For these reasons, displacements and transverse shear/normal stresses are continuous functions in the
thickness direction with discontinuous first derivatives in z in correspondence at each layer (zigzag
effect). The fulfillment of all these described requirements is a crucial point in the development of
appropriate 3D and refined 2D shell models for the analysis of multilayered structures [10].

For the reasons described above, the use of advanced multilayered configurations has introduced a
great challenge for researchers involved in the development of 3D and refined 2D shell models for the
analysis of modern structures used in the aerospace, aircraft, marine and automotive engineering areas.
Efficient and correct shell models must be able to describe complicating effects such as in-plane and
transverse anisotropy (zigzag effects and interlaminar continuity) and they must allow a correct descrip-
tion of load conditions. These models must be included in appropriate advanced tools able to evaluate
fundamental information such as stress levels, failure indexes, progressive failure analyses, modal anal-
yses and instability phenomena of multilayered structures. Such innovative tools for the analysis of
advanced multilayered structures will allow the design and manufacturing of modern structures that
will be safer, lighter and more efficient leading to an important advantage for the community and the
environment [1]- [3]. The main limitations of the most important 3D models presented in the literature
are two: they are usually developed for a determined geometry (plate or cylindrical shell or spherical
shell) and they propose a restricted static analysis with a simple load configuration. The well-known
3D exact solution by Pagano [11]- [13] was developed for the static analysis of composite laminated
and sandwich square and rectangular plates when they are subjected to an harmonic transverse normal
load (cylindrical bending analysis has also been performed). Xu and Zhou [14] considered a 3D elastic
numerical plate model for the analysis of functionally graded rectangular plates with variable thickness
when subjected to a transverse normal load applied in harmonic form. Meyer-Piening [15] declared
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that his elasticity solution for beams and plates was easy to be extended to shell geometries. However,
the proposed results considered transverse normal loads applied to plate structures. The closed-form
3D plate solution by Demasi [16] was based on the mixed form of the Hooke law and it considered
harmonic transverse normal loads which can be simultaneously applied at the external surfaces. The
exact solution by Ren [17] was developed for the cylindrical bending analysis of composite laminated
cylindrical shells when they were subjected to transverse normal loads. Three-dimensional elasticity
solutions in [18] were obtained for finite length, cross-ply laminated simply supported cylinders sub-
jected to transverse normal sinusoidal loads. The analytical solutions by Fan and Zhang [19], [20] were
developed for the static analysis of thick and thin laminated spherical shells when subjected to har-
monic transverse normal loads usually applied at the top surface. The analytical 3D solution developed
by Soldatos and Ye [21] for cylinders can consider different types of harmonic loads using the adopted
cylindrical reference system. The exact 3D solution by Fan and Ye [22] was developed for laminated
composite plates subject to typical load conditions. The 3D exact solution by Kashtalyan [23] developed
for the static analysis of one-layered functionally graded rectangular plates considered only the applica-
tion of a transverse normal harmonic load at the top surface. The same methodology was extended by
Kashtalyan and Menshykova [24] to sandwich plates with a functionally graded core without modifying
the load conditions already used in the work [23]. Further interesting elasticity models considered the
free frequency or dynamic analysis, few examples were the works [25]- [28] for plate geometries and the
papers [29]- [31] for shell geometries. Remarkable works about the free vibration, dynamic and static
analysis of plates and shells by means of numerical 3D methods are [32]- [37].

The present 3D exact shell model has been already developed for the free frequency analysis of
one-layered plates and shells, multilayered composite and sandwich structures, single-layered and mul-
tilayered functionally graded flat and curved panels, single- and double-walled carbon nanotubes in [38]-
[52]. The extension to static analysis has been performed in [53] for multilayered composite/sandwich
plates and shells, and in [54] for one-layered and sandwich functionally graded plates and shells. In
both cases, an harmonic transverse normal load has been applied at the top or at the bottom surface
simply imposing the opportune load boundary conditions. The present paper modifies such a 3D shell
model imposing different load boundary conditions in order to perform the static analysis of sand-
wich and laminated plates and shells when subjected to simultaneous or separated transverse shear
and transverse normal loads at the external surfaces. In this way, the proposed 3D shell model will
be as general as possible if compared with typical 3D exact solutions in the literature. The present
model allows the analysis of several geometries (plates, cylinders, cylindrical shells and spherical shells),
several materials and laminations (comprising laminates and sandwich structures) and different load
conditions in the framework of the harmonic loads. All the 3D exact models found in the literature
do not have this general capabilities. Major aircraft components (such as wings, fuselage and tails)
are comprised of basic structural elements which are designed to take a specific type of load. For this
reason, the possibility of a structural model which can include several load types could be fundamental.
A typical example is the fuselage which can be loaded by small air loads, concentrated loads from wings
and landing gears, pay loads and internal pressure due to the pressurization effects. In these cases, the
fuselage skin is subjected to shear stresses, stringers or longerons are subjected to bending moments
and axial forces, frames and bulkheads are designed for concentrated loads and to maintain the shape.

The proposed model is based on a layer-wise approach and on the 3D equilibrium equations written
in general orthogonal curvilinear coordinates valid for plates and shells with constant radii of curvature.
Closed form solutions are obtained considering simply supported boundary conditions and harmonic
forms for displacements and loads. The partial differential equations in z have been solved by means of
the exponential matrix method. This method has been successfully applied in the past by Messina [27]
to develop an exact three-dimensional plate solution written in orthogonal rectilinear coordinates, by
Soldatos and Ye [21] to write and solve the 3D equilibrium equations written in cylindrical coordinates
for the free frequency analysis of laminated cylinders, and by Fan and Zhang [20] for a 3D shell solution

3



based on the 3D equilibrium equations written in general curvilinear orthogonal coordinates. However,
the solution by Fan and Zhang [20] was less general than that here proposed because they used a
different procedure (where the transverse stresses are also primary variables of the problem), and they
investigated spherical shell panels or plates when subjected to transverse normal loads.

2 General closed-form 3D shell solution

The closed-form solution of the proposed general 3D shell model can be developed in the case of simply
supported edges and harmonic forms for displacements, loads and stresses. The harmonic form for the
three displacement components is:

uk(α, β, z) = Uk(z)cos(ᾱα)sin(β̄β) , (1)

vk(α, β, z) = V k(z)sin(ᾱα)cos(β̄β) , (2)

wk(α, β, z) = W k(z)sin(ᾱα)sin(β̄β) . (3)

The harmonic form for the three possible loads is:

pkα(α, β, z) = P k
α (z)cos(ᾱα)sin(β̄β) , (4)

pkβ(α, β, z) = P k
β (z)sin(ᾱα)cos(β̄β) , (5)

pkz(α, β, z) = P k
z (z)sin(ᾱα)sin(β̄β) . (6)

The harmonic form for the six stress components can be written as:

σk
αα(α, β, z) = Σk

αα(z)sin(ᾱα)sin(β̄β) , (7)

σk
ββ(α, β, z) = Σk

ββ(z)sin(ᾱα)sin(β̄β) , (8)

σk
zz(α, β, z) = Σk

zz(z)sin(ᾱα)sin(β̄β) , (9)

σk
βz(α, β, z) = Σk

βz(z)sin(ᾱα)cos(β̄β) , (10)

σk
αz(α, β, z) = Σk

αz(z)cos(ᾱα)sin(β̄β) , (11)

σk
αβ(α, β, z) = Σk

αβ(z)cos(ᾱα)cos(β̄β) . (12)

Superscript k indicates the generic physical layer. (α, β, z) is the general orthogonal curvilinear
reference system. Uk, V k and W k indicate the three displacement amplitudes along the three directions
α, β and z, respectively. P k

α , P
k
β and P k

z indicate the three load amplitudes along the three directions

α, β and z, respectively. Σk
αα, Σ

k
ββ, Σ

k
zz, Σ

k
βz, Σ

k
αz and Σk

αβ are the six stress amplitudes for the normal

and shear components. Coefficients ᾱ = mπ
a

and β̄ = nπ
b

are evaluated by means of the half-wave
numbers m and n and the shell dimensions a and b measured in α and β directions. Both half-wave
numbers and dimensions are calculated in correspondence to the mid-surface Ω0 of the shell structure.
A three-dimensional shell has the mid surface Ω0 which is equidistant from the top and the bottom
surfaces. The distance between the top and bottom surfaces measured in a direction perpendicular to
the surface Ω0 is the total thickness h of the shell structure [55], [56]. Radii of curvature Rα and Rβ

are evaluated in α and β directions at the level of the reference mid-surface Ω0 (for this reason they are
defined as mean radii of curvature). Parametric quantities for shells with constant radii of curvature
vary with continuity through the thickness direction:

Hα = (1 +
z

Rα

) = (1 +
z̃ − h/2

Rα

) , Hβ = (1 +
z

Rβ

) = (1 +
z̃ − h/2

Rβ

) , Hz = 1 , (13)

Hα and Hβ can depend on z (which goes from −h/2 to +h/2 and it is measured starting from Ω0

surface) or on z̃ coordinate (which goes from 0 to h and it is measured starting from the bottom
surface) [57].
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The simply supported boundary conditions for the investigated plates and shells can be written as:

w = v = 0, σαα = 0 for α = 0, a , (14)

w = u = 0, σββ = 0 for β = 0, b , (15)

Eqs.(14) and (15) are automatically satisfied by means of the choice made for the harmonic forms in
Eqs.(1)-(3) and (7)-(12). Proposed plates and shells can be loaded at the top and at the bottom in z,
α and β directions imposing the following load conditions at the external surfaces:

σzz = pz , σαz = pα , σβz = pβ for z = −h/2,+h/2 or z̃ = 0, h , (16)

in the proposed model the loads pz, pα and pβ can be directly imposed in terms of transverse normal
and transverse shear stresses acting at the top and at the bottom of the whole multilayered structure.

The proposed 3D shell model is based on the following general differential equilibrium equations
written in general orthogonal curvilinear coordinates α, β and z and valid for multilayered spherical
shells having constant mean radii of curvature Rα and Rβ:

Hβ
∂σk

αα

∂α
+Hα

∂σk
αβ

∂β
+HαHβ

∂σk
αz

∂z
+ (

2Hβ

Rα
+

Hα

Rβ

)σk
αz = 0 , (17)

Hβ

∂σk
αβ

∂α
+Hα

∂σk
ββ

∂β
+HαHβ

∂σk
βz

∂z
+ (

2Hα

Rβ

+
Hβ

Rα
)σk

βz = 0 , (18)

Hβ
∂σk

αz

∂α
+Hα

∂σk
βz

∂β
+HαHβ

∂σk
zz

∂z
−

Hβ

Rα
σk
αα −

Hα

Rβ

σk
ββ + (

Hβ

Rα
+

Hα

Rβ

)σk
zz = 0 , (19)

the most general form of these equations in the case of shells having variable radii of curvature can be
found in [58] and [59].

The index k goes from 1 to NL and it indicates the physical layers. In order to calculate the para-
metric coefficients through the thickness (see Eq.(13)), each physical layer is divided in an opportune
number of mathematical layers. Therefore, the total number of physical and mathematical layers is
equal to M and the employed index is j which goes from 1 to M . This new index can be used in
the already proposed Eqs.(1)-(19) and in the new ones which will be proposed in the next part. The
compact form of geometrical equations for shells with constant radii of curvature is:

ǫ
j = ∆j

u
j , (20)

where the strain vector is ǫj = {ǫjαα ǫjββ ǫ
j
zz γ

j
βz γ

j
αz γ

j
αβ}

T and the displacement vector is uj = {uj vj wj}T .

T means the transpose of a vector. The 6× 3 matrix ∆j is:

∆j =

























1

H
j
α

∂
∂α

0 1

H
j
αRα

0 1

H
j
β

∂
∂β

1

H
j
β
Rβ

0 0 ∂
∂z

0 ∂
∂z

− 1

H
j

β
Rβ

1

H
j

β

∂
∂β

∂
∂z

− 1

H
j
αRα

0 1

H
j
α

∂
∂α

1

H
j
β

∂
∂β

1

H
j
α

∂
∂α

0

























, (21)

symbol ∂ indicates the partial derivatives made with respect to the coordinates α, β and z. Radii of
curvature Rα and Rβ are evaluated with respect to the mid-reference surface Ω0. Parametric coefficients

Hj
α and Hj

β are calculated in the middle of each j very thin mathematical layer. Eqs.(20) and (21)
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are written for the spherical shell case but they automatically degenerate in those for cylindrical shells
and for plates when one of the two radii of curvature or both are infinite (which also means one of the
two parametric coefficients or both equal 1). The constitutive equations in compact form for a generic
mathematical j layer are:

σ
j = C

j
ǫ
j , (22)

where the stress vector is σj = {σj
αα σ

j
ββ σ

j
zz σ

j
βz σ

j
αz σ

j
αβ}

T and the strain vector is ǫj = {ǫjαα ǫ
j
ββ ǫ

j
zz γ

j
βz γ

j
αz γ

j
αβ}

T .

The 6× 6 elastic coefficient matrix C
j written for the j mathematical layer and for the structural ref-

erence system (orthotropic angle θ equals 0◦ or 90◦, which means elastic coefficients Cj
16
, Cj

26
, Cj

36
and

Cj
45

equal zero to obtain the closed form solution) is:

C
j =



















Cj
11

Cj
12

Cj
13

0 0 0

Cj
12

Cj
22

Cj
23

0 0 0

Cj
13

Cj
23

Cj
33

0 0 0

0 0 0 Cj
44

0 0

0 0 0 0 Cj
55

0

0 0 0 0 0 Cj
66



















. (23)

The closed form of the 3D equilibrium equations is obtained via the substitution of Eqs.(1)-(3) and
(20)-(23) in the general form proposed in Eqs.(17)-(19):

(

−
Cj
55
Hj

β

Hj
αR2

α

−
Cj
55

RαRβ

− ᾱ2
Cj
11
Hj

β

Hj
α

− β̄2C
j
66
Hj

α

Hj
β

)

U j +
(

− ᾱβ̄Cj
12

− ᾱβ̄Cj
66

)

V j+

(

ᾱ
Cj
11
Hj

β

Hj
αRα

+ ᾱ
Cj
12

Rβ

+ ᾱ
Cj
55
Hj

β

Hj
αRα

+ ᾱ
Cj
55

Rβ

)

W j +
(Cj

55
Hj

β

Rα

+
Cj
55
Hj

α

Rβ

)

U j
,z +

(

ᾱCj
13
Hj

β+ (24)

ᾱCj
55
Hj

β

)

W j
,z +

(

Cj
55
Hj

αH
j
β

)

U j
,zz = 0 ,

(

− ᾱβ̄Cj
66

− ᾱβ̄Cj
12

)

U j +
(

−
Cj
44
Hj

α

Hj
βR

2
β

−
Cj
44

RαRβ

− ᾱ2
Cj
66
Hj

β

Hj
α

− β̄2C
j
22
Hj

α

Hj
β

)

V j+

(

β̄
Cj
44
Hj

α

Hj
βRβ

+ β̄
Cj
44

Rα
+ β̄

Cj
22
Hj

α

Hj
βRβ

+ β̄
Cj
12

Rα

)

W j +
(Cj

44
Hj

α

Rβ

+
Cj
44
Hj

β

Rα

)

V j
,z +

(

β̄Cj
44
Hj

α+ (25)

β̄Cj
23
Hj

α

)

W j
,z +

(

Cj
44
Hj

αH
j
β

)

V j
,zz = 0 ,

(

ᾱ
Cj
55
Hj

β

Hj
αRα

− ᾱ
Cj
13

Rβ

+ ᾱ
Cj
11
Hj

β

Hj
αRα

+ ᾱ
Cj
12

Rβ

)

U j +
(

β̄
Cj
44
Hj

α

Hj
βRβ

− β̄
Cj
23

Rα
+ β̄

Cj
22
Hj

α

Hj
βRβ

+ β̄
Cj
12

Rα

)

V j+

( Cj
13

RαRβ

+
Cj
23

RαRβ

−
Cj
11
Hj

β

Hj
αR2

α

−
2Cj

12

RαRβ

−
Cj
22
Hj

α

Hj
βR

2
β

− ᾱ2
Cj
55
Hj

β

Hj
α

− β̄2C
j
44
Hj

α

Hj
β

)

W j+ (26)

(

− ᾱCj
55
Hj

β − ᾱCj
13
Hj

β

)

U j
,z +

(

− β̄Cj
44
Hj

α − β̄Cj
23
Hj

α

)

V j
,z +

(Cj
33
Hj

β

Rα
+

Cj
33
Hj

α

Rβ

)

W j
,z+

(

Cj
33
Hj

αH
j
β

)

W j
,zz = 0 .

Eqs.(24)-(26) are a system of three second order partial differential relations in z. They represent a
general 3D shell model because the equations are valid for spherical shells but they degenerate in the
cases of cylindrical panels and plates simply imposing one radius of curvature or both radii of curvature
equal infinite. The compact form of these equations has been proposed in [53] and [54]. The coefficients
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are constant, even if shell geometries are considered, because the j mathematical layers have been
introduced. The compact form of the second order differential equations in z proposed in Eqs.(24)-(26)
are transformed in a system of first order differential equations in z simply redoubling the number
of variables as suggested in [60]- [63]. Considering a generic j mathematical layer, this new compact
system is:

D
j ∂U

j

∂z̃
= A

j
U

j , (27)

where ∂U j

∂z̃
= U

j ′ and U
j = [U j V j W j U j ′ V j ′ W j ′]. Coordinate z̃ goes from 0 at the bottom to h at

the top. This paper is focused on the imposition of the load boundary conditions in order to perform
several benchmarks with different load combinations. For this reason, there are some missed detailed
steps which can be found in past author’s works about the static analysis including only a transverse
normal load [53], [54]. The system of differential equations given in Eq.(27) is solved by means of the
exponential matrix method [60]- [63]. This feature means:

D
j
U

j ′ = A
j
U

j , (28)

U
j ′ = D

j−1
A

j
U

j , (29)

U
j ′ = A

j∗
U

j , (30)

with A
j∗ = D

j−1
A

j . Matrices D
j , Aj and A

j∗ are constant in each j layer of the plate or shell
structure. The solution of Eq.(30) for shell can be written in accordance with [61] and [62] because the
coefficients can be considered as constant:

U
j(z̃j) = exp(Aj∗z̃j)U j(0) with z̃j ǫ [0, hj ] , (31)

where z̃j is the coordinate through the thickness of each j layer (its values are 0 at the bottom and hj

at the top). The exponential matrix can be written substituting z̃j = hj for each j mathematical layer:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
+ . . .+

A
j∗N

N !
hj

N
, (32)

where I is the identity matrix having 6 × 6 dimension. In order to apply a layer-wise approach to
the model, it is mandatory the imposition of interlaminar continuity for displacements (compatibility
conditions) and for transverse normal/shear stresses (equilibrium conditions). In compact form, these
conditions are:

ujb = uj−1

t , vjb = vj−1

t , wj
b = wj−1

t , (33)

σj
zzb = σj−1

zzt , σj
αzb = σj−1

αzt , σj
βzb = σj−1

βzt , (34)

displacement and transverse stress components at the top (t) of the j-1 layer must be equal to displace-
ments and transverse stress components at the bottom (b) of the j layer.

Using the compatibility conditions in Eq.(33), the equilibrium conditions in Eq.(34) and the oppor-
tune expansion for the exponential matrix as proposed in Eq.(32), the final equations are:

B
M (hM ) Hm U

1(0) = P
M
t , (35)

B
1(0) U1(0) = P

1
b , (36)

with load amplitudes applied at the external surfaces given as:

P
M
t =





PM
zt

PM
βt

PM
αt



 , P
1
b =





P 1
zb

P 1
βb

P 1
αb



 , (37)
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where superscripts M and 1 indicate last layer and first layer, respectively. Subscripts t and b mean
top and bottom of the considered layer, respectively. Matrices B

M(hM ) and B
1(0) contain all the

geometrical and material data of the investigated structure for the top of the last layer and the bottom
of the first layer, respectively. Hm contains the compatibility and equilibrium conditions for each j
layer and relative interfaces. As seen in Eq.(37), loads can be applied at the top of the last (M) layer
in z, β and α directions and at the bottom of the first (1) layer in z, β and α directions. A general
system can be written as:

[

B
M (hM ) Hm

B
1(0)

]

U
1(0) = P , (38)

where the 6× 6 E matrix is:

E =

[

B
M (hM ) Hm

B
1(0)

]

, (39)

and the 6× 1 unknown vector U1(0) and load vector P are:

U
1(0) =



















U1(0)
V 1(0)
W 1(0)

U1′(0)

V 1′(0)

W 1′(0)



















, P =

















PM
zt

PM
βt

PM
αt

P 1
zb

P 1
βb

P 1
αb

















. (40)

The final linear algebraic system to be solved is:

E U
1(0) = P . (41)

The vector U1(0) contains the three displacement amplitudes evaluated at the bottom of the first layer
and the relative derivatives made with respect to the z coordinate. The vector P contains all the
possible load amplitudes which can be applied at the external surfaces. The solution is based on a
layer-wise approach and the matrix E has always 6× 6 dimension, independently from the number of
employed mathematical layers M . The solution has been implemented in an in-house academic software
called 3DES developed by the author in a Matlab environment. Only spherical panel equations have
been implemented because cylindrical shell and plate equations can be obtained as particular cases.
The load vector P in Eq.(40) can assume several forms depending how the load boundary conditions
in Eqs.(16) have been imposed. Possible conditions can be σzz and/or σαz and/or σβz equal 0 or equal
the opportune load value applied at the top and/or at the bottom of the whole structure. Using these
considerations, several benchmarks can be proposed also including the five benchmarks discussed in
the next section.

The unknown vector U
1(0) is calculated from the solution of the system in Eq.(41). Such a vector

contains the three displacement components evaluated at the bottom of the structure and their relative
derivatives made with respect to the z coordinate. These six values are evaluated at the bottom, the
use of compatibility and equilibrium conditions in Eqs.(33) and (34) allows the 6× 1 vector U at each
thickness coordinate z. Strain and stress vectors are calculated through the thickness z employing
Eqs.(20)-(23). The implemented method is very accurate for the displacement calculation because it is
based on a layer-wise approach. The calculation of strains is very accurate because in Eqs.(20) and (21)
the derivatives of displacements with respect to α and β are exactly calculated deriving their harmonic
forms, and the derivatives of displacements with respect to z are directly obtained from the solution of
system in Eq.(41). This method can be considered as a sort of mixed method because the derivatives of
displacements with respect to z have not been numerically calculated. Exact values of strains through
the z direction in Eqs.(20) and (21) give correct values of stresses through z direction by means of
Eqs.(22) and (23).
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3 Results

The proposed 3D exact shell solution has been verified and validated in [38]- [52] for the free vibration
analysis of one-layered and multilayered isotropic, orthotropic, composite, sandwich and functionally
graded plates and shells and for single- and double-walled carbon nanotubes. Afterwards, this model
has also been developed and confirmed for the static analysis of one-layered and multilayered plates
and shells including classical layers (see work [53]) and functionally graded layers (see work [54]).
These last two bending analyses only considered transverse normal loads applied in harmonic form at
the top or at the bottom of the proposed structures. Several comparisons with other 3D solutions
have been proposed in [38]- [52] in the case of free vibration analysis. The present model has been
successfully compared with the 3D solution by Vel and Batra [25] and Srinivas et al. [26] in the case
of square isotropic plates, with the 3D shell solution by Armenakas et al. [29] for the case of isotropic
cylinders, with the 3D solution by Messina [27] for the case of multilayered composite plates, with the
3D solution by Huang [30] for the case of multilayered composite cylindrical and spherical shell panels,
with the 3D solution by Li et al. [28] for the case of sandwich plates with external classical skins and
internal FGM core, and with the 3D solution by Zahedinejad et al. [31] for the case of one-layered
FGM cylindrical shell panels. Further comparisons with other 3D solutions have been proposed in [53]
and [54] in the case of static analysis when transverse normal loads were applied separately at the top
or at the bottom of the structures. The proposed 3D shell model has been compared with the 3D
solution by Pagano [12] for the case of rectangular composite laminated plates and square sandwich
plates, with the 3D solution by Ren [17] for the case of composite laminated cylindrical shell panels,
with the 3D solution by Varadan and Bhaskar [18] for the case of composite laminated cylinders, with
the 3D solution by Fan and Zhang [20] for the case of laminated composite spherical shell panels, with
the 3D solution by Kashtalyan [23] for the case of one-layered FGM plates and with the 3D solution
by Kashtalyan and Menshykova [24] for the case of sandwich plates with FGM core.

In all these comparisons, the present 3D exact shell model used an order N=3 for the exponential
matrix expansion and M=300 mathematical layers for the correct description of the shell geometry
(curvature effects through the thickness). The new results proposed in the present paper consider
plate and shell structures subjected to different combinations of transverse normal and transverse shear
loads which can be simultaneously applied at both the top and bottom external surfaces. This new
model has been obtained opportunely modifying the load boundary conditions in the 3D model already
proposed in [53] and [54]. Pratically, the load boundary conditions in terms of stresses σαz, σβz and
σzz are opportunely rewritten depending on the load configuration imposed at the external surfaces of
the proposed structures. The 3D equilibrium equations and the solution method do not change with
respect to the cases proposed in [53] and [54] where transverse normal loads were applied at the top
or at the bottom of the structures. For this reason, the choice of the parameters N=3 and M=300
is still valid for the new benchmarks here proposed obtained modifying the load boundary conditions.
The dimension of the system to be solved is always 6 × 6 for any proposed N and M value (even if a
layer-wise approach is employed). Each term of the 6× 6 matrix becomes more complicated when M
and N increase.

3.1 Proposed benchmarks

The five proposed new benchmarks are summarized in Figures 1-5. The first benchmark (B1) considers
a square sandwich plate with isotropic skins subjected to a transverse normal harmonic load applied
simultaneously at the top and at the bottom surfaces with opposite signs (see Figure 1). The sec-
ond benchmark (B2) shows a rectangular sandwich plate embedding composite skins subjected to a
transverse shear harmonic load in the α direction simultaneously applied at the top and at the bottom
with opposite signs (see Figure 2). The third benchmark (B3) investigates a two-layered composite
cylinder subjected to a transverse shear harmonic load in the β direction simultaneously applied at
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the top and at the bottom with opposite signs (see Figure 3). The fourth benchmark (B4) proposes a
three-layered composite cylindrical shell panel subjected to a transverse shear harmonic load applied in
β direction at the top surface (see Figure 4). The last benchmark (B5) is devoted to the static analysis
of a four-layered composite spherical shell panel where a transverse shear harmonic load is applied at
the top surface in α direction (see Figure 5). Results for the five proposed benchmarks are given in
terms of no-dimensional displacement and stress amplitudes calculated in different positions through
the thickness direction. These results are shown in graphical form in Figures 6-11 and in tabular form
in Tables 1-5. In the following five paragraphs, each benchmark is described in details and all the
results are opportunely discussed remarking the main conclusions.

The first benchmark (B1 in Figure 1) proposes a simply supported square sandwich plate with
isotropic skins. The transverse normal load is simultaneously applied at the top (P t

z = −1Pa) and at the
bottom (P b

z = 1Pa) with half-wave numbersm = n = 1. The dimensions are a = b = 1m with thickness
ratios a/h = 2, 4, 10, 20, 50, 100. The two external skins have thickness values h1 = h3 = 0.1h and the
soft core has thickness h2 = 0.8h where h is the total thickness. The external skins are in Aluminum
Alloy with Young Modulus E = 73GPa and Poisson ratio ν = 0.3 (isotropic material). The internal soft
isotropic core has Young Modulus E = 180MPa and Poisson ratio ν = 0.37. M = 300 mathematical
layers and order N = 3 for the exponential matrix are used. The no-dimensional displacements and
stresses have the following form:

{ū, v̄, w̄} =
102Eskin{u, v, w}

P b
zh(a/h)

4
, {σ̄αα, σ̄ββ, σ̄αβ} =

{σαα, σββ, σαβ}

P b
z (a/h)

2
, (42)

{σ̄αz , σ̄βz} =
{σαz, σβz}

P b
z (a/h)

, σ̄zz = σzz .

Results in Table 1 propose the no-dimensional displacement and stress amplitudes though different
thickness positions z for several thickness ratios (from very thick plates (a/h=2) to very thin plates
(a/h=100)). New refined 2D models in the literature will be able to describe the 3D behavior of such a
structure if they will propose results in accordance with those given in the present table. These results
can be easily discussed using the first image of Figure 6 about the three displacement components for
the thickness ratio a/h=4 and the Figure 7 for the six stress components for the thickness ratio a/h=4.
Displacements ū, v̄ and w̄ in the first image of Figure 6 show the classical zigzag form which is typical
of thick sandwich plates where the elastic properties of the skins are completely different from those
of the core. The in-plane displacements ū and v̄ are coincident for symmetry reasons (square plate,
isotropic materials and symmetrical load conditions). Moreover, the three displacement components
are continuous at each interface skin-core because the compatibility conditions have been successfully
imposed in the model. The normal in-plane and shear in-plane stresses σ̄αα, σ̄ββ and σ̄αβ in Figure 7
are discontinuous at each interface skin-core and they show the typical behavior of sandwich structures.
Transverse normal and transverse shear stresses σ̄zz, σ̄αz and σ̄βz in Figure 7 are continuous through
the thickness because the equilibrium conditions have been successfully imposed in the model. The σ̄zz
stress satisfies the load boundary conditions which mean σ̄t

zz = P t
z = −1Pa and σ̄b

zz = P b
z = +1Pa.

The σ̄αz and σ̄βz stresses satisfy the load boundary conditions which are σ̄t
αz = P t

α = σ̄b
αz = P b

α = 0Pa
and σ̄t

βz = P t
β = σ̄b

βz = P b
β = 0Pa, respectively. Stresses σ̄αz and σ̄βz are coincident because the plate

is square, the layers are isotropic and the loads are applied in a symmetric way.
The second benchmark (B2 in Figure 2) includes a simply supported rectangular sandwich plate with

composite skins. A transverse shear load is simultaneously applied at the top (P t
α = 1Pa) and at the

bottom (P b
α = −1Pa) with half-wave numbersm = n = 1. The dimensions are a = 1m and b = 3m with

thickness ratios a/h = 2, 4, 10, 20, 50, 100. The external skin at the bottom is made of two composite
layers with thickness values h1 = h2 = 0.05h and fibre orientation 0◦/90◦. The top external skin embeds
two composite layers with thickness values h4 = h5 = 0.05h and fibre orientation 90◦/0◦. The internal
soft central core has the same elastic properties already proposed in the benchmark 1, the thickness
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value is h3 = 0.8h. The elastic properties of composite layers are Young modulii E1 = 132.38GPa and
E2 = E3 = 10.756GPa, shear modulii G12 = G13 = 5.6537GPa and G23 = 3.603GPa and Poisson
ratios ν12 = ν13 = 0.24 and ν23 = 0.49. M = 300 mathematical layers and order N = 3 for the
exponential matrix are used. The displacements and stresses have the following no-dimensional form:

{ū, v̄, w̄} =
105Eskin

2 {u, v, w}

P t
αh(a/h)

4
, {σ̄αα, σ̄ββ , σ̄αβ} =

104{σαα, σββ, σαβ}

P t
α(a/h)

2
, (43)

{σ̄zz, σ̄βz} =
104{σzz, σβz}

P t
α(a/h)

, σ̄αz = σαz .

Results in Table 2 show the no-dimensional displacement and stress amplitudes for different z values
and for several thickness ratios (from very thick plates (a/h=2) to very thin plates (a/h=100)). New
refined 2D models proposed in the literature will give a 3D description of such a structure if their results
will be in accordance with those proposed in the present table. These results are given in graphical
form in the second image of Figure 6 for the three displacement components for the thickness ratio
a/h=4 and in the Figure 8 for the six stress components for the thickness ratio a/h=4. Displacements
ū, v̄ and w̄ in the second image of Figure 6 show the classical zigzag form which is typical of thick
sandwich plates where the elastic properties of the skins are completely different from those of the core.
The differences with respect to the first case is due to the use of composite skins in place of isotropic
skins. The in-plane displacements ū and v̄ have a different behavior through the thickness because the
sandwich plate is now rectangular, it includes composite orthotropic skins and the load conditions are
not symmetric. However, the three displacement components remain continuous at each interface skin-
core and layer-layer in the skins because the compatibility conditions have been opportunely introduced
in the model. The normal in-plane and shear in-plane stresses σ̄αα, σ̄ββ and σ̄αβ in Figure 8 are
discontinuous at each interface and they show the typical behavior of sandwich structures. In this case
there are more discontinuity points because there are more interfaces (interfaces between skins and core,
and interfaces between the two layers which constitute each external composite skin). Stresses σ̄αα and
σ̄ββ are different because there is not the symmetry in terms of geometry, material and load conditions.
Transverse normal and transverse shear stresses σ̄zz, σ̄αz and σ̄βz in Figure 8 are continuous through the
thickness because the equilibrium conditions have been opportunely elaborated in the proposed 3D shell
model. The σ̄zz stress satisfies the load boundary conditions which mean σ̄t

zz = σ̄b
zz = P t

z = P b
z = 0Pa.

The σ̄αz satisfies the load boundary conditions which are σ̄t
αz = P t

α = +1Pa and σ̄b
αz = P b

α = −1Pa.
The σ̄βz stress satisfies the load boundary conditions which are σ̄t

βz = σ̄b
βz = P t

β = P b
β = 0Pa. Stresses

σ̄αz and σ̄βz are not coincident because the plate is rectangular, the layers for the skins are orthotropic
and the load conditions are completely different for the two stress components.

The third benchmark (B3 in Figure 3) shows a simply supported composite cylinder. A transverse
shear load is simultaneously applied at the top (P t

β = 1Pa) and at the bottom (P b
β = −1Pa) with

half-wave numbers m = n = 2. The radii of curvature are Rα = 10m and Rβ = ∞. The dimensions
are a = 2πRα and b = 20m. The two layers have thickness values h1 = h2 = 0.5h with fiber orientation
0◦ for the first layer at the bottom and 90◦ for the second layer at the top. The investigated thickness
ratios are Rα/h = 2, 4, 10, 50, 100, 500. The elastic properties of the two composite layers are the same
already seen in the second benchmark for the composite skins. M = 300 mathematical layers and order
N = 3 for the exponential matrix are used. The no-dimensional forms of displacements and stresses
are:

{ū, v̄, w̄} =
106E2{u, v, w}

P t
βh(Rα/h)4

, {σ̄αα, σ̄ββ , σ̄αβ} =
105{σαα, σββ, σαβ}

P t
β(Rα/h)2

, (44)

{σ̄zz, σ̄αz} =
105{σzz, σαz}

P t
β(Rα/h)

, σ̄βz = σβz .
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Results in Table 3 propose the three displacement amplitudes and the six stress amplitudes in no-
dimensional form given for different positions through the thickness direction z. Results consider very
thick and very thin cylinders (from Rα/h = 2 to Rα/h = 500). Displacements and stresses are proposed
at the external surfaces (z = +h/2 and z = −h/2) and at the interface between the two composite
layers (z = 0+ and z = 0−). Displacements and transverse shear and transverse normal stresses are
continuous. On the contrary, normal in-plane and shear in-plane stresses are discontinuous at this
interface. New refined 2D models must satisfy results in Table 3 in order to show a satisfactory 3D
description of the proposed composite cylinder. The graphical form of these results for a very thick
composite cylinder (Rα/h = 4) is proposed in the third image of Figure 6 for the three displacement
components and in Figure 9 for the six stress components. The three displacement components have a
complicated evaluation through the thickness and they do not have any symmetry because the cylinder
is very thick, two composite layers are included with fibre orientation 0◦/90◦, a radius of curvature is
different from infinite and load conditions are very particular. However, each displacement component
is continuous at the interface between the first and the second layer because the compatibility conditions
have been treated in a rigorous way. In-plane normal stresses σ̄αα and σ̄ββ are discontinuous at the
interface and their behavior through the thickness direction is different because there are not any
symmetrical conditions for the geometry, the material and the load applications. In-plane shear stress
σ̄αβ is continuous because the interface is positioned between two identical composite layers where only
the fibre orientation changes. Transverse normal and transverse shear stresses σ̄zz, σ̄αz and σ̄βz are
continuous because the equilibrium conditions have been opportunely included in the 3D shell model.
Stresses σ̄zz and σ̄αz are zero at the external surfaces because they satisfy the load boundary conditions
in terms of amplitudes Pz and Pα, respectively. Stress σ̄βz satisfies the load boundary conditions which
are P t

β = +1Pa and P b
β = −1Pa. Stresses σ̄βz and σ̄αz are different because the geometry is not

symmetric, the two layers have fibre orientation 0◦/90◦ and the load conditions are not symmetric.
The fourth benchmark (B4 in Figure 4) investigates a simply supported composite cylindrical shell

panel. The transverse shear load is P t
β = 1Pa at the top and zero at the bottom (P b

β = 0Pa) with
half-wave numbers m = n = 1. The radii of curvature are Rα = 10m and Rβ = ∞. The dimensions
are a = π

3
Rα and b = 20m. The investigated thickness ratios are Rα/h = 2, 4, 10, 50, 100, 500. The

three layers have the same thickness (h1 = h2 = h3 = h/3) with lamination sequence 0◦/90◦/0◦.
The composite material is the same already seen in the benchmark 3 and in the benchmark 2 for the
external skins. M = 300 mathematical layers and order N = 3 for the exponential matrix are used.
The displacements and stresses are given in the following no-dimensional forms:

{ū, v̄, w̄} =
106E2{u, v, w}

P t
βh(Rα/h)4

, {σ̄αα, σ̄ββ , σ̄αβ} =
105{σαα, σββ, σαβ}

P t
β(Rα/h)2

, (45)

{σ̄zz, σ̄αz} =
105{σzz, σαz}

P t
β(Rα/h)

, σ̄βz = σβz .

Results are given in details in Table 4 where several thickness ratios are investigated (from Rα/h = 2
to Rα/h = 500) and different positions through the thickness direction z are proposed. Displacement
amplitudes and stress amplitudes in no-dimensional form are proposed. The benchmark will allow
to confirm the 3D capabilities of the new proposed refined 2D models in the case of static analysis
of multilayered composite cylindrical shell panels. The fourth image in Figure 6 proposes the three
displacement components for the thickness ratio Rα/h = 4 (very thick shell). The three displacement
components are continuous through the two proposed interfaces and they do not have any symmetry
due to the non-symmetric geometry and load conditions. On the contrary, the lamination 0◦/90◦/0◦ is
symmetric through the thickness direction. The displacement behavior through the thickness direction
confirms the correct imposition of compatibility conditions in the proposed 3D shell model. The six
stress components are proposed for the same thickness ratio (Rα/h = 4) in Figure 10. The in-plane
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stress components σ̄αα and σ̄ββ are discontinuous at each interface and they are not coincident because
there is not any symmetry from the geometrical and load condition point of view. The shear in-
plane stress σ̄αβ is continuous at the two proposed interfaces because the three layers are made of the
same composite material and the only difference is due to the fibre orientation. Transverse normal
and transverse shear stresses σ̄zz, σ̄αz and σ̄βz are continuous at each interface because equilibrium
conditions have been opportunely imposed in the proposed 3D shell model. Stresses σ̄zz and σ̄αz are
zero at the external surfaces because they fulfill the load boundary conditions (loads Pz and Pα equal
zero at both top and bottom of the shell). The stress σ̄βz is equal +1Pa at the top because the condition
P t
α = +1Pa has been here imposed, and it is equal 0Pa at the bottom because the condition P b

α = 0Pa
has been here imposed. Transverse shear stresses σ̄αz and σ̄βz are completely different in their behavior
through the thickness direction because there is not any symmetry in terms of geometry and applied
loads.

The fifth benchmark (B5 in Figure 5) considers a simply supported composite spherical shell panel.
The transverse shear load is applied at top as P t

α = 1Pa and at the bottom as P b
α = 0Pa (with

half-wave numbers m = n = 1). The radii of curvature are Rα = Rβ = 10m and dimensions are
a = b = π

3
Rα. The investigated thickness ratios are Rα/h = 2, 4, 10, 50, 100, 500. The four layers

have the same thickness (h1 = h2 = h3 = h3 = h/4) with lamination sequence 0◦/90◦/0◦/90◦. The
composite material is the same already seen in the benchmarks 2, 3 and 4. M = 300 mathematical
layers and order N = 3 for the exponential matrix have been set. The displacements and stresses are
given in the following no-dimensional forms:

{ū, v̄, w̄} =
106E2{u, v, w}

P t
αh(Rα/h)4

, {σ̄αα, σ̄ββ , σ̄αβ} =
105{σαα, σββ, σαβ}

P t
α(Rα/h)2

, (46)

{σ̄zz, σ̄βz} =
105{σzz, σβz}

P t
α(Rα/h)

, σ̄αz = σαz .

No-dimensional displacement amplitudes and no-dimensional stress amplitudes at different thickness
positions are proposed in numerical form in Table 5 for very thick spherical shells and very thin spherical
shells (thickness ratios from Rα/h = 2 to Rα/h = 500). The proposed benchmark is very demanding
from the 3D behavior point of view because of the presence of two radii of curvature different from
infinite (Rα = Rβ = 10m) and because of the non-symmetrical lamination sequence (0◦/90◦/0◦/90◦).
New refined 2D shell models proposed in the literature must give these results if they will be correctly
developed and implemented. Such complicated 3D behavior is confirmed by the fifth image of Figure
6 which proposes the three displacement components through the thickness direction of a very thick
shell (Rα/h = 4). The three displacement components are continuous at each interface because of
the correct implementation of the compatibility conditions in the 3D shell model. No symmetries are
shown because of the particular load conditions and the non-symmetric lamination. The six stress
components are given in Figure 11 for a thickness ratio Rα/h = 4. In-plane normal stresses σ̄αα and
σ̄ββ are discontinuous at each interface while in-plane shear stress σ̄αβ is continuous at each interface
because the four layers are made of the same material and the only difference is given by the change
of the fiber orientation (from 0◦ to 90◦). Stresses σ̄αα and σ̄ββ are different as behavior though the
thickness, even if the spherical shell geometry is symmetric, because the lamination sequence and the
load conditions are not symmetric. Transverse normal and transverse shear stresses σ̄zz, σ̄αz and σ̄βz
are continuous at each interface because equilibrium conditions have been rigorously imposed in the
3D exact shell model. σ̄zz and σ̄βz are zero at the external surfaces in order to satisfy the external
boundary load conditions given for the loads Pz and Pβ , respectively. Stress σ̄αz is zero at the bottom
where P b

α = 0Pa and it is 1Pa at the top where P t
α = +1Pa. Stresses σ̄αz and σ̄βz are completely

different even if the spherical shell has a symmetric geometry because the lamination sequence and load
conditions are not symmetric.
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4 Conclusions

Typical aerospace structures can be investigated as plate and shell geometries embedding sandwich
or multilayered composite configurations. 3D exact shell and plate models proposed in the literature
usually consider the typical load configuration which has an harmonic transverse normal load applied
at the top or at the bottom of the structure. The proposed new shell model considers different combi-
nations of loads at the external surfaces including the possibility of transverse shear loads in α and β
directions in addition to the typical transverse normal load in the z direction. These three directions
for the load application are combined in different ways at the top and bottom in order to obtain new
results. The proposed model has already been developed for the application of transverse normal loads
in harmonic form and it has been here extended to the cases of transverse shear loads opportunely
modifying the imposition of the load boundary conditions in the model. Such conditions are directly
imposed as opportune values of stress components σ̄zz, σ̄αz and σ̄βz at the top and at the bottom of
the structure. The model is based on the 3D differential equations of equilibrium written in general
orthogonal curvilinear coordinates and it is solved using the exponential matrix method and the layer
wise approach. The proposed benchmarks consider square and rectangular plates, cylinders, cylindrical
and spherical shell panels. Different combinations of transverse shear and transverse normal loads si-
multaneously applied at the top and at the bottom of the structures have been investigated considering
sandwich and laminate configurations and different thickness ratios. The 3D behavior of such struc-
tures has been proposed in terms of the three displacement components and the six stress components
through different thickness positions. Compatibility and equilibrium conditions for displacements and
transverse shear/normal stresses, respectively, have been discussed for each benchmark. Several con-
siderations have been proposed for the satisfaction of the load boundary conditions. The typical zigzag
form of multilayered structures has been remarked for each proposed case. The symmetry in terms of
geometry, lamination sequence and load applications has been discussed for displacements and stresses
in each investigated benchmark. This new 3D shell model will allow the complete validation of the
new refined 2D numerical and exact plate/shell models proposed in the literature because it gives the
possibility to perform several comparisons changing the geometry of the structure, the material of the
embedded layers, the lamination sequence, the load conditions and the thickness ratio.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
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2
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) (a

2
, b
2
) (0, 0) (a

2
, b
2
) (0, b

2
) (a

2
, 0)

a/h=2
z = −h/2 -116.78 -116.78 -1461.2 10.590 10.590 -5.6445 1.0000 0.0000 0.0000
z = −h/4 88.998 88.998 -1357.0 0.0182 0.0182 0.0101 0.2729 -0.1721 -0.1721
z = 0 0.0000 0.0000 -1286.1 0.0000 0.0000 0.0000 0.0000 -0.1744 -0.1744
z = +h/4 -88.998 -88.998 -1357.0 -0.0182 -0.0182 -0.0101 -0.2729 -0.1721 -0.1721
z = +h/2 116.78 116.78 -1461.2 -10.590 -10.590 5.6445 -1.0000 0.0000 0.0000

a/h=4
z = −h/2 -25.546 -25.546 -573.10 4.6128 4.6128 -2.4694 1.0000 0.0000 0.0000
z = −h/4 13.334 13.334 -563.24 0.0098 0.0098 0.0030 0.4453 -0.2818 -0.2818
z = 0 0.0000 0.0000 -556.66 0.0000 0.0000 0.0000 0.0000 -0.2843 -0.2843
z = +h/4 -13.334 -13.334 -563.24 -0.0098 -0.0098 -0.0030 -0.4453 -0.2818 -0.2818
z = +h/2 25.546 25.546 -573.10 -4.6128 -4.6128 2.4694 -1.0000 0.0000 0.0000

a/h=10
z = −h/2 -3.3967 -3.3967 -117.78 1.5287 1.5287 -0.8209 1.0000 0.0000 0.0000
z = −h/4 0.2087 0.2087 -117.57 0.0029 0.0029 0.0001 0.5334 -0.3389 -0.3389
z = 0 0.0000 0.0000 -117.41 0.0000 0.0000 0.0000 0.0000 -0.3400 -0.3400
z = +h/4 -0.2087 -0.2087 -117.57 -0.0029 -0.0029 -0.0001 -0.5334 -0.3389 -0.3389
z = +h/2 3.3967 3.3967 -117.78 -1.5287 -1.5287 0.8209 -1.0000 0.0000 0.0000

a/h=20
z = −h/2 -1.1048 -1.1048 -38.753 0.9927 0.9927 -0.5340 1.0000 0.0000 0.0000
z = −h/4 -0.3090 -0.3090 -38.759 0.0016 0.0016 -0.0003 0.5487 -0.3488 -0.3488
z = 0 0.0000 0.0000 -38.757 0.0000 0.0000 0.0000 0.0000 -0.3496 -0.3496
z = +h/4 0.3090 0.3090 -38.759 -0.0016 -0.0016 0.0003 -0.5487 -0.3488 -0.3488
z = +h/2 1.1048 1.1048 -38.753 -0.9927 -0.9927 0.5340 -1.0000 0.0000 0.0000

a/h=50
z = −h/2 -0.3731 -0.3731 -15.856 0.8374 0.8374 -0.4508 1.0000 0.0000 0.0000
z = −h/4 -0.1709 -0.1709 -15.860 0.0012 0.0012 -0.0005 0.5531 -0.3517 -0.3517
z = 0 0.0000 0.0000 -15.861 0.0000 0.0000 0.0000 0.0000 -0.3524 -0.3524
z = +h/4 0.1709 0.1709 -15.860 -0.0012 -0.0012 0.0005 -0.5531 -0.3517 -0.3517
z = +h/2 0.3731 0.3731 -15.856 -0.8374 -0.8374 0.4508 -1.0000 0.0000 0.0000

a/h=100
z = −h/2 -0.1816 -0.1816 -12.556 0.8150 0.8150 -0.4388 1.0000 0.0000 0.0000
z = −h/4 -0.0888 -0.0888 -12.557 0.0011 0.0011 -0.0005 0.5538 -0.3521 -0.3521
z = 0 0.0000 0.0000 -12.558 0.0000 0.0000 0.0000 0.0000 -0.3528 -0.3528
z = +h/4 0.0888 0.0888 -12.557 -0.0011 -0.0011 0.0005 -0.5538 -0.3521 -0.3521
z = +h/2 0.1816 0.1816 -12.556 -0.8150 -0.8150 0.4388 -1.0000 0.0000 0.0000

Table 1: Benchmark 1, 3D exact displacements and stresses for a sandwich square plate with isotropic
skins.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
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) (0, b
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, 0)

a/h=2
z = −h/2 4113.8 -670.25 4085.5 -31928 -482.22 231.52 0.0000 -1.0000 0.0000
z = −h/4 283.58 -1600.4 2956.0 -72.091 -65.820 -5.7789 -241.92 -0.0089 -9.5391
z = 0 -1392.3 -2023.5 0.0677 -53.638 -59.147 -9.5462 -250.77 0.0000 0.0002
z = +h/4 283.60 -1600.4 -2955.9 -72.090 -65.819 -5.7788 -241.92 0.0089 9.5395
z = +h/2 4113.8 -670.26 -4085.4 -31928 -482.22 231.52 0.0000 1.0000 0.0000

a/h=4
z = −h/2 945.81 -201.94 -32.630 -14676 -201.61 74.859 0.0000 -1.0000 0.0000
z = −h/4 815.33 -221.02 3.3229 -28.244 -14.598 0.3896 -61.588 -0.0086 -3.9161
z = 0 746.65 -233.54 0.0026 -26.859 -14.203 0.1177 -63.808 0.0000 0.0000
z = +h/4 815.33 -221.02 -3.3176 -28.244 -14.598 0.3896 -61.588 0.0086 3.9162
z = +h/2 945.81 -201.94 32.635 -14676 -201.61 74.859 0.0000 1.0000 0.0000

a/h=10
z = −h/2 149.91 -31.668 -10.640 -5815.5 -80.242 30.222 0.0000 -1.0000 0.0000
z = −h/4 147.60 -31.798 -5.4387 -9.3238 -3.2527 0.3339 -9.7347 -0.0074 -1.1054
z = 0 146.31 -31.953 0.0000 -9.2616 -3.2382 0.3227 -10.038 0.0000 0.0000
z = +h/4 147.60 -31.798 5.4388 -9.3238 -3.2527 0.3339 -9.7347 0.0074 1.1054
z = +h/2 149.91 -31.668 10.640 -5815.5 -80.242 30.222 0.0000 1.0000 0.0000

a/h=20
z = −h/2 37.445 -7.8758 -1.4722 -2905.3 -40.159 15.212 0.0000 -1.0000 0.0000
z = −h/4 37.311 -7.8806 -0.7726 -4.4983 -1.4331 0.1748 -2.4278 -0.0071 -0.5116
z = 0 37.235 -7.8886 0.0000 -4.4911 -1.4315 0.1736 -2.5013 0.0000 0.0000
z = +h/4 37.311 -7.8806 0.7726 -4.4983 -1.4331 0.1748 -2.4278 0.0071 0.5116
z = +h/2 37.445 -7.8758 1.4722 -2905.3 -40.159 15.212 0.0000 1.0000 0.0000

a/h=50
z = −h/2 5.9899 -1.2582 -0.0967 -1161.9 -16.069 6.0974 0.0000 -1.0000 0.0000
z = −h/4 5.9866 -1.2583 -0.0511 -1.7806 -0.5514 0.0707 -0.3882 -0.0071 -0.1999
z = 0 5.9847 -1.2585 0.0000 -1.7801 -0.5513 0.0706 -0.3998 0.0000 0.0000
z = +h/4 5.9866 -1.2583 0.0511 -1.7806 -0.5514 0.0707 -0.3882 0.0071 0.1999
z = +h/2 5.9899 -1.2582 0.0967 -1161.9 -16.069 6.0974 0.0000 1.0000 0.0000

a/h=100
z = −h/2 1.4974 -0.3145 -0.0121 -580.92 -8.0349 3.0496 0.0000 -1.0000 0.0000
z = −h/4 1.4972 -0.3145 -0.0064 -0.8889 -0.2742 0.0354 -0.0970 -0.0071 -0.0996
z = 0 1.4971 -0.3145 0.0000 -0.8889 -0.2741 0.0354 -0.0999 0.0000 0.0000
z = +h/4 1.4972 -0.3145 0.0064 -0.8889 -0.2742 0.0354 -0.0970 0.0071 0.0996
z = +h/2 1.4974 -0.3145 0.0121 -580.92 -8.0349 3.0496 0.0000 1.0000 0.0000

Table 2: Benchmark 2, 3D exact displacements and stresses for a sandwich rectangular plate with
composite skins.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
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) (0, 0) (a
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2
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2
, 0)

Rα/h=2
z = −h/2 1212.1 58243 2548.3 -4418.1 -36681 8564.2 0.0000 0.0000 -1.0000
z = 0− 558.93 5421.1 8221.4 16228 -5682.4 754.49 -10582 -1218.5 -0.2260
z = 0+ 558.93 5421.1 8221.4 -1911.3 -43650 754.49 -10582 -1218.5 -0.2260
z = +h/2 -1927.8 15118 4943.2 -1185.9 -117191 634.75 0.0000 0.0000 1.0000

Rα/h=4
z = −h/2 1070.2 7259.4 2207.8 4231.0 -9039.9 2451.2 0.0000 0.0000 -1.0000
z = 0− 808.49 2063.9 2876.3 9341.4 -2767.1 967.98 -2903.6 -1207.3 -0.5106
z = 0+ 808.49 2063.9 2876.3 -155.17 -32132 967.98 -2903.6 -1207.3 -0.5106
z = +h/2 423.35 1949.2 2812.8 262.95 -30083 643.92 0.0000 0.0000 1.0000

Rα/h=10
z = −h/2 108.08 492.27 283.96 1916.3 -1509.1 450.85 0.0000 0.0000 -1.0000
z = 0− 95.984 316.61 311.06 2411.0 -959.47 324.92 -241.52 -486.82 -0.7430
z = 0+ 95.984 316.61 311.06 -35.754 -12256 324.92 -241.52 -486.82 -0.7430
z = +h/2 81.435 281.60 320.35 15.289 -10884 275.44 0.0000 0.0000 1.0000

Rα/h=50
z = −h/2 -1.8204 12.336 0.9928 128.96 -191.25 17.718 0.0000 0.0000 -1.0000
z = 0− -1.8512 12.082 1.1730 141.28 -186.94 16.469 9.9572 -40.667 -0.8380
z = 0+ -1.8512 12.082 1.1730 -30.472 -2343.1 16.469 9.9572 -40.667 -0.8380
z = +h/2 -1.8845 12.056 1.2935 -29.858 -2337.9 15.812 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -0.7061 3.0355 -0.1800 42.387 -94.535 4.3755 0.0000 0.0000 -1.0000
z = 0− -0.7089 3.0243 -0.1573 45.320 -94.092 4.1911 7.4380 -15.180 -0.8451
z = 0+ -0.7089 3.0243 -0.1573 -17.332 -1173.5 4.1911 7.4380 -15.180 -0.8451
z = +h/2 -0.7118 3.0274 -0.1416 -17.234 -1174.7 4.0801 0.0000 0.0000 1.0000

Rα/h=500
z = −h/2 -0.0365 0.1212 -0.0213 4.8311 -18.952 0.1730 0.0000 0.0000 1.0000
z = 0− -0.0365 0.1213 -0.0211 4.9445 -18.955 0.1697 1.8620 -2.1738 -0.8498
z = 0+ -0.0365 0.1213 -0.0211 -3.8175 -235.42 0.1697 1.8620 -2.1738 -0.8498
z = +h/2 -0.0366 0.1214 -0.0210 -3.8155 -235.55 0.1670 0.0000 0.0000 1.0000

Table 3: Benchmark 3, 3D exact displacements and stresses for a two-layered 0◦/90◦ composite cylinder.
0− means top of the first layer. 0+ means bottom of the second layer.
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Rα/h=2
z = −h/2 -20657 -491.77 -40410 71132 1541.6 -3617.9 0.0000 0.0000 0.0000
z = −h/4 -14144 6399.4 -39995 6520.7 -1727.1 -29.137 637.20 -21550 -0.0275
z = 0 -15659 15762 -40125 -1319.0 -61987 2385.2 -6043.3 -16292 0.2318
z = +h/4 -14623 43265 -39744 4973.3 -14610 9714.1 -4551.5 -12321 0.7281
z = +h/2 -8648.8 90050 -33843 -22446 -28728 21292 0.0000 0.0000 1.0000

Rα/h=4
z = −h/2 -4819.8 2216.6 -9652.5 26836 -869.44 6.0940 0.0000 0.0000 0.0000
z = −h/4 -3673.7 3199.6 -9533.9 7606.5 -1528.1 939.46 2726.2 -11873 0.0334
z = 0 -3306.9 4436.4 -9351.8 -303.38 -34312 1706.1 1127.7 -11258 0.3926
z = +h/4 -2852.5 6895.1 -9112.0 -3564.8 -4318.2 3151.2 682.65 -8428.0 0.8506
z = +h/2 -1823.6 10445 -8643.2 -15531 -6865.7 5254.0 0.0000 0.0000 1.0000

Rα/h=10
z = −h/2 -960.48 561.23 -2138.3 9460.5 -697.10 138.56 0.0000 0.0000 0.0000
z = −h/4 -831.18 646.77 -2129.9 4422.3 -854.35 359.76 1537.7 -5086.0 0.0492
z = 0 -726.78 739.78 -2118.2 -145.63 -14302 566.49 1452.0 -5545.5 0.4481
z = +h/4 -621.02 865.19 -2102.2 -3173.7 -1368.0 818.28 1079.1 -4282.8 0.8919
z = +h/2 -494.66 1017.7 -2079.1 -7394.6 -1742.8 1120.0 0.0000 0.0000 1.0000

Rα/h=50
z = −h/2 -73.731 31.457 -203.87 1022.2 -227.13 -53.851 0.0000 0.0000 0.0000
z = −h/4 -71.027 33.060 -203.77 517.57 -247.71 -31.252 188.46 -594.67 0.0304
z = 0 -68.349 34.674 -203.67 -56.653 -3364.3 -8.7767 209.32 -683.60 0.4715
z = +h/4 -65.671 36.346 -203.55 -469.56 -292.98 14.031 166.82 -544.16 0.9353
z = +h/2 -62.972 38.059 -203.38 -957.47 -317.59 37.135 0.0000 0.0000 1.0000

Rα/h=100
z = −h/2 -18.368 8.3083 -52.700 267.40 -125.29 -19.987 0.0000 0.0000 0.0000
z = −h/4 -18.018 8.5154 -52.685 137.48 -130.83 -14.149 50.127 -158.62 0.0374
z = 0 -17.668 8.7232 -52.672 -29.437 -1693.4 -8.3209 54.782 -178.32 0.4853
z = +h/4 -17.318 8.9346 -52.658 -120.44 -142.48 -2.4514 42.731 -138.31 0.9449
z = +h/2 -16.968 9.1486 -52.639 -248.19 -148.55 3.4494 0.0000 0.0000 1.0000

Rα/h=500
z = −h/2 -0.6716 0.3388 -1.9848 12.182 -26.372 -0.9871 0.0000 0.0000 0.0000
z = −h/4 -0.6690 0.3404 -1.9847 7.3175 -26.587 -0.7684 2.4361 -7.6580 0.0487
z = 0 -0.6663 0.3419 -1.9846 -5.7488 -331.89 -0.5497 2.0627 -6.7321 0.4973
z = +h/4 -0.6637 0.3435 -1.9845 -2.4269 -27.024 -0.3306 1.0623 -3.5509 0.9480
z = +h/2 -0.6610 0.3451 -1.9843 -7.2748 -27.242 -0.1113 0.0000 0.0000 1.0000

Table 4: Benchmark 4, 3D exact displacements and stresses for a three-layered 0◦/90◦/0◦ composite
cylindrical shell panel.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2
) (a
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2
, b
2
) (a

2
, b
2
) (a

2
, b
2
) (0, 0) (a

2
, b
2
) (0, b

2
) (a

2
, 0)

Rα/h=2
z = −h/2 -3159.9 -4610.9 -7000.2 8615.3 1990.0 -3267.7 0.0000 0.0000 0.0000
z = −h/3 31.941 -3079.8 -7359.4 -1906.7 4411.0 -1048.6 -1494.2 0.0051 -3790.6
z = +h/3 9068.2 -4483.3 -7550.6 -80548 -2485.3 1334.7 -8178.3 0.4796 -3319.2
z = +h/2 65840 -3902.4 -2737.1 -31846 10021 15627 0.0000 1.0000 0.0000

Rα/h=4
z = −h/2 370.34 -171.05 -66.927 -6609.5 75.101 143.66 0.0000 0.0000 0.0000
z = −h/3 892.23 -159.53 -58.216 -1224.2 1807.9 482.25 -963.02 0.2450 -171.54
z = +h/3 2080.1 -235.00 32.114 -29653 -626.58 1117.3 -2705.1 0.7013 -106.81
z = +h/2 5711.1 -266.06 316.53 -5911.8 3459.2 3052.9 0.0000 1.0000 0.0000

Rα/h=10
z = −h/2 371.38 241.93 600.88 -6712.4 -262.37 1018.0 0.0000 0.0000 0.0000
z = −h/3 347.56 191.94 605.69 -499.00 225.20 865.16 -1203.9 0.5464 1079.7
z = +h/3 349.55 146.76 607.92 -5365.1 -0.2471 769.81 -1234.7 0.8562 1440.5
z = +h/2 391.12 99.763 610.21 -467.45 3532.3 737.21 0.0000 1.0000 0.0000

Rα/h=50
z = −h/2 23.817 17.473 56.345 -938.58 1.5254 328.84 0.0000 0.0000 0.0000
z = −h/3 22.875 16.462 56.361 -55.086 416.60 311.19 -172.36 0.4904 214.83
z = +h/3 21.974 15.454 56.365 -578.15 36.903 294.12 -171.25 0.7972 264.84
z = +h/2 21.132 14.445 56.358 -19.462 788.75 277.73 0.0000 1.0000 0.0000

Rα/h=100
z = −h/2 6.0822 4.4308 15.033 -395.16 9.7891 166.61 0.0000 0.0000 0.0000
z = −h/3 5.9535 4.2951 15.034 -23.601 259.04 161.88 -68.805 0.4515 92.177
z = +h/3 5.8274 4.1594 15.034 -296.30 19.401 157.22 -68.735 0.7705 105.90
z = +h/2 5.7050 4.0238 15.034 -13.699 359.50 152.65 0.0000 1.0000 0.0000

Rα/h=500
z = −h/2 0.2456 0.1772 0.6280 -66.072 3.5396 33.366 0.0000 0.0000 0.0000
z = −h/3 0.2445 0.1761 0.6280 -4.1011 60.493 33.168 -10.621 0.4161 15.490
z = +h/3 0.2434 0.1749 0.6280 -61.874 3.9459 32.970 -10.627 0.7465 16.075
z = +h/2 0.2423 0.1738 0.6280 -3.6763 64.719 32.774 0.0000 1.0000 0.0000

Table 5: Benchmark 5, 3D exact displacements and stresses for a four-layered 0◦/90◦/0◦/90◦ composite
spherical shell panel.
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Benchmark 1 (B1): square sandwich plate with
isotropic skins

P (top)=-1Pa (m=n=1)z

P (bottom)=+1Pa (m=n=1)z

Figure 1: Geometry, lamination, materials and loads for the benchmark 1 (B1).

Benchmark 2 (B2): rectangular sandwich plate
with composite skins

Pa(top)=+1Pa (m=n=1)
Pa(bottom)=-1Pa (m=n=1)

Figure 2: Geometry, lamination, materials and loads for the benchmark 2 (B2).

Benchmark 3 (B3): two-layered composite 0°/90°
cylinder

Pb (top)=+1Pa (m=n=2)
Pb (bottom)=-1Pa (m=n=2)

Figure 3: Geometry, lamination, materials and loads for the benchmark 3 (B3).
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Benchmark 4 (B4): three-layered composite
0°/90°/0° cylindrical shell

Pb (top)=+1Pa (m=n=1)
Pb (bottom)=0Pa

Figure 4: Geometry, lamination, materials and loads for the benchmark 4 (B4).

Benchmark 5 (B5): four-layered composite
0°/90°/0°/90° spherical shell

Pa(top)=+1Pa (m=n=1)
Pa(bottom)=0Pa

Figure 5: Geometry, lamination, materials and loads for the benchmark 5 (B5).
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Figure 6: No-dimensional displacements through the thickness direction for the five proposed bench-
marks.
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Figure 7: No-dimensional stresses through the thickness direction for the benchmark 1 (B1) about the
square sandwich plate with isotropic skins (a/h = 4).
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Figure 8: No-dimensional stresses through the thickness direction for the benchmark 2 (B2) about the
rectangular sandwich plate with composite skins (a/h = 4).
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Figure 9: No-dimensional stresses through the thickness direction for the benchmark 3 (B3) about the
two-layered 0◦/90◦ composite cylinder (Rα/h = 4).
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Figure 10: No-dimensional stresses through the thickness direction for the benchmark 4 (B4) about the
three-layered 0◦/90◦/0◦ composite cylindrical shell panel (Rα/h = 4).
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Figure 11: No-dimensional stresses through the thickness direction for the benchmark 5 (B5) about the
four-layered 0◦/90◦/0◦/90◦ composite spherical shell panel (Rα/h = 4).
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