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Dear Editor: 
We are sending the manuscript entitled “Size Effect in Heterogeneous Materials analyzed 

through a Lattice Discrete Element Method Approach”. This manuscript was already submitted 
in this journal with EFM_2019_972.  We know that this new version is a new presentation of our 
paper, on the other hand, we could also notice that only one out of the five reviewers did not 
recommend our paper to be published. For this reason, we have elaborated this detailed response 
to our Reviewers taking into account all the observations and comments presented done before 
and that were really useful to help us improve this new manuscript.

In the new version of the manuscript, a deep linguistic analysis and revision in English was 
carried out, as well as technical observations relevant to our study. We send you an updated 
version of our manuscript where all the necessary changes were introduced and indicated in blue. 
Furthermore, our responses to the Reviewers’observations are also included, under each 
observation we have added our response in italic.

Best Regards,

Luis Eduardo Kosteski
Corresponding Autor
Contact Aderess: Av. Tiarajú, 810, Alegrete, RS, CEP: 97546-550, Brazil
Fone/Fax: xx55-55- 3421-8400- internal 3019
e-mail: luiskosteski@gmail.com



Reviewer Response

Ref: EFM_2019_972

Title: Size Effect in Heterogeneous Materials analyzed through a Lattice 
Discrete Element Method Approach

Journal: Engineering Fracture Mechanics

Comments from the reviewers:

-Reviewer 1

In the present manuscript, a discussion of the results obtained by a Lattice 
Discrete Element Method (LDEM) is presented. A set of rock specimens of 
different sizes subjected to monotonically increasing stresses are simulated. 
The results are viewed in the perspective of the brittleness number, proposed 
by one of the Authors, to measure the brittleness level of the structure under 
investigation.

In the following some further explanations are requested to the Authors.

(1) In the experimental results a typical shape of the body specimens are 
utilized, however in the numerical results a prismatic specimen (Plane Strain 
Condition) are considered. The comparison in terms of the brittleness number 
is done in these both cases. Please, discuss the influence of the specimen 
shape and boundary condition in the computation of the brittleness number.

In the expresion (15) presented in the paper proposed originally by Carpinteri [6,7]

𝑠𝐸

(𝑍
𝑅)𝜀𝑢

≤
1
2,

the specimen gemometry/boundary conditions are considered by means of the slenderness 
relation z/R, but in the present paper this parameter is not explored. Notice that an observation 
about this issue was made in line 27-29 of page 16:

“The extension of the present study with the aim of verifying the influence of the slenderness, 
other geometric characteristics as well as other boundary conditions will be the focus of future 
works”

Some aspects about the LDEM Method could also be discussed:

(2) Was the influence of the mesh discretization and orientation in the results 
verified?

With the aim of taking into account the reviewer observation we suggest to add the following 
text in the second paragraph of the section 4.2. (pag. 18, line 24)



The influence of the mesh discretization is studied in Refs. [46, 60], moreover, in the 
simulations presented here, the discretization level is similar. In addition, in Ref. [67] was 
verified that the influence of the mesh rotation is marginal (less than 5%) in terms of global 
results and fracture configurations.

(3) Is it possible to consider more references where the validation of the 
numerical methodology has been carried out, showing the simulated 
experimental results, or the LDEM represent only qualitative results?

Several papers using this version of LDEM show in quantitative form the results. Related to 
this comment, in last paragraph of the introduction of the updated manuscript, we added the 
following text:

“…In Refs. [29-31, 36, 46, 51], LDEM simulations were discussed in which quantitative 
comparison with experimental results in terms of global parameters, such as displacement 
versus loads or final configurations, are presented.”

(4) Can this method capture the size effect? Are there any other studies 
carried out on this topic? In which way could the random nature of the material 
be introduced in the model?

Yes, there are there other studies on size effect. More specifically in Rios et al. 2004 [36], 
among others works, size effect captured with LDEM simulations are shown. This point is 
mentioned in the last paragraph of the introduction:

“... the study of the scale effect in quasi-brittle materials [36-42], …”

At the beginning of page 10, we modified the text to improve the information about the 
introduction of the random nature of the material data in LDEM:

In the model here implemented, the random values of  assigned to every element have 𝐺𝑓
statistical independence, that is, the random properties of one element do not depend on the 
properties of the other neighboring elements. This assumption is equivalent to consider that the 
correlation length is . Notice that when randomness is introduced in , indirectly 𝐿𝑐𝑜𝑟𝑟 = 0.3𝐿 𝐺𝑓
randomness is also introduced in  (see Eq. 12). In this way, the maximum strength of an 𝜀𝑝
element , which is directly related to point A in Figure 2, is also random. The 𝐹𝑚𝑎𝑥 = 𝐸𝐴𝑖𝜀𝑝
axial stress of the element will be: . 𝜎 ∗

𝑝 = 𝐸𝜀𝑝
Another alternative to introduce the random nature in the model is to consider geometric 

perturbation in the mesh, about this aspect see [61]. More detail about the LDEM formulation 
can be found in Ref. [50].

-Reviewer 2

In this manuscript, several sets of experimental and numerical results are 
reviewed with the aim to correlate the Carpinteri’s brittleness number 
obtained to predict the global behavior, which is interesting for the ductile, 
brittle, or ductile-to-brittle transitional behavior of the fracture of non-
homogeneous material. Frankly to say, the manuscript is very theoretical and 
must be familiar with the theory proposed by Carpinteri. The paper can be 
published if the following question can be answered.



1. The reference in this paper seems not so updated, the author should check 
whether there are new publications related to the research topic and updated 
them.

In the new version of the manuscript 4 new references have been added: 

[67] Birck G, Iturrioz I, Riera JD, Miguel LFF. Influence of mesh orientation in discrete element 
method simulations of fracture processes. J Strain Anal Eng Des. 2018, 53: 6, 400-407. 
https://doi.org/10.1177/0309324718775284

[60] Puglia VB, Kosteski LE, Riera JD, Iturrioz I. Random field generation of the material 
properties in the lattice discrete element method. J Strain Anal Eng, 2019, 54: 4, 236-246 
https://doi.org/10.1177/0309324719858849

[61] Iturrioz I, Riera JD, Miguel LFF. Introduction of imperfections in the cubic mesh of the truss-
like discrete element method. Fatigue Fract Eng M. 2014, 37: 5, 539-552. 
https://doi.org/10.1111/ffe.12135

[70] Birck G, Rinaldi A, Iturrioz I. The fracture process in quasi-brittle materials simulated using 
a lattice dynamical model. Fatigue Fract Eng Mater Struct. 2019, 42: 12, 2709-2724. 
https://doi.org/10.1111/ffe.13094

2. The highlights of this paper should be emphasized to make clear the 
contribution of this paper.

The highlights were rewritten in order to take into account the Reviewer’s observation

Carpinteri´s brittleness allows to identify specimen ductile-brittle global behavior.

Several experimental and numerical uniaxial tensile tests are done to verify the brittle number 
classification.

The use of this version of Lattice Element Method allows capturing the damage process in 
quasi-brittle materials.

This version of Lattice Element Method uses the brittleness number to calibrate the input 
parameters. 

3. The format of references is not uniformed and should be rechecked.

All the references have unified as indicated in the Guide for Engineering Fracture Mechanics 
Journal.

-Reviewer 3

This paper uses Lattice DEM to investigate size effects in brittle/ductile 
behavior. The paper is centered around the brittleness number, (a variation 
of flaw tolerance numbers defined in the classical Dugdale–Barenblatt model). 



The subject is clearly of interest to Engineering Fracture Mechanics but the 
manuscript has too much weaknesses to be considered for publication. I list 
hereafter a series of problems that I found in the paper, which overall support 
my recommendation to reject the paper.

The main weakness of the paper is that it is badly written. Consequently, it is 
very difficult to understand. The authors have not been careful in checking 
their manuscript for readability and English correctness. They should have 
given their manuscript to someone well versed in English. It should be a 
natural courtesy to the reviewer (and to the potential reader) to fix these 
issues before sending (too quickly) their manuscript. Overall the analysis is 
not of sufficient quality and does help in understanding the experimental 
results (in particular in relation with the brittleness number).

In the new version, we have improved our writing in English and we expect that the text could 
be understanding for the Reviewer.

Next, we will try to reply to the technical questions and propose some modifications in the text 
in order to improve the quality of our work by following the Reviewer’s observations:

Many statements are very unclear such as:

‘Despite this recommendation, in the present work the number S; is used in 
the context of quasi-brittle materials because it allows to emphasize some 
particular aspects related to the simulation results obtained with the lattice 
discrete element method.’

In the new version of this manuscript, this statement was replaced by the following one:

In the present work, the  instead of  parameter was used to measure the change of global 𝑠 𝑠𝐸
behavior in the specimens that were tested and consequently simulated by the model.

Fig. 2 seems to indicate that the local model cannot induce failure in tension. 
However the authors state that:“In this way, the failure in compression is 
induced by indirect traction”.

Considering Figure 2, which represent the local constitutive law F vs. strain, if the path is, e.g., 
OAP, the element is damaged. The local relationship for bars subject to compression has a 
linear behaviour.

Introducing the fracture energy as a random field, the random nature of the material can be 
considered. This behaviour produces also random characteristic strain p at a local level, and 
causes that, when a generic bar (i) is subjected to compression, the tensile strain generated by 
the Poisson effect in the weaker transversal bar situated close to the i-bar, reach the p value 
beginning to damage.

This process triggers the damage process and allows the structure to collapse. In quasi-brittle 
materials such as ceramic, rock, concrete, etc, where the tensile strength is about 1/10 times 
the compression strength, the mechanism described above is compatible with the experimental 
evidence.



In several papers carried out with a similar LDEM model, interesting quantitative results in 
terms of global strength vs. displacement curves and final configurations have been obtained. 
See, among others [30,46].

More generally, I found that it was very difficult to understand the model 
because the separation between local (elements) and macroscopic parameters 
is not clearly stated. The authors should have more clearly postulated which 
parameters are local and which are global.

This model of LDEM was explained in several papers published in several well-known journals. 
See for example:

[30] Kosteski LE, Iturrioz I, Cisilino AP, Barrios D'ambra R, Pettarin V, Fasce L, Frontini P. A 
lattice discrete element method to model the falling-weight impact test of PMMA specimens. 
Int J Impact Eng. 2016, 87, 120-131. https://doi.org/10.1016/j.ijimpeng.2015.06.011

[50] Birck G, Iturrioz I, Lacidogna G, Carpinteri A. Damage process in heterogeneous materials 
analyzed by a lattice model simulation. Eng Fail Anal. 2016, 70, 157-176. 
https://doi.org/10.1016/j.engfailanal.2016.08.004

[51] Da Silva GS, Kosteski LE, Iturrioz I. Analysis of the failure process by using the Lattice 
Discrete Element Method in the Abaqus environment. Theoretical and Applied Fracture 
Mechanics. 2020, 107, 102563. https://doi.org/10.1016/j.tafmec.2020.102563

[60] Puglia VB, Kosteski LE, Riera JD, Iturrioz I. Random field generation of the material 
properties in the lattice discrete element method. J Strain Anal Eng, 2019, 54: 4, 236-246 
https://doi.org/10.1177/0309324719858849

In some previous reviews of our works, we were criticized because we have the tendency to 
repeat the explanation of the LDEM formulation. However, and in order to improve our paper, 
we have considered the reviewer’s observation, thus, we have introduced lines 11-12 in page 
10:

“...More detail about the LDEM formulation can be found in Ref. [50].”

We have also modified the text on page 11 lines 10-20:

The LDEM model considers the following macroscopic parameters: the elastic modulus , the 𝐸
fracture energy , and the characteristic length . With these three parameters using Eq. 𝐺𝑓 𝑑𝑒𝑞
(12), the critical strain , where the bar force reaches its maximum value is computed (see Fig  𝜀𝑝
2). Multiplying  by the Eq. (3) and (4) the linear pre-peak relation in the elemental constitutive 𝐸
law (ECL), defined by , is indicated in Figure 2. The fracture energy  directly influences 𝐸𝐴𝑖 𝐺𝑓
in the area below the ECL, as it is indicated in Eq. (6). Furthermore, using Eq. (13) as illustrated 
in Fig. 2, the characteristic length of the material, , defines the post-peak branch in the ECL 𝑑𝑒𝑞
by means of the local parameter . Notice that not only , but also  depend on the 𝜀𝑟  𝜀𝑟 𝐸𝐴𝑖
discretization level.

The authors state that ‘a very clear brittle behavior could be defined when;is 
lower than 1, as seen for the F(= 0.74) specimen in the FELSER set.’ And 
reiterate this kind of statement on all the experimental curves. However, I 
made a quick (and anonymous) blind test (only showing the 
Force/displacement curves) to several colleagues in my department asking 



them to point out which curve is ductile and which is ‘clearly’ brittle in Tables 
1, 2 and 3. None of them (like me) was able to discriminate brittle and ductile 
behaviors. This is problematic as it shows that the criterion used for 
experiments on which the authors base their analysis (and model) is not sound 
enough.

To clarify the Reviewer’s observation we propose to introduce the following paragraph on 
pages 15 and 16, right below Table 4:

With the aim of categorizing the global behaviors in all the tests carried out, a typical brittle 
global response it is considered when:
a) considering tests under controlled displacement, after reaching the peak load, the global 

displacement is smaller than that corresponding to the peak load. As in the case of the (F) 
specimens of the FELSER sandstone set presented in Table 2;

b) considering tests under force control, after reaching the peak load, the behavior is 
characterized by a clear jump in the load, without any significant softening branch. The 
specimen (D), presented in Table 4, is an example of this second case.
On the other hand, a typical ductile global behavior is considered when the global post-

peak displacement is higher displacement corresponding to the peak load. The Felser tests 
from (A) to (C), presented in Table 2, are clear examples of this kind of global behavior.

Fig. 7, which is based on LDEM simulations is much clearer in this regard. It 
makes sense that the model leads to a better discrimination between brittle 
and ductile behaviors as it is based on simplifying assumptions. However, here 
the reader is left with the feeling that the experimental part does not support 
clearly the simulation results. In this respect, the fact that the critical value of 
s takes different values depending on the analysis (s= 0.7, 1, 1.5) does not 
clarify matters.

As a response to the Reviewr’s obersvation, we have added in the updated manuscript a new 
figure and the following comment on pages 21-22:

The experimental and numerical results in terms of the brittleness number , and global 𝑠
behavior (brittle-ductile transition), are shown in Figure 8. A global brittle behavior is 
considered if  is smaller than 0.7, a ductile one if  is higher than 1.5. A transition can be 𝑠 𝑠
considered if  is comprised in the interval [0.7, 1.5]. It should be noted that  is a lower 𝑠 𝑠 < 0.7
bound, but tests with brittle global behavior can occur with values above this limit. Furthermore, 
the ductile transition limit  shows a certain level of dispersion. The specimen shape and 𝑠 > 1.5
the influence of boundary conditions could be responsible for this dispersion. But despite this 
behavior, the limits s<0.7 and s>1.5 identify that the typical brittle-ductile transition take place 
in the specimens.



0 1 2 3 4 5 6 7

1.5

 Ductile global behavior 
 Transition behavior 
 Brittle global behavior 

Carpinteri's brittleness number s

0.7

Figure 8: Representation of the s values in experimental and numerical results.

I found that the coefficient of variation of Gf very arbitrary. No explanation for 
its value (or range of values) is given. The randomness of the simulated 
structure comes from this parameter and is thus of importance.

In other works presented by the authors values of CV(Gf)=40-50 % were used, with the aim to 
represent the behaviour of quasi-brittle material. In the Kosteski's Ph.D. Thesis [68] an 
exhaustive parametric study of the variability of Gf was carried out. Moreover, in several works 
developed by two of the authors of this paper, the influence of the fracture energy variability 
and other related aspects, such as the random nature of the material, are presented by using 
LDEM [30, 60, 61]. In the present paper simulations with different, CV(Gf) have been 
performed to study the sensitivity of s to Gf parameter.

Taking into account the Reviewer’s observation, we introduced the following sentences, on 
page 24 after Fig. 10, in the updated manuscript:

In Figure 11, it is possible to verify in which way the variability of the fracture energy  
CV (Gf) influences the brittleness number  computed using the LDEM formulation. The 𝑠
simulations presented in section 4.1 were carried out using CV (Gf)=40%, this value is usually 
employed to simulate quasi-brittle materials such as concrete and rocks (see e.g. [36], [38]). 
Moreover, a particular study about the influence of the variability CV (Gf) was conducted in 
[30]. 

The sentence ‘In this study, simulations with similar rupture pattern were 
used, specifically, those simulations of specimen in which at the end only one 
fissure propagated.’ Is problematic why would simulations with several cracks 
be discarded?

Down below, a figure that illustrates the difference between a plate where the localization 
process happens in one (blue line) or two cracks (red line) is represented. By this figure it is 
possible to understand the hight influence of this aspect in the shape of the post-peak curve. In 
our paper, the brittle-ductile transition behavior, by comparing the shape of the force vs. 
displacement responses, is defined; for this reason, it was avoided to consider the influence of 
other factors. This aspect could be analyzed in other research papers. In the present paper, are 
taken into account simulations were only one crack propagates in the collapse configurations. 
In the experimental results, no information was documented about this aspect. In Kosteski [68] 
this aspect was preliminarily studied.



Figure: Source [68]. Global curves LDEM simulated

With the aim of taking into account the Reviewer’s consideration, we have added some new 
sentences in the first part of page 21.

The simulations resulted in different fracture patterns that in some cases produced one, 
two or more cracks. It is worth noticing that the auto-similar configuration was used throughout 
this work. For this reason, simulations, in which only one macro-crack propagate, were 
considered. As it can be seen in Figure 5, b = 3.5m, there is more than one crack in the final 
configuration, but the other cracks or its bifurcation become stable and do not propagate to 
broke the specimen. When more than one crack propagates, the stress-strain curves present a 
different morphology.

I list a non-exhaustive list of sentences that at least unclear, grammatically 
incorrect or using incorrect words (fissure does not seem like the proper word 
for cracks in a journal like Engineering Fracture Mechanics).

For each case other alternative sentences, reported below, have been included in the new 
manuscript version.

1-The element constitutive relationship, presented in Figure 2, is defined in 
terms of parameters depending on the material, parameters () that do not 
depend on model discretization, and parameters () depending on the material 
properties and/or the model discretization.

The indicated sentence has been replaced the by the following one: 

The LDEM model considers the following macroscopic parameters: the elastic modulus , the 𝐸
fracture energy , and the characteristic length . With these three parameters using Eq. 𝐺𝑓 𝑑𝑒𝑞
(12), the critical strain , where the bar force reaches its maximum value, is computed (see Fig  𝜀𝑝
2). Multiplying  by the Eq. (3) and (4) the linear pre-peak relation, in the elemental constitutive 𝐸
law (ECL), is defined by , as indicated in Figure 2. The fracture energy  directly 𝐸𝐴𝑖 𝐺𝑓
influences in the area below the ECL, as is indicated in Eq. (6). Furthermore, using Eq. (13) as 
illustrated in Fig. 2, the characteristic length of the material, , defines the post-peak branch 𝑑𝑒𝑞



in the ECL by means of the local parameter . Notice that not only , but also  depend on 𝜀𝑟  𝜀𝑟 𝐸𝐴𝑖
the discretization level.

2-The deduction of this expression could be founded in

We have replaced this sentence for:

This deduction can be found in [45].

3-the critical fissure of size

We have replaced this term for:

The critical crack size

4-specific facture energy

We have replaced this term for:

fracture energy

5-in the head of the fissure

We have replaced this term for:

In the crack tip

6-a region of the dominium

This expression has been replaced by the following one: 

a dominium portion

7- are statistical independent

This expression has been replaced by the following one: 

Have statistical independence 

8-Another interesting feature of the method is that, although it uses a scalar 
damage law to describe the uniaxial behavior of the elements, the global 
model accounts for anisotropic damage, since it possesses elements 
orientated in different spatial directions.

The previous sentence has been replaced by this other:

Another interesting feature of the method is that, although it uses a scalar damage law to 
describe the uniaxial behavior of the elements, involves a global model that takes into account 
of the anisotropic damage. This is because, when the uniaxial bars, oriented in different 
directions, are damaged they modify their axial stiffness, allowing to represent an anisotropic 
global behavior.



-Reviewer 4

The paper is devoted to the important problem of the influence of the size of 
a sample from concrete and rocks on the mechanical properties of these 
materials. To analyze the size effect, the authors used the Carpinteri’s 
brittleness number estimated using literature experimental data for concrete, 
polystyrene, and rocks, as well as a numerical analysis method, the results of 
which showed a good agreement with the experimental data. The study is 
important both from a scientific and an applied point of view and can be 
recommended for publication taking into account the following comments.

1. As a parameter of brittleness, the authors used a coefficient in a known 
ratio connecting the specimen size with a parameter characterizing the size of 
the process zone. The authors know for sure that for the first time, 
requirements for the specimen size were proposed in [R.W. Boyle et al. 
Welding J. Research Suppl., 41, 428s (1962)], which were based on 
introduction of the correction for the plastic zone under plane deformation, 
and the ratio of the specimen thickness to the size of the zone was taken equal 
to 4.

Further this ratio was taken equal to 2.5 [W.F. Brown Jr. and J.E. Srawley, 
ASTM Special Technical publication, No.410, (1966)], and it was noted that 
testing samples without cracks to establish requirements for sample sizes lead 
to erroneous results.

In following works carried out on metals, this coefficient was refined by 
experimentally estimating the size of the plastic zone and studying the 
microrelief of fracture surfaces allowing it to be associated with the fracture 
mechanism. The value of specimen thickness was always taken as the 
specimen size, since its change has the largest effect on the change in the 
stress state.

In other words, there is a large history of the question of the coefficient in a 
known ratio relating the specimen size to a parameter characterizing the size 
of the process zone. It would be desirable if the authors briefly reflected this 
story in their paper.

We agree on the above comments of the Reviewer, and in order to take into account his 
observations, we propose to introduce new sentences in the updated manuscript, more 
specifically, in the first introductory paragraph:

In the literature, the scale effects were extensively studied to connect the fracture process 
zone with the specimen size, the pioneer works of Dugdale [1], Boyle [2], and Brown and 
Srawley [3] could be cited among others. More specifically, in the so-called quasi-brittle 
materials, such as concrete, this topic was also widely discussed. This kind of materials are 
chararacterized by a disordered microstructure, exhibits damage localization, and are unable to 
present plastic or hardening deformations, having a non-negligible fracture process zone 



compared to the structure size. Furthermore, it was observed that the structural behavior 
changes with the size of the analyzed specimen.

[1] Dugdale DS. Yielding of steel sheets containing slits. J Mech Phys Solids. 1960, 8:2, 100-104. 
https://doi.org/10.1016/0022-5096(60)90013-2.

[2] Boyle RW, Sullivan AM, Krafft JM. Determination of plane strain fracture toughness with 
sharply notched sheets. Welding J Res Suppl. 1962, 41, 428-432. 

[3] Brown Jr WF, Srawley JE. Plane strain crack toughness testing of high strength metallic 
materials. ASTM Special Technical publication, No. 410, ASTM, Philadelphia, Pa. 1966.

2. It is not always clear from the text of the paper which criterion the authors 
use when dividing tensile diagrams into those corresponding to brittle, 
quasibrittle and ductile failure.

To clarify this Reviewer’s observation, we have added the following paragraph, on page 15 
below Table 4:

With the aim of categorizing the global behaviors in all the tests carried out, a typical brittle 
global response it is considered when:
a) considering tests under controlled displacement, after reaching the peak load, the global 

displacement is smaller than that corresponding to the peak load. As in the case of the (F) 
specimens of the FELSER sandstone set presented in Table 2;

b) considering tests under force control, after reaching the peak load, the behavior is 
characterized by a clear jump in the load, without any significant softening branch. The 
specimen (D), presented in Table 4, is an example of this second case.

On the other hand, a typical ductile global behavior is considered when the global post-peak 
displacement is higher displacement corresponding to the peak load. The Felser tests from (A) 
to (C), presented in Table 2, are clear examples of this kind of global behavior.
When it is not possible to define a clear brittle, or ductile behavior, we consider this case as a 
global transition behavior, see, for example, specimen (A) of the Polystyrene specimens 
presented in Table 4.

So, it is not clear why the diagrams given in Tables 1 and 2 are classified as 
ductile or quasibrittle. Diagrams of the specimens with different sizes remain 
similar to each other.

In Table 1, only ductile and global transition behavior appear. In Table 2 a brittle behavior of 
the F specimens for the FELSER sandstone case is represented; moreover, transition and 
ductile global behavior appear in this set of tests. We believe that, with the description 
presented immediately above, the identification of brittle-ductile transition behavior will be 
easy to understand. In addition, in the new version of the manuscript, Figure 8 has been added 
to illustrate and better clarify the proposed classification. In this figure, all the tests presented 
in the paper have beeen categorized in function of the parameter s and the global aspect of the 
curve force vs. displacement response.

A decrease in the number of brittleness is obvious, however, the displacement 
and the fracture work corresponding to the area under the diagrams are not 
reduced, there is no information about the microrelief of fracture surfaces.



Establishing a comparison between the area below the force vs. displacement is not possible, 
and at least not directly. To carry out this comparison, we need to normalize this area with 
respect to its characteristic structural dimension. Notice also that, when the global behavior is 
brittle (if the displacement is not controlled during the test), the area under the force vs. 
displacement curve is not proportional to the released energy. In the instability branch, we 
have an interaction between dissipated-elastic and kinetic energy. See the following figure that 
illustrates this explanation. About the information of microrelief of fracture surface and final 
configuration aspect, some information about this topic was carried out in other works 
referenced below.

Figure: The generic global Force vs displacement response is presented, where D indicates the 
energy below the curve which is proportional to the dissipated energy, and E indicates the 
kinetic energy. If the displacement  is not controlled, the area below the curve, representing 
the total released energy, is proportional to D+E. Source: A. Carpinteri, G. Lacidogna, M. 
Corrado, E. Di Battista. Cracking and crackling in concrete-like materials: A dynamics energy 
balance. Engineering Fracture Mechanics 155 (2016) 130–144. 
http://dx.doi.org/10.1016/j.engfracmech.2016.01.013

As regards the Reviewer’s comment, we propose to add, in the updated version of the 
manuscript, the following paragraph on page 26, immediately before the conclusion:

In the present paper, a comparison between the global specimen behavior during damage 
process and the brittleness number is established. In [42],[50],[70] the link of the brittleness 
number with the dissipated energy and the final configurations obtained with LDEM 
simulations was also studied.

3. It would be desirable to present at the beginning of the paper the 
nomenclature of accepted designations.

In the updated version of the manuscript a nomenclature used in the paper was included.

-Reviewer 5
- Interesting paper. Maybe a revision for language issues would be suitable.

A detailed revision and correction of the language used in this manuscript was made.



1. Check in the 1st highlight the last name: “Carpintieri”?

This was corrected.

2. Also, instead of “let” I would suggest “allows to”

This was corrected.

3. 2nd highlight: “A version of a lattice element method use the brittleness 
number to explain their input parameters.” Should be “uses” (not “use”) but 
anyway this highlight is not very descriptive for the reader, could be replaced.

The highligths were replaced

4. Can (and how) the porosity be taken into account? Different diameters etc.

In the LDEM, it is possible to build the topology of the porosity by eliminating elements in 
certain specific regions mimicking the topology of the pores. On the other hand, the porosity 
could be simulated as a random damage field. As regards how to induce different types of 
random fields in LDEM see in:

[60] Puglia VB, Kosteski LE, Riera JD, Iturrioz I. Random field generation of the material 
properties in the lattice discrete element method. J Strain Anal Eng, 2019, 54: 4, 236-246 
https://doi.org/10.1177/0309324719858849

5. It is interesting that in Table 7, the increase of size results in increase of 
the variation coefficient but to stable strength values. Could the authors 
discuss this in more detail?

Taking into account the Reviewer’s observation, we propose to add the following sentences in 
the paper, more specifically, on page 22, lines 16-23.

In Fig. 9(a), it is clear that the size effect in the global ultimate stress is practically null. This 
effect could be seen in the values presented in Table 7. The difference between the maximum 
and minimum values of mean global stress is 1.23% and the variation coefficients do not exceed 
1.64%. The sensitivity of the global parameters with the size effect depends on several factors, 
such as the boundary conditions, and the random nature of the material input data. In Rios and 
Riera [36] experimental tests with different geometries and boundary conditions were simulated 
with LDEM, and the values of strength and its variability are reached with success.

6. In addition, why do the authors present the “displacement” and not the 
“strain”? Displacement will anyway be different since the specimen length 
changes.

All the experimental results presented in this paper and taken from the literature were showed 
in terms of displacement. For this reason, LDEM results were presented in this format.

7. Concerning the spontaneous fracture: does this model indicate that 
correlations may emerge between acoustic emission parameters and the final 



strength like it was shown experimentally in [Mpalaskas et al. Mechanical and 
fracture behavior of cement-based materials characterized by combined 
elastic wave approaches, Construction and Building Materials, 50, 2014, Pages 
649-656]?

Several works were presented by the authors about this topic. The LDEM method has shown 
skillfully how it is capable of simulating acoustic emission tests. Some of the authors published 
works as Ref. [34, 35, 48-50] using LDEM to simulate AE events. In the manuscript, the 
possibility of LDEM to simulate the acoustic emission tests is presented at the end paragraph 
of page 4.
The reference indicated by the reviewer is very interesting, thanks for the suggestion. 

“…and finally the acoustic emission events in quasi-brittle materials [34, 35, 48-50].”

To taking into account the reviewer observation we modified the last paragraph of the 
introduction.

Furthermore, it was observed that the structural behavior changes with the size of the 
analyzed specimen. Also the link between acoustic emission parameters and the ultimate 
strength was shown experimentally, among others by Mpalaskas [4, 5], and this relation could 
be proposed for better understand the damage process in quasi-brittle materials. 

[4] Mpalaskas AC, Matikas TE, Van Hemelrijck D, Papakitsos GS, Aggelis DG. Acoustic 
emission monitoring of granite under bending and shear loading. Archives of Civil and 
Mechanical Engineering. 2016, 16: 3, 313-324. https://doi.org/10.1016/j.acme.2016.01.006

[5] Mpalaskas AC, Thanasia OV, Matikas TE, Aggelis DG. Mechanical and fracture behavior of 
cement-based materials characterized by combined elastic wave approaches. Construction and 
Building Materials. 2014, 50, 649-656. https://doi.org/10.1016/j.conbuildmat.2013.10.022

8. Apart from comparing the final strength values between model and 
experiment, is it possible to compare also the cracking patterns? (E.g. 
branches of the cracks, point of crack initiation, extend of crack for specific 
load)

Yes, we have done several works where the ability of the LDEM when obtaining quantitative 
results is illustrated, see for example:

[30] Kosteski LE, Iturrioz I, Cisilino AP, Barrios D'ambra R, Pettarin V, Fasce L, Frontini P. A 
lattice discrete element method to model the falling-weight impact test of PMMA specimens. 
Int J Impact Eng. 2016, 87, 120-131. https://doi.org/10.1016/j.ijimpeng.2015.06.011

[46] Kosteski LE, Barrios D'Ambra R, Iturrioz I. Crack propagation in elastic solids using the 
truss-like discrete element method. I Int J Fract. 2012, 174, 139-161. 
https://doi.org/10.1007/s10704-012-9684-4.

9. Authors should try to enhance the practical side of the paper, how can this 
model be utilized?



The correlation between global behavior of the specimens, and the brittleness number (s) could 
be useful to define intervals of s where the specimens have a typical behavior of brittle-ductile 
transition. We consider that this aspect has been pointed out in the final conclusions of the 
paper. Moreover, the LDEM method was used to solve several problems in the field of 
Engineering. Examples of its applications were given in the last paragraphs of the introduction.



Highlights:

Carpinteri´s brittleness allows to identify specimen ductile-brittle global behavior.

Several experimental and numerical uniaxial tensile tests are done to verify the brittle 
number classification.

The use of this version of Lattice Element Method allows capturing the damage process 
in quasi-brittle materials.

This version of Lattice Element Method uses the brittleness number to calibrate the input 
parameters. 



1

1 Size Effect in Heterogeneous Materials analyzed through a Lattice 
2 Discrete Element Method Approach
3
4 Luis Eduardo Kosteskia, Ignacio Iturriozb, Giuseppe Lacidognac, Alberto Carpinterid

5
6
7 a Associate Prof., Eng., Dr., PPEng, UNIPAMPA, Alegrete, RS, Brazil, luiskosteski@unipampa.edu.br.
8 b Full Prof., Eng., Dr., PROMEC, UFRGS, Porto Alegre, RS, Brazil, ignacio@mecanica.ufrgs.br
9 c Associate Prof., Arch., Dr., Department of Structural, Geotechnical and Building Engineering, 

10 Politecnico di Torino, Turin, Italy, giuseppe.lacidogna@polito.it
11 d Full Prof. Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, 
12 Turin, Italy, alberto.carpinteri@polito.it
13
14 Corresponding author´s e-mail: luiskosteski@unipampa.edu.br
15

16 Abstract

17 In the Lattice Discrete Element Method (LDEM), different types of mass are considered 

18 to be lumped at nodal points and linked by means of one-dimensional elements with 

19 arbitrary constitutive relations. In previous studies on the tensile fracture behavior of rock 

20 samples, it was verified that numerical predictions of fracture of non-homogeneous 

21 materials using LDEM models are feasible and yield results that are consistent with the 

22 experimental evidence available so far. In the present paper, a discussion of the results 

23 obtained with the LDEM is presented. A set of rock specimens of different sizes, 

24 subjected to monotonically increasing simple tensions, are simulated with LDEM. The 

25 results were analyzed from the perspective of the brittleness number, proposed by Alberto 

26 Carpinteri, to measure the brittleness level of the structure under study. The satisfactory 

27 correlation between the experimental results and LDEM results confirms the robustness 

28 of this method as a numerical tool to model fracture processes in quasi-brittle materials.

29

30 Keywords: Heterogeneous Materials, Lattice Discrete Element Method, Size Effect , 

31 Brittleness Number.

32

33 Nomenclature
34 Cross-section area of the element to obtain the mechanical equivalence with the 𝐴𝑖

35 solid (i=l, longitudinal bars; i=d, diagonal bars).

36 Cross section to obtain the fracture equivalence with the solid material. 𝐴 ∗
𝑖

37 Dimensions that define the specimens’ geometries.𝑏, 𝐷,𝑑,𝑟

38 Characteristic length of the material.𝑑𝑒𝑞



2

1 Elastic constant: Young’s modulus and Poisson’s ratio, respectively.𝐸, 𝜈

2 ECL Elemental Constitutive Law.

3 Element axial force.𝐹

4 Internal and external vector forces.𝐹(𝑡), 𝑃(𝑡)

5 The peak force measured in each bar. 𝐹𝑚𝑎𝑥

6 Fracture Energy 𝐺𝑓

7 The critical stress intensity factor.𝐾𝑐

8 Length of the side of the cubic LDEM module.𝐿

9 The correlation length.𝐿𝑐𝑜𝑟𝑟

10 Length of the diagonal elements. 𝐿𝑑

11 LDEM Lattice Discrete Element Method.

12 Mass and damping matrices.𝑀, 𝐶

13 The critical crack size.𝑞

14 Structure characteristic length.𝑅

15 Both version of the brittleness numbers proposed by Carpinteri𝑠, 𝑠𝐸

16 Brittleness number computed in the context of LDEM.𝑠𝐿𝐷𝐸𝑀

17 w Displacement.

18 Nodal acceleration and velocity vectors.𝑥, 𝑥 

19 The shape coefficient.𝑌

20 Specimen length or span.𝑍

21 The slender coefficient of the specimen. 𝑍 𝑅

22 Characteristic displacements measured in the LDEM global stress-𝛿𝑐, 𝛿50, 𝛿𝑢

23 displacement responses.

24 Characteristic strain measured in each bar. 𝜀𝑝

25  Failure strain measured in each bar.𝜀𝑟

26  Strain linked with .𝜀𝑢 𝜎𝑝

27  Specific mass.

28  Stress.

29 Global maximum strength𝜎𝑝 

30 The stress that correspond with the 𝜎 ∗
𝑝 𝜀𝑝

31 , Mean value and variation coefficient.𝜇(.) 𝐶𝑉(.)

32
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1 1. Introduction

2 In the literature, the scale effects were extensively studied to connect the fracture 

3 process zone with the specimen size, the pioneer works of Dugdale [1], Boyle [2], and 

4 Brown and Srawley [3] could be cited among others. More specifically, in the so-called 

5 quasi-brittle materials, such as concrete, this topic was also widely discussed. This kind 

6 of materials are characterized by a disordered microstructure, exhibits damage 

7 localization, and are unable to present plastic or hardening deformations, having a non-

8 negligible fracture process zone compared to the structure size. Furthermore, it was 

9 observed that the structural behavior changes with the size of the analyzed specimen. Also 

10 the link between acoustic emission parameters and the ultimate strength was shown 

11 experimentally, among others by Mpalaskas [4, 5], and this relation could be proposed 

12 for better understand the damage process in quasi-brittle materials.

13 Carpinteri [6-10] proposed dimensionless parameters: the brittleness numbers  𝑠

14 and , to measure the structural brittleness that describes the susceptibility of cracks to 𝑠𝐸

15 propagate in unstable conditions. These numbers are related to the change of behavior 

16 with the structural size and depend on the fracture energy and the yielding strength of the 

17 material as well as on the characteristic dimension of the structure:

18        . (1)𝑠𝐸 =
𝐺𝑓

𝜎𝑝𝑅 ; 𝑠 =
𝐾𝑐

𝜎𝑝𝑅1/2

19 In these expressions, Kc is a measure of toughness, and Gf is a mechanical 

20 characteristic of brittle materials called fracture energy, following the nomenclature used 

21 by Carpinteri in his Cohesive Crack Model presented in [9, 11],  represent the𝜎𝑝

22 yielding or maximum stress, and  constitutes the characteristic structural dimension that 𝑅

23 defines the specimen’s size. If we consider that  and , then the 𝐾𝑐 = (𝐺𝑓𝐸)0.5 𝜎𝑝 = 𝐸𝜀𝑢

24 equivalence between the two adimensional numbers is:

25 , (2)𝑠𝐸 = 𝑠2𝜀𝑢

26 where  is the strain linked to .𝜀𝑢 𝜎𝑝

27 Both nondimensional numbers have been used in several scientific papers in the 

28 last three decades [12-16, among others]. In Carpinteri [6, 7], the characteristics of these 

29 parameters are presented in detail, and the recommendation that  is more adequate to 𝑠𝐸

30 be used for brittle or quasi-brittle materials and  for ductile materials is highlighted. In 𝑠

31 the present work, the  instead of  parameter was used to measure the change of global 𝑠 𝑠𝐸

32 behavior in the specimens that were tested and consequently simulated by the model.
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1 The numerical simulations of structures made of quasi-brittle materials have the 

2 implication that, in these materials, the characterization of the damage is often governed 

3 by more than one single crack. The studies of a set of small fractures interacting at 

4 different scale levels have great relevance when attempting to understand and simulate 

5 the behavior of these materials. As mentioned by Krajcinovic [17], accounting for each 

6 individual crack in the heterogeneous materials, assessing its influence on the structural 

7 response and ultimately on the structural failure, is not a task that can be approached by 

8 using conventional methods of analysis in solid mechanics. In this way, the methods, 

9 which are able to represent naturally the discontinuities, could be an alternative method 

10 of analysis. Among the non-conventional methods of continuous representation, 

11 Peridynamics is widely used. Such method belongs to the family of Discrete Element 

12 Methods. In this approach, the combination of nodes and associated discrete mass by 

13 means of an interaction law applied between neighbor nodes represents the continuum. 

14 The proposal carried out for the Peridynamics was used originally to represent the 

15 interaction force at the atomic level. Seleson [18] could be cited here as an example of 

16 this approach. Moreover, the same approach was also applied at large scale levels, all 

17 thanks to the pioneering work by Silling [19].

18 Another equivalent discrete approach is the Truss-like Discrete Element Method 

19 or Lattice Model. Various and relevant approaches study can be referred to; among others 

20 like the ones proposed by Schlangen and van Mier [20], Krajcinovic and Vujosevic [21], 

21 and, more recently, the works of Sagar and Prasad [22], Nagy et al. [23], and Rinaldi [24]. 

22 A review of the different versions of Discrete Element Method, including the Particle 

23 methods and Lattice approaches, is presented in Mastilovic and Rinaldi [25].

24 In the present paper, a version of the Lattice Discrete Element Method (LDEM) 

25 proposed by Riera [26] will be used. This method was developed originally to determine 

26 the dynamic response of plates and shells when failure occurs primarily by shear or 

27 tension under a shock wave caused by impact loading, as it is generally observed in 

28 concrete structures. 

29 In the LDEM, the quantities of mass are considered lumped at nodal points and 

30 linked by means of one-dimensional elements with arbitrary constitutive relations. The 

31 satisfactory correlation between the experimental results and the LDEM predictions 

32 confirms the robustness of this method as a numerical tool to model fracture processes in 

33 quasi-brittle materials. These findings were reported, among others, in a successful 

34 analysis of: shells subjected to impulsive loading [27-30], the fracture of elastic 
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1 foundations on soft sand beds [31], the generation and propagation of an earthquake [32-

2 35], the study of the scale effect in quasi-brittle materials [36-42]; the computation of 

3 fracture parameters in static and dynamic problems [43-46], the study of strength of brittle 

4 materials under high strain rates [47] and finally the acoustic emission events in quasi-

5 brittle materials [34, 35, 48-50]. In Refs. [29-31, 36, 46, 51], LDEM simulations were 

6 discussed in which quantitative comparison with experimental results in terms of global 

7 parameters, such as displacement versus loads or final configurations, are presented. The 

8 following section presents a brief description of the theoretical foundation of this method.

9

10 2. Lattice Discrete Element Method Formulation

11 The Lattice Discrete Element Method (LDEM), used in the present work, 

12 represents the continuum by means of a 3D lattice, that is, a periodic spatial arrangement 

13 of bars with amounts of mass lumped at their ends. Figure 1 shows the discretization 

14 strategy in which the stiffness of the LDEM elements, corresponding to an equivalent 

15 orthotropic linear elastic material, was obtained by Nayfeh and Hefzy [52]. The basic 

16 cubic module is built with twenty bars and nine nodes. Each node presents three degrees 

17 of freedom given by the spatial components of the displacement vector in the global 

18 reference system.

19

y

x(b)

z

(a)

L

20 Figure 1- LDEM discretization strategy: (a) basic cubic module, (b) generation of the 

21 prismatic body.

22

23 In case of an isotropic elastic material, the cross-sectional area  of the 𝐴𝑙

24 longitudinal elements (those defining the edges of the module and those that are parallel 

25 to the edges connected to the node located at the center of the module) in the equivalent 

26 discrete model is:
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1 (3)𝐴𝑙 = 𝜙𝐿2,

2 where  is the length of the side of the cubic module under consideration. The function 𝐿

3 , where  accounts for the effect of the 𝜙 = (9 + 8𝛿) (18 + 24𝛿) 𝛿 = 9𝜈 (4 ‒ 8𝜈)

4 Poisson’s ratio  [49, 30]. Similarly, the area  of the diagonal elements is:𝜈 𝐴𝑑

5 (4)𝐴𝑑 = 𝜙𝐿𝑑
2 =

2
3𝛿𝜙𝐿2,

6 were  is the length of the diagonal elements. The coefficient  in Eq. (4) 𝐿𝑑 =
2
3𝐿 2 3

7 accounts for the difference in length between the longitudinal and the diagonal elements. 

8 It is important to point out that, for , the correspondence between the 𝜈 = 0.25

9 equivalent discrete solid and the isotropic continuum is complete. On the other hand, for 

10 values of  discrepancies appear in the shear terms. These discrepancies are small 𝜈 ≠ 0.25

11 and may be neglected in the range . For values of  outside this range, a 0.20 ≤ 𝜈 ≤ 0.30 𝜈

12 different basic module should be used (see Ref. [52]). It is interesting to note that while 

13 no lattice model can exactly represent a locally isotropic continuum, it can also be argued 

14 that no perfect locally isotropic continuum exists in the physical world. Isotropy in solids 

15 is a bulk property that reflects the random distribution of the orientation of constituent 

16 elements. A comprehensive study on the effect of the LDEM lattice geometry on the value 

17 of the Poisson’s ratio can be found in Ref. [53].

18 The equations of motion are obtained from equilibrium conditions of all forces 

19 acting on the nodal mass, resulting in a system of equations of the form:

20 (5)𝑀𝑥 + 𝐶𝑥 + 𝐹(𝑡) ‒ 𝑃(𝑡) = 0,

21 where and  are, respectively, the nodal acceleration and velocity vectors;  𝑥 𝑥 𝑀

22 and  are the mass and damping matrices, respectively, and the vectors  and  𝐶 𝐹(𝑡) 𝑃(𝑡)

23 convey the nodal internal and external forces. Since  and  are diagonal, the equations 𝑀 𝐶

24 in Eq. (5) are not coupled, and they can be easily integrated in the time domain using an 

25 explicit finite difference scheme. 

26 It is worth noting that, since the nodal coordinates are updated at each time step, 

27 large displacements are accounted for naturally. The convergence of LDEM solutions in 

28 linear elasticity and elastic instability problems was verified by [32], among others.

29 The irreversible effects of crack nucleation and propagation that occur in brittle 

30 or quasi-brittle materials were taken into account by [54], and more recently by [45], 

31 through the introduction of a non-linear constitutive model that reduces the element load 
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1 carrying capacity. More details of this implementation can be found in [43-46, 54], among 

2 others.

3 Based on Hillerborg’s theory [55], the bilinear model for quasi-brittle materials 

4 used in this work is shown in Figure 2. In case of tensile loads, the area under the force - 

5 strain curve (the area of the OAB triangle in Figure 2) is the energy density necessary to 

6 fracture the area of element influence, the fracture energy. Thus, for a given point P on 

7 the force - strain curve, the area of the OPC triangle represents the reversible elastic 

8 energy density stored in the element, while the area of the OAP triangle is the dissipated 

9 fracture energy density. One element fails and loses its load carrying capacity when the 

10 dissipated energy density equals the fracture energy. 

11

Energy dissipated 
by Damage, ED

Strain Energy, ES

EAi

F


p

P

O

A

C
B

r 

12 Figure 2: Bilinear constitutive model with material damage.
13
14 In the case of compressive loads, the material behaves in a linear elastic manner. 

15 In this way, the failure in the compression is induced by indirect traction. In quasi-brittle 

16 materials, this assumption is reasonable because its ultimate strength in compression is 

17 usually five to ten times larger than that in tension [56].

18 In the constitutive model presented in Figure 2,  is the element axial force, and 𝐹

19  the cross-section area of the element, depending whether longitudinal or diagonal 𝐴𝑖

20 element is considered, as in Eq. (3) and Eq. (4). In this model, the fracture energy per unit 

21 area coincides with the material fracture energy, .𝐺𝑓

22 The so called critical strain , as illustrated in Figure 2, is the maximum strain 𝜀𝑝

23 before damage initiation. The critical strain is a micro-parameter, that is, a parameter that 

24 governs the constitutive law at the elemental level. The limit strain  is the strain value  𝜀𝑟

25 for which the elements lose its load carrying capacity (point B in Figure 2). The limit 

26 strain is much greater than or equal to the critical strain. This value is calculated to satisfy 
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1 the fact that the dissipated energy density released when the element fail must be equal 

2 to the multiplication of the equivalent fracture area of the element, , times the  fracture 𝐴 ∗
𝑖

3 energy, , divided by the element length, , that is:𝐺𝑓 𝐿

4 (6)∫𝜀𝑟
0 𝐹(𝜀)𝑑𝜀 =

𝐺𝑓𝐴 ∗
𝑖

𝐿𝑖
.

5 The index i in the expression indicates it either refers to longitudinal or the diagonal 

6 elements.

7 The area below the bilinear model is  then, the final strain defined for 𝜀𝑟𝜀𝑝𝐸𝐴𝑖/2,

8 the element , illustrated in the Figure 2, is designated as:𝜀𝑟

9 (7)𝜀𝑟 =
𝐺𝑓

𝜀𝑝𝐸(𝐴 ∗
𝑖

𝐴𝑖 )(2
𝐿𝑖),

10 denotes the equivalent fracture area of each element defined in order to satisfy the 𝐴 ∗
𝑖  

11 condition that the energy dissipated by the fracture of the continuum and by its discrete 

12 representation are equal, . This deduction can be found in [45]. It should be 𝐴 ∗
𝑖 =

3
22 𝐿𝑖

2 

13 noted that  depends on the material properties and on the level of discretization.𝜀𝑟

14 Young's modulus , the stress intensity factor  and the critical stress  are 𝐸 𝐾𝑐 𝜎𝑝 

15 related by the classical fracture mechanic expression [57] given below: 

16 (8) 𝐾𝑐 = 𝜎𝑝 𝑌 𝜋𝑞,

17 in which  is a parameter that accounts for the influence of the boundary conditions and 𝑌

18 the orientation of the critical crack size . If it is assumed that the behavior up to the 𝑞

19 beginning of the rupture is linear, then  and, recalling the equivalence between 𝜎 ∗
𝑝 = 𝐸𝜀𝑝

20  and the fracture energy , we obtain the expression: 𝐾𝑐 𝐺𝑓

21 (9)𝐺𝑓𝐸 = 𝐸𝜀𝑝𝑌 𝜋𝑞.

22 This assumption is very important for this development because the tension 

23 obtained ( ) is not the global maximum strength , as defined in Eq. (1), but 𝜎 ∗
𝑝 = 𝐸𝜀𝑝 𝜎𝑝 

24 instead, is a local or elemental maximum.

25 In order to simplify Eq. (9), an equivalent length is defined as follows: 𝑑𝑒𝑞 

26 (10) 𝑑𝑒𝑞 = 𝑞𝜋𝑌2.

27 Substituting Eq. (9) in (10), then:

28 (11) 𝑑𝑒𝑞 =
𝐺𝑓

(𝜀𝑝)2𝐸

29 Eq. (11) indicates that  may be regarded as a material property, since it does not  𝑑𝑒𝑞

30 depend on the discretization level, representing in fact a characteristic length of the 
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1 material (similar as the width of the plasticity region in the crack tip in the Dugdale 

2 model). 

3 It also is possible to isolate  from the Eq. (11) to obtain:𝜀𝑝

4 , (12)𝜀𝑝 =
𝐺𝑓

𝑑𝑒𝑞𝐸 

5 and replacing (11) in  Eq. (7) it is found:𝜀𝑟

6 (13)𝜀𝑟 = 𝜀𝑝𝑑𝑒𝑞(𝐴 ∗
𝑖

𝐴𝑖 )(2
𝐿𝑖),

7 Eq. (12) shows that maintaining  and constant, when the  increases, a more ductile 𝐸 𝐺𝑓 𝑑𝑒𝑞

8 behavior is expected. The area below the elemental constitutive relation (see Fig. 2) is 

9 linked to , then, if this parameter remains constant, the decrease of  has to be 𝐺𝑓 𝜀𝑝

10 compensated by increasing the value of to maintain the area below the curve. 𝜀𝑟 

11 When  is equal to , the minimum area of bilinear constitutive model is 𝜀𝑝 𝜀𝑟

12 obtained, that is, the limit relation between the equivalent length and the element length, 

13 for longitudinal elements, is found to be . In some way, from the Eq. (13) it is   𝑑𝑒𝑞 ≥
15
22𝐿

14 possible to say that , that is,  is related to the bilinear constitutive 𝜀𝑟 𝜀𝑝 ∝ 𝑑𝑒𝑞 𝐿 𝑑𝑒𝑞 𝐿

15 model. If the constitutive model is “brittle” (  next to ),  will be small, however, 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

16 if the constitutive model is “ductile” (  much larger than )  will be higher.𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

17 It can be noticed that a characteristic length as material parameter is also discussed 

18 in another version of the discrete element method called Peridynamics, proposed by 

19 Silling et al. [58]. In this method, there is a set of nodes where the mass are discretized 

20 and linked with bars, moreover, the level of neighboring among nodes is given by a 

21 material parameter called horizon. This parameter depends on the discretization level 

22 used to define the quantity of nodes linked to one and another. The horizon physical 

23 meaning is analogous to the meaning of the  in the version of the Discrete Element 𝑑𝑒𝑞

24 Method used in the present work. 

25 Taylor [59] considers that a breaking criterion is fulfilled when a dominium 

26 portion, defined by a characteristic dimension, reaches the critical level of stress. In this 

27 approach, both parameters are considered as material parameters. The link between the 

28 characteristic distance of this author and the  is evident.𝑑𝑒𝑞

29 The randomness of the model is introduced considering  as a random field with a 𝐺𝑓

30 Weibull density function characterized by its mean value  and variation coefficient 𝜇(𝐺𝑓)
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1 . Moreover, it is necessary to consider the spatial correlation function of this 𝐶𝑉(𝐺𝑓)

2 random parameter. How to consider the random nature in the model could be explained 

3 in [30, 60]. 

4 In the model here implemented, the random values of  assigned to every element 𝐺𝑓

5 have statistical independence, that is, the random properties of one element do not depend 

6 on the properties of the other neighboring elements. This assumption is equivalent to 

7 consider that the correlation length is . Notice that when randomness is 𝐿𝑐𝑜𝑟𝑟 = 0.3𝐿

8 introduced in , indirectly randomness is also introduced in  (see Eq. 12). In this way, 𝐺𝑓 𝜀𝑝

9 the maximum strength of an element , which is directly related to point A 𝐹𝑚𝑎𝑥 = 𝐸𝐴𝑖𝜀𝑝

10 in Figure 2, is also random. The axial stress of the element will be: . Another 𝜎 ∗
𝑝 = 𝐸𝜀𝑝

11 alternative to introduce the random nature in the model is to consider geometric 

12 perturbation in the mesh, about this aspect see [61]. More detail about the LDEM 

13 formulation can be found in Ref. [50].

14 Below, several points are explained to clarify the meaning of the parameters used in 

15 the definition for the constitutive law of the LDEM model:

16 (i) The concept of the brittleness number  in the context of LDEM is introduced with the 𝑠

17 aim of showing evidence of the physical meaning of the parameter  previously 𝑑𝑒𝑞

18 defined. 

19 If we rewrite the Eq. (1) that introduces the brittleness number  proposed by 𝑠

20 Carpinteri [6], we consider that  and recalling the equivalence between  𝜎𝑝 = 𝜎 ∗
𝑝 𝐾𝑐

21 and the fracture energy , the expression of  in the context of the LDEM 𝐺𝑓 𝑠

22 formulation will be:

23 (14)𝑠𝐿𝐷𝐸𝑀 =
𝐾𝑐

𝜎 ∗
𝑝 𝑅1/2 =

𝐺𝑓𝐸

𝐸𝜀𝑝𝑅1/2 =
𝑑𝑒𝑞

𝑅 .

24 From this expression it can be interpreted that, if a crack of a size >  appears 𝑑𝑒𝑞

25 during the damage process in a structure with a characteristic dimension , it will 𝑅

26 propagate in an unstable form, suggesting a brittle global structural behavior. 

27 However, this situation will only be possible if is lower than . If this condition 𝑑𝑒𝑞 𝑅

28 is not fulfilled, it will not be possible to have a crack with a dimension similar to , 𝑑𝑒𝑞

29 because there is not enough space in the structure for crack propagation. In the latter 

30 situation, the structure will have a ductile behavior during its damage process. The 

31 structure boundary condition influences this relation but it does not change the 

32 general tendency.
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1 The ratio between Eq. (1) and (14) allows writing the relationship between the 

2 traditional expression of the brittleness  with its definition in the context of LDEM. 𝑠

3 As it was previously emphasized, the difference resides in the definition of : in the 𝜎𝑝

4 classical expression of ,  is the stress value in which the material collapses, while 𝑠 𝜎𝑝

5 in the  definition,  is the axial stress of the elements. The ratio  𝑠𝐿𝐷𝐸𝑀 𝜎𝑝 = σ ∗
𝑝

𝑠 𝑠𝐿𝐷𝐸𝑀

6 is a function of the statistical and spatial distribution of the random field that 

7 characterizes , and the shape of the elemental constitutive law used. At the end of 𝐺𝑓

8 the present work, a further comment about this ratio is provided. 

9 (ii) In contrast to the usual practice used in the Finite Element Method, the constitutive 

10 relationship in the LDEM is not only a function of the material properties. The LDEM 

11 model considers the following macroscopic parameters: the elastic modulus , the 𝐸

12 fracture energy , and the characteristic length . With these three parameters 𝐺𝑓 𝑑𝑒𝑞

13 using Eq. (12), the critical strain , where the bar force reaches its maximum value  𝜀𝑝

14 is computed (see Fig 2). Multiplying  by the Eq. (3) and (4) the linear pre-peak 𝐸

15 relation in the elemental constitutive law (ECL), defined by , is indicated in 𝐸𝐴𝑖

16 Figure 2. The fracture energy  directly influences in the area below the ECL, as it 𝐺𝑓

17 is indicated in Eq. (6). Furthermore, using Eq. (13) as illustrated in Fig. 2, the 

18 characteristic length of the material, , defines the post-peak branch in the ECL by 𝑑𝑒𝑞

19 means of the local parameter . Notice that not only , but also  depend on the 𝜀𝑟  𝜀𝑟 𝐸𝐴𝑖

20 discretization level.

21 (iii) Another interesting feature of the method is that, although it uses a scalar damage 

22 law to describe the uniaxial behavior of the elements, involves a global model that 

23 takes into account of the anisotropic damage. This is because, when the uniaxial bars, 

24 oriented in different directions, are damaged they modify their axial stiffness, 

25 allowing to represent an anisotropic global behavior.

26

27 3. Experimental background

28 The results obtained by Carpinteri and Ferro [62, 63], van Vliet [64] as well as 

29 van Vliet and van Mier [65], all of whom have studied the scale effects on tensile strength 

30 of concrete and rock, are used to explore the link between the brittleness number, , 𝑠

31 proposed by Carpinteri [6, 7] and the global behavior obtained in the cited cases that could 

32 be classified as ductile or brittle. Experimental results obtained by the authors over 

33 expanded polystyrene samples are also described and analyzed.
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1 3.1 Carpinteri and Ferro Results

2 Carpinteri and Ferro [62, 63] and Carpinteri and Maradei [65] carried out two sets 

3 of tests with specimens of several sizes. The Young’s Modulus was measured from the 

4 global stress versus strain curves, at around 35GPa for the two sets. The material 

5 parameters and the brittleness number values , computed using Eq. (1), are presented in 𝑠

6 Table 1. The characteristic dimension  was considered in the present case as the 𝑅

7 dimension of the specimen neck, . 𝑑

8 In both series, the specimen with characteristic size  smaller than 100 mm 𝑑

9 showed a ductile behavior, whereas specimens with  larger than 200 mm showed a 𝑑

10 quasi-brittle behavior. In both sets of results  <1.4 indicates a quasi-brittle global 𝑠

11 behavior

12

13 Table 1: Material parameters, the brittleness number computed and the curves used as 
14 sources of information for the experimental sets 1 and 2 presented by Carpinteri and 
15 Ferro [62, 63]. (E=35 GPa).

d [mm] p 
[MPa]

Gf 
[N/m] s Experimental Results Specimen Geometry

Set 1

50 4.25 83 1.79

100 3.78 102 1.58

200 3.64 142 1.37 0 40 80 120 160
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60

80

d = 100mm
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rc

e 
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]

Displacement [m]

d = 200mm

d = 50mm

Set 2

25 4.79 147 2.99

50 4.56 257 2.94

100 4.37 236 2.08

200 3.80 158 1.38

400 3.72 286 1.34
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16

17

18 3.2 van Vliet and van Mier’s Results

19 van Vliet [64] performed three sets of tests of specimens using different 

20 dimensions, as is shown in Fig. 3. The first set was conducted by using concrete stored in 

21 the laboratory in a dry environment, called the DRY set. The second set also was with 
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1 concrete, however stored in a climate room, called the WET series. Finally, the third set 

2 of specimens consists of Felser sandstone specimens called FELSER.

3 For the calculus of the brittle number, the fracture energy  measured 𝐺𝑓

4 extrapolating the stress opening curve (-w) was used. The material parameters and the  𝑠

5 values computed are presented in Table 2. In the present cases, the characteristic 

6 dimension  to compute the brittleness number  with the Eq. (1) is , the specimen 𝑅 𝑠 0.6𝐷

7 neck, as could be appreciated in Fig 3.

8

9
Type A B C D E F

D [mm] 50 100 200 400 800 1600
r [mm] 36.25 72.5 145 290 580 1160

10 Figure 3. Specimen shape and dimensions for van Vliet [64] adopted size range.

11

12 For all the van Vliet experiments, represented in Table 2, it is possible to observe 

13 an apparent change in the global behavior for specimen with brittle number  near to 1.5. 𝑠

14 For  values lower than 1.6, specimen F ( = 1.34) for the DRY set, specimen D ( = 1.57) 𝑠 𝑠 𝑠 

15 for the Wet set and specimens D (  = 1.48), E (  = 1.07) and F (  = 0.74) for the FELSER 𝑠 𝑠 𝑠

16 set, the global response seems to be brittle. Finally, for  values higher than 1.6, a clearly 𝑠

17 ductile global response is observed.

18 In fact, it is possible to consider that with  between 2 to 1 we are in a transition 𝑠

19 zone, and a very clear brittle behavior could be defined when  is lower than 1, as seen 𝑠

20 for the F(  = 0.74) specimen in the FELSER set.𝑠

21
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1 Table 2: Material parameters and brittleness number computed for the van Vliet [64] 
2 specimens. 

Type p 
[MPa]

Gf 
[N/m]

E 
[GPa] s

DRY set

A 2.54 97.0 88.42 6.66

B 2.97 125.7 38.5 3.02

C 2,75 124.2 39.41 2.32

D 2.30 125.2 42.80 2.05

E 2.07 142.3 38.25 1.63

F 1.86 141.1 42.55 1.34
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WET set

A 2.17 91.1 40.48 5.11

B 2.23 99.6 39.80 3.64

C 2.48 88.9 42.38 2.26

D 2.37 100.4 33.25 1.57 0 100 200 300
0

20

40

60
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e 
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]

Displacement [m]
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FELSER sandstone set

A 0.82 76.7 4.75 4.25

B 1.22 111.3 7.90 3.14

C 1.01 93.8 6.87 2.29

D 0.96 135.1 3.60 1.48

E 1.30 143.9 6.50 1.07

F 1.20 93.2 8.23 0.74
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3

4 3.3 Expanded polystyrene experimental results

5 In the following section, a set of tests carried out by the authors on expanded 

6 polystyrene are presented. The material was submitted to direct tensile stress using 

7 specimens with the same geometry, but different sizes compared to the ones used by Van 

8 Vliet [64]. The tests were carried out in a Universal Machine Test Shimadzu AGS - X 5 

9 kN in the Federal University of Pampa - Brazil. 

10 In Table 3 the dimensions of the body tests called A, B, C and D are presented. 

11 Four tests were conducted for each configuration. For all the four specimen geometries, 

12 the thickness was always 9 mm. The specimens were fixed at the ends, as illustrated in 
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1 Table 3 by applying the prescribed displacement at the top end at a constant displacement 

2 rate of 0.0333 mm/min.

3

4 Table 3. Body test dimensions.
Type A B C D

D [mm] 10 20 30 45
r [mm] 7.25 14.5 21.75 32.63

5

6 Fracture energy  equal to 25N/m, value also adopted by Colpo et al. [42], was  𝐺𝑓

7 used for the calculus of the brittleness number by using Eq. (1). These results are 

8 presented in Table 4. As done in previous tests, the specimen characteristic length  was 𝑅

9 considered to be equal to the neck specimen, .0.6𝐷

10 A similar tendency, to what was observed in previous cases, was also appreciated 

11 in the results obtained using expanded polystyrene. When the  value is lower than 1, the 𝑠

12 global stress curve clearly shows a brittle behavior, and when the results of  are between 𝑠

13 the interval 2.0 to 1.0, a transition behavior is observed. 

14

15 Table 4: The brittleness number computed for the set of test carried out over expanded 
16 polystyrene specimens. 

Type p
[MPa]

CV
[%]

E
[N/mm2]

CV
[%] s

A 0.049 21.4 0.89 12.1 1.24

B 0.059 3.4 1.73 8.4 1.02

C 0.060 2.5 2.01 12.8 0.88

D 0.058 10.4 2.21 9.3 0.78
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17

18 With the aim of categorizing the global behaviors in all the tests carried out, a 

19 typical brittle global response it is considered when:
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1 a) considering tests under controlled displacement, after reaching the peak load, the 

2 global displacement is smaller than that corresponding to the peak load. As in the 

3 case of the (F) specimens of the FELSER sandstone set presented in Table 2;

4 b) considering tests under force control, after reaching the peak load, the behavior is 

5 characterized by a clear jump in the load, without any significant softening branch. 

6 The specimen (D), presented in Table 4, is an example of this second case.

7 On the other hand, a typical ductile global behavior is considered when the global 

8 post-peak displacement is higher displacement corresponding to the peak load. The Felser 

9 tests from (A) to (C), presented in Table 2, are clear examples of this kind of global 

10 behavior.

11 When it is not possible to define a clear brittle, or ductile behavior, we consider 

12 this case as a global transition behavior, see, for example, specimen (A) of the Polystyrene 

13 specimens presented in Table 4.

14 It is important to highlight here that, in Carpinteri [6, 7], the author reaches the 

15 conclusion that, for specimens subjected to tension or compression, the following 

16 equation

17 (15)
𝑠𝐸

(𝑍
𝑅)𝜀𝑢

≤
1
2,

18 defines the condition for Snap-Back instability that governs the global mechanical 

19 behavior. In the Eq. (15),  is the specimen length or span and  represents the 𝑍 𝑍 𝑅

20 slenderness. For the cases studied in the present work,  is always considered close to 𝑍 𝑅

21 1. Remembering the equivalence given between  and  presented in Eq. (2), Eq. (15) 𝑠𝐸 𝑠

22 could be rewritten in terms of  as , i.e.  ~ 0.7, a result that could be 𝑠 𝑠2 ≤ 1/2 𝑠 ≤ 1/ 2

23 considered as a lower bound for the numerical results presented in the following section. 

24 However, in the three experimental results presented, the shape of the specimens 

25 considered is not prismatic. Therefore, the difference in shape could explain that, in the 

26 described conditions, the transition to the brittle behavior seems to be defined by  ≤1 𝑠

27 instead of  ≤0.7. The extension of the present study with the aim of verifying the 𝑠

28 influence of the slenderness, other geometric characteristics as well as other boundary 

29 conditions will be the focus of future works.

30
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1 4 LDEM simulations: rock specimens with different sizes subjected to uniaxial 

2 tensile stress

3 4.1 Model description 

4 A specimen group of heterogeneous material was simulated being fixed at their 

5 lower face and subjected to monotonically increasing displacements at the nodes on their 

6 upper faces. In all cases, nodal displacements in the normal direction to the middle surface 

7 were restrained in order to simulate plane strain conditions. The specimens were analyzed 

8 up to the complete failure. The specimen side b ranges between an interval of 0.05 and 

9 3.50m. The smallest LDEM array that leads to satisfactory results consists of 10×10×1 

10 cubic modules with 1026 DOF which were used for the smallest (0.05m) model. Whereas 

11 the 3.50m model consists of 700×700×1 cubic modules with 1472802 DOF, thus, 

12 constituting the largest specimen used in this study. Table 5 shows the basic dimensions 

13 of the samples, while Table 6 indicates the relevant material properties. 

14

15 Table 5: The dimensions of the LDEM models studied.
Specimen 1 2 3 4 5 6 7 8 9 10 11 12 13

b (m) 0.05 0.075 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00 1.50 3.50
Cells 10 15 20 30 40 50 60 80 100 150 200 300 700

16

17 Table 6: Relevant rock (granite) material properties and LDEM parameters.
Material Properties Value

E  (Young’s modulus) 75 GPa
  (specific mass) 2700 kg/m3

  (Poisson coefficient) 0.25
LDEM Properties Value

L  (basic modulus length) 0.005 m
deq 1.465 m

  (Expected value of  fracture energy)𝜇(𝐺𝑓) 1300 N/m
CV(Gf)  (coefficient of variation of Gf ) 40%
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r = 2.207x10-2
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1 It is important to note that in the simulations, the expected value of the fracture 

2 energy, , was considered as a mean value for all the sizes being simulated, instead 𝜇(𝐺𝑓)

3 of considering it as a variable with the size scale.

4 The layout of the specimens showing their relative size and boundary conditions 

5 is shown in Figure 4. It should be noticed that the fracture energy  is modelled as a 𝐺𝑓

6 random field using the properties indicated in Table 6. The probability distribution of  𝐺𝑓

7 was considered as a Weibull function with a correlation length equal to , 𝐿𝑐𝑜𝑟𝑟 = 0.3𝐿

8 which is related to the material microstructure. As the material properties are associated 

9 with a statistical distribution, each simulation leads to a different strength and a different 

10 stress-strain curve. For this reason, four simulations were carried out for each size 

11 specimen in order to obtain representative results for each size specimen. As explained 

12 before, the correlation length used in this work is small, then the random values of  𝐺𝑓

13 assigned to every bar are statistically independent, that is, the properties of one bar do not 

14 depend on the properties of the neighbor ones. 
15

16
17 Figure 4. Relative size of the specimens and boundary conditions considered.

18
19 4.2 Results 

20 One representative sample of the final simulated configuration for each size 

21 considered in the study is shown in Figure 5, in which the colors cyan, orange, and red 

22 represent undamaged, damaged, and totally broken (failed) elements, respectively. The 

23 sizes of the specimens are indicated in Figure 4. 

24 The influence of the mesh discretization is studied in Refs. [46, 60], moreover, in 

25 the simulations presented here, the discretization level is similar. In addition, in Ref. [67] 
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1 was verified that the influence of the mesh rotation is marginal (less than 5%) in terms of 

2 global results and fracture configurations.

3

b=0.05m b=0.075m b=0.10 b=0.15m b=0.20m

b=0.25m b=0.50m b=0.75m b=1.50m b=3.50m
4

5 Figure 5. Damage distribution and rupture configuration of specimens of various sizes 

6 subjected to applied displacements inducing uniaxial tension. The characteristic 

7 specimen size b varies between 0.05 m and 3.5 m. The broken bars are indicated in red, 

8 the damaged bars in orange and the undamaged bars in cyan.

9

10 The resulting stress displacement curves for all simulations of the =0.20m 𝑏

11 specimens, as well as the average curve, are shown in Figure 6. In this figure, the main 

12 parameters that characterize the stress displacement curves are represented, in which  𝜎𝑝

13 denotes the ultimate or maximum global stress,  represents the critical displacement, or 𝛿𝑐

14 displacement related to ultimate stress, and  represents the ultimate displacement or the 𝛿𝑢

15 displacement at the point where the strength is totally exhausted which has been defined 

16 for practical purposes as the displacement when the stress decreases below 2% of the 

17 maximum stress, . This notation is applicable without any restriction to specimens with 𝜎𝑝

18 sides smaller than 0.4m. For specimens with  equal to 0.4m or larger, failure occurs in a 𝑏

19 brittle manner and the ultimate displacement  cannot be distinguished from the critical 𝛿𝑢

20 displacement . Figure 6 also shows the displacement defined as , that is, the 𝛿𝑐 𝛿50

21 displacement related to 50% of the rupture stress.
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2 Figure 6. Curves for the mean vertical stress at lower support versus mean displacement 

3 for the b=0.20m rock specimen obtained from four simulations (black) and the average 

4 curve ones (blue).

5

6 In Figure 7(a) the global displacement versus mean stress curve for all the sizes 

7 simulated with LDEM are shown. In Fig. 7(b) the same results are presented considering 

8 the global displacement in a Log scale. In these figures, it is possible to see how the curves 

9 trend changes: specimens smaller than 0.25 m show a ductile behavior (black lines), 

10 specimens larger than 0.75 m present a brittle behavior (gray lines), whereas specimen 

11 sizes between 0.25 and 0.75 m show a transition between ductile and brittle behavior (red 

12 lines). 
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15 Figure 7. a) Displacement versus stress and b) log displacement versus stress curves for 

16 different size specimens. Ductile behavior when b<0.25 (black curves), brittle behavior 

17 when b>0.75m (gray curves), transition ductile-to- brittle behavior when b belongs to 

18 the interval [0.25, 0.75] (red curves). 
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1 The simulations resulted in different fracture patterns that in some cases produced 

2 one, two or more cracks. It is worth noticing that the auto-similar configuration was used 

3 throughout this work. For this reason, simulations, in which only one macro-crack 

4 propagate, were considered. As it can be seen in Figure 5, b = 3.5m, there is more than 

5 one crack in the final configuration, but the other cracks or its bifurcation become stable 

6 and do not propagate to broke the specimen. When more than one crack propagates, the 

7 stress-strain curves present a different morphology.

8 As shown in Figure 6, it is possible to specify the stress - displacement curves 

9 through characteristic values without losing essential information. Table 7 lists the 

10 correspondent characteristic mean values of the stress-displacement curves by increasing 

11 the specimens’ size. 

12 Table 7 also presents the Carpinteri’s brittleness number  obtained by Eq. (1), 𝑠

13 assuming that  the size of the specimen, and and  the simulations parameters 𝑅 = 𝑏 𝐸 𝐺𝑓

14 presented in Table 6. 

15

16 Table 7 – Mean values of peak stress, critical and rupture displacement of different 
17 simulated specimen size.

b
[mm]

σp
[MPa]

CV
[%]

c
[m]

CV
[%]

u
[m]

CV
[%]

50
[m]

s
Eq. (1)

sLDEM
Eq. (14)

50 13.461 1.10 26 7.42 225 4.53 93 3.26 5.41
75 13.518 0.85 34 7.30 211 5.01 89 2.67 4.42
100 13.415 0.98 43 5.63 207 4.08 94 2.33 3.83
150 13.508 0.63 64 0.04 213 0.14 103 1.90 3.12
200 13.473 0.39 85 3.13 213 2.44 110 1.64 2.71
250 13.429 0.68 105 1.31 203 1.76 126 1.46 2.42
300 13.393 0.16 124 0.15 185 4.77 132 1.35 2.21
400 13.488 0.31 166 1.29 184 3.33 176 1.16 1.91
500 13.471 0.30 205 1.36 228 2.41 216 1.04 1.71
750 13.455 0.39 301 1.92 322 1.72 301 0.85 1.40
1000 13.420 0.20 397 1.24 420 1.20 397 0.74 1.21
1500 13.437 0.20 605 0.76 646 0.76 605 0.60 0.99
3500 13.347 0.21 1325 1.87 1444 0.60 1325 0.39 0.65

18

19 By comparing the stress-displacement curves presented in Figure 7, it is possible to 

20 identify two limits, i.e., brittleness numbers that define changes in the specimen behavior: 

21  (upper bound), and  (lower bound). Ductile behavior is expected for 𝑠𝑢𝑏≅1.5 𝑠𝑙𝑏≅0.7

22 , brittle behavior for , and transitional behavior when  𝑠 > 𝑠𝑢𝑏  𝑠𝑙𝑏 < 0.7  𝑠𝑙𝑏 < 𝑠 <  𝑠𝑢𝑏. 

23 The experimental and numerical results in terms of the brittleness number , and 𝑠

24 global behavior (brittle-ductile transition), are shown in Figure 8. A global brittle 

25 behavior is considered if  is smaller than 0.7, a ductile one if  is higher than 1.5. A 𝑠 𝑠
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1 transition can be considered if  is comprised in the interval [0.7, 1.5]. It should be noted 𝑠

2 that  is a lower bound, but tests with brittle global behavior can occur with values 𝑠 < 0.7

3 above this limit. Furthermore, the ductile transition limit  shows a certain level of 𝑠 > 1.5

4 dispersion. The specimen shape and the influence of boundary conditions could be 

5 responsible for this dispersion. But despite this behavior, the limits s<0.7 and s>1.5 

6 identify that the typical brittle-ductile transition take place in the specimens.

7

8

0 1 2 3 4 5 6 7

1.5

 Ductile global behavior 
 Transition behavior 
 Brittle global behavior 

Carpinteri's brittleness number s

0.7

9 Figure 8: Representation of the s values in experimental and numerical results.

10

11 In Figure 9(a), the size effect in the mean ultimate stress is presented, and in Figure 

12 9(b) the mean critical and ultimate displacement is also plotted. In both cases, the log 

13 scales are used to facilitate the result interpretation. A bar with +/- 2 standard deviation 

14 is included in the plots and between this bar 95% of the values obtained in the simulation 

15 are contained.

16 In Fig. 9(a), it is clear that the size effect in the global ultimate stress is practically 

17 null. This effect could be seen in the values presented in Table 7. The difference between 

18 the maximum and minimum values of mean global stress is 1.23% and the variation 

19 coefficients do not exceed 1.64%. The sensitivity of the global parameters with the size 

20 effect depends on several factors, such as the boundary conditions, and the random nature 

21 of the material input data. In Rios and Riera [36] experimental tests with different 

22 geometries and boundary conditions were simulated with LDEM, and the values of 

23 strength and its variability are reached with success. 

24

25

26
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2 Figure 9. (a) Ultimate global stress. (b) Ultimate and characteristic global displacement 

3 versus the specimen dimension. The mean values and bar with +/- 2 standard deviation 

4 are indicated in the figure.

5

6 On the other hand, in Fig. 9(b) the specimen behavior changes in shape clearly for 𝑏

7 =0.4 m; this result is compatible with the limits indicated in Fig. 7 and in Table 7. 

8 A new parameter was defined to take into account the shape of the global stress 

9 versus displacement curve, or force versus displacement. The parameter proposed was 

10 the ratio , between the displacement , when 50% of the rupture stress was 𝛿50 𝛿𝑐 𝛿50

11 reached, over the displacement , when the ultimate stress occurred. Thus, when a value 𝛿𝑐

12 of  is close to 1.0, a brittle behavior with unstable propagation is expected. > 𝛿50 𝛿𝑐
𝛿50 𝛿𝑐

13 1 means that the specimen will present a ductile behavior and a stable rupture is foreseen. 

14 In Figure 10, the relation between the ratio  and the brittleness number  is 𝛿50 𝛿𝑐 𝑠

15 shown for the experimental and numerical results presented in this work. In this plot, it 

16 clearly appears that for values of  higher than 1.5, ratios of  higher than 1.4 are 𝑠 𝛿50 𝛿𝑐

17 obtained, therefore, indicating an evident ductile behavior for the specimen. 

18 When  presents values between 0.7 and 1.5, the ratio  varies between 1.4 𝑠 𝛿50 𝛿𝑐

19 and 1; in these cases the specimens present a transitional ductile-to- brittle behavior.

20 Finally, when  is lower than 0.7, the ratio  will present values lower than 𝑠 𝛿50 𝛿𝑐

21 1.0, thus, characterizing a clear brittle behavior. It was noticed that, in this region, for 

22 several cases, the ratio  appears to be equal to 1.0. This is the typical value when 𝛿50 𝛿𝑐

23 the simulation is performed in a controlled displacement, when the specimen breaks in an 

24 unstable way and the snap-back branch of the curve is not captured. It is evident in the 

25 results of the Felser sandstone sets that, for specimens with  <1.0, a special displacement 𝑠

26 control allows to capture the snap-back branch during the softening.

a b
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3 Figure 10: Relation between the Carpinteri brittleness number, s, and the shape of the 

4 global stress - displacement curve. 

5

6 Finally, the ratio between the Carpinteri's number  computed for the specimen 𝑠

7 and the  parameter computed in the context of the method is presented hereafter. In 𝑠𝐿𝐷𝐸𝑀

8 Figure 10, the ratio  was plotted against the ratio , the latter measuring the 𝑠 𝑠𝐿𝐷𝐸𝑀 𝑑𝑒𝑞 𝐿

9 relationship between the material length , that is a characteristic length of the material, 𝑑𝑒𝑞

10 as defined in section 2, and the size of the element that define the level of discretization 

11 used in the model.

12 In Figure 11, it is possible to verify in which way the variability of the fracture 

13 energy CV (Gf) influences the brittleness number  computed using the LDEM 𝑠

14 formulation. The simulations presented in section 4.1 were carried out using CV 

15 (Gf)=40%, this value is usually employed to simulate quasi-brittle materials such as 

16 concrete and rocks (see e.g. [36], [38]). Moreover, a particular study about the influence 

17 of the variability CV (Gf) was conducted in [30]. 

18 The white circle in Figure 11, illustrates the LDEM simulations presented in the 

19 present paper. A set of simulations presented in Ref. [50] were also added in red, together 

20 with other results presented in Refs. [68, 69] represented by gray circles.

21



25

1

1 10 100 1000

0.6

0.8

1.0

1.2

1.4

1.6

0,56

LDEM simulations
 Birck et al. [50] CV(GF)=50%
 Present Study CV(GF)=40%
 *CV(GF)=10%
 *CV(GF)=20%
 *CV(GF)=40%
 *CV(GF)=80%

* Kosteski [68], Maders et al. [69] 

s/
s LD

EM

deq/L
1,47

2 Figure 11: Relation established between the global brittleness number and the 

3 brittleness number computed in the context of LDEM versus the ratio between the 

4 equivalent d value over the element size used in the discretization. 

5

6 In Figure 11, it can be noticed that an approximate relationship between  𝑠 𝑠𝐿𝐷𝐸𝑀

7 could be considered independent of , if >100 ( ). For lower values 𝑑𝑒𝑞 𝐿 𝑑𝑒𝑞 𝐿 𝜀𝑟 𝜀𝑝 ≈ 60

8 of this ratio, the level of the discretization influences the  result, finding responses 𝑠 𝑠𝐿𝐷𝐸𝑀

9 in the interval [0.6, 1.5]. It is also important to notice that the influence of the fracture 

10 energy variation coefficient is significant.

11 When an element breaks, it generates a crack with a size related to its length, . If 𝐿

12 this crack is smaller than the material equivalent length , it will not propagate until it 𝑑𝑒𝑞

13 reaches this critical dimension (after nucleation). If this crack size is closed to the material 

14 equivalent length , then it will propagate.𝑑𝑒𝑞

15 A  greater than 1 indicates that the mean axial stress of all the LDEM 𝑠 𝑠𝐿𝐷𝐸𝑀

16 elements ( ) is greater than the simulation maximum global stress ( ). This can be 𝜎 ∗
𝑝 𝜎𝑝

17 found with a more “brittle” constitutive model (  close to  or  close to ) and/or 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

18 large dispersions in a random field. With a large dispersion, it is easier to find a less 

19 resistant element than the mean element resistance. When the element breaks, if the 

20 generated crack is of the size of , a brittle fracture occurs. In this case, the simulation’s 𝑑𝑒𝑞
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1 global response is close to the resistance of this first broken element, but much smaller 

2 than the mean resistance of all the other elements together.

3 Conversely, a  smaller than 1 indicates that the mean axial stress of all the 𝑠 𝑠𝐿𝐷𝐸𝑀

4 LDEM elements ( ) is less than the simulation maximum global stress ( ). This occur 𝜎 ∗
𝑝 𝜎𝑝

5 when we have little dispersion of the random field (low CV) and/or a “ductile” 

6 constitutive model (  much larger than  or  bigger than ). 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

7 A practical application of the graphs presented in Fig 10 to calibrate the LDEM 

8 model could be proposed:

9 1- If experimental data about the material are available, together with the specimen size 

10 characterized by its , the material properties ,  and the stress versus displacement 𝑅 𝐺𝑓 𝐸

11 global curve, then the value of  can be computed using the Eq. (1).𝑠

12 2- Assuming that  using the Eq. (14), it is possible to obtain the material 𝑠𝐿𝐷𝐸𝑀 = 𝑠

13 parameter .𝑑𝑒𝑞

14 3- Adopting a level of discretization and the CV(Gf) to be used in the simulation, it is 

15 possible to compute  and to obtain the ratio  using the plot presented in 𝑑𝑒𝑞 𝐿 𝑠 𝑠𝐿𝐷𝐸𝑀

16 Fig.11. 

17 4- With the corrected value of   and using Eq. (14), a better approximation of  𝑠𝐿𝐷𝐸𝑀 𝑑𝑒𝑞

18 could be computed.

19 Notice that  is a material parameter, and for this reason, if the model calibration 𝑑𝑒𝑞

20 is performed for one specimen, this value will not vary if the geometry and boundary 

21 conditions change.

22 In the present paper, a comparison between the global specimen behavior during 

23 damage process and the brittleness number is established. In [42, 50, 70] the link of the 

24 brittleness number with the dissipated energy and the final configurations obtained with 

25 LDEM simulations was also studied.

26

27 5. Conclusions 

28 In the present work, several sets of experimental and numerical results are 

29 reviewed with the aim to correlate the Carpinteri’s brittleness number obtained to predict 

30 the global behavior (ductile, brittle, or ductile-to-brittle transitional behavior).

31 In all cases, the specimens were subjected to pure tensile stress and heterogeneous 

32 materials were also analyzed. Experimental results produced by other researchers or by 

33 the authors themselves are presented. No pre-cracked specimens were considered, that is, 
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1 the spontaneous localization of the main crack was expected. The numerical approach 

2 used was a version of the Lattice Discrete Element Method that accounts for the random 

3 nature of the material employed. With this research work, it is possible to conclude that:

4 - A correlation between the  number and the aspect of the global force/stress versus 𝑠

5 displacement/strain curve is evident in all the evaluated cases. For this reason, the 

6 computation of  allows to predict what kind of behavior is to be expected for 𝑠

7 each specimen.

8 - The values computed using experimental and numerical results allow to perceive 

9 that for the boundary conditions used, when  <0.7 is used as a lower bound, a 𝑠

10 global brittle behavior is expected. On the other hand, if  >1.5, a ductile behavior 𝑠

11 is expected, moreover, in the interval of  [0.7, 1.5], a ductile-to-brittle transitional 𝑠

12 behavior occurs. The extension of the present study to verify the influence of the 

13 boundary condition and the specimen geometry will be the focus of future works.

14 - The relationship between the traditional definition of  and the definition of the 𝑠

15 brittleness number computed in the context of the numerical method used, , 𝑠𝐿𝐷𝐸𝑀

16 was presented. This relationship can be used to calibrate, in a consistent way, the 

17 LDEM method employed. It is possible to extend this methodology of calibration 

18 to other versions of the discrete element method (for example in Perydinamics), 

19 where spontaneous fracture can be also simulated. 

20 - The satisfactory correlation between experimental and LDEM results confirms the 

21 robustness of this method as a numerical tool to model fracture processes in quasi-

22 brittle materials.
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16 Abstract

17 In the Lattice Discrete Element Method (LDEM), different types of mass are considered 

18 to be lumped at nodal points and linked by means of one-dimensional elements with 

19 arbitrary constitutive relations. In previous studies on the tensile fracture behavior of rock 

20 samples, it was verified that numerical predictions of fracture of non-homogeneous 

21 materials using LDEM models are feasible and yield results that are consistent with the 

22 experimental evidence available so far. In the present paper, a discussion of the results 

23 obtained with the LDEM is presented. A set of rock specimens of different sizes, 

24 subjected to monotonically increasing simple tensions, are simulated with LDEM. The 

25 results were analyzed from the perspective of the brittleness number, proposed by Alberto 

26 Carpinteri, to measure the brittleness level of the structure under study. The satisfactory 

27 correlation between the experimental results and LDEM results confirms the robustness 

28 of this method as a numerical tool to model fracture processes in quasi-brittle materials.

29

30 Keywords: Heterogeneous Materials, Lattice Discrete Element Method, Size Effect , 

31 Brittleness Number.

32

33 Nomenclature
34 Cross-section area of the element to obtain the mechanical equivalence with the 𝐴𝑖

35 solid (i=l, longitudinal bars; i=d, diagonal bars).

36 Cross section to obtain the fracture equivalence with the solid material. 𝐴 ∗
𝑖

37 Dimensions that define the specimens’ geometries.𝑏, 𝐷,𝑑,𝑟

38 Characteristic length of the material.𝑑𝑒𝑞



2

1 Elastic constant: Young’s modulus and Poisson’s ratio, respectively.𝐸, 𝜈

2 ECL Elemental Constitutive Law.

3 Element axial force.𝐹

4 Internal and external vector forces.𝐹(𝑡), 𝑃(𝑡)

5 The peak force measured in each bar. 𝐹𝑚𝑎𝑥

6 Fracture Energy 𝐺𝑓

7 The critical stress intensity factor.𝐾𝑐

8 Length of the side of the cubic LDEM module.𝐿

9 The correlation length.𝐿𝑐𝑜𝑟𝑟

10 Length of the diagonal elements. 𝐿𝑑

11 LDEM Lattice Discrete Element Method.

12 Mass and damping matrices.𝑀, 𝐶

13 The critical crack size.𝑞

14 Structure characteristic length.𝑅

15 Both version of the brittleness numbers proposed by Carpinteri𝑠, 𝑠𝐸

16 Brittleness number computed in the context of LDEM.𝑠𝐿𝐷𝐸𝑀

17 w Displacement.

18 Nodal acceleration and velocity vectors.𝑥, 𝑥 

19 The shape coefficient.𝑌

20 Specimen length or span.𝑍

21 The slender coefficient of the specimen. 𝑍 𝑅

22 Characteristic displacements measured in the LDEM global stress-𝛿𝑐, 𝛿50, 𝛿𝑢

23 displacement responses.

24 Characteristic strain measured in each bar. 𝜀𝑝

25  Failure strain measured in each bar.𝜀𝑟

26  Strain linked with .𝜀𝑢 𝜎𝑝

27  Specific mass.

28  Stress.

29 Global maximum strength𝜎𝑝 

30 The stress that correspond with the 𝜎 ∗
𝑝 𝜀𝑝

31 , Mean value and variation coefficient.𝜇(.) 𝐶𝑉(.)

32
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1 1. Introduction

2 In the literature, the scale effects were extensively studied to connect the fracture 

3 process zone with the specimen size, the pioneer works of Dugdale [1], Boyle [2], and 

4 Brown and Srawley [3] could be cited among others. More specifically, in the so-called 

5 quasi-brittle materials, such as concrete, this topic was also widely discussed. This kind 

6 of materials are characterized by a disordered microstructure, exhibits damage 

7 localization, and are unable to present plastic or hardening deformations, having a non-

8 negligible fracture process zone compared to the structure size. Furthermore, it was 

9 observed that the structural behavior changes with the size of the analyzed specimen. Also 

10 the link between acoustic emission parameters and the ultimate strength was shown 

11 experimentally, among others by Mpalaskas [4, 5], and this relation could be proposed 

12 for better understand the damage process in quasi-brittle materials.

13 Carpinteri [6-10] proposed dimensionless parameters: the brittleness numbers  𝑠

14 and , to measure the structural brittleness that describes the susceptibility of cracks to 𝑠𝐸

15 propagate in unstable conditions. These numbers are related to the change of behavior 

16 with the structural size and depend on the fracture energy and the yielding strength of the 

17 material as well as on the characteristic dimension of the structure:

18        . (1)𝑠𝐸 =
𝐺𝑓

𝜎𝑝𝑅 ; 𝑠 =
𝐾𝑐

𝜎𝑝𝑅1/2

19 In these expressions, Kc is a measure of toughness, and Gf is a mechanical 

20 characteristic of brittle materials called fracture energy, following the nomenclature used 

21 by Carpinteri in his Cohesive Crack Model presented in [9, 11],  represent the𝜎𝑝

22 yielding or maximum stress, and  constitutes the characteristic structural dimension that 𝑅

23 defines the specimen’s size. If we consider that  and , then the 𝐾𝑐 = (𝐺𝑓𝐸)0.5 𝜎𝑝 = 𝐸𝜀𝑢

24 equivalence between the two adimensional numbers is:

25 , (2)𝑠𝐸 = 𝑠2𝜀𝑢

26 where  is the strain linked to .𝜀𝑢 𝜎𝑝

27 Both nondimensional numbers have been used in several scientific papers in the 

28 last three decades [12-16, among others]. In Carpinteri [6, 7], the characteristics of these 

29 parameters are presented in detail, and the recommendation that  is more adequate to 𝑠𝐸

30 be used for brittle or quasi-brittle materials and  for ductile materials is highlighted. In 𝑠

31 the present work, the  instead of  parameter was used to measure the change of global 𝑠 𝑠𝐸

32 behavior in the specimens that were tested and consequently simulated by the model.
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1 The numerical simulations of structures made of quasi-brittle materials have the 

2 implication that, in these materials, the characterization of the damage is often governed 

3 by more than one single crack. The studies of a set of small fractures interacting at 

4 different scale levels have great relevance when attempting to understand and simulate 

5 the behavior of these materials. As mentioned by Krajcinovic [17], accounting for each 

6 individual crack in the heterogeneous materials, assessing its influence on the structural 

7 response and ultimately on the structural failure, is not a task that can be approached by 

8 using conventional methods of analysis in solid mechanics. In this way, the methods, 

9 which are able to represent naturally the discontinuities, could be an alternative method 

10 of analysis. Among the non-conventional methods of continuous representation, 

11 Peridynamics is widely used. Such method belongs to the family of Discrete Element 

12 Methods. In this approach, the combination of nodes and associated discrete mass by 

13 means of an interaction law applied between neighbor nodes represents the continuum. 

14 The proposal carried out for the Peridynamics was used originally to represent the 

15 interaction force at the atomic level. Seleson [18] could be cited here as an example of 

16 this approach. Moreover, the same approach was also applied at large scale levels, all 

17 thanks to the pioneering work by Silling [19].

18 Another equivalent discrete approach is the Truss-like Discrete Element Method 

19 or Lattice Model. Various and relevant approaches study can be referred to; among others 

20 like the ones proposed by Schlangen and van Mier [20], Krajcinovic and Vujosevic [21], 

21 and, more recently, the works of Sagar and Prasad [22], Nagy et al. [23], and Rinaldi [24]. 

22 A review of the different versions of Discrete Element Method, including the Particle 

23 methods and Lattice approaches, is presented in Mastilovic and Rinaldi [25].

24 In the present paper, a version of the Lattice Discrete Element Method (LDEM) 

25 proposed by Riera [26] will be used. This method was developed originally to determine 

26 the dynamic response of plates and shells when failure occurs primarily by shear or 

27 tension under a shock wave caused by impact loading, as it is generally observed in 

28 concrete structures. 

29 In the LDEM, the quantities of mass are considered lumped at nodal points and 

30 linked by means of one-dimensional elements with arbitrary constitutive relations. The 

31 satisfactory correlation between the experimental results and the LDEM predictions 

32 confirms the robustness of this method as a numerical tool to model fracture processes in 

33 quasi-brittle materials. These findings were reported, among others, in a successful 

34 analysis of: shells subjected to impulsive loading [27-30], the fracture of elastic 
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1 foundations on soft sand beds [31], the generation and propagation of an earthquake [32-

2 35], the study of the scale effect in quasi-brittle materials [36-42]; the computation of 

3 fracture parameters in static and dynamic problems [43-46], the study of strength of brittle 

4 materials under high strain rates [47] and finally the acoustic emission events in quasi-

5 brittle materials [34, 35, 48-50]. In Refs. [29-31, 36, 46, 51], LDEM simulations were 

6 discussed in which quantitative comparison with experimental results in terms of global 

7 parameters, such as displacement versus loads or final configurations, are presented. The 

8 following section presents a brief description of the theoretical foundation of this method.

9

10 2. Lattice Discrete Element Method Formulation

11 The Lattice Discrete Element Method (LDEM), used in the present work, 

12 represents the continuum by means of a 3D lattice, that is, a periodic spatial arrangement 

13 of bars with amounts of mass lumped at their ends. Figure 1 shows the discretization 

14 strategy in which the stiffness of the LDEM elements, corresponding to an equivalent 

15 orthotropic linear elastic material, was obtained by Nayfeh and Hefzy [52]. The basic 

16 cubic module is built with twenty bars and nine nodes. Each node presents three degrees 

17 of freedom given by the spatial components of the displacement vector in the global 

18 reference system.

19

y

x(b)

z

(a)

L

20 Figure 1- LDEM discretization strategy: (a) basic cubic module, (b) generation of the 

21 prismatic body.

22

23 In case of an isotropic elastic material, the cross-sectional area  of the 𝐴𝑙

24 longitudinal elements (those defining the edges of the module and those that are parallel 

25 to the edges connected to the node located at the center of the module) in the equivalent 

26 discrete model is:
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1 (3)𝐴𝑙 = 𝜙𝐿2,

2 where  is the length of the side of the cubic module under consideration. The function 𝐿

3 , where  accounts for the effect of the 𝜙 = (9 + 8𝛿) (18 + 24𝛿) 𝛿 = 9𝜈 (4 ‒ 8𝜈)

4 Poisson’s ratio  [49, 30]. Similarly, the area  of the diagonal elements is:𝜈 𝐴𝑑

5 (4)𝐴𝑑 = 𝜙𝐿𝑑
2 =

2
3𝛿𝜙𝐿2,

6 were  is the length of the diagonal elements. The coefficient  in Eq. (4) 𝐿𝑑 =
2
3𝐿 2 3

7 accounts for the difference in length between the longitudinal and the diagonal elements. 

8 It is important to point out that, for , the correspondence between the 𝜈 = 0.25

9 equivalent discrete solid and the isotropic continuum is complete. On the other hand, for 

10 values of  discrepancies appear in the shear terms. These discrepancies are small 𝜈 ≠ 0.25

11 and may be neglected in the range . For values of  outside this range, a 0.20 ≤ 𝜈 ≤ 0.30 𝜈

12 different basic module should be used (see Ref. [52]). It is interesting to note that while 

13 no lattice model can exactly represent a locally isotropic continuum, it can also be argued 

14 that no perfect locally isotropic continuum exists in the physical world. Isotropy in solids 

15 is a bulk property that reflects the random distribution of the orientation of constituent 

16 elements. A comprehensive study on the effect of the LDEM lattice geometry on the value 

17 of the Poisson’s ratio can be found in Ref. [53].

18 The equations of motion are obtained from equilibrium conditions of all forces 

19 acting on the nodal mass, resulting in a system of equations of the form:

20 (5)𝑀𝑥 + 𝐶𝑥 + 𝐹(𝑡) ‒ 𝑃(𝑡) = 0,

21 where and  are, respectively, the nodal acceleration and velocity vectors;  𝑥 𝑥 𝑀

22 and  are the mass and damping matrices, respectively, and the vectors  and  𝐶 𝐹(𝑡) 𝑃(𝑡)

23 convey the nodal internal and external forces. Since  and  are diagonal, the equations 𝑀 𝐶

24 in Eq. (5) are not coupled, and they can be easily integrated in the time domain using an 

25 explicit finite difference scheme. 

26 It is worth noting that, since the nodal coordinates are updated at each time step, 

27 large displacements are accounted for naturally. The convergence of LDEM solutions in 

28 linear elasticity and elastic instability problems was verified by [32], among others.

29 The irreversible effects of crack nucleation and propagation that occur in brittle 

30 or quasi-brittle materials were taken into account by [54], and more recently by [45], 

31 through the introduction of a non-linear constitutive model that reduces the element load 
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1 carrying capacity. More details of this implementation can be found in [43-46, 54], among 

2 others.

3 Based on Hillerborg’s theory [55], the bilinear model for quasi-brittle materials 

4 used in this work is shown in Figure 2. In case of tensile loads, the area under the force - 

5 strain curve (the area of the OAB triangle in Figure 2) is the energy density necessary to 

6 fracture the area of element influence, the fracture energy. Thus, for a given point P on 

7 the force - strain curve, the area of the OPC triangle represents the reversible elastic 

8 energy density stored in the element, while the area of the OAP triangle is the dissipated 

9 fracture energy density. One element fails and loses its load carrying capacity when the 

10 dissipated energy density equals the fracture energy. 

11

Energy dissipated 
by Damage, ED

Strain Energy, ES

EAi

F


p

P

O

A

C
B

r 

12 Figure 2: Bilinear constitutive model with material damage.
13
14 In the case of compressive loads, the material behaves in a linear elastic manner. 

15 In this way, the failure in the compression is induced by indirect traction. In quasi-brittle 

16 materials, this assumption is reasonable because its ultimate strength in compression is 

17 usually five to ten times larger than that in tension [56].

18 In the constitutive model presented in Figure 2,  is the element axial force, and 𝐹

19  the cross-section area of the element, depending whether longitudinal or diagonal 𝐴𝑖

20 element is considered, as in Eq. (3) and Eq. (4). In this model, the fracture energy per unit 

21 area coincides with the material fracture energy, .𝐺𝑓

22 The so called critical strain , as illustrated in Figure 2, is the maximum strain 𝜀𝑝

23 before damage initiation. The critical strain is a micro-parameter, that is, a parameter that 

24 governs the constitutive law at the elemental level. The limit strain  is the strain value  𝜀𝑟

25 for which the elements lose its load carrying capacity (point B in Figure 2). The limit 

26 strain is much greater than or equal to the critical strain. This value is calculated to satisfy 
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1 the fact that the dissipated energy density released when the element fail must be equal 

2 to the multiplication of the equivalent fracture area of the element, , times the  fracture 𝐴 ∗
𝑖

3 energy, , divided by the element length, , that is:𝐺𝑓 𝐿

4 (6)∫𝜀𝑟
0 𝐹(𝜀)𝑑𝜀 =

𝐺𝑓𝐴 ∗
𝑖

𝐿𝑖
.

5 The index i in the expression indicates it either refers to longitudinal or the diagonal 

6 elements.

7 The area below the bilinear model is  then, the final strain defined for 𝜀𝑟𝜀𝑝𝐸𝐴𝑖/2,

8 the element , illustrated in the Figure 2, is designated as:𝜀𝑟

9 (7)𝜀𝑟 =
𝐺𝑓

𝜀𝑝𝐸(𝐴 ∗
𝑖

𝐴𝑖 )(2
𝐿𝑖),

10 denotes the equivalent fracture area of each element defined in order to satisfy the 𝐴 ∗
𝑖  

11 condition that the energy dissipated by the fracture of the continuum and by its discrete 

12 representation are equal, . This deduction can be found in [45]. It should be 𝐴 ∗
𝑖 =

3
22 𝐿𝑖

2 

13 noted that  depends on the material properties and on the level of discretization.𝜀𝑟

14 Young's modulus , the stress intensity factor  and the critical stress  are 𝐸 𝐾𝑐 𝜎𝑝 

15 related by the classical fracture mechanic expression [57] given below: 

16 (8) 𝐾𝑐 = 𝜎𝑝 𝑌 𝜋𝑞,

17 in which  is a parameter that accounts for the influence of the boundary conditions and 𝑌

18 the orientation of the critical crack size . If it is assumed that the behavior up to the 𝑞

19 beginning of the rupture is linear, then  and, recalling the equivalence between 𝜎 ∗
𝑝 = 𝐸𝜀𝑝

20  and the fracture energy , we obtain the expression: 𝐾𝑐 𝐺𝑓

21 (9)𝐺𝑓𝐸 = 𝐸𝜀𝑝𝑌 𝜋𝑞.

22 This assumption is very important for this development because the tension 

23 obtained ( ) is not the global maximum strength , as defined in Eq. (1), but 𝜎 ∗
𝑝 = 𝐸𝜀𝑝 𝜎𝑝 

24 instead, is a local or elemental maximum.

25 In order to simplify Eq. (9), an equivalent length is defined as follows: 𝑑𝑒𝑞 

26 (10) 𝑑𝑒𝑞 = 𝑞𝜋𝑌2.

27 Substituting Eq. (9) in (10), then:

28 (11) 𝑑𝑒𝑞 =
𝐺𝑓

(𝜀𝑝)2𝐸

29 Eq. (11) indicates that  may be regarded as a material property, since it does not  𝑑𝑒𝑞

30 depend on the discretization level, representing in fact a characteristic length of the 
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1 material (similar as the width of the plasticity region in the crack tip in the Dugdale 

2 model). 

3 It also is possible to isolate  from the Eq. (11) to obtain:𝜀𝑝

4 , (12)𝜀𝑝 =
𝐺𝑓

𝑑𝑒𝑞𝐸 

5 and replacing (11) in  Eq. (7) it is found:𝜀𝑟

6 (13)𝜀𝑟 = 𝜀𝑝𝑑𝑒𝑞(𝐴 ∗
𝑖

𝐴𝑖 )(2
𝐿𝑖),

7 Eq. (12) shows that maintaining  and constant, when the  increases, a more ductile 𝐸 𝐺𝑓 𝑑𝑒𝑞

8 behavior is expected. The area below the elemental constitutive relation (see Fig. 2) is 

9 linked to , then, if this parameter remains constant, the decrease of  has to be 𝐺𝑓 𝜀𝑝

10 compensated by increasing the value of to maintain the area below the curve. 𝜀𝑟 

11 When  is equal to , the minimum area of bilinear constitutive model is 𝜀𝑝 𝜀𝑟

12 obtained, that is, the limit relation between the equivalent length and the element length, 

13 for longitudinal elements, is found to be . In some way, from the Eq. (13) it is   𝑑𝑒𝑞 ≥
15
22𝐿

14 possible to say that , that is,  is related to the bilinear constitutive 𝜀𝑟 𝜀𝑝 ∝ 𝑑𝑒𝑞 𝐿 𝑑𝑒𝑞 𝐿

15 model. If the constitutive model is “brittle” (  next to ),  will be small, however, 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

16 if the constitutive model is “ductile” (  much larger than )  will be higher.𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

17 It can be noticed that a characteristic length as material parameter is also discussed 

18 in another version of the discrete element method called Peridynamics, proposed by 

19 Silling et al. [58]. In this method, there is a set of nodes where the mass are discretized 

20 and linked with bars, moreover, the level of neighboring among nodes is given by a 

21 material parameter called horizon. This parameter depends on the discretization level 

22 used to define the quantity of nodes linked to one and another. The horizon physical 

23 meaning is analogous to the meaning of the  in the version of the Discrete Element 𝑑𝑒𝑞

24 Method used in the present work. 

25 Taylor [59] considers that a breaking criterion is fulfilled when a dominium 

26 portion, defined by a characteristic dimension, reaches the critical level of stress. In this 

27 approach, both parameters are considered as material parameters. The link between the 

28 characteristic distance of this author and the  is evident.𝑑𝑒𝑞

29 The randomness of the model is introduced considering  as a random field with a 𝐺𝑓

30 Weibull density function characterized by its mean value  and variation coefficient 𝜇(𝐺𝑓)
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1 . Moreover, it is necessary to consider the spatial correlation function of this 𝐶𝑉(𝐺𝑓)

2 random parameter. How to consider the random nature in the model could be explained 

3 in [30, 60]. 

4 In the model here implemented, the random values of  assigned to every element 𝐺𝑓

5 have statistical independence, that is, the random properties of one element do not depend 

6 on the properties of the other neighboring elements. This assumption is equivalent to 

7 consider that the correlation length is . Notice that when randomness is 𝐿𝑐𝑜𝑟𝑟 = 0.3𝐿

8 introduced in , indirectly randomness is also introduced in  (see Eq. 12). In this way, 𝐺𝑓 𝜀𝑝

9 the maximum strength of an element , which is directly related to point A 𝐹𝑚𝑎𝑥 = 𝐸𝐴𝑖𝜀𝑝

10 in Figure 2, is also random. The axial stress of the element will be: . Another 𝜎 ∗
𝑝 = 𝐸𝜀𝑝

11 alternative to introduce the random nature in the model is to consider geometric 

12 perturbation in the mesh, about this aspect see [61]. More detail about the LDEM 

13 formulation can be found in Ref. [50].

14 Below, several points are explained to clarify the meaning of the parameters used in 

15 the definition for the constitutive law of the LDEM model:

16 (i) The concept of the brittleness number  in the context of LDEM is introduced with the 𝑠

17 aim of showing evidence of the physical meaning of the parameter  previously 𝑑𝑒𝑞

18 defined. 

19 If we rewrite the Eq. (1) that introduces the brittleness number  proposed by 𝑠

20 Carpinteri [6], we consider that  and recalling the equivalence between  𝜎𝑝 = 𝜎 ∗
𝑝 𝐾𝑐

21 and the fracture energy , the expression of  in the context of the LDEM 𝐺𝑓 𝑠

22 formulation will be:

23 (14)𝑠𝐿𝐷𝐸𝑀 =
𝐾𝑐

𝜎 ∗
𝑝 𝑅1/2 =

𝐺𝑓𝐸

𝐸𝜀𝑝𝑅1/2 =
𝑑𝑒𝑞

𝑅 .

24 From this expression it can be interpreted that, if a crack of a size >  appears 𝑑𝑒𝑞

25 during the damage process in a structure with a characteristic dimension , it will 𝑅

26 propagate in an unstable form, suggesting a brittle global structural behavior. 

27 However, this situation will only be possible if is lower than . If this condition 𝑑𝑒𝑞 𝑅

28 is not fulfilled, it will not be possible to have a crack with a dimension similar to , 𝑑𝑒𝑞

29 because there is not enough space in the structure for crack propagation. In the latter 

30 situation, the structure will have a ductile behavior during its damage process. The 

31 structure boundary condition influences this relation but it does not change the 

32 general tendency.
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1 The ratio between Eq. (1) and (14) allows writing the relationship between the 

2 traditional expression of the brittleness  with its definition in the context of LDEM. 𝑠

3 As it was previously emphasized, the difference resides in the definition of : in the 𝜎𝑝

4 classical expression of ,  is the stress value in which the material collapses, while 𝑠 𝜎𝑝

5 in the  definition,  is the axial stress of the elements. The ratio  𝑠𝐿𝐷𝐸𝑀 𝜎𝑝 = σ ∗
𝑝

𝑠 𝑠𝐿𝐷𝐸𝑀

6 is a function of the statistical and spatial distribution of the random field that 

7 characterizes , and the shape of the elemental constitutive law used. At the end of 𝐺𝑓

8 the present work, a further comment about this ratio is provided. 

9 (ii) In contrast to the usual practice used in the Finite Element Method, the constitutive 

10 relationship in the LDEM is not only a function of the material properties. The LDEM 

11 model considers the following macroscopic parameters: the elastic modulus , the 𝐸

12 fracture energy , and the characteristic length . With these three parameters 𝐺𝑓 𝑑𝑒𝑞

13 using Eq. (12), the critical strain , where the bar force reaches its maximum value  𝜀𝑝

14 is computed (see Fig 2). Multiplying  by the Eq. (3) and (4) the linear pre-peak 𝐸

15 relation in the elemental constitutive law (ECL), defined by , is indicated in 𝐸𝐴𝑖

16 Figure 2. The fracture energy  directly influences in the area below the ECL, as it 𝐺𝑓

17 is indicated in Eq. (6). Furthermore, using Eq. (13) as illustrated in Fig. 2, the 

18 characteristic length of the material, , defines the post-peak branch in the ECL by 𝑑𝑒𝑞

19 means of the local parameter . Notice that not only , but also  depend on the 𝜀𝑟  𝜀𝑟 𝐸𝐴𝑖

20 discretization level.

21 (iii) Another interesting feature of the method is that, although it uses a scalar damage 

22 law to describe the uniaxial behavior of the elements, involves a global model that 

23 takes into account of the anisotropic damage. This is because, when the uniaxial bars, 

24 oriented in different directions, are damaged they modify their axial stiffness, 

25 allowing to represent an anisotropic global behavior.

26

27 3. Experimental background

28 The results obtained by Carpinteri and Ferro [62, 63], van Vliet [64] as well as 

29 van Vliet and van Mier [65], all of whom have studied the scale effects on tensile strength 

30 of concrete and rock, are used to explore the link between the brittleness number, , 𝑠

31 proposed by Carpinteri [6, 7] and the global behavior obtained in the cited cases that could 

32 be classified as ductile or brittle. Experimental results obtained by the authors over 

33 expanded polystyrene samples are also described and analyzed.
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1 3.1 Carpinteri and Ferro Results

2 Carpinteri and Ferro [62, 63] and Carpinteri and Maradei [65] carried out two sets 

3 of tests with specimens of several sizes. The Young’s Modulus was measured from the 

4 global stress versus strain curves, at around 35GPa for the two sets. The material 

5 parameters and the brittleness number values , computed using Eq. (1), are presented in 𝑠

6 Table 1. The characteristic dimension  was considered in the present case as the 𝑅

7 dimension of the specimen neck, . 𝑑

8 In both series, the specimen with characteristic size  smaller than 100 mm 𝑑

9 showed a ductile behavior, whereas specimens with  larger than 200 mm showed a 𝑑

10 quasi-brittle behavior. In both sets of results  <1.4 indicates a quasi-brittle global 𝑠

11 behavior

12

13 Table 1: Material parameters, the brittleness number computed and the curves used as 
14 sources of information for the experimental sets 1 and 2 presented by Carpinteri and 
15 Ferro [62, 63]. (E=35 GPa).

d [mm] p 
[MPa]

Gf 
[N/m] s Experimental Results Specimen Geometry

Set 1

50 4.25 83 1.79

100 3.78 102 1.58

200 3.64 142 1.37 0 40 80 120 160
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80

d = 100mm
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rc
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]

Displacement [m]

d = 200mm

d = 50mm

Set 2

25 4.79 147 2.99

50 4.56 257 2.94

100 4.37 236 2.08

200 3.80 158 1.38

400 3.72 286 1.34
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16

17

18 3.2 van Vliet and van Mier’s Results

19 van Vliet [64] performed three sets of tests of specimens using different 

20 dimensions, as is shown in Fig. 3. The first set was conducted by using concrete stored in 

21 the laboratory in a dry environment, called the DRY set. The second set also was with 
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1 concrete, however stored in a climate room, called the WET series. Finally, the third set 

2 of specimens consists of Felser sandstone specimens called FELSER.

3 For the calculus of the brittle number, the fracture energy  measured 𝐺𝑓

4 extrapolating the stress opening curve (-w) was used. The material parameters and the  𝑠

5 values computed are presented in Table 2. In the present cases, the characteristic 

6 dimension  to compute the brittleness number  with the Eq. (1) is , the specimen 𝑅 𝑠 0.6𝐷

7 neck, as could be appreciated in Fig 3.

8

9
Type A B C D E F

D [mm] 50 100 200 400 800 1600
r [mm] 36.25 72.5 145 290 580 1160

10 Figure 3. Specimen shape and dimensions for van Vliet [64] adopted size range.

11

12 For all the van Vliet experiments, represented in Table 2, it is possible to observe 

13 an apparent change in the global behavior for specimen with brittle number  near to 1.5. 𝑠

14 For  values lower than 1.6, specimen F ( = 1.34) for the DRY set, specimen D ( = 1.57) 𝑠 𝑠 𝑠 

15 for the Wet set and specimens D (  = 1.48), E (  = 1.07) and F (  = 0.74) for the FELSER 𝑠 𝑠 𝑠

16 set, the global response seems to be brittle. Finally, for  values higher than 1.6, a clearly 𝑠

17 ductile global response is observed.

18 In fact, it is possible to consider that with  between 2 to 1 we are in a transition 𝑠

19 zone, and a very clear brittle behavior could be defined when  is lower than 1, as seen 𝑠

20 for the F(  = 0.74) specimen in the FELSER set.𝑠

21
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1 Table 2: Material parameters and brittleness number computed for the van Vliet [64] 
2 specimens. 

Type p 
[MPa]

Gf 
[N/m]

E 
[GPa] s

DRY set

A 2.54 97.0 88.42 6.66

B 2.97 125.7 38.5 3.02

C 2,75 124.2 39.41 2.32

D 2.30 125.2 42.80 2.05

E 2.07 142.3 38.25 1.63

F 1.86 141.1 42.55 1.34
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WET set

A 2.17 91.1 40.48 5.11

B 2.23 99.6 39.80 3.64

C 2.48 88.9 42.38 2.26

D 2.37 100.4 33.25 1.57 0 100 200 300
0

20

40

60
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e 
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]

Displacement [m]
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FELSER sandstone set

A 0.82 76.7 4.75 4.25

B 1.22 111.3 7.90 3.14

C 1.01 93.8 6.87 2.29

D 0.96 135.1 3.60 1.48

E 1.30 143.9 6.50 1.07

F 1.20 93.2 8.23 0.74
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0

5

10

15

Type C

Type B

Type A

Fo
rc

e 
[kN

]

Displacement [m]
0 100 200 300 400 500

0

50

100

150

200

Type D

Fo
rc

e 
[kN

]

Displacement [m]

Type E

Type F

3

4 3.3 Expanded polystyrene experimental results

5 In the following section, a set of tests carried out by the authors on expanded 

6 polystyrene are presented. The material was submitted to direct tensile stress using 

7 specimens with the same geometry, but different sizes compared to the ones used by Van 

8 Vliet [64]. The tests were carried out in a Universal Machine Test Shimadzu AGS - X 5 

9 kN in the Federal University of Pampa - Brazil. 

10 In Table 3 the dimensions of the body tests called A, B, C and D are presented. 

11 Four tests were conducted for each configuration. For all the four specimen geometries, 

12 the thickness was always 9 mm. The specimens were fixed at the ends, as illustrated in 
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1 Table 3 by applying the prescribed displacement at the top end at a constant displacement 

2 rate of 0.0333 mm/min.

3

4 Table 3. Body test dimensions.
Type A B C D

D [mm] 10 20 30 45
r [mm] 7.25 14.5 21.75 32.63

5

6 Fracture energy  equal to 25N/m, value also adopted by Colpo et al. [42], was  𝐺𝑓

7 used for the calculus of the brittleness number by using Eq. (1). These results are 

8 presented in Table 4. As done in previous tests, the specimen characteristic length  was 𝑅

9 considered to be equal to the neck specimen, .0.6𝐷

10 A similar tendency, to what was observed in previous cases, was also appreciated 

11 in the results obtained using expanded polystyrene. When the  value is lower than 1, the 𝑠

12 global stress curve clearly shows a brittle behavior, and when the results of  are between 𝑠

13 the interval 2.0 to 1.0, a transition behavior is observed. 

14

15 Table 4: The brittleness number computed for the set of test carried out over expanded 
16 polystyrene specimens. 

Type p
[MPa]

CV
[%]

E
[N/mm2]

CV
[%] s

A 0.049 21.4 0.89 12.1 1.24

B 0.059 3.4 1.73 8.4 1.02

C 0.060 2.5 2.01 12.8 0.88

D 0.058 10.4 2.21 9.3 0.78
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17

18 With the aim of categorizing the global behaviors in all the tests carried out, a 

19 typical brittle global response it is considered when:
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1 a) considering tests under controlled displacement, after reaching the peak load, the 

2 global displacement is smaller than that corresponding to the peak load. As in the 

3 case of the (F) specimens of the FELSER sandstone set presented in Table 2;

4 b) considering tests under force control, after reaching the peak load, the behavior is 

5 characterized by a clear jump in the load, without any significant softening branch. 

6 The specimen (D), presented in Table 4, is an example of this second case.

7 On the other hand, a typical ductile global behavior is considered when the global 

8 post-peak displacement is higher displacement corresponding to the peak load. The Felser 

9 tests from (A) to (C), presented in Table 2, are clear examples of this kind of global 

10 behavior.

11 When it is not possible to define a clear brittle, or ductile behavior, we consider 

12 this case as a global transition behavior, see, for example, specimen (A) of the Polystyrene 

13 specimens presented in Table 4.

14 It is important to highlight here that, in Carpinteri [6, 7], the author reaches the 

15 conclusion that, for specimens subjected to tension or compression, the following 

16 equation

17 (15)
𝑠𝐸

(𝑍
𝑅)𝜀𝑢

≤
1
2,

18 defines the condition for Snap-Back instability that governs the global mechanical 

19 behavior. In the Eq. (15),  is the specimen length or span and  represents the 𝑍 𝑍 𝑅

20 slenderness. For the cases studied in the present work,  is always considered close to 𝑍 𝑅

21 1. Remembering the equivalence given between  and  presented in Eq. (2), Eq. (15) 𝑠𝐸 𝑠

22 could be rewritten in terms of  as , i.e.  ~ 0.7, a result that could be 𝑠 𝑠2 ≤ 1/2 𝑠 ≤ 1/ 2

23 considered as a lower bound for the numerical results presented in the following section. 

24 However, in the three experimental results presented, the shape of the specimens 

25 considered is not prismatic. Therefore, the difference in shape could explain that, in the 

26 described conditions, the transition to the brittle behavior seems to be defined by  ≤1 𝑠

27 instead of  ≤0.7. The extension of the present study with the aim of verifying the 𝑠

28 influence of the slenderness, other geometric characteristics as well as other boundary 

29 conditions will be the focus of future works.

30
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1 4 LDEM simulations: rock specimens with different sizes subjected to uniaxial 

2 tensile stress

3 4.1 Model description 

4 A specimen group of heterogeneous material was simulated being fixed at their 

5 lower face and subjected to monotonically increasing displacements at the nodes on their 

6 upper faces. In all cases, nodal displacements in the normal direction to the middle surface 

7 were restrained in order to simulate plane strain conditions. The specimens were analyzed 

8 up to the complete failure. The specimen side b ranges between an interval of 0.05 and 

9 3.50m. The smallest LDEM array that leads to satisfactory results consists of 10×10×1 

10 cubic modules with 1026 DOF which were used for the smallest (0.05m) model. Whereas 

11 the 3.50m model consists of 700×700×1 cubic modules with 1472802 DOF, thus, 

12 constituting the largest specimen used in this study. Table 5 shows the basic dimensions 

13 of the samples, while Table 6 indicates the relevant material properties. 

14

15 Table 5: The dimensions of the LDEM models studied.
Specimen 1 2 3 4 5 6 7 8 9 10 11 12 13

b (m) 0.05 0.075 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.75 1.00 1.50 3.50
Cells 10 15 20 30 40 50 60 80 100 150 200 300 700

16

17 Table 6: Relevant rock (granite) material properties and LDEM parameters.
Material Properties Value

E  (Young’s modulus) 75 GPa
  (specific mass) 2700 kg/m3

  (Poisson coefficient) 0.25
LDEM Properties Value

L  (basic modulus length) 0.005 m
deq 1.465 m

  (Expected value of  fracture energy)𝜇(𝐺𝑓) 1300 N/m
CV(Gf)  (coefficient of variation of Gf ) 40%
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r = 2.207x10-2
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1 It is important to note that in the simulations, the expected value of the fracture 

2 energy, , was considered as a mean value for all the sizes being simulated, instead 𝜇(𝐺𝑓)

3 of considering it as a variable with the size scale.

4 The layout of the specimens showing their relative size and boundary conditions 

5 is shown in Figure 4. It should be noticed that the fracture energy  is modelled as a 𝐺𝑓

6 random field using the properties indicated in Table 6. The probability distribution of  𝐺𝑓

7 was considered as a Weibull function with a correlation length equal to , 𝐿𝑐𝑜𝑟𝑟 = 0.3𝐿

8 which is related to the material microstructure. As the material properties are associated 

9 with a statistical distribution, each simulation leads to a different strength and a different 

10 stress-strain curve. For this reason, four simulations were carried out for each size 

11 specimen in order to obtain representative results for each size specimen. As explained 

12 before, the correlation length used in this work is small, then the random values of  𝐺𝑓

13 assigned to every bar are statistically independent, that is, the properties of one bar do not 

14 depend on the properties of the neighbor ones. 
15

16
17 Figure 4. Relative size of the specimens and boundary conditions considered.

18
19 4.2 Results 

20 One representative sample of the final simulated configuration for each size 

21 considered in the study is shown in Figure 5, in which the colors cyan, orange, and red 

22 represent undamaged, damaged, and totally broken (failed) elements, respectively. The 

23 sizes of the specimens are indicated in Figure 4. 

24 The influence of the mesh discretization is studied in Refs. [46, 60], moreover, in 

25 the simulations presented here, the discretization level is similar. In addition, in Ref. [67] 
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1 was verified that the influence of the mesh rotation is marginal (less than 5%) in terms of 

2 global results and fracture configurations.

3

b=0.05m b=0.075m b=0.10 b=0.15m b=0.20m

b=0.25m b=0.50m b=0.75m b=1.50m b=3.50m
4

5 Figure 5. Damage distribution and rupture configuration of specimens of various sizes 

6 subjected to applied displacements inducing uniaxial tension. The characteristic 

7 specimen size b varies between 0.05 m and 3.5 m. The broken bars are indicated in red, 

8 the damaged bars in orange and the undamaged bars in cyan.

9

10 The resulting stress displacement curves for all simulations of the =0.20m 𝑏

11 specimens, as well as the average curve, are shown in Figure 6. In this figure, the main 

12 parameters that characterize the stress displacement curves are represented, in which  𝜎𝑝

13 denotes the ultimate or maximum global stress,  represents the critical displacement, or 𝛿𝑐

14 displacement related to ultimate stress, and  represents the ultimate displacement or the 𝛿𝑢

15 displacement at the point where the strength is totally exhausted which has been defined 

16 for practical purposes as the displacement when the stress decreases below 2% of the 

17 maximum stress, . This notation is applicable without any restriction to specimens with 𝜎𝑝

18 sides smaller than 0.4m. For specimens with  equal to 0.4m or larger, failure occurs in a 𝑏

19 brittle manner and the ultimate displacement  cannot be distinguished from the critical 𝛿𝑢

20 displacement . Figure 6 also shows the displacement defined as , that is, the 𝛿𝑐 𝛿50

21 displacement related to 50% of the rupture stress.
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2 Figure 6. Curves for the mean vertical stress at lower support versus mean displacement 

3 for the b=0.20m rock specimen obtained from four simulations (black) and the average 

4 curve ones (blue).

5

6 In Figure 7(a) the global displacement versus mean stress curve for all the sizes 

7 simulated with LDEM are shown. In Fig. 7(b) the same results are presented considering 

8 the global displacement in a Log scale. In these figures, it is possible to see how the curves 

9 trend changes: specimens smaller than 0.25 m show a ductile behavior (black lines), 

10 specimens larger than 0.75 m present a brittle behavior (gray lines), whereas specimen 

11 sizes between 0.25 and 0.75 m show a transition between ductile and brittle behavior (red 

12 lines). 
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15 Figure 7. a) Displacement versus stress and b) log displacement versus stress curves for 

16 different size specimens. Ductile behavior when b<0.25 (black curves), brittle behavior 

17 when b>0.75m (gray curves), transition ductile-to- brittle behavior when b belongs to 

18 the interval [0.25, 0.75] (red curves). 
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1 The simulations resulted in different fracture patterns that in some cases produced 

2 one, two or more cracks. It is worth noticing that the auto-similar configuration was used 

3 throughout this work. For this reason, simulations, in which only one macro-crack 

4 propagate, were considered. As it can be seen in Figure 5, b = 3.5m, there is more than 

5 one crack in the final configuration, but the other cracks or its bifurcation become stable 

6 and do not propagate to broke the specimen. When more than one crack propagates, the 

7 stress-strain curves present a different morphology.

8 As shown in Figure 6, it is possible to specify the stress - displacement curves 

9 through characteristic values without losing essential information. Table 7 lists the 

10 correspondent characteristic mean values of the stress-displacement curves by increasing 

11 the specimens’ size. 

12 Table 7 also presents the Carpinteri’s brittleness number  obtained by Eq. (1), 𝑠

13 assuming that  the size of the specimen, and and  the simulations parameters 𝑅 = 𝑏 𝐸 𝐺𝑓

14 presented in Table 6. 

15

16 Table 7 – Mean values of peak stress, critical and rupture displacement of different 
17 simulated specimen size.

b
[mm]

σp
[MPa]

CV
[%]

c
[m]

CV
[%]

u
[m]

CV
[%]

50
[m]

s
Eq. (1)

sLDEM
Eq. (14)

50 13.461 1.10 26 7.42 225 4.53 93 3.26 5.41
75 13.518 0.85 34 7.30 211 5.01 89 2.67 4.42
100 13.415 0.98 43 5.63 207 4.08 94 2.33 3.83
150 13.508 0.63 64 0.04 213 0.14 103 1.90 3.12
200 13.473 0.39 85 3.13 213 2.44 110 1.64 2.71
250 13.429 0.68 105 1.31 203 1.76 126 1.46 2.42
300 13.393 0.16 124 0.15 185 4.77 132 1.35 2.21
400 13.488 0.31 166 1.29 184 3.33 176 1.16 1.91
500 13.471 0.30 205 1.36 228 2.41 216 1.04 1.71
750 13.455 0.39 301 1.92 322 1.72 301 0.85 1.40
1000 13.420 0.20 397 1.24 420 1.20 397 0.74 1.21
1500 13.437 0.20 605 0.76 646 0.76 605 0.60 0.99
3500 13.347 0.21 1325 1.87 1444 0.60 1325 0.39 0.65

18

19 By comparing the stress-displacement curves presented in Figure 7, it is possible to 

20 identify two limits, i.e., brittleness numbers that define changes in the specimen behavior: 

21  (upper bound), and  (lower bound). Ductile behavior is expected for 𝑠𝑢𝑏≅1.5 𝑠𝑙𝑏≅0.7

22 , brittle behavior for , and transitional behavior when  𝑠 > 𝑠𝑢𝑏  𝑠𝑙𝑏 < 0.7  𝑠𝑙𝑏 < 𝑠 <  𝑠𝑢𝑏. 

23 The experimental and numerical results in terms of the brittleness number , and 𝑠

24 global behavior (brittle-ductile transition), are shown in Figure 8. A global brittle 

25 behavior is considered if  is smaller than 0.7, a ductile one if  is higher than 1.5. A 𝑠 𝑠
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1 transition can be considered if  is comprised in the interval [0.7, 1.5]. It should be noted 𝑠

2 that  is a lower bound, but tests with brittle global behavior can occur with values 𝑠 < 0.7

3 above this limit. Furthermore, the ductile transition limit  shows a certain level of 𝑠 > 1.5

4 dispersion. The specimen shape and the influence of boundary conditions could be 

5 responsible for this dispersion. But despite this behavior, the limits s<0.7 and s>1.5 

6 identify that the typical brittle-ductile transition take place in the specimens.

7

8

0 1 2 3 4 5 6 7

1.5

 Ductile global behavior 
 Transition behavior 
 Brittle global behavior 

Carpinteri's brittleness number s

0.7

9 Figure 8: Representation of the s values in experimental and numerical results.

10

11 In Figure 9(a), the size effect in the mean ultimate stress is presented, and in Figure 

12 9(b) the mean critical and ultimate displacement is also plotted. In both cases, the log 

13 scales are used to facilitate the result interpretation. A bar with +/- 2 standard deviation 

14 is included in the plots and between this bar 95% of the values obtained in the simulation 

15 are contained.

16 In Fig. 9(a), it is clear that the size effect in the global ultimate stress is practically 

17 null. This effect could be seen in the values presented in Table 7. The difference between 

18 the maximum and minimum values of mean global stress is 1.23% and the variation 

19 coefficients do not exceed 1.64%. The sensitivity of the global parameters with the size 

20 effect depends on several factors, such as the boundary conditions, and the random nature 

21 of the material input data. In Rios and Riera [36] experimental tests with different 

22 geometries and boundary conditions were simulated with LDEM, and the values of 

23 strength and its variability are reached with success. 

24

25

26
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2 Figure 9. (a) Ultimate global stress. (b) Ultimate and characteristic global displacement 

3 versus the specimen dimension. The mean values and bar with +/- 2 standard deviation 

4 are indicated in the figure.

5

6 On the other hand, in Fig. 9(b) the specimen behavior changes in shape clearly for 𝑏

7 =0.4 m; this result is compatible with the limits indicated in Fig. 7 and in Table 7. 

8 A new parameter was defined to take into account the shape of the global stress 

9 versus displacement curve, or force versus displacement. The parameter proposed was 

10 the ratio , between the displacement , when 50% of the rupture stress was 𝛿50 𝛿𝑐 𝛿50

11 reached, over the displacement , when the ultimate stress occurred. Thus, when a value 𝛿𝑐

12 of  is close to 1.0, a brittle behavior with unstable propagation is expected. > 𝛿50 𝛿𝑐
𝛿50 𝛿𝑐

13 1 means that the specimen will present a ductile behavior and a stable rupture is foreseen. 

14 In Figure 10, the relation between the ratio  and the brittleness number  is 𝛿50 𝛿𝑐 𝑠

15 shown for the experimental and numerical results presented in this work. In this plot, it 

16 clearly appears that for values of  higher than 1.5, ratios of  higher than 1.4 are 𝑠 𝛿50 𝛿𝑐

17 obtained, therefore, indicating an evident ductile behavior for the specimen. 

18 When  presents values between 0.7 and 1.5, the ratio  varies between 1.4 𝑠 𝛿50 𝛿𝑐

19 and 1; in these cases the specimens present a transitional ductile-to- brittle behavior.

20 Finally, when  is lower than 0.7, the ratio  will present values lower than 𝑠 𝛿50 𝛿𝑐

21 1.0, thus, characterizing a clear brittle behavior. It was noticed that, in this region, for 

22 several cases, the ratio  appears to be equal to 1.0. This is the typical value when 𝛿50 𝛿𝑐

23 the simulation is performed in a controlled displacement, when the specimen breaks in an 

24 unstable way and the snap-back branch of the curve is not captured. It is evident in the 

25 results of the Felser sandstone sets that, for specimens with  <1.0, a special displacement 𝑠

26 control allows to capture the snap-back branch during the softening.

a b
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3 Figure 10: Relation between the Carpinteri brittleness number, s, and the shape of the 

4 global stress - displacement curve. 

5

6 Finally, the ratio between the Carpinteri's number  computed for the specimen 𝑠

7 and the  parameter computed in the context of the method is presented hereafter. In 𝑠𝐿𝐷𝐸𝑀

8 Figure 10, the ratio  was plotted against the ratio , the latter measuring the 𝑠 𝑠𝐿𝐷𝐸𝑀 𝑑𝑒𝑞 𝐿

9 relationship between the material length , that is a characteristic length of the material, 𝑑𝑒𝑞

10 as defined in section 2, and the size of the element that define the level of discretization 

11 used in the model.

12 In Figure 11, it is possible to verify in which way the variability of the fracture 

13 energy CV (Gf) influences the brittleness number  computed using the LDEM 𝑠

14 formulation. The simulations presented in section 4.1 were carried out using CV 

15 (Gf)=40%, this value is usually employed to simulate quasi-brittle materials such as 

16 concrete and rocks (see e.g. [36], [38]). Moreover, a particular study about the influence 

17 of the variability CV (Gf) was conducted in [30]. 

18 The white circle in Figure 11, illustrates the LDEM simulations presented in the 

19 present paper. A set of simulations presented in Ref. [50] were also added in red, together 

20 with other results presented in Refs. [68, 69] represented by gray circles.

21
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2 Figure 11: Relation established between the global brittleness number and the 

3 brittleness number computed in the context of LDEM versus the ratio between the 

4 equivalent d value over the element size used in the discretization. 

5

6 In Figure 11, it can be noticed that an approximate relationship between  𝑠 𝑠𝐿𝐷𝐸𝑀

7 could be considered independent of , if >100 ( ). For lower values 𝑑𝑒𝑞 𝐿 𝑑𝑒𝑞 𝐿 𝜀𝑟 𝜀𝑝 ≈ 60

8 of this ratio, the level of the discretization influences the  result, finding responses 𝑠 𝑠𝐿𝐷𝐸𝑀

9 in the interval [0.6, 1.5]. It is also important to notice that the influence of the fracture 

10 energy variation coefficient is significant.

11 When an element breaks, it generates a crack with a size related to its length, . If 𝐿

12 this crack is smaller than the material equivalent length , it will not propagate until it 𝑑𝑒𝑞

13 reaches this critical dimension (after nucleation). If this crack size is closed to the material 

14 equivalent length , then it will propagate.𝑑𝑒𝑞

15 A  greater than 1 indicates that the mean axial stress of all the LDEM 𝑠 𝑠𝐿𝐷𝐸𝑀

16 elements ( ) is greater than the simulation maximum global stress ( ). This can be 𝜎 ∗
𝑝 𝜎𝑝

17 found with a more “brittle” constitutive model (  close to  or  close to ) and/or 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

18 large dispersions in a random field. With a large dispersion, it is easier to find a less 

19 resistant element than the mean element resistance. When the element breaks, if the 

20 generated crack is of the size of , a brittle fracture occurs. In this case, the simulation’s 𝑑𝑒𝑞
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1 global response is close to the resistance of this first broken element, but much smaller 

2 than the mean resistance of all the other elements together.

3 Conversely, a  smaller than 1 indicates that the mean axial stress of all the 𝑠 𝑠𝐿𝐷𝐸𝑀

4 LDEM elements ( ) is less than the simulation maximum global stress ( ). This occur 𝜎 ∗
𝑝 𝜎𝑝

5 when we have little dispersion of the random field (low CV) and/or a “ductile” 

6 constitutive model (  much larger than  or  bigger than ). 𝜀𝑟 𝜀𝑝 𝑑𝑒𝑞 𝐿

7 A practical application of the graphs presented in Fig 10 to calibrate the LDEM 

8 model could be proposed:

9 1- If experimental data about the material are available, together with the specimen size 

10 characterized by its , the material properties ,  and the stress versus displacement 𝑅 𝐺𝑓 𝐸

11 global curve, then the value of  can be computed using the Eq. (1).𝑠

12 2- Assuming that  using the Eq. (14), it is possible to obtain the material 𝑠𝐿𝐷𝐸𝑀 = 𝑠

13 parameter .𝑑𝑒𝑞

14 3- Adopting a level of discretization and the CV(Gf) to be used in the simulation, it is 

15 possible to compute  and to obtain the ratio  using the plot presented in 𝑑𝑒𝑞 𝐿 𝑠 𝑠𝐿𝐷𝐸𝑀

16 Fig.11. 

17 4- With the corrected value of   and using Eq. (14), a better approximation of  𝑠𝐿𝐷𝐸𝑀 𝑑𝑒𝑞

18 could be computed.

19 Notice that  is a material parameter, and for this reason, if the model calibration 𝑑𝑒𝑞

20 is performed for one specimen, this value will not vary if the geometry and boundary 

21 conditions change.

22 In the present paper, a comparison between the global specimen behavior during 

23 damage process and the brittleness number is established. In [42, 50, 70] the link of the 

24 brittleness number with the dissipated energy and the final configurations obtained with 

25 LDEM simulations was also studied.

26

27 5. Conclusions 

28 In the present work, several sets of experimental and numerical results are 

29 reviewed with the aim to correlate the Carpinteri’s brittleness number obtained to predict 

30 the global behavior (ductile, brittle, or ductile-to-brittle transitional behavior).

31 In all cases, the specimens were subjected to pure tensile stress and heterogeneous 

32 materials were also analyzed. Experimental results produced by other researchers or by 

33 the authors themselves are presented. No pre-cracked specimens were considered, that is, 
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1 the spontaneous localization of the main crack was expected. The numerical approach 

2 used was a version of the Lattice Discrete Element Method that accounts for the random 

3 nature of the material employed. With this research work, it is possible to conclude that:

4 - A correlation between the  number and the aspect of the global force/stress versus 𝑠

5 displacement/strain curve is evident in all the evaluated cases. For this reason, the 

6 computation of  allows to predict what kind of behavior is to be expected for 𝑠

7 each specimen.

8 - The values computed using experimental and numerical results allow to perceive 

9 that for the boundary conditions used, when  <0.7 is used as a lower bound, a 𝑠

10 global brittle behavior is expected. On the other hand, if  >1.5, a ductile behavior 𝑠

11 is expected, moreover, in the interval of  [0.7, 1.5], a ductile-to-brittle transitional 𝑠

12 behavior occurs. The extension of the present study to verify the influence of the 

13 boundary condition and the specimen geometry will be the focus of future works.

14 - The relationship between the traditional definition of  and the definition of the 𝑠

15 brittleness number computed in the context of the numerical method used, , 𝑠𝐿𝐷𝐸𝑀

16 was presented. This relationship can be used to calibrate, in a consistent way, the 

17 LDEM method employed. It is possible to extend this methodology of calibration 

18 to other versions of the discrete element method (for example in Perydinamics), 

19 where spontaneous fracture can be also simulated. 

20 - The satisfactory correlation between experimental and LDEM results confirms the 

21 robustness of this method as a numerical tool to model fracture processes in quasi-

22 brittle materials.
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