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p-ADIC DENSENESS OF MEMBERS OF PARTITIONS OF N AND

THEIR RATIO SETS

PIOTR MISKA AND CARLO SANNA

Abstract. The ratio set of a set of positive integers A is defined as R(A) := {a/b : a, b ∈ A}.
The study of the denseness of R(A) in the set of positive real numbers is a classical topic
and, more recently, the denseness in the set of p-adic numbers Qp has also been investigated.
Let A1, . . . , Ak be a partition of N into k sets. We prove that for all prime numbers p but
at most blog2 kc exceptions at least one of R(A1), . . . , R(Ak) is dense in Qp. Moreover, we
show that for all prime numbers p but at most k − 1 exceptions at least one of A1, . . . , Ak is
dense in Zp. Both these results are optimal in the sense that there exist partitions A1, . . . , Ak

having exactly blog2 kc, respectively k − 1, exceptional prime numbers; and we give explicit
constructions for them. Furthermore, as a corollary, we answer negatively a question raised
by Garcia, Hong, et al.

1. Introduction

The ratio set (or quotient set) of a set of positive integers A is defined as

R(A) := {a/b : a, b ∈ A}.
The study of the denseness of R(A) in the set of positive real numbers R+ is a classical topic.
For example, Strauch and Tóth [10] (see also [11]) showed that R(A) is dense in R+ whenever
A has lower asymptotic density at least equal to 1/2. Furthermore, Bukor, Šalát, and Tóth [3]
proved that if N = A ∪B for two disjoint sets A and B, then at least one of R(A) or R(B) is
dense in R+. On the other hand, Brown, Dairyko, Garcia, Lutz, and Someck [1] showed that
there exist pairwise disjoint sets A,B,C ⊆ N such that N = A ∪ B ∪ C and none of R(A),
R(B), R(C) is dense in R+. See also [2, 4, 7, 8] for other related results.

More recently, the study of when R(A) is dense in the p-adic numbers Qp, for some prime
number p, has been initiated. Garcia and Luca [6] proved that the ratio set of the set of
Fibonacci numbers is dense in Qp, for all prime numbers p. Their result has been generalized by
Sanna [9], who proved that the ratio set of the k-generalized Fibonacci numbers is dense in Qp,
for all integers k ≥ 2 and prime numbers p. Furthermore, Garcia, Hong, Luca, Pinsker, Sanna,
Schechter, and Starr [5] gave several results on the denseness of R(A) in Qp. In particular,
they studied R(A) when A is the set of values of a Lucas sequences, the set of positive integers
which are sum of k squares, respectively k cubes, or the union of two geometric progressions.

In this paper, we continued the study of the denseness of R(A) in Qp.

2. Denseness of members of partitions of N

Motivated by the results on partitions of N mentioned in the introduction, the authors of [5]
showed that for each prime number p there exists a partition of N into two sets A and B such
that neither R(A) nor R(B) are dense in Qp [5, Example 3.6]. Then, they asked the following
question [5, Problem 3.7]:

Question 2.1. Is there a partition of N into two sets A and B such that R(A) and R(B) are
dense in no Qp?

1
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1Actually, in [5, Problem 3.7] it is erroneously written “such that A and B are dense in no Qp”, so that the

answer is obviously: “Yes, pick any partion into two sets!”. Question 2.1 is the intended question.
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2 P. MISKA AND C. SANNA

We show that the answer to Question 2.1 is negative. In fact, we will prove even more. Our
first result is the following:

Theorem 2.1. Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime numbers p
but at most k − 1 exceptions, at least one of A1, . . . , Ak is dense in Zp.

Then, from Theorem 2.1 it follows the next corollary, which gives a strong negative answer
to Question 2.1.

Corollary 2.1. Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime numbers p
but at most k − 1 exceptions, at least one of R(A1), . . . , R(Ak) is dense in Qp.

Proof. It is easy to prove that if Aj is dense in Zp then R(Aj) is dense in Qp. Hence, the claim
follows from Theorem 2.1. �

The proof of Theorem 2.1 requires just a couple of easy preliminary lemmas. For positive
integers a and b, define a+ bN := {a+ bk : k ∈ N}.

Lemma 2.2. Suppose that (a+ bN) ⊆ A∪B for some positive integers a, b and some disjoint
sets A,B ⊆ N. If p is a prime number such that p - b and A is not dense in Zp, then there
exist positive integers c and j such that (c+ bpjN) ⊆ B.

Proof. Since A is not dense in Zp, there exist positive integers d, j such that (d+pjN)∩A = ∅.
Hence, (a+bN)∩ (d+pjN) ⊆ B. The claim follows by the Chinese Remainder Theorem, which
implies that (a+ bN) ∩ (d+ pjN) = c+ bpjN, for some positive integer c. �

Lemma 2.3. Let a and b be positive integers. Then, a + bN is dense in Zp for all prime
numbers p such that p - b.

Proof. It is follows from the Chinese Remainder Theorem and the fact that N is dense in Zp. �

We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. For the sake of contradiction, suppose that p1, . . . , pk are k pairwise
distinct prime numbers such that none of A1, . . . , Ak is dense in Zpi for i = 1, . . . , k. Since

A1 is not dense in Zp1 , there exist positive integers c1 and j1 such that (c1 + pj11 N) ∩A1 = ∅.

Hence, (c1 + pj11 N) ⊆ A2 ∪ · · · ∪ Ak and, thanks to Lemma 2.2, there exist positive integers

c2 and j2 such that (c2 + pj11 p
j2
2 N) ⊆ A3 ∪ · · · ∪ Ak. Continuing this process, we get that

(ck−1 + pj11 · · · p
jk−1

k−1 N) ⊆ Ak, for some positive integers ck−1, j1, . . . , jk−1. By Lemma 2.3, this
last inclusion implies that Ak is dense in Zpk , but this contradicts the hypotheses. �

Remark 2.1. In fact, Theorem 2.1 can be strengthen in the following way: For each partition
A1, . . . , Ak of N there exists a member Aj of this partition which is dense in Zp for all but at
most k − 1 prime numbers p.

Indeed, for the sake of contradiction, suppose that each memberAj of the partitionA1, . . . , Ak
of N has at least k prime numbers p such that Aj is not dense in Zp. Then we can choose prime
numbers p1, . . . , pk such that for each j ∈ {1, . . . , k} the set Aj is not dense in Zpj . Next, we
provide the reasoning from the proof of Theorem 2.1 to reach a contradiction.

The next result shows that the quantity k − 1 in Theorem 2.1 cannot be improved.

Theorem 2.4. Let k ≥ 2 be an integer and let p1, . . . , pk−1 be pairwise distinct prime numbers.
Then, there exists a partition A1, . . . , Ak of N such that none of A1, . . . , Ak is dense in Zpi for
i = 1, . . . , k − 1.

Proof. Let e1, . . . , ek−1 be positive integers such that peii ≥ k for i = 1, . . . , k − 1, and put

V := {0, . . . , pe11 − 1} × · · · × {0, . . . , pek−1

k−1 − 1}.
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We shall construct a partition R0, . . . , Rk−1 of V (note that the indices of Ri start from 0)
such that if (r1, . . . , rk−1) ∈ Rj then none of the components r1, . . . , rk−1 is equal to j. Then,
we define

Aj := {n ∈ N : ∃(r1, . . . , rk−1) ∈ Rj−1, ∀i = 1, . . . , k − 1, n ≡ ri (mod peii )},

for j = 1, . . . , k. At this point, it follows easily that A1, . . . , Ak is a partition of N, and that
none of A1, . . . , Ak is dense in Zpi , since Aj+1 misses the residue class j (mod peii ).

The construction of R0, . . . , Rk−1 is algorithmic. We start with R0, . . . , Rk−1 all empty.
Then, we pick a vector x ∈ V which is not already in R0 ∪ · · · ∪ Rk−1. It is easy to see that
there exists some j ∈ {0, ..., k− 1} such that j does not appear as a component of x. We thus
throw x into Rj . We continue this process until all the vectors in V have been picked.

Now, by the construction it is clear that R0, . . . , Rk−1 is a partition of V satisfying the
desired property. �

3. Denseness of ratio sets of members of partitions of N

The result in Corollary 2.1 is not optimal. Let bxc denote the greatest integer not exceeding
x, and write log2 for the base 2 logarithm. Our next result is the following:

Theorem 3.1. Let A1, . . . , Ak be a partition of N into k sets. Then, for all prime numbers p
but at most blog2 kc exceptions, at least one of R(A1), . . . , R(Ak) is dense in Qp.

Before proving Theorem 3.1, we need to introduce some notation. For a prime number p and
a positive integer w, we identify the group (Z/pwZ)∗ with {a ∈ {1, . . . , pw} : p - a}. Moreover,
for each a ∈ (Z/pwZ)∗ we define

(a)pw :=
{
x ∈ Q∗

p : x/pνp(x) ≡ a mod pw
}
,

where, as usual, νp denotes the p-adic valuation. Note that the family of sets

(a)pw ∩ ν−1
p (s) = {(a+ rpw)ps : r ∈ Zp}

where w is a positive integer, a ∈ (Z/pwZ)∗, and s ∈ Z, is a basis of the topology of Q∗
p.

Finally, for all integers t ≤ m and for each set X ⊆ N, we define

Vpw,t,m :=
{

(a)pw ∩ ν−1
p (s) : a ∈ (Z/pwZ)∗, s ∈ Z ∩ [t,m− 1]

}
and

Vpw,t,m(X) := {I ∈ Vpw,t,m : X ∩ I 6= ∅}.
Note that the following trivial upper bound holds

#Vpw,t,m(X) ≤ #Vpw,t,m = (m− t)ϕ(pw),

where ϕ is the Euler’s totient function.
Now we are ready to state a lemma that will be crucial in the proof of Theorem 3.1.

Lemma 3.2. Fix a prime number p, two positive integers w, t, a real number c > 1/2, and a
set X ⊆ N. Suppose that #Vpw,0,m(X) ≥ cmϕ(pw) for some positive integer m > t/(2c − 1).
Then the ratio set R(X) intersects nontrivially with each set in Vpw,0,t.

Proof. Given (a0)pw ∩ ν−1
p (s0) ∈ Vpw,0,t we have to prove that R(X) ∩ (a0)pw ∩ ν−1

p (s0) 6= ∅.
For the sake of convenience, define A := Vpw,t,m(X) and

B := {(a0a)pw ∩ ν−1
p (s0 + s) : (a)pw ∩ ν−1

p (s) ∈ Vpw,t−s0,m−s0(X)}.

We have

(1) #A = #Vpw,0,m(X)−#Vpw,0,t(X) ≥ (cm− t)ϕ(pw) >
1

2
(m− t)ϕ(pw),
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where we used the inequality m > t/(2c− 1). Similarly,

#B = #Vpw,0,m(X)−#Vpw,0,t−s0(X)−#Vpw,m−s0,m(X)

≥ (cm− (t− s0)− s0)ϕ(pw) >
1

2
(m− t)ϕ(pw).(2)

Now A and B are both subsets of Vpw,t,m, while #Vpw,t,m = (m − t)ϕ(pw). Therefore, (1)
and (2) imply that A∩B 6= ∅. That is, there exist (a1)pw ∩ν−1

p (s1) ∈ A and (a2)pw ∩ν−1
p (s2) ∈

Vpw,t−s0,m−s0(X) such that a1/a2 ≡ a0 (mod pw) and s1 − s2 = s0, so that R(X) ∩ (a0)pw ∩
ν−1
p (s0) 6= ∅, as claimed. �

Proof of Theorem 3.1. For the sake of contradiction, put ` := blog2 kc + 1 and suppose that
p1, . . . , p` are ` pairwise distinct prime numbers such that none of R(A1), . . . , R(Ak) is dense in
Qpi for i = 1, . . . , `. Hence, there exist positive integers w and t such that for each i ∈ {1, . . . , k}
and each j ∈ {1, . . . , `} we have R(Ai)∩ (ai,j)pwj ∩ ν

−1
pj (si,j) = ∅, for some ai,j ∈ (Z/pwj Z)∗ and

some si,j ∈ {−(t−1), . . . , t−1}. Clearly, since ratio sets are closed under taking reciprocals, we

can assume si,j ≥ 0. Put c := 1/
√̀
k, so that c > 1/2, and pick a positive integer m > t/(2c−1).

There are

N := m`
∏̀
j=1

ϕ(pwj )

sets of the form

(3)
⋂̀
j=1

(
(aj)pwj ∩ ν

−1
pj (sj)

)
,

where aj ∈ (Z/pwj Z)∗ and sj ∈ {0, . . . ,m−1}. Therefore, there exists i0 ∈ {1, . . . , k} such that

Ai0 intersects nontrivially with at least N/k of the sets of form (3). Consequently, there exists
j0 ∈ {1, . . . , `} such that Ai0 intersects nontrivially with at least cmϕ(pwj0) sets of the form

(a)pwj0
∩ ν−1

pj0
(s), where a ∈ (Z/pwj0Z)∗ and s ∈ {0, . . . ,m− 1}. In other words, #Vpwj0 ,0,m

(Ai0) ≥
cmϕ(pwj0). Hence, by Lemma 3.2, the set R(Ai0) intersects notrivially with all the sets of the

form (a)pwj0
∩ ν−1

pj0
(s), where a ∈ (Z/pwj0Z)∗ and s ∈ {0, . . . , t − 1}, but this is in contradiction

with the fact that R(Ai0) ∩ (ai0,j0)pwj0
∩ ν−1

pj0
(si0,j0) = ∅. �

The bound blog2 kc in Theorem 3.1 is sharp in the following sense:

Theorem 3.3. Let k ≥ 2 be an integer and let p1 < . . . < p` be ` := blog2 kc pairwise distinct
prime numbers. Then, there exists a partition of N into k sets A1, . . . , Ak such that none of
R(A1), . . . , R(Ak) is dense in Qpi for i = 1, . . . , `.

Proof. We give two different constructions. Put h := 2` and let S1, . . . , Sh be all the subsets
of {1, . . . , `}. For j = 1, . . . , h, define

Bj := {n ∈ N : ∀i = 1, . . . , ` νpi(n) ≡ χSj (i) (mod 2)},
where χSj denotes the characteristic function of Sj . It follows easily that B1, . . . , Bh is a
partition of N, and that none of R(B1), . . . , R(Bh) is dense in Qpi , for i = 1, . . . , `, since
each R(Bj) contains only rational numbers with even pi-adic valuations. Finally, since h ≤ k,
the partition B1, . . . , Bh can be refined to obtain a partition A1, . . . , Ak satisfying the desired
property.

The second costruction is similar. For j = 1, . . . , h, define

Cj =

{
n ∈ N :

(
n/p

vpi (n)
i

pi

)
= (−1)

χSj
(i)

for each i ∈ {1, ..., `}

}
,

where
(
a
p

)
means the Legendre symbol and in case of p1 = 2 we put

(
a
2

)
= a (mod 4). It

follows easily that C1, . . . , Ch is a partition of N, and that none of R(C1), . . . , R(Ch) is dense
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in Qpi , for i = 1, . . . , `, since each R(Cj) contains only products of powers of pi and quadratic
residues modulo pi (in case of p1 = 2 we have only products of powers of 2 and numbers
congruent to 1 modulo 4). Finally, since h ≤ k, the partition C1, . . . , Ch can be refined to
obtain a partition A1, . . . , Ak satisfying the desired property. �

In the light of Remark 2.1 it is worth to ask a the following question.

Question 3.1. Let us fix a positive integer k. What then is the least number m = m(k) such
that for each partition A1, . . . , Ak of N there exists a member Aj of this partition such that
R(Aj) is dense in Qp for all but at most m prime numbers p?

In virtue of Remark 2.1 we know that m(k) exists and m(k) ≤ k − 1. On the other hand,
by Theorem 3.3 the value m(k) is not less than blog2 kc.

Acknowledgements. C. Sanna is a member of the INdAM group GNSAGA.
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[2] J. Bukor, P. Erdős, T. Šalát, and J. T. Tóth, Remarks on the (R)-density of sets of numbers. II, Math.
Slovaca 47 (1997), no. 5, 517–526.
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