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ADVANCED GDQ MODELS AND 3D STRESS RECOVERY IN MULTILAYERED PLATES, 

SPHERICAL AND DOUBLE-CURVED PANELS SUBJECTED TO TRANSVERSE SHEAR 

LOADS 

Salvatore Brischetto1, Francesco Tornabene2 

 

ABSTRACT. The present work shows a systematic comparison between different shell models in the case of 

static analysis of multilayered composite and sandwich plates and spherical shells. Transverse shear loads are 

applied on these structures. The behavior through the thickness direction is analyzed in terms of the three 

displacement components and the six stress components. Such evaluations allow to remark the typical zigzag 

effect of displacements and the interlaminar continuity conditions in terms of congruence and equilibrium 

equations in the multilayered plates and shells. The boundary load conditions at the external surfaces are also 

verified. The proposed 3D models are closed form solutions of 3D shell theories developed in the framework of 

analytical and semi-analytical approaches for differential equations in z. The 2D numerical shell models are 

classical and refined models developed in both equivalent single layer and layer wise viewpoints. 2D numerical 

theories are solved by means of the Generalized Differential Quadrature Model (GDQM), which allows general 

solutions for different boundary conditions, load applications, lamination schemes and geometries. The 

advantages of this methodology are also clearly shown and discussed for complicated geometries such as double-

curved shells. 
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1. INTRODUCTION 

Nowadays, in order to obtain higher levels of perfomance, such as the increment of the safety requirements and 

the improvement of the dynamic behavior, laminated sandwich and composite structures are designed and 

employed by taking also into account the ratio between the limited weight of the structure and its stiffeness. 

These kinds of  structure are widely used in marine, aerospace, automotive and building engineering fields, 

where they are modelled as plate and shell elements [1-3].  There existes two different ways to model shell and 

plate structures, they are the three-dimensional (3D) and the two-dimensional (2D) approaches, in both analytical 

and numerical forms. The 3D models are characterized by accurate results, but they present a high computational 

cost due to the large number of degrees of freedom employed to obtain satisfactory solutions. Due to this 

problem, the 2D shell models are widely used in engineering applications. They present lower computational 

costs. In fact, a drastic reduction of the computational time and of the complexity of the formulation can be 

achived by introducing several approximations through the thickness of the structure. 

In order to reduce the degrees of freedom of the structural model and to have a simpler formulation, the 2D plate 

and shell theories were developed in the literature. In fact, the main reason is the reduction of the computational 

costs. If 2D numerical models are employed, they can consider more complicated problems for the loads, the 

boundary conditions and the lamination schemes. The Finite Element Method (FEM) is the most popular 

numerical method available in the literature and it is based on the weak form of the problem. In the latest years, 

various approches based on the strong form of the problem were proposed. One of them was the Generalized 

Differential Quadrature (GDQ) method improved by Shu (see [4, 5]). This methodology was applied to several 

examples in the literature for the analysis of composite and sandwich structures as reported in the works [6-15]. 

In particular, classical and refined 2D models for the analysis of plates and doubly-curved shells, using the 

differential geometry, were developed by Tornabene and his co-authors [6-15]. In the paper [16], the free 

vibration analysis of doubly-curved laminated shells and plates was considered using general higher-order shear 

deformation theories. The same 2D higher models was used to study the static analysis of doubly-curved 

laminated shells and panels in [17]. In the work [18], an extension of the Carrera Unified Formulation [19, 20] 

was proposed to solve completely doubly-curved shell structures. In [21], the static behaviour of doubly-curved 

anisotropic shells and panels was analysed using the same formulation employed in [18]. Furthermore, 

Tornabene and his co-authros [21-24] proposed “a posteriori” shear and normal stress in order to obtain the 

correct stress and strain behaviour through the thickness of the structure.  
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The analytical 3D formulations presented in the literature have a restricted range of applications due to the 

limitations derived from the theoretical approach. For these reasons, the numerical 3D approches could be used 

to avoid these limitations. Among analytical 3D formulations, Pagano [25-27] studied several benchmarks for 

laminated composite and sandwich plates, these benchmarks are frequently used in the literature for comparisons 

with other analytical and numerical models. Xu and Zhou [28] proposed a 3D numerical plate model for 

analyzing the bending behaviour of variable thickness plates. Meyer-Piening [29] studied layered structures with 

soft cores. A 3D mixed analytical plate solution was proposed by Demasi [30]. Furthermore, Ren [31] analysed 

the 3D bending solution of composite cylindrical panels under transverse normal loads. An exact 3D solution for 

composite cylinders subjected to transverse normal loads was proposed by Varadan and Bhaskar [32]. Fan and 

Zhang [33, 34] analyzed composite spherical panels. A similar formulation for composite cylinders subjected to 

harmonic loads was proposed by Soldatos and Ye [35]. Another three-dimensional solution for composite plates 

was proposed by Fan and Ye [36] considering classical load applications. Kashtalyan [37] extended the typical 

3D plate solution to the static analysis of single-layered Functionally Graded Material (FGM) structures. 

Kashtalyan and Menshykova [38] considered sandwich plates embedding FGM cores. Further 3D free vibration 

and dynamic studies for plates were proposed in the works [39-42]. Similar behaviours were considered for shell 

structures in the works [43-45]. Furthermore, 3D numerical solutions for free vibration, dynamic and bending 

analysis of plate and shell structures can be found in the works [46-51]. Recently, Brischetto obtained an 

analytical 3D exact solution for plates, cylinders and spherical/cylindrical shell panels considering isotropic, 

composite and functionally graded layers. In the works [52-55], the free vibration analyses of one-layered, 

laminated composite, sandwich, functionally graded and single-walled carbon nanotube structures was 

considered. The static analyses for multilayered composite, sandwich and functionally graded plates and shells 

were proposed in works [56-59]. Brischetto [52-59] used a 3D exact model based on the exponenetial matrix 

method. The layer-wise approach, the interlaminar continuity conditions in terms of displacements and 

transverse stresses and the 3D equilibrium equations in mixed orthogonal curvilinear coordinates are the main 

features of this model. This approach is a sort of generalization of some less general models already presented in 

the literure [34, 35, 41]. 

In the presert new paper, analytical and semi-analytical three-dimensional (3D) shell models are used to compare 

the 2D GDQ solutions obtained with the same recovery procedure adopted in [21-24]. The static analysis of 

laminated composite/sandwich plates and spherical or double-curved shells, subjected to transverse shear loads 
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applied at the top surface, is shown in the present paper in analogy with the cases already analyzed in [60] where 

a transverse normal load is applied at the top, and a different geometry for double-curved shells was considered. 

Two different closed-form three-dimensional shell theories are here used to compare the accuracy of classical 

and refined GDQ shell models by Tornabene [5-10], [16-18], [21, 22]. The proposed refined and classical 2D 

GDQ theories consider the “a posteriori” shear and normal stress recovery in order to correctly evaluate the 

quantitities through the thickness direction. The 3D formulation based on the Exponential Matrix method, and 

here called as 3D EM, was developed by Brischetto in [52-59] using mixed orthogonal curvilinear coordinates, 

interlaminar continuity for transverse stresses and displacements, layer-wise approach and exponential matrix 

methodology for the analytical resolution of differential equations in the normal direction. The new 3D 

formulation, presented for the first time in [60] and called 3D GDQ, is based on mixed orthogonal curvilinear 

coordinates, interlaminar continuity for transverse stresses and displacements, layer-wise approach and the GDQ 

method by Tornabene [5-10], [16-18], [21-22] to numerically solve the differential equations in the normal 

direction. 

 

2. 3D GENERAL SHELL THEORIES 

The first proposed 3D shell theory uses the 3D equilibrium equations written in mixed curvilinear orthogonal 

coordinates  1 2, ,s s  [60]. These mixed curvilinear coordinates are indicated in Figure 1 where the meaning of 

geometry, thickness coordinates, mean radii of curvature  1 1 2,R s s  and  2 1 2,R s s  along the two directions 1s  

and 2s  are clearly shown. For a general lamina k , the 3D stress state in the material reference system can be 

given as: 
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The geometrical relations for a spherical shell degenerate into those for cylindrical panels, cylinders and plates 

by means of simple considerations about the radii of curvature: 
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                                        (2) 

The 3D equilibrium equations in mixed curvilinear orthogonal coordinates for the general case of spherical shell 

panels are:  
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where the parametric coefficients 
 
1

k
H  and 

 
2

k
H  are expressed as functions of the thickness coordinate and radii 

of curvature: 
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                                                                                    (4) 

In the equations (1)-(3),  1 1 2, ,U s s  ,  2 1 2, ,U s s   and  3 1 2, ,U s s   are the displacements. 
 k

if indicates the 

body forces. 
           
1 2 12 13 23 3, , , , ,

k k k k k k
       and 

           
1 2 12 13 23 3, , , , ,

k k k k k k
       are the strain and stress components 

defined in each k  lamina, respectively.  The closed form solution is obtained only if cross-ply configurations are 

considered (angles equal 0 or 90). This feature means coefficients  
       

16 26 36 45 0
k k k k

C C C C    in the consitutive 

relations explicitly written in Eq. (1) (see Reddy’s book [1]). Moreoves, plates and shells must have all the sides 

as simply supported, which means harmonic forms for displacements, stresses, loads and body forces: 
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where m and n are the half-wave numbers, and 1L and 2L are the dimensions of the structures. 
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 are the relative amplitudes. 

The closed form of differential equations is obtained after the inclusion of Eqs.(5)-(8) in Eqs.(3) written in 

displacement form by means of constitutive and geometrical equations (1) and (2):  
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k k

k

k k

C C C C C C C C C C C Cn n m m

L L L LH H H R H R H H H R H R

C C n
C

H R H R

   

 



            
             

       
      

  
    
  
 

 

 

 

 

     

   

 

 

 

 

   
2 2 2

44 55 13 23 12 11 22

3 32 22 2 2 22 2
1 21 2 1 2 1 2 1 1 2 2

2
U f 0

k k k k k k k

k k

k k k k k k

C C C C C C Cm

L LH H H H R R H R H R

   
      
 
 

     (11) 

The proposed 3D theory is developed in layer-wise form and it uses the equilibrium conditions for transverse 

stresses at each interface:  

 

       
       
       

1

13 1 2 1 13 1 2 1

1

23 1 2 1 23 1 2 1

1

33 1 2 1 33 1 2 1

, , , ,

, , , ,

, , , ,

k k

k k

k k

k k

k k

k k

s s s s

s s s s

s s s s

   

   

   



 



 



 







 (12) 

and the compatibility conditions for displacements at each interfaces: 
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       
       
       

1

1 1 2 1 1 1 2 1

1

2 1 2 1 2 1 2 1

1

3 1 2 1 3 1 2 1

, , , ,

, , , ,

, , , ,

k k

k k

k k

k k

k k

k k

U s s U s s

U s s U s s

U s s U s s

 

 

 



 



 



 







          (13) 

The load conditions at the external surfaces of the proposed benchmarks consider only transverse shear loads in  

terms of stress 
(1, )

23

l in harmonic form: 

 
       1, 1,

23 1 2 2 1 2 2 1 2

1 2

, , , q sin cos
2

l lh n m
s s q s s s s

L L

 



    

                

                            (14) 

The closed form of the sistem of partial differential equations in   (see Eqs. (9)-(11)) can be solved in pure  

analytical form using the Exponential Matrix (EM) method (see details in [52-59]): 

 
         *exp 0 with 0,

j jj j j j jz z z h    U A U                                  (15) 

In the present paper this solution is defined as “3D EM”, and it was extensively described in [52-59]. In [52-59], 

the “3D EM” solution was also validated using different 3D analytical and numerical solutions developed for 

particular geometries. Some of these comparisons were those with the 3D plate solution by Pagano [25-27], with 

the 3D solution by Ren [31] for static analysis of laminated cylindrical panels, with the exact 3D solution by 

Varadan and Bhaskar [32] for the bending of composite cylinders, with the 3D exact solutions by Fan and Zhang 

[33] developed for thick composite spherical shells, with the exact elastic model by Soldatos and Ye [35] for 

hollow cylinders, with the 3D exact model by Kashtalyan [37] and  Kashtalyan and  Menshykova [38] for static 

analysis of one-layered and sandwich functionally graded plates, with the 3D model by Vel and Batra [39] for 

the vibration analysis of functionally graded plates and with the 3D exact solution by Messina [41] for the mode 

investigation of multilayered composite plates.  

The second 3D shell model here proposed is defined as “3D GDQ”. The only difference in the solution 

procedure seen in Eqs. (1)-(15) is the use of the Generalized Differential Quadrature model (GDQ) in place of 

the Exponential Matrix (EM) method for the solution of partial differential equations in   given in closed form. 

The GDQ method is a powerful numerical procedure extensively and successfully applied by the second author 

in his past works [5-10], [16-18] and [21-24] where the GDQ method was dedicated to the building of refined 

2D numerical shell models. In brief, in the case of a one-dimensional domain using an interval  1, Tx x , the 

GDQ method allows the approximation of the n -th derivative in a generic point ix  of a sufficiently smooth 

function  f x  using a weighted linear sum of the function values at a certain number of defined points 
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     

1
i

n T
n

ij jn
j

x x

d f x
f x

dx





  (16) 

where  = 1, 2,..., i T , with T  indicating the total number of grid points. The weighting coefficients are defined as 

 n

ij and they are calculated by means of the recursive relations given by Shu in [5], and then used in[24]. Eq.(16) 

is used in place of Eq.(15). This numerical method permits the calculation of the derivative of a function in each 

point of the proposed domain. The nodes in the domain are given in accordance with a specific grid distribution. 

In this proposed 3D shell solution, the Chebyshev-Gauss-Lobatto grid distribution is employed due to its 

stability and accuracy as demonstrated in [5] and [24]. The discrete points are given as 

 
 1

1

1
1 cos

1 2

T

i

x xi
x x

T


   
    

  
 (17) 

where 1,2,...,i T  and 1 , Tx x x    . The numerical solution, by means of the GDQ method, of partial 

differential equations in   given in eqs. (9)-(11) allows the reduction of the computational cost. This feature 

does not modify the precision of the results as will be demonstrated in the section 4 where “3D EM” and “3D 

GDQ” theories are very close for all the proposed benchmarks. Therefore, the new 3D GDQ model will be 

considered as validated for the static investigation of multilayered anisotropic plates and spherical shells thanks 

the comparisons with the 3D EM shell solution already verified in [52-59]. 

 

3. EQUIVALENT SINGLE LAYER AND LAYER WISE 2D GDQ SHELL MODELS 

The present formulation for doubly-curved surfaces is based on the differential geometry as described in the 

book [61]. A reference surface is defined and the two-dimensional models for generic doubly-curved shells are 

strictly related to the mechanical behavior of this reference surface. The reference surface is the middle surface 

of a multilayered shell as indicated in Figure 1. The 3D shell is positioned in the global reference system

1 2 3O x x x . The thickness of the shell is the distance from the bottom external curved surface and the top external 

curved surface. The global thickness of a multilayered shell is: 

 
1

l

k

k

h h


  (18) 

where kh  is the thickness of the k layer. A local reference system 1 2O     is also defined as shown Figure 1. 

The boundary limits of the shell are: 
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 

0 1

1 1 1

0 1

2 2 2

,

,

2 , 2h h

  

  



   

   

 

 (19) 

The curvilinear orthogonal coordinates 1 2,   are the lines of principal curvature of the shell reference surface 

as demonstrated in the book [61]. In generic cases, 1 2,      for shells of revolution, 1 2, y     for 

single-curved panels of translation, 1 1 2 2,s x s y      for a rectangular plate. Each point P of the three-

dimensional shell is defined using the following vector: 

      1 2 1 2 1 2, , , ,
2

h
z       R r n  (20) 

where    1 22 , 1,1z h      is a no-dimensional variable.  1 2, r is the position vector indicating each 

point on the reference surface.  1 2, n  is the outward unit normal 

 
,1 ,2

,1 ,2






r r
n

r r
 (21) 

where ,i i  r r , for 1, 2i  . The symbol “  ” is used to indicate the vector product. The position vector 

 1 2, r  allows the calculation of the first fundamental forms of the reference surface [61]. The Lamè 

parameters  1 1 2,A    and  2 1 2,A    are defined as 

 
1 ,1 ,1

2 ,2 ,2

A

A

 

 

r r

r r
 (22) 

where the symbol “  ” indicates the scalar product. The principal radii of curvature of the surface  1 1 2,R    and 

 2 1 2,R    are given as 

 

,1 ,1

1

,11

,2 ,2

2

,22

R

R


 




 



r r

r n

r r

r n

 (23) 

For a generic doubly-curved shell, the principal radii of curvature change in each point of the domain. The 

presented formulation can be used for static and dynamic investigations of thick and moderately thick shells 

 
min min

0.01 max , 0.2
h h

R L

 
  

 
 (24) 
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minR  and minL  indicate the minimum radius of curvature and the lowest size of the structure, respectively. The 

three displacement components         1 2 1 1 2 2 1 2 3 1 2, , , , , , , ,
T

U U U           U of a generic shell are 

expressed using the Carrera Unified Formulation [61]. The displacement field can be written as 

 
           0 1 2 3 1

0 1 2 3 1...
N N

N NF F F F F F


      U u u u u u u   (25) 

Where the generalized displacement vector is 
                1 2 1 1 2 2 1 2 3 1 2, , , ,

T

u u u
   

       u .  F F    

are the thickness functions as explicitly given in [61]. Modifying the order of expansion and the type of thickness 

functions, different kinematic models can be obtained. Eq.(25) does not show the dependence on the k -th layer, 

therefore it is written for the Equivalent Single Layer (ESL) models. Classical theories such as the Reissner-

Mindlin theory or the Kirchhoff theory can be obtained as particular cases. The Murakami’s zigzag function 

 Z Z   can be added as the  1N  -th degree of freedom in ESL models in order to recover the typical zig-

zag effect through the thickness of the structure. The Murakami’s zigzag function is defined as 

   1

1 1

2
Z 1

k k k

k k k k

 


   


 

 
   

  
 (26) 

where k  is the coordinate of the k -th layer through the thickness direction  . Murakami’s function has been 

detailed in [61]. The ESL theories employed in this paper use the power functions 
 as thickness functions, 

where 0,1, 2,..., N  [61]. The following theories are obtained for 4N  using the following acronyms: ED1 for 

N=1 and EDZ1 for N=1 and the use of  Z Z  , ED2 for N=2 and EDZ2 for N=2 and the use of  Z Z  , 

ED3 for N=3 and EDZ3 for N=3 and the use of  Z Z  , and ED4 for N=4 and EDZ4 for N=4 and the use of 

 Z Z  . “E” indicates ESL, “D” indicates that the generalized displacements are the main variables of the 

problem, “Z” indicates the Murakami’s zigzag function. The vector 
     1 2,
 

    of  -th order generalized 

strain components on the reference surface is: 

 
                   

1 2 1 2 13 23 13 23 3

T
         

         
 

  (27) 

The  -th order generalized strain component vector is linked to the  -th order generalized displacement 

component vector 
 

u  by means of the following compact form 

 
    

 D u  (28) 
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the operator D  has both differential and geometrical contributions and it has been detailed in [61]. 

The vector of the stress resultants is 
     1 2,
 

 S = S  for the  -th order of kinematic expansion 

 
                   

1 2 12 21 1 2 1 2 3

T

N N N N T T P P S
          

 
S  (29) 

and it is connected with the  -th order generalized displacements according to the following equation given in 

compact form 

 
     

1

0

N
  









S A D u  (30) 

where 0,1,2,..., , 1N N   . The term 
 

A , for , 0,1, 2,..., , 1N N    , is the stiffness matrix and it is 

explicitly given for a generic laminated composite shell embedding l  orthotropic elastic layers in [61]. In this 

work, the stiffness terms 
 k

nmB  are defined as:  

 

( ) ( )

( ) ( )

for , 1,2,3,6

for , 4,5

k k

nm nm

k k

nm nm

B E n m

B E n m

 

 
 (31) 

Terms 
 k

nmE  are employed to specify the elastic constants and they depend on the mechanical properties of the 

structure. This general notation permits the definition of both reduced elastic coefficients (
   k k

nm nmE Q ) or the 

classical ones (
   k k

nm nmE C ) depending on the employed kinematic model [61]. The reduced stiffness values must 

be used for kinematic models with constant or linear transverse normal displacement through the thickness, 

while the classical ones must be employed for those kinematic models with at least a quadratic displacement 

form through the thickness. Similar considerations can be made for the shear correction factor 1  . It is 

equal to the constant value of 5 6  (that means 1.2  ) in the case of a structural theory which considers a non-

parabolic shear stress through the thickness. In the other cases, this factor is neglected. The HSDTs here 

developed do not use the shear correction factor. The Generalized Integral Quadrature (GIQ) technique can be 

used for the integrals proposed in the present formulation [61]. 

The Hamilton’s principle allows to obtain the equilibrium governing equations 

 
   *  

  D S q 0  (32) 

This expression is general for a defined order 0,1,2,..., , 1N N    used in the kinematic expansion. The 

equilibrium differential operator 
*

D  has the explicit form defined in [61]. 
 

q  is the load vector for the forces 
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applied at the external surfaces of the structure. Three load components for each order 0,1,2,..., , 1N N    can 

be included  

 
       

1 2

T

nq q q
    

 
q  (33) 

The considered shells are loaded only by external pressures along the principal curvilinear coordinate directions, 

on the top surface 
     
1 2, , nq q q
  

 and on the bottom one 
     
1 2, , nq q q
  

. The external forces in generalized form 

are 

 

                 

                 

                 

1 1 1 2 1 1 2

2 2 1 2 2 1 2

1 2 1 2

a a

n n n

q q F H H q F H H

q q F H H q F H H

q q F H H q F H H



 



 



 

       

       

       

 

 

 

 (34) 

The external loads are applied on the outer surfaces, and both the thickness function 
 

F


 and the geometric 

parameters 
   
1 2,H H
 

 must be evaluated on the external surfaces of the shell. These surfaces are given by 

2h   .  Therefore, the final system has the following form 

 
     

1

0

N
  







 L u q 0  (35) 

The Eq.(35) is valid for each order 0,1,2,..., , 1N N    of the kinematic expansion and it is defined as the 

fundamental nucleus of the Carrera Unified Formulation [61]. The fundamental operator 
   * 

 L D A D , for 

, 0,1, 2,..., , 1N N    , is defined as 

  

     

     

     

11 12 13

21 22 23

31 32 33

L L L

L L L

L L L

  

   

  

 
 
 
 
  

L  (36) 

Each term 
 
fgL


is defined in [61] for , 1, 2,3f g   and , 0,1, 2,..., , 1N N     of the fundamental operator. The 

fundamental system has  3 2N   equilibrium equations for a generic order of kinematic expansion. The 

appropriate boundary conditions must be imposed to solve the static problem. In the numerical applications, 

clamped (C), simply-supported (S) and free (F) edges can be considered. All the details how to impose these 

conditions in the formulation above presented were detailed in [61].  

Higher-order Layer Wise (LW) kinematic models can be obtained from the ESL ones proposed in Eq.(25) 

simply considering the dependence of the displacement from the k -th layer and using a combination of 
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Legendre polynomials as thickness functions. Several details about LW theories can be found in [61]. The 

employed acronyms for these theories are LD1-LD4 where L indicates the layer wise approach, D  specifies that 

the governing equations are only expressed in terms of generalized displacement, 1-4 is the order of expansion 

through the thickness. 

 

3.1 Numerical Solution 

The system of governing equations presented in the previous section is numerically solved by means of the 

Generalized Differential Quadrature (GDQ) method (see details in the review paper [5]). The GDQ method 

permits the evaluation of the derivative of a function for each point of the domain. In the proposed models, the 

Chebyshev-Gauss-Lobatto grid distribution is used as reported above. Therefore, the structural problems become 

two-dimensional, and the grid distribution must be employed along the two principal curvilinear coordinates 

1 2,  . The total number of grid points must be separately defined for each principal direction. NT I  indicates 

the number of points along 1 , whereas MT I  is that for the other coordinate 2 . The GIQ method uses the 

same ideas of the GDQ technique, as demonstrated in [5]. The static problem is then numerically solved. The 

fundamental equilibrium equations and the related boundary conditions are given in numerical form by means of 

the GDQ method. Therefore, the fundamental system (35) can be written as 

 K f  (37) 

where K  is the stiffness matrix,   is the displacement vector, and f  is the external load vector. Equation (37) is 

an algebraic linear problem. The static condensation allows the reduction of the problem size using a separation 

between the degrees of freedom of the inner points of the domain (d) and those linked to the boundaries (b). 

Consequently, the new system becomes 

 
bb b bd d b

db b dd d d

 

 

K K f

K K f

 

 
 (38) 

where the vector of the degrees of freedom related to the boundary b  is defined as 

  1

b bb b bd d

 K f K   (39) 

The substitution of equation (39) in equation (38) proposes the final algebraic system including the unknown 

variable vector d   

  1 1

dd db bb bd d d db bb b

   K K K K f K K f  (40) 
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In Eq.(40), the generalized displacements for each order of kinematic expansion are employed. 

3.2 Strain and Stress Recovery Method 

The proposed shell theories of the present section 3 are two-dimensional models. For this reason, a posteriori 

recovery procedure, using the three-dimensional elasticity theory [61], allows to obtain the effective shear and 

normal stresses through the thickness of the structure. The 3D equilibrium equations for shells rearranged for this 

purpose are 

   

   

13

13

1 2

21 2 1

1 11 1 1 2 2

112 12

2 22 2 1 2 1

2 1

1

1 1

21

1 1

R R

A

A R A A R

A

A R A A R




  

  

  

 

  

 
   

    

 
   

  


 

  

 (41) 

   

   

23

23

1 2

12 1 2

2 22 2 1 2 1

212 12

1 11 1 1 2 2

1 2

1

1 1

21

1 1

R R

A

A R A A R

A

A R A A R




  

  

  

 

  

 
   

    

 
   

  


 

  

 (42) 

   

   

3

3

1 2

213 13

1 11 1 1 2 2

123 23 1 2

2 2 1 22 2 1 2 1

1 1

1

1 1

1

1 1

R R

A

A R A A R

A

R RA R A A R




  

 

  

   

    

 
   

    


   

  


   

    

 (43) 

Eqs. (41)-(43) must be used in discrete form in order to be evaluated in each point of the three-dimensional shell 

[61]. The GDQ method is employed in the discrete system in each point  1 2,i j   of the reference surface of the 

shell  

 
   

   

      

   

        

      

 

        

1

13 13
1 1 2

2 1 21

1 11 1 1 2 2

12 112

2 22 2 1 2 1

2 1

1

1 1

21

1 1

TI

mk ijk ijm
k m mij ij

ijm ijm

ijm ijm mij ij ij ij ij

ijm

ijm ijm mij ij ij ij ij

R R

A

A R A A R

A

A R A A R


  

 

 

  



  



 
   
  
 

 
   

  


 

  



 (44) 
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 
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   

      

   

        
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mk ijk ijm
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ijm ijm
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 

 

  



  



 
   
  
 

 
   

  


 

  



 (45) 
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   
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 
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  

    



  



 
   
  
 


    

    


 

  



 (46) 

where 1, 2,..., Tm I . The Chebyshev-Gauss-Lobatto grid distribution with TI  points allows to discretize the 

system in the normal direction  . In the results proposed in the present paper, the value 31TI   is set for each 

numerical investigation. The equilibrium relations (41)-(43) can be written in order to have 13  and 23  as 

unknown variables. These stresses are calculated from the opportune boundary conditions at the bottom (-) and 

at the top (+) 

 
   

 

   
 

13 1 1

23 1 2

ij ij

ij ij

q

q












 (47) 

 
   

 

   
 

13 1

23 2

T

T

ijI ij

ijI ij

q

q












 (48) 

The shear stresses along the thickness are 

 
   

 
 
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h
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  
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  

   
 

 (49) 

 
   

 
 

 2 23

23 23
2

Tij ijI

mijm ijm

q h

h


  


  

   
 

 (50) 

for 2,3,..., Tm I , where 13  and 23  are the shear stresses relative to the boundary conditions on the top 

surface. The third equilibrium equation (43) allows the calculation of the normal stress 3 , using the opportune 

boundary conditions on the external shell surfaces 
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 

   
 

3 1 3

3 3T

ij ij

ijI ij

q

q












 (51) 

The normal stress through the thickness is 

 
   

 
 

 3 3

3 3
2

Tij ijI

mijm ijm

q h

h


  


  

   
 

 (52) 

for 2,3,..., Tm I , where 3  is the normal stress imposed at the top as boundary conditions. The shear strains 

13 23,   and the normal strain 3  can be calculated using the computed shear stresses 13 23,   and normal stress 

3  using the constitutive laws. The strains through the thickness are 

 
 
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 

 
 

 
 

 
 

 

 

13 23 363 1 2 12

3

33

m m m

ijm ijm ijm ijm

ijm m

C C C

C

   


  
  (55) 

Equations (54)-(55) do not guarantee the strain compatibility between the different layers, and this feature could 

give an error.  

 

4. RESULTS 

Five different cases are analyzed in this section, the first four ones permit comparisons between the exact 3D 

shell models proposed in Section 2 and the numerical 2D GDQ solutions proposed in Section 3 because simply 

supported sides, harmonic forms for displacements, stresses and loads, and cross-ply configurations are 

considered. The last case is analyzed only by means of 2D GDQ solutions because of more realistic geometries, 

boundary conditions, lamination schemes and load impositions. The first case is a simply-supported square 

multilayered composite plate subjected to an harmonic transverse shear load applied at the top. The second case 

considers the same geometry, boundary conditions and load application of the case 1 but the lamination scheme 

is a sandwich configuration with two external skins in Titanium Alloy and an internal soft core made of Foam. 

The third case is a simply supported spherical shell with the same lamination scheme of case 1 (four composite 

layer configuration with fiber orientation 0/90/0/90) and transverse shear load applied at the top in harmonic 
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form. The fourth case considers the same geometry, boundary and load conditions of case 3 but for a sandwich 

configuration with external isotropic skins and internal foam core. The case 5 is a super elliptic panel of 

revolution with the boundary conditions for the four sides given as Clamped (C)/Free (F)/Clamped (C)/Free (F). 

The transverse shear load is uniform and applied at the top. The shell is made of four composite layers with 

lamination scheme 20/35/45/70. A summary of the geometrical data (radii of curvature, in-plane dimensions, 

global thickness, thickness layers), lamination scheme, and direction, amplitude and half-wave numbers for the 

applied loads are proposed in Table 1 for the all the five proposed cases. The materials employed in the proposed 

lamination schemes (both multilayered composite and multilayered sandwich configurations) have elastic 

properties as summarized in Table 2. Figure 2  shows an exhaustive overview of the geometries employed in the 

five proposed cases. 

Figures 3-6 propose stresses and displacements through the thickness of the case 1 about the simply supported 

multilayered composite plates subjected to an harmonic transverse shear load at the top. Figures 3 and 4 give 

information about the stress and displacement evaluations through the thickness of the thick plate (a/h=10). 

Figures 5 and 6 propose the same quantities through the thickness for the thin plate case (a/h=100). In these 

figures, “3D EM” means the closed form 3D shell solution where differential equations in z are solved by means 

of the Exponential Matrix method, “3D GDQ” is the closed form 3D shell solution where differential equations 

in z are solved by means of the GDQ method. All the other theories are 2D GDQ shell models implemented in 

numerical form, in particular “LD4” is a layer wise model with fourth order of expansion for all the displacement 

components, “ED4” is an equivalent single layer model with fourth order of expansion for all the displacement 

components, “EDZ4” considers the inclusion of the Murakami’s zigzag function in the ED4 model, “TSDT” is a 

Third order Shear Deformation Theory, “FSDT” is a First order Shear Deformation Theory and “KL” means 

Kirchhoff-Love 2D model. In all Figures 3-6, 3D EM and 3D GDQ models are always coincident for each 

thickness ratio and investigated variable. This feature demonstrates the correctness of the new proposed 3D 

GDQ model with respect to the well-known 3D EM model already validated in past first author’s works. Both 

3D EM and 3D GDQ models guarantee the correct load boundary conditions in the evaluation of the transverse 

stresses, the zigzag form of displacements typical of multilayered anisotropic structures, the correct imposition 

of compatibility conditions for displacements and equilibrium conditions for transverse stresses at each layer 

interface. Therefore, they are the best solutions for the analysis of multilayered anisotropic structures, but they 

have the main limitations typical of closed form solutions (simply supported sides, harmonic forms of 
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displacements, stresses and loads, cross-ply lamination scheme). For these reasons, it is fundamental the 

validation of new refined 2D GDQ models. These last ones allow to overcome the limitations typical of closed 

form solutions. LD4 and EDZ4 models are always very close to 3D solutions for each thickness ratio and 

investigated variable (see Figures 3-6). TSDT, FSDT and KL models exhibit some difficulties because they are 

classical 2D theories originally developed for classical laminations. ED4 is a refined model but sometimes it 

exhibits some difficulties (in particular for thick plates) when, for example, the evaluation of typical zigzag form 

of displacements is necessary. EDZ4 model overcomes this main limitation of ED4 model by means of the use of 

the Murakami’s zigzag function. 

All the same theories are employed in the case 2 of Figures 7-10 in order to verify the same conclusions obtained 

for the simply supported multilayered composite plates of Figures 3-6 when the lamination scheme is changed in 

a sandwich configuration with Titanium Alloy skins and a soft Foam core. In this case, all the layers are isotropic 

and therefore there is not an in-plane anisotropy. However, the use of a very soft core gives an important 

transverse anisotropy because of the different elastic properties between the core and the skins. However, the 3D 

closed-form solutions are still the best possibilities. For the 2D GDQ models, the best solutions are the LD4 and 

the EDZ4 ones which are able to capture the zigzag effects for both thick (a/h=10 in Figures 7 and 8) and thin 

(a/h=100 in Figures 9 and 10) configurations. 

Figures 11-18 are used to investigate the radii of curvature effects in the lamination schemes already presented 

and discussed in Figures 3-10 for plate cases. For this purpose, Figures 11-14 are related to the case 3 where the 

lamination scheme of the case 1 about the multilayered composite plate is now used in the case of a simply 

supported spherical shell. Figures 15-18 show the case 4 where the lamination scheme of the case 2 about the 

sandwich plate with soft core is extended to the simply supported spherical shell geometry. The inclusion of 

curvature terms in these cases gives a full coupling between all the displacement components, and this feature 

generates very complicated displacement and stress evaluations through the thickness direction. In spite of this 

feature, 3D shell models still continue to work very well. 2D GDQ models exhibit some difficulties but the use 

of 3D equilibrium equations, to obtain the “a posteriori” stresses,  is very useful to reduce these problems. 

However, LD4 and EDZ4 models remain the best possible 2D numerical models for the correct displacement 

and stress analysis of multilayered composite and sandwich spherical shells. The layer wise approach and the 

Murakami’s zigzag function opportunely added in the ESL models allow a quasi-3D reconstruction of all the 

displacement and stress components through the thickness direction. In these shell cases, EDZ4 model appears to 
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better work with respect to the LD4 model because of some small numerical problems due to the layer wise 

assembling procedure connected with curved boundary conditions. However, the LD4 model remains more 

accurate than ED4, TSDT, FSDT and KL models. 

Figures 19 and 20 show the six stress components and the three displacement components for the case 5 about 

the four layered composite super elliptic panel of revolution subjected to a uniform transverse shear load at the 

top. Only numerical 2D models are proposed in Figures 19 and 20 because boundary conditions are different 

from the simply supported ones, and lamination schemes are different from the cross-ply ones. Moreover, a 

uniform load is applied. This benchmark is very useful for those scientists interested in the development of 

numerical shell models to understand the correctness of their implementations in the case of more realistic 

analyses. The best results proposed in Figures 19 and 20 are those obtained via LD4 and EDZ4 models. 

 

5. CONCLUSIONS 

This work proposes 3D analytical/semi-analytical and 2D numerical GDQ shell models for the static analysis of 

multilayered composite and sandwich structures when they are subjected to transverse shear loads. Investigated 

geometries are simply supported plates and spherical shells in order to compare closed form solutions with 

numerical 2D methods. More complicated geometries with boundary conditions different from the simple 

supported ones and loads different from the harmonic ones are also investigated by means of only 2D numerical 

GDQ shell models. The two presented 3D shell models, based on the exponential matrix method and on the 

GDQ method for the solution of differential equations in z, are always coincident for each geometry, thickness 

ratio, lamination scheme, material and load. Moreover, they are able to correctly describe the multilayered 

anisotropic structures giving the zigzag effect of displacements and the fulfillment of the interlaminar and load 

boundary conditions.  2D GDQ models overcome the main limitations of 3D closed form solutions, and they 

allow the investigation of more realistic cases in terms of geometries, boundary conditions and applied loads. For 

the 2D GDQ models, the LD4 model (based on a fourth order layer wise approach) and the EDZ4 model (based 

on a fourth order equivalent single layer approach including the Murakami’s zigzag function) are those which 

are more refined, with a quasi-3D behavior for each investigated case and variable. The use of 3D elasticity 

equations to “a posteriori” recover the transverse stresses in 2D GDQ models allows an important improvement 

in the evaluation of such variables through the thickness. This last feature is valid for all the presented 2D GDQ 

shell models (both classical and refined ones). 
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DATA CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 

 1 mR      10  10  see Figure 2C 

 2 mR      10  10  see Figure 2C 

 ma  1  1  1
4

R


 1
4

R


 see Figure 2C 

 mb  1  1  2
4

R


 2
4

R


 see Figure 2C 

 mh  0.1; 0.01  0.1; 0.01  0.5; 0.1  0.5; 0.1  0.2  

 1 mh  0.25h  0.15h  0.25h  0.15h  0.15h  

 2 mh  0.25h  0.7h  0.25h  0.7h  0.35h  

 3 mh  0.25h  0.15h  0.25h  0.15h  0.15h  

 4 mh  0.25h  -  0.25h  - 0.35h  

Lamination 

Scheme 
0 / 90 / 0 / 90  Ti22 / Foam / Ti22  0 / 90 / 0 / 90  Ti22 / Foam / Ti22  20 / 35 / 45 / 70  

Load 
 
2q 10000 Pa

  

 
2q 10000 Pa

  

 
2q 10000 Pa

  

 
2q 10000 Pa

  

 
2q 10000Pa

   

m  1  1  1  1  UNIFORM 

n  1  1  1  1  UNIFORM 
 

Table 1. Geometrical data, lamination schemes and load conditions for the five analyzed cases. 

 

 

 
 

DATA Composite Ti22  Foam  

 1 GPaE  172  114  0.232  

 2 GPaE  6.9  114  0.232  

 3 GPaE  6.9  114  0.232  

 12 GPaG  3.4  
2(1 )

E


 

2(1 )

E


 

 13 GPaG  3.4  
2(1 )

E


 

2(1 )

E


 

 23 GPaG  1.4  
2(1 )

E


 

2(1 )

E


 

12  0.25  0.3  0.2  

13  0.25  0.3  0.2  

23  0.25  0.3  0.2  

 

Table 2. Elastic properties of the layers involved in the lamination schemes presented in Table 1. 
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Figure 1. Employed reference systems for a general doubly-curved shell element. 
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a) Square plate 
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b) Spherical Shell Panel 
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c) Super Elliptic Panel of Revolution 
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Figure 2. Geometrical data, GDQ discrete point distribution and local reference system for investigated benchmarks. 
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Figure 3.  Case 1  10a h  : Stress components [Pa] along the thickness direction at the point  0.25 ,0.25P a b  for a SSSS square plate  

made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal pressure 
 
2q 10000Pa

  

( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 4. Case 1  10a h  : Displacement components [m] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS square 

plate  made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal pressure 
 
2q 10000Pa

  

( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 5.  Case 1  100a h  : Stress components [Pa] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS square plate 

made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal pressure 
 
2q 10000Pa

  

( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 6. Case 1  100a h  : Displacement components [m] along the thickness direction at the point  0.25 ,0.25P a b  for a SSSS 

square plate made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal pressure 

 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 

 

 

 

 

 

 



30 

 

  

  

  

Figure 7.  Case 2  10a h  : Stress components [Pa] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS square 

sandwich plate made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h   . Transverse shear 

sinusoidal pressure 
 
2q 10000Pa

  ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 8. Case 2  10a h  : Displacement components [m] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS square 

sandwich plate made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h   . Transverse shear 

sinusoidal pressure 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 9.  Case 2  100a h  : Stress components [Pa] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS square 

sandwich plate made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h   . Transverse shear 

sinusoidal pressure 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 10. Case 2  100a h  : Displacement components [m] along the thickness direction at the point  0.25 ,0.25P a b for a SSSS 

square sandwich plate  made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h   . Transverse shear 

sinusoidal pressure 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 11.  Case 3  20R h  : Stress components [Pa] along the thickness direction at the point     1 0 1 0

1 1 2 20.25 ,0.25P        for a 

SSSS spherical panel  20R h   made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal 

load 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 12. Case 3  20R h  : Displacement components [m] along the thickness direction at the point 

    1 0 1 0

1 1 2 20.25 ,0.25P        for a SSSS spherical panel  20R h   made of four composite layers  0 / 90 / 0 / 90  with 

1 2 3 4 4h h h h h    . Transverse shear sinusoidal load 
 
2q 10000Pa

  ( 1, 1)m n   at the top surface. Comparison between different 

structural models. 
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Figure 13.  Case 3  100R h  : Stress components [Pa] along the thickness direction at the point     1 0 1 0

1 1 2 20.25 ,0.25P        for a 

SSSS spherical panel  20R h   made of four composite layers  0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h    . Transverse shear sinusoidal 

load 
 
2q 10000Pa

 ( 1, 1)m n  at the top surface. Comparison between different structural models. 
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Figure 14. Case 3  100R h  : Displacement components [m] along the thickness direction at the point 

    1 0 1 0

1 1 2 20.25 ,0.25P        for a SSSS spherical panel  20R h   made of four composite layers  0 / 90 / 0 / 90  with 

1 2 3 4 4h h h h h    . Transverse shear sinusoidal load 
 
2q 10000Pa

  ( 1, 1)m n   at the top surface. Comparison between different 

structural models. 
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Figure 15.  Case 4  20R h  : Stress components [Pa] along the thickness direction at the point     1 0 1 0

1 1 2 20.25 ,0.25P       for a 

SSSS spherical sandwich panel made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h  

.Transverse shear sinusoidal load 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 16. Case 4  20R h  : Displacement components [m] along the thickness direction at the point 

    1 0 1 0

1 1 2 20.25 ,0.25P       for a SSSS spherical sandwich panel made of three layers  Titanium Alloy / Foam / Titanium Alloy  

with 1 3 20.15 and 0.7h h h h h   .Transverse shear sinusoidal load 
 
2q 10000Pa

  ( 1, 1)m n   at the top surface. Comparison between 

different structural models. 
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Figure 17.  Case 4  100R h  : Stress components [Pa] along the thickness direction at the point     1 0 1 0

1 1 2 20.25 ,0.25P       for a 

SSSS spherical sandwich panel made of three layers  Titanium Alloy / Foam / Titanium Alloy  with 1 3 20.15 and 0.7h h h h h   . 

Transverse shear sinusoidal load 
 
2q 10000Pa

 ( 1, 1)m n   at the top surface. Comparison between different structural models. 
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Figure 18. Case 4  100R h  : Displacement components [m] along the thickness direction at the point 

    1 0 1 0

1 1 2 20.25 ,0.25P       for a SSSS spherical sandwich panel made of three layers  Titanium Alloy / Foam / Titanium Alloy  

with 1 3 20.15 and 0.7h h h h h   .Transverse shear sinusoidal load 
 
2q 10000Pa

  ( 1, 1)m n   at the top surface. Comparison between 

different structural models. 
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Figure 19.  Case 5: Stress components [Pa] along the thickness direction at the point     1 0 1 0

1 1 2 20.75 ,0.25P       for a CFCF super 

elliptic panel of revolution made of four composite layers  20 / 35 / 45 / 70  with 1 4 2 30.03m and 0.07 mh h h h    . Transverse shear 

uniform load 
 
2q 10000 Pa

   at the top surface. Comparison between different structural models. 
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Figure 20. Case 5: Displacement components [m] along the thickness direction at the point     1 0 1 0

1 1 2 20.75 ,0.25P       for a CFCF 

super elliptic panel of revolution made of four composite layers  20 / 35 / 45 / 70  with 1 4 2 30.03m and 0.07 mh h h h    . Transverse 

shear uniform load 
 
2q 10000 Pa

   at the top surface. Comparison between different structural models. 

 


