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Exact and approximate shell geometry in the free

vibration analysis of one-layered and multilayered

structures

Salvatore Brischetto∗

Abstract

The present paper proposes the study of the approximation of the curvature terms in the three-dimensional
(3D) equilibrium shell equations used for the free vibration analysis of one-layered and multilayered com-
posite and sandwich structures. 3D equilibrium equations written for spherical shells degenerate into
3D equilibrium equations for cylindrical shells and plates considering one of the two radii of curva-
ture or both as infinite, respectively. The approximation of curvature terms has been introduced in
3D equilibrium equations in order to study its effects in terms of frequency values. This study has
been conducted by means of a comparison between 3D equilibrium equation results and 3D approxi-
mate curvature equilibrium equation results. These effects depend on the thickness and curvature of the
considered structure, on the embedded material and lamination sequence, on the frequency order and
vibration mode. The 3D equations have been considered in exact form for simply supported structures.
The system of partial differential equations has been solved by means of the exponential matrix method.
A layer wise approach is considered for multilayered structures. The approximation of the curvature has
been introduced in the 3D equilibrium shell equations and not in the interlaminar continuity conditions
and in the top and bottom boundary and loading conditions. This choice has been made for numerical
reasons. The investigation of curvature approximation effects in the equilibrium equations allows an
exhaustive analysis to understand the importance of curvature terms in the free vibration problems.

Keywords: three-dimensional exact solution; shell geometry; free vibrations; vibration modes; para-
metric coefficients; curvature effects; curvature approximation.

1 Introduction

Shells are common structural elements in many engineering applications such as concrete roofs, exteriors
of rockets, ship hulls, automobile tires, containers of liquids, oil tanks, pipes, aerospace structures and
so on. A shell is defined as a curved, thin-walled structure. It can be single- or multi-layer embedding
isotropic or anisotropic materials. Shells can be classified according to their curvatures. Shallow shells
have rise of not more than one fifth the smallest planform dimension of the shell [1], [2]. Shells are three-
dimensional (3D) bodies bounded by two relatively close, curved surfaces. In the case of shell geometries,
the 3D equations of elasticity are complicated. For this reason, all shell theories reduce the 3D elasticity
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problem into a two-dimensional (2D) one for thin or thick and shallow or deep structures. This 2D
simplification is usually made using Kirchhoff-Love hypotheses or their developments or refinements.

The pioneering work about the shell theory is due to Love in 1888 [3], it is considered as the
first paper containing a complete and general linear theory of thin elastic shells. As discussed in
the review paper by Wan and Weinitschke [4], further two important earlier publications should be
considered. The first one due to Aron in 1874 [5] and the second one due to Lord Rayleigh in 1881 [6].
Aron [5] presented a set of equations for bending of thin shells to derive equations for small strains.
The errors in this work were corrected by Love in his paper published in 1888 [3]. Lord Rayleigh [6]
proposed a theory for the vibration of shells assuming the midsurface as unstretched. Love derived
the linear equations of motion and the boundary conditions for shells, in the case of infinitesimal
extensional and bending strains, using the thin plate theory assumptions by Kirchhoff [7] and the thin
shell approximation conditions (e.g., as summarized in [8]). These last conditions neglect terms of the
order of the thickness-to-radius of curvature ratio compared to the unit. The resulting linear shell
theory was extensively used in engineering field for several decades [9] until the advent of the higher
order two-dimensional shell theories that overcome some of the limitations that were intrinsic in the
simplified models. The hypotheses used in the classical linear shell theories are known in the literature
as Kirchhoff-Love hypotheses. The pioneering work by Love has been improved and developed in two
main directions as discussed in [4]. The first direction concerns the solution techniques developed
to consider different boundary and loading conditions. The second direction concerns the derivation
of thin and thick shell theories from three-dimensional elasticity theory removing the Kirchhoff-Love
hypotheses (e.g., asymptotic and/or iterative methods, formulation of nonlinear shell theories and their
applications to finite deformation problems). One of the main problem in the development of classical
and refined two-dimensional shell theories is the difficulty to understand the adequacy and accuracy of
the proposed shell theory solution as approximation of the three-dimensional elasticity problem.

A number of theories exist for layered shells. Many of these theories, defined as classical ones, were
developed originally for thin shells and were based on the Kirchhoff-Love kinematic hypotheses where
straight lines normal to the un-deformed mid-surface remain straight and normal to the middle surface
after deformation. Some of the most important classical shell theories were classified in [10]. They were
named as Donnell-Mushtari, Love-Timoshenko, Arnold-Warburton, Houghton-Johns, Flügge-Byrne-
Lurye, Reissner-Naghdi-Berry, Sanders, Vlasov, Kennard-Simplified and Soedel. These shell theories
were also described in details in [11]. Further theories are defined as higher order ones and they
overcome the main limitations connected with the simple Kirchhoff-Love hypotheses. These theories
for multilayered structures can be developed in the framework of an Equivalent Single Layer (ESL)
approach or a Layer Wise (LW) approach [12]. In ESL models, multilayered structures are considered
as only one equivalent layer with a global stiffness that is a weighted summation of the single stiffness
values of each layer. In LW models, each layer of the multilayer configuration is separately considered
from the kinematic point of view.

One of the recent trends in shell analysis is the use of more rigorous shell theories, in conjunction with
the numerical techniques, in order to improve the accuracy and to allow the study of various refinements
in shell theories for vibration, bending and buckling analyses. As shown in [13] and [14], shells can be
classified as shallow or deep (depending on the values of the curve side length of the panel-radius of
curvature ratio (a/R)) and as thin or thick (depending on the value of the radius of curvature-thickness
ratio (R/h) or the curve side length of the panel-thickness ratio (a/h)). Examples of thin and thick
shells, and shallow and deep shells are given in Figure 1. Depending on the a/R and R/h ratios, the
classical and refined 2D shell theories can give different approximation levels. For thick and/or deep
shells, the use of refined 2D shell theories is mandatory. In these cases, the three-dimensional solutions
could be appropriate to give correct analyses and also to propose reference solutions. However, the
theory of 3D elasticity for shells is a cumbersome problem and its developing and solution procedure
are usually proposed in the literature for several geometries separately (plates, circular plates, cylinders,
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cylindrical and spherical shells), see interesting papers [15]- [24]. These works separately analyze shell or
plate geometries and they do not give a general overview for both structures. Further papers about 3D
vibration analysis of shells including different boundary conditions are [25]- [27]. The exact 3D model
proposed in the present paper uses a general formulation for several geometries (square and rectangular
plates, open and closed cylindrical shells and spherical shell panels). The equations of motion for
the dynamic case, based on the 3D elasticity theory, are written in general orthogonal curvilinear
coordinates using an exact geometry for multilayered shells. The system of second order differential
equations is reduced to a system of first order differential equations, and subsequently exactly solved
using the exponential matrix method and the Navier-type solution. The approach is developed in a
layer-wise form imposing the continuity of displacements and transverse shear/normal stresses at each
interface. The exponential matrix method was already used in [28] for the three-dimensional analysis
of plates in rectilinear orthogonal coordinates and in [19] for an exact, three-dimensional, free vibration
analysis of angle-ply laminated cylinders in cylindrical coordinates. In the present paper, the equations
of motion written in orthogonal curvilinear coordinates are a general form of the equations of motion
written in rectilinear orthogonal coordinates in [28] and in cylindrical coordinates in [19]. This general
exact 3D shell solution has been used by the author for the free vibration analysis of one-layered,
composite, sandwich, multilayered and FGM plates, cylinders, cylindrical panels, spherical panels and
carbon nanotubes [29]- [37].

In this work, the approximation of curvature terms in parametric coefficients of the 3D shell equa-
tions has been studied for thin and thick structures and for deep and shallow structures. Isotropic
one-layered and orthotropic one-layered and multilayered configurations have been investigated with
particular attention to the order of frequencies and the vibration modes. The introduction of a curva-
ture approximation is a prerogative of 2D shell models. The investigation of curvature approximation
effects in 3D equilibrium equations has been proposed to see when such cumbersome equations can be
simplified. These curvature approximations have been introduced only in the equilibrium equations and
not in interlaminar, boundary and loading condition equations in order to avoid numerical problems in
the solution procedure. However, in spite of this choice, the proposed models are sufficient to give an
exhaustive analysis of the importance of curvature terms in the free vibrations of shells. They allow to
understand when the use of an exact shell geometry is mandatory.

2 Three-dimensional equilibrium equations

This section introduces the equilibrium equations for spherical/cylindrical shell panels and for plates.
Approximation for geometry is also considered. Some of the missed equations and mathematical steps
can be found in [38]- [40] where similar formulations were proposed.

2.1 Exact geometry

The three differential equations of equilibrium written for the case of free vibration analysis of multi-
layered spherical shells made of NL layers with constant radii of curvature Rα and Rβ are here given
(the most general form for variable radii of curvature can be found in [41]- [42]):
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where ρk is the mass density, (σk
αα, σ

k
ββ , σ

k
zz, σ

k
βz, σ

k
αz, σ

k
αβ) are the six stress components and ük, v̈k

and ẅk indicate the second temporal derivative of the three displacement components. Each quantity
depends on the k layer. Rα and Rβ are referred to the mid-surface Ω0 of the whole multilayered
shell. Hα and Hβ continuously vary through the thickness of the multilayered shell and depend on
the thickness coordinate. The middle surface Ω0 of the shell is the locus of points which lie midway
between these surfaces. Geometry and the curvilinear orthogonal reference system (α, β, z) are shown
in Figure 2. Displacement components are u, v, and w in α, β and z directions, respectively [43]. The
parametric coefficients for shells with constant radii of curvature are:

Hα = (1 +
z

Rα

) = (1 +
z̃ − h/2

Rα

) , Hβ = (1 +
z

Rβ

) = (1 +
z̃ − h/2

Rβ

) , Hz = 1 , (4)

Hα and Hβ depend on z or z̃ coordinate (see Figure 3).
The strain-displacement relations of three-dimensional theory of elasticity in orthogonal curvilinear

coordinates, as shown in [41] and [44], are written for the generic k layer of the multilayered spherical
shell with constant radii of curvature:
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where symbol ∂ indicates the partial derivatives.
Eqs.(5)-(10) and constitutive equations in orthogonal curvilinear coordinates (α,β,z) for orthotropic

material in the structural reference system are introduced in eqs.(1)-(3) in order to obtain the equilib-
rium equations written in displacement form:
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Coefficients Ck
qr are the elastic coefficients of constitutive equations for each k layer. The differential

equations (11)-(13) will be solved in exact form in Section 3. The cylinder and cylindrical shell panel
cases are obtained considering an infinite radius of curvature Rα (which means Hα equals 1) in equilib-
rium equations (1)-(3), geometrical equations (5)-(10) and displacement form of equilibrium equations
(11)-(13). Plate cases are obtained considering both radii of curvature Rα and Rβ as infinite (which
mean Hα=Hα=1) in Eqs.(1)-(13). In the results proposed in Section 4, the 3D exact theory based on
the complete equations for spherical shells will be indicated as 3D.

2.2 Approximation for geometry

In the case of thin and/or shallow shells the parametric coefficients in Eqs.(4) can be set to 1 (Hα =
Hβ = 1) because the hypotheses z

Rα
≃ 0 and z

Rβ
≃ 0 are valid. Eqs.(1)-(3) are simplified as:
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The strain-displacement relations in eqs.(5)-(10) are simplified as:

ǫkαα =
∂uk

∂α
+

wk

Rα

, (17)

ǫkββ =
∂vk

∂β
+

wk

Rβ

, (18)

ǫkzz =
∂wk

∂z
, (19)

γkαβ =
∂vk

∂α
+

∂uk

∂β
, (20)

γkαz =
∂wk

∂α
+

∂uk

∂z
−

uk

Rα
, (21)

γkβz =
∂wk

∂β
+

∂vk

∂z
−

vk

Rβ

. (22)

Constitutive relations do not change. The substitution of constitutive equations and eqs.(17)-(22)
in equilibrium relations of eqs.(14)-(16) gives the simplified version of eqs.(11)-(13). This simplified
version can directly be obtained substituting the hypotheses Hα = Hβ = 1 in eqs.(11)-(13):
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The differential equations (23)-(25) will be solved in exact form in Section 3. The cylinder and cylin-
drical shell panel cases are obtained considering an infinite radius of curvature Rα (which means Hα

equals 1) in equilibrium equations (14)-(16), geometrical equations (17)-(22) and displacement form of
equilibrium equations (23)-(25). Plate cases are obtained considering both radii of curvature Rα and
Rβ as infinite (which mean Hα=Hα=1) in Eqs.(14)-(25). In the results proposed in Section 4, the 3D
exact theory based on these equations for shells simplified by means of the hypotheses Hα = Hβ = 1
will be indicated as 3D(Hα,β=1).

3 Three-dimensional exact solution

The exact closed form solution for equilibrium equations detailed in Sections 2.1 and 2.2 for shells
and shells with simplified geometry, respectively, will be obtained by means of the exponential matrix
method and in layer-wise form. This method has been described in details in previous author’s works
[29]- [37] and it was also successfully applied by Messina [28] for the case of plates in rectilinear
orthogonal coordinates (x,y,z) and by Soldatos and Ye [19] for the case of closed cylinders in cylindrical
coordinates (ρ,θ). The equilibrium equations for shells do not have constant coefficients because of
the parametric coefficients Hα and/or Hβ which depend on the z coordinate. In order to obtain
differential equations with constant coefficients, each k layer is divided in l mathematical layers where
the parametric coefficients Hα and Hβ can be easily calculated in the middle of each fictitious layer.
Equilibrium equations are rewritten using j = k× l mathematical layers that allow constant coefficients
to be considered (see [29] for further details).

Simply supported shells and plates are analyzed. In these cases, the three displacement components
have the following harmonic form:

uj(α, β, z, t) = U j(z)eiωtcos(ᾱα)sin(β̄β) , (26)

vj(α, β, z, t) = V j(z)eiωtsin(ᾱα)cos(β̄β) , (27)

wj(α, β, z, t) = W j(z)eiωtsin(ᾱα)sin(β̄β) , (28)

where U j(z), V j(z) and W j(z) are the displacement amplitudes in α, β and z directions, respectively.
i is the coefficient of the imaginary unit. ω = 2πf is the circular frequency where f is the frequency
value, t is the time. In coefficients ᾱ = mπ

a
and β̄ = nπ

b
, m and n are the half-wave numbers and a and

b are the shell dimensions in α and β directions, respectively (calculated in the mid-surface Ω0).
The system of second order differential equations is reduced to a system of first order differential

equations in analogy with the method described in [45] and [46]. A compact form for the system of
first order differential equations is:

D
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with A
j∗ = D

j−1
A

j .
The solution of Eq.(32) can be written as (see [46]):

U
j(z̃j) = exp(Aj∗z̃j)U j(0) with z̃j ǫ [0, hj ] , (33)

where z̃j is the thickness coordinate of each j layer from 0 at the bottom to hj at the top (see Figure
3). The exponential matrix is calculated with z̃j = hj for each j layer as:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
+ . . .+

A
j∗N

N !
hj

N
, (34)

where I is the 6×6 identity matrix. This expansion has a fast convergence and it is not time consuming
from the computational point of view.

Considering j = M mathematical layers, M − 1 transfer matrices must be calculated using for each
interface the interlaminar continuity conditions of displacements and transverse shear/normal stresses.
Moreover, the structures must be considered as simply supported and free stresses at the top and at
the bottom. All these conditions allow the final system to be obtained:

EU
1(0) = 0 , (35)

where matrix E has always (6× 6) dimension, independently from the number of layers M , even if the
method uses a layer-wise approach. U1(0) means U calculated at the bottom of the whole multilayered
shell (first layer 1 with z̃1 = 0). Further details about this procedure, and all the steps missed in this
paper can be found in [29], [30] and [31] where the extensions of this 3D exact method have been made
for the first time.

The free vibration analysis means to find the non-trivial solution of U1(0) in Eq.(35) imposing the
determinant of matrix E equals zero:

det[E] = 0 , (36)

Eq.(36) allows to calculate the roots of an higher order polynomial in λ = ω2. For each pair of half-
wave numbers (m,n) a certain number of circular frequencies (from I to ∞) are obtained. This number
depends on the order N chosen for each exponential matrix A

j∗∗ and the number M of mathematical
layers.

A certain number of circular frequencies ωs are found when half-wave numbers m and n are imposed
in the structures. For each frequency ωs, it is possible to find the vibration mode through the thickness
direction z in terms of the three displacement components u, v and w.

4 Results

Before the results proposed to analyze the curvature approximation effects in several shell geometries
embedding different materials, the present 3D exact shell solution must be validated. It is important to
notice that this 3D model has been successfully applied by the author for the free vibration analysis of
one-layered, composite, sandwich, multilayered and FGM plates, cylinders, cylindrical panels, spherical
panels and carbon nanotubes; see papers [29]- [37] for these validations and to see the choice made for
the number of mathematical layers and the order of expansion for the exponential matrix.

The proposed 3D solution was successfully validated for cylindrical and spherical shell panels [29]-
[37]. Several lamination sequences, thickness ratios, vibration modes and imposed half-wave numbers
have been investigated. Therefore, the 3D model can be used with confidence to study the curvature
approximation effects in one-layered and multilayered structures. Four different simply supported
geometries are considered in the present analysis. 1) A closed cylinder with radius of curvature in
α direction Rα = 10m and infinite radius of curvature Rβ in β direction, dimensions a = 2πRα and
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b = 20m, and thickness ratios Rα/h equal 5, 10, 100 and 1000. 2) A cylindrical panel with radius
of curvature in α direction Rα = 10m and infinite radius of curvature Rβ in β direction, dimensions
a = π

3Rα and b = 20m, and thickness ratios Rα/h equal 5, 10, 100 and 1000. 3) A spherical panel with
radii of curvature in α and β directions R = Rα = Rβ = 10m, dimensions a = b = π

3R, and thickness
ratios Rα/h equal 5, 10, 100 and 1000. 4) A spherical panel with in-plane dimensions a = b = 1m,
the curve side length of the panel-radius of curvature ratio a/Rα equals 0, 0.010, 0.025, 0.050, 0.100,
0.200, 0.400, 0.500, 1.0, and the curve side length of the panel-thickness ratio a/h equals 100, 50, 20, 10
and 5. The four described geometries consider three different material configurations. 1) One-layered
isotropic configuration embedding an Aluminium Alloy with Young modulus E = 73GPa, Poisson
ratio ν = 0.3 and mass density ρ = 2800kg/m3 . 2) A three-layered composite 90◦/0◦/90◦ configuration
where the three layers have thickness h/3 = h1 = h2 = h3. The composite material properties are
Young modulii E1 = 132.38GPa and E2 = E3 = 10.756GPa, shear modulii G12 = G13 = 5.6537GPa
and G23 = 3.603GPa, Poisson ratios ν12 = ν13 = 0.24 and ν23 = 0.49, mass density ρ = 1600kg/m3.
3) A sandwich configuration with external skins made of Aluminium Alloy and thickness values h1 =
h3 = 0.2h and an internal soft core made of PVC with thickness value h2 = 0.6h. The PVC properties
are Young modulus E = 0.18GPa, Poisson ratio ν = 0.37 and mass density ρ = 50kg/m3. The plate
cases are not investigated because no curvature approximation studies can be conducted in these cases.

Tables 1, 2 and 3 show the free frequencies for isotropic one-layered, composite three-layered and
sandwich cylinders, respectively. The first six frequencies have been organized in according with the
results proposed by the 2D numerical models in [34]. The first column indicates the half-wave numbers
m and n imposed in α and β direction to obtain the 3D exact solution. The second column indicates
the 3D frequency order (from I to ∞) for the imposed (m,n) values. The frequency results given in
the third column are obtained by means of the 3D equilibrium equations for cylinders proposed in
Section 2.1. The frequencies in the fourth column are calculated by means of the 3D(Hα,β=1) model
of Section 2.2 obtained considering the approximation Hα = 1 due to the hypothesis z/Rα ≃ 0 ratio.
The differences in percentage between the 3D and the 3D(Hα,β=1) models are calculated for several
thickness ratios. This error is small for thin shells and it increases for thick shells. Moreover, it also
depends on the considered mode: in general this error is smaller for small values of the circumferential
half-wave number m. The error due to the curvature approximation also depends on the material
configuration, the error is bigger for less rigid structures and/or structures with a bigger transverse
anisotropy. This feature is confirmed by the fact that the biggest errors are shown for the sandwich
cylinder in Table 3.

Isotropic one-layered, composite three-layered and sandwich cylindrical shell panels have been in-
vestigated in Tables 4, 5 and 6, respectively, in terms of frequency values. Each table gives the first
six frequencies, for different thickness ratios, as organized in [35] by means of the 2D numerical mod-
els. The same comments and conclusions already seen for the cylinders of Tables 1, 2 and 3 are here
confirmed for the cylindrical panel. The error is acceptable for thin shells and it increases for thick
shells. There is a dependence on the half-wave numbers. In general, m=n=1 condition for thick shells
gives the biggest errors. The sandwich configuration, which has the biggest transverse anisotropy, gives
the largest errors. On the contrary, the composite configuration, which has the biggest rigidity, gives
the smallest errors. In the case of in-plane vibration modes (w=0), the errors are small because the
curvature effects through the thickness direction are negligible.

Tables 7, 8 and 9 show the frequency values and errors due to the curvature approximation in the
free vibration analysis of isotropic one-layered, composite three-layered and sandwich spherical shell
panels, respectively. Each table gives the first six frequencies organized by means of the 2D numerical
models seen in [35]. All the conclusions and features seen in Tables 1-3 for cylinders and in Tables 4-6
for cylindrical shells are here confirmed for the spherical shell geometries. The only difference is due
to the presence of two radii of curvature (Rα = Rβ) which makes more rigid the structure and allows
a perfect geometrical symmetry. For these two reasons, the errors due to the curvature approximation
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are smaller than cylindrical (open and closed) cases. In particular, such errors are very small for thin
spherical shells. It is confirmed that sandwich configurations show the biggest errors.

Tables 1-9 give an important information about the errors due to the curvature approximation
when the thickness of the structure changes. Moreover, the relation between such errors and geometry,
material configuration and frequency order has also been investigated. In shell structures the frequency
values do not increase in a monotonic way when half-wave numbers increase because of the coupling
between the three displacement components due to the curvature. In order to better understand the
effects of the half-wave numbers in the errors due to the curvature approximation, the same results
already seen in Tables 1-9 have been proposed in Tables 10-18 when the half-wave numbers m and n
increase in a monotonic way independently by the order of frequency. For the cylinder cases of Tables
10-12 the longitudinal half-wave number n is fixed to 1 and the circumferential half-wave number m
has been set to 2, 4, 6 and 8 (only even values because the cylinder is a closed structure in the α
direction). In general, the error increases with the increasing of the m value. All the other features for
material configuration and thickness ratio are confirmed (see Tables 1-3). The cylindrical panel cases are
investigated in Tables 13-15. In these cases the values m = 1, 2 and n = 1, 2 (all the combinations) have
been considered. For this geometry the relation between the errors due to the curvature approximation
and the half-wave numbers m and n is not so clear as in the cylinder case. In general, the biggest error
is for the couple m=1 and n=1 when the shell is thick (Rα/h equals 10 and 5) and for the couple m=2
and n=1 when the shell is thin (Rα/h equals 1000 and 100). The other comments for the material
configuration and the thickness ratio are the same already seen in Tables 4-6. The spherical panel cases
are investigated in Tables 16-18 for all the possible combinations of m=1,2 and n=1,2. Conclusions
and comments similar to the cylindrical panel are obtained: the error is quite zero for each half-wave
number combination when the shell is thin (Rα/h equals 1000 and 100). For thick spherical shells,
the relation between the error due to the curvature approximation and the half-wave numbers m and
n are not a priori predictable. The other comments for material configuration and thickness ratio are
confirmed (see Tables 7-9).

All the results seen in Tables 1-18 show the relations between the errors due to the curvature
approximation and several parameters such as thickness ratio, frequency order, half-wave numbers,
geometry and material configuration. The last parameter to be considered is the curve side length
of the panel-radius of curvature ratio a/R to see the effects for both shallow and deep shells. For
this aim, a spherical shell panel has been investigated in Tables 19-21. Table 19 shows the isotropic
one-layered spherical shell investigation when imposed half-wave numbers are m=n=1. Table 20 shows
the composite three-layered spherical shell investigation when imposed half-wave numbers are m=n=1.
Table 21 shows the sandwich spherical shell investigation when imposed half-wave numbers arem=n=1,
m=n=2 and m=n=3, respectively. In Tables 19-21, thin and thick shells have been considered varying
the curve side length of the panel-thickness ratio a/h from 100 to 5. Shallow and deep shells have
been considered varying the curve side length of the panel-radius of curvature ratio a/R from 0.000 to
1.000. The errors due to the curvature approximation increases when the shell is thicker (smaller a/h
values) and/or the shell is deeper (bigger a/R values). These features are general for all the material
configurations and for each couple of half-wave numbers m and n. For the sandwich configuration, the
(m,n) effect investigation has been added. The biggest errors are obtained for the couples m=n=2 and
m=n=3.

5 Conclusions

The paper proposed the analysis of the approximation of the curvature terms in the free vibrations
of one-layered and multilayered isotropic, composite and sandwich cylindrical (open and closed) and
spherical shells. A three-dimensional exact solution for shell structures has been proposed in the
framework of a layer-wise approach. The system of differential equations has been solved by means of the
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exponential matrix method. For numerical reasons, the approximation of the curvature terms has been
considered only in the 3D equilibrium shell equations and not in the interlaminar continuity conditions
and in the top and bottom boundary and loading conditions. However, exhaustive conclusions have
been obtained. The errors in terms of frequency value due to the curvature approximation depend
on the geometry, lamination and material, frequency order, vibration mode, thickness ratio and curve
length of the shell-radius of curvature ratio. The curvature approximation is valid for thin and/or
shallow shells. Structures including sandwich configurations usually show bigger errors because of
their bigger transverse anisotropy. There is also a dependence on the half-wave numbers. For the
cylinders, the error increases with the increasing of the circumferential half-wave numbers. In the
cases of cylindrical and spherical shell panels, there is a dependence on the half-wave numbers but it
is not a priori predictable. The error also depends on the considered vibration mode. In general, the
approximation of the curvature terms does not give important errors in the case of in-plane vibration
modes.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

18,1 I 3.1235 3.1359 0.40
20,1 I 3.1543 3.1695 0.48
16,1 I 3.3911 3.4002 0.27
22,1 I 3.4068 3.4238 0.50
24,1 I 3.8164 3.8345 0.47
14,1 I 4.0450 4.0508 0.14

Rα/h=100

10,1 I 9.5578 9.6803 1.28
12,1 I 10.413 10.576 1.56
8,1 I 11.280 11.345 0.58
14,1 I 12.848 13.029 1.41
16,1 I 16.220 16.408 1.16
6,1 I 16.676 16.700 0.14

Rα/h=10

6,1 I 28.721 29.968 4.34
4,1 I 30.189 30.665 1.58
8,1 I 41.416 42.942 3.68
2,1 I 49.084 49.098 0.03
2,0 I(w=0) 50.419 50.398 -0.04
6,2 I 57.691 58.615 1.60

Rα/h=5

4,1 I 35.847 37.226 3.85
6,1 I 47.658 50.003 4.92
2,1 I 49.918 49.956 0.08
2,0 I(w=0) 50.481 50.398 -0.16
8,1 I 74.926 77.216 3.06
4,2 I 78.468 79.720 1.59

Table 1: Simply supported isotropic one-layered cylinder. First six frequencies f in Hz (cylindrical
bending frequencies have not been included) for several thickness ratios Rα/h. Error in percentage

calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

22,1 I 2.7432 2.7489 0.21
24,1 I 2.7518 2.7587 0.25
26,1 I 2.8868 2.8945 0.27
20,1 I 2.8874 2.8919 0.16
28,1 I 3.1219 3.1301 0.26
18,1 I 3.2095 3.2128 0.10

Rα/h=100

12,1 I 7.7168 7.7759 0.77
10,1 I 8.1510 8.1889 0.46
14,1 I 8.4061 8.4808 0.89
16,1 I 9.9229 10.006 0.84
8,1 I 9.9378 9.9566 0.19
18,1 I 12.017 12.104 0.72

Rα/h=10

6,1 I 20.815 21.227 1.98
4,1 I 22.378 22.484 0.47
8,1 I 26.274 26.921 2.46
2,0 I(w=0) 29.930 29.918 -0.04
2,1 I 32.637 32.616 -0.06
10,1 I 36.389 37.133 2.04

Rα/h=5

4,1 I 27.649 27.975 1.18
2,0 I(w=0) 29.967 29.918 -0.16
6,1 I 32.175 33.107 2.90
2,1 I 34.562 34.492 -0.20
8,1 I 45.115 46.335 2.70
0,1 I(w=0) 46.994 47.035 0.09

Table 2: Simply supported composite 90◦/0◦/90◦ cylinder. First six frequencies f in Hz (cylindrical
bending frequencies have not been included) for several thickness ratios Rα/h. Error in percentage

calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

18,1 I 3.6442 3.6645 0.56
16,1 I 3.6871 3.7030 0.43
20,1 I 3.9222 3.9455 0.59
14,1 I 4.1699 4.1806 0.26
22,1 I 4.4253 4.4502 0.56
24,1 I 5.0823 5.1082 0.51

Rα/h=100

10,1 I 10.686 10.872 1.74
8,1 I 11.679 11.791 0.96
12,1 I 12.195 12.423 1.87
14,1 I 14.983 15.228 1.63
6,1 I 16.623 16.666 0.26
16,1 I 18.402 18.652 1.36

Rα/h=10

8,1 I 19.792 22.100 11.7
6,1 I 20.044 21.412 6.82
10,1 I 23.705 26.456 11.6
12,1 I 29.481 32.292 9.53
14,1 I 36.362 38.949 7.11
4,1 I 28.456 28.858 1.41

Rα/h=5

8,1 I 24.681 27.451 11.2
6,1 I 21.934 24.830 13.2
10,1 I 32.499 32.664 0.51
12,1 I 42.964 38.831 -9.62
14,1 I 55.277 46.088 -16.6
4,1 I 28.835 29.966 3.92

Table 3: Simply supported sandwich cylinder. First six frequencies f in Hz (cylindrical bending
frequencies have not been included) for several thickness ratios Rα/h. Error in percentage calculated

as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

3,1 I 3.1235 3.1359 0.40
4,1 I 3.8164 3.8345 0.47
2,1 I 5.2156 5.2189 0.06
5,1 I 5.6255 5.6448 0.34
4,2 I 6.4020 6.4132 0.17
5,2 I 6.6721 6.6888 0.25

Rα/h=100

2,1 I 10.413 10.576 1.56
1,1 I 16.676 16.700 0.14
3,1 I 20.256 20.446 0.94
2,2 I 20.342 20.439 0.48
3,2 I 23.583 23.758 0.74
3,3 I 30.344 30.494 0.49

Rα/h=10

1,1 I 28.721 29.968 4.34
1,2 I 57.691 58.615 1.60
0,1 I(w=0) 79.165 79.192 0.03
2,1 I 85.462 86.945 1.73
1,3 I 89.460 90.385 1.03
2,2 I 102.21 103.56 1.32

Rα/h=5

1,1 I 47.658 50.003 4.92
0,1 I(w=0) 79.165 79.271 0.13
1,2 I 85.354 87.045 1.98
1,3 I 134.81 136.25 1.07
2,1 I 148.53 150.09 1.05
1,0 II(w=0) 151.41 151.19 -0.14

Table 4: Simply supported isotropic one-layered cylindrical shell panel. First six frequencies f in Hz
(cylindrical bending frequencies have not been included) for several thickness ratios Rα/h. Error in

percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.

16



m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

4,1 I 2.7518 2.7587 0.25
3,1 I 3.2095 3.2128 0.10
5,1 I 3.4347 3.4432 0.25
6,1 I 4.6996 4.7086 0.19
5,2 I 5.2321 5.2378 0.11
6,2 I 5.6024 5.6101 0.14

Rα/h=100

2,1 I 7.7168 7.7759 0.77
3,1 I 12.017 12.104 0.72
1,1 I 13.428 13.434 0.04
3,2 I 15.595 15.663 0.44
2,2 I 15.615 15.643 0.18
4,1 I 20.620 20.711 0.44

Rα/h=10

1,1 I 20.815 21.227 1.98
0,1 I(w=0) 46.994 47.005 0.02
1,2 I 47.285 47.432 0.31
2,1 I 49.513 50.286 1.56
2,2 I 65.527 66.085 0.85
1,3 I 82.058 82.129 0.09

Rα/h=5

1,1 I 32.175 33.107 2.90
0,1 I(w=0) 46.994 47.035 0.09
1,2 I 66.117 66.499 0.58
2,1 I 83.548 84.787 1.48
1,0 II(w=0) 89.874 89.753 -0.13
0,2 I(w=0) 93.989 94.009 0.02

Table 5: Simply supported composite 90◦/0◦/90◦ cylindrical shell panel. First six frequencies f in Hz
(cylindrical bending frequencies have not been included) for several thickness ratios Rα/h. Error in

percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

3,1 I 3.6442 3.6645 0.56
4,1 I 5.0823 5.1082 0.51
2,1 I 5.2301 5.2364 0.12
4,2 I 7.2691 7.2880 0.26
5,1 I 7.6669 7.6936 0.35
5,2 I 8.5537 8.5783 0.29

Rα/h=100

2,1 I 12.195 12.423 1.87
1,1 I 16.623 16.666 0.26
2,2 I 21.415 21.560 0.68
3,1 I 22.173 22.426 1.14
3,2 I 25.159 25.392 0.93
3,3 I 31.304 31.502 0.63

Rα/h=10

1,1 I 20.044 21.412 6.82
2,1 I 29.481 32.292 9.54
2,2 I 37.098 39.451 6.34
1,2 I 43.940 44.668 1.66
2,3 I 49.736 51.608 3.76
3,1 I 52.796 54.181 2.62

Rα/h=5

1,1 I 21.934 24.830 13.2
2,1 I 42.964 38.831 -9.62
1,2 I 46.274 48.094 3.93
2,2 I 52.383 49.084 -6.30
1,3 I 66.237 67.749 2.28
2,3 I 68.193 65.776 -3.54

Table 6: Simply supported sandwich cylindrical shell panel. First six frequencies f in Hz (cylindrical
bending frequencies have not been included) for several thickness ratios Rα/h. Error in percentage

calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 77.540 77.540 0.00
2,1 I 79.759 79.759 0.00
1,2 I 79.759 79.759 0.00
2,2 I 80.334 80.334 0.00
3,1 I 80.533 80.534 0.00
3,2 I 80.728 80.729 0.00

Rα/h=100

1,1 I 77.629 77.637 0.01
2,1 I 80.420 80.446 0.03
1,2 I 80.420 80.446 0.03
2,2 I 82.088 82.131 0.05
3,1 I 83.295 83.349 0.06
1,3 I 83.295 83.349 0.06

Rα/h=10

1,1 I 85.696 86.320 0.73
2,1 I 125.28 126.45 0.93
1,2 I 125.28 126.45 0.93
0,1 II(w=0) 150.88 151.24 0.24
1,0 II(w=0) 150.88 151.24 0.24
2,2 I 172.46 173.65 0.69

Rα/h=5

1,1 I 103.08 104.42 1.30
0,1 II(w=0) 149.92 151.36 0.96
1,0 II(w=0) 149.92 151.36 0.96
2,1 I 183.78 184.98 0.65
1,2 I 183.78 184.98 0.65
1,1 II(w=0) 211.97 213.94 0.93

Table 7: Simply supported isotropic one-layered spherical shell panel. First six frequencies f in Hz
(cylindrical bending frequencies have not been included) for several thickness ratios Rα/h. Error in

percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 51.297 51.297 0.00
2,2 I 54.349 54.350 0.00
3,3 I 55.064 55.064 0.00
4,4 I 55.566 55.566 0.00
3,4 I 56.333 56.334 0.00
4,5 I 56.548 56.548 0.00

Rα/h=100

1,1 I 51.414 51.415 0.00
2,2 I 56.685 56.693 0.01
1,2 I 61.713 61.718 0.01
3,2 I 62.283 62.300 0.03
2,3 I 66.184 66.198 0.02
3,3 I 66.361 66.379 0.03

Rα/h=10

1,1 I 60.003 59.987 -0.03
0,1 I(w=0) 88.903 88.759 -0.16
2,1 I 85.735 85.877 0.17
1,0 I(w=0) 89.565 89.777 0.24
1,2 I 116.12 115.91 -0.18
2,2 I 127.95 127.79 -0.12

Rα/h=5

1,1 I 71.499 71.159 -0.47
0,1 I(w=0) 88.990 89.816 0.93
1,0 I(w=0) 88.989 89.849 0.97
2,1 I 112.45 112.47 0.02
1,2 I 141.53 140.62 -0.64
2,2 I 164.35 163.68 -0.41

Table 8: Simply supported composite 90◦/0◦/90◦ spherical shell panel. First six frequencies f in Hz
(cylindrical bending frequencies have not been included) for several thickness ratios Rα/h. Error in

percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 76.663 76.663 0.00
2,1 I 78.863 78.864 0.00
1,2 I 78.863 78.864 0.00
2,2 I 79.443 79.444 0.00
1,3 I 79.650 79.651 0.00
3,1 I 79.650 79.651 0.00

Rα/h=100

1,1 I 76.815 76.830 0.02
2,1 I 79.826 79.867 0.05
1,2 I 79.826 79.867 0.05
2,2 I 81.670 81.735 0.08
3,1 I 82.884 82.961 0.09
1,3 I 82.884 82.961 0.09

Rα/h=10

1,1 I 78.270 78.742 0.60
2,1 I 85.061 85.974 1.07
1,2 I 85.061 85.974 1.07
2,2 I 91.834 92.600 0.83
3,1 I 96.889 97.281 0.40
1,3 I 96.889 97.281 0.40

Rα/h=5

1,1 I 79.023 79.688 0.84
2,1 I 91.141 87.736 -3.74
1,2 I 91.141 87.736 -3.74
2,2 I 105.65 96.675 -8.49
1,3 I 116.19 104.61 -9.97
3,1 I 116.19 104.61 -9.97

Table 9: Simply supported sandwich spherical shell panel. First six frequencies f in Hz (cylindrical
bending frequencies have not been included) for several thickness ratios Rα/h. Error in percentage

calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

2,1 I 48.792 48.792 0.00
4,1 I 27.869 27.869 0.00
6,1 I 16.505 16.505 0.00
8,1 I 10.506 10.507 0.01

Rα/h=100

2,1 I 48.795 48.795 0.00
4,1 I 27.893 27.899 0.02
6,1 I 16.676 16.700 0.14
8,1 I 11.280 11.345 0.58

Rα/h=10

2,1 I 49.084 49.098 0.03
4,1 I 30.189 30.665 1.58
6,1 I 28.721 29.968 4.34
8,1 I 41.416 42.942 3.68

Rα/h=5

2,1 I 49.918 49.956 0.08
4,1 I 35.847 37.226 3.85
6,1 I 47.658 50.003 4.92
8,1 I 74.926 77.216 3.06

Table 10: Simply supported isotropic one-layered cylinder. First mode for m=2, 4, 6 and 8 and n=1,
frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.

m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

2,1 I 31.764 31.764 0.00
4,1 I 19.690 19.690 0.00
6,1 I 13.326 13.326 0.00
8,1 I 9.6086 9.6088 0.00

Rα/h=100

2,1 I 31.773 31.773 0.00
4,1 I 19.721 19.722 0.00
6,1 I 13.428 13.434 0.04
8,1 I 9.9378 9.9566 0.19

Rα/h=10

2,1 I 32.637 32.616 -0.06
4,1 I 22.378 22.484 0.47
6,1 I 20.815 21.227 1.98
8,1 I 26.274 26.921 2.46

Rα/h=5

2,1 I 34.562 34.492 -0.20
4,1 I 27.649 27.975 1.18
6,1 I 32.175 33.107 2.90
8,1 I 45.115 46.335 2.70

Table 11: Simply supported composite 90◦/0◦/90◦ cylinder. First mode for m=2, 4, 6 and 8 and
n=1, frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

2,1 I 48.240 48.240 0.00
4,1 I 27.554 27.554 0.00
6,1 I 16.320 16.320 0.00
8,1 I 10.395 10.397 0.02

Rα/h=100

2,1 I 48.245 48.245 0.00
4,1 I 27.599 27.609 0.04
6,1 I 16.623 16.666 0.26
8,1 I 11.679 11.791 0.96

Rα/h=10

2,1 I 48.446 48.421 -0.05
4,1 I 28.456 28.858 1.41
6,1 I 20.044 21.412 6.82
8,1 I 19.792 22.100 11.7

Rα/h=5

2,1 I 48.501 48.460 -0.08
4,1 I 28.835 29.966 3.92
6,1 I 21.934 24.830 13.2
8,1 I 24.681 27.451 11.2

Table 12: Simply supported sandwich cylinder. First mode for m=2, 4, 6 and 8 and n=1, frequencies f

in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D ×100.

m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 16.505 16.505 0.00
1,2 I 40.972 40.972 0.00
2,1 I 5.2156 5.2189 0.06
2,2 I 17.259 17.260 0.01

Rα/h=100

1,1 I 16.676 16.700 0.14
1,2 I 41.183 41.198 0.04
2,1 I 10.413 10.576 1.56
2,2 I 20.342 20.439 0.48

Rα/h=10

1,1 I 28.721 29.968 4.34
1,2 I 57.691 58.615 1.60
2,1 I 85.462 86.945 1.73
2,2 I 102.21 103.56 1.32

Rα/h=5

1,1 I 47.658 50.003 4.92
1,2 I 85.354 87.045 1.98
2,1 I 148.53 150.09 1.05
2,2 I 172.56 173.78 0.71

Table 13: Simply supported isotropic one-layered cylindrical shell panel. First mode for m=1,2 and
n=1,2, frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.

23



m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 13.326 13.326 0.00
1,2 I 27.730 27.730 0.00
2,1 I 5.6341 5.6349 0.01
2,2 I 13.858 13.858 0.00

Rα/h=100

1,1 I 13.428 13.434 0.04
1,2 I 28.065 28.067 0.01
2,1 I 7.7168 7.7759 0.77
2,2 I 15.615 15.643 0.18

Rα/h=10

1,1 I 20.815 21.227 1.98
1,2 I 47.285 47.432 0.31
2,1 I 49.513 50.286 1.56
2,2 I 65.527 66.085 0.85

Rα/h=5

1,1 I 32.175 33.107 2.90
1,2 I 66.117 66.499 0.58
2,1 I 83.548 84.787 1.48
2,2 I 102.79 103.74 0.92

Table 14: Simply supported composite 90◦/0◦/90◦ cylindrical shell panel. First mode for m=1,2
and n=1,2, frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as

∆(%) =
3D(Hα,β=1)−3D

3D × 100.

m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 16.320 16.320 0.00
1,2 I 40.511 40.511 0.00
2,1 I 5.2301 5.2364 0.12
2,2 I 17.096 17.098 0.01

Rα/h=100

1,1 I 16.623 16.666 0.26
1,2 I 40.869 40.895 0.06
2,1 I 12.195 12.423 1.87
2,2 I 21.415 21.560 0.68

Rα/h=10

1,1 I 20.044 21.412 6.82
1,2 I 43.940 44.668 1.66
2,1 I 29.481 32.292 9.53
2,2 I 37.098 39.451 6.34

Rα/h=5

1,1 I 21.934 24.830 13.2
1,2 I 46.274 48.094 3.93
2,1 I 42.964 38.831 -9.62
2,2 I 52.383 49.084 -6.30

Table 15: Simply supported sandwich cylindrical shell panel. First mode for m=1,2 and n=1,2,
frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 77.540 77.540 0.00
1,2 I 79.759 79.759 0.00
2,1 I 79.759 79.759 0.00
2,2 I 80.334 80.334 0.00

Rα/h=100

1,1 I 77.629 77.637 0.01
1,2 I 80.420 80.446 0.03
2,1 I 80.420 80.446 0.03
2,2 I 82.088 82.131 0.05

Rα/h=10

1,1 I 85.696 86.320 0.73
1,2 I 125.28 126.45 0.93
2,1 I 125.28 126.45 0.93
2,2 I 172.46 173.65 0.69

Rα/h=5

1,1 I 103.08 104.42 1.30
1,2 I 183.78 184.98 0.65
2,1 I 183.78 184.98 0.65
2,2 I 259.56 260.20 0.25

Table 16: Simply supported isotropic one-layered spherical shell panel. First mode for m=1,2 and
n=1,2, frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.

m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 51.297 51.297 0.00
1,2 I 60.085 60.085 0.00
2,1 I 63.690 63.690 0.00
2,2 I 54.349 54.350 0.00

Rα/h=100

1,1 I 51.414 51.415 0.00
1,2 I 61.713 61.718 0.01
2,1 I 64.008 64.012 0.01
2,2 I 56.685 56.693 0.01

Rα/h=10

1,1 I 60.003 59.987 -0.03
1,2 I 116.12 115.91 -0.18
2,1 I 85.735 85.877 0.17
2,2 I 127.95 127.79 -0.12

Rα/h=5

1,1 I 71.499 71.159 -0.47
1,2 I 141.53 140.62 -0.64
2,1 I 112.45 112.47 0.02
2,2 I 164.35 163.68 -0.41

Table 17: Simply supported composite 90◦/0◦/90◦ spherical shell panel. First mode for m=1,2 and
n=1,2, frequencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m,n Mode 3D 3D(Hα,β=1) ∆(%)

Rα/h=1000

1,1 I 76.663 76.663 0.00
1,2 I 78.863 78.864 0.00
2,1 I 78.863 78.864 0.00
2,2 I 79.443 79.444 0.00

Rα/h=100

1,1 I 76.815 76.830 0.02
1,2 I 79.826 79.867 0.05
2,1 I 79.826 79.867 0.05
2,2 I 81.670 81.735 0.08

Rα/h=10

1,1 I 78.270 78.742 0.60
1,2 I 85.061 85.974 1.07
2,1 I 85.061 85.974 1.07
2,2 I 91.834 92.600 0.83

Rα/h=5

1,1 I 79.023 79.688 0.84
1,2 I 91.141 87.736 -3.74
2,1 I 91.141 87.736 -3.74
2,2 I 105.65 96.675 -8.49

Table 18: Simply supported sandwich spherical shell panel. First mode for m=1,2 and n=1,2, fre-
quencies f in Hz for several thickness ratios Rα/h. Error in percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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a/Rα 3D 3D(Hα,β=1) ∆(%)

a/h=100

0.000 48.525 48.525 0.00
0.010 49.200 49.201 0.00
0.025 52.602 52.603 0.00
0.050 63.274 63.278 0.01
0.100 94.583 94.594 0.01
0.200 169.27 169.29 0.01
0.400 326.29 326.35 0.02
0.500 404.70 404.76 0.01
1.000 779.71 779.80 0.01

a/h=50

0.000 96.949 96.949 0.00
0.010 97.288 97.288 0.00
0.025 99.046 99.049 0.00
0.050 105.08 105.09 0.01
0.100 126.37 126.40 0.02
0.200 188.71 188.80 0.05
0.400 336.42 336.62 0.06
0.500 412.69 412.93 0.06
1.000 783.04 783.40 0.05

a/h=20

0.000 240.62 240.62 0.00
0.010 240.75 240.76 0.00
0.025 241.45 241.46 0.00
0.050 243.94 243.96 0.01
0.100 253.62 253.72 0.04
0.200 289.02 289.37 0.12
0.400 399.25 400.24 0.25
0.500 464.00 465.28 0.28
1.000 805.64 807.78 0.27

a/h=10

0.000 469.46 469.45 0.00
0.010 469.52 469.52 0.00
0.025 469.86 469.87 0.00
0.050 471.04 471.09 0.01
0.100 475.75 475.95 0.04
0.200 494.09 494.83 0.15
0.400 560.73 563.22 0.44
0.500 605.19 608.67 0.57
1.000 877.57 884.46 0.78

a/h=5

0.000 861.99 861.99 0.00
0.010 862.02 862.02 0.00
0.025 862.16 862.18 0.00
0.050 862.65 862.72 0.01
0.100 864.61 864.89 0.03
0.200 872.38 873.47 0.12
0.400 902.54 906.54 0.44
0.500 924.23 930.08 0.63
1.000 1080.3 1094.2 1.29

Table 19: Simply supported isotropic one-layered spherical shell panel. First mode for m=1 and n=1,
frequency f in Hz. Effects of curvature a/Rα and thickness a/h. Error in percentage calculated as

∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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a/Rα 3D 3D(Hα,β=1) ∆(%)

a/h=100

0.000 46.893 46.893 0.00
0.010 47.219 47.219 0.00
0.025 48.893 48.893 0.00
0.050 54.451 54.451 0.00
0.100 72.520 72.523 0.00
0.200 119.94 119.94 0.00
0.400 223.80 223.81 0.00
0.500 275.76 275.77 0.00
1.000 517.77 517.78 0.00

a/h=50

0.000 93.380 93.380 0.00
0.010 93.543 93.543 0.00
0.025 94.392 94.393 0.00
0.050 97.364 97.365 0.00
0.100 108.42 108.43 0.01
0.200 144.25 144.27 0.01
0.400 237.12 237.16 0.02
0.500 286.32 286.37 0.02
1.000 522.08 522.13 0.01

a/h=20

0.000 226.75 226.75 0.00
0.010 226.81 226.81 0.00
0.025 227.14 227.14 0.00
0.050 228.33 228.33 0.00
0.100 233.00 233.01 0.00
0.200 250.73 250.78 0.02
0.400 310.54 310.69 0.05
0.500 347.64 347.83 0.05
1.000 549.53 549.70 0.03

a/h=10

0.000 414.54 414.54 0.00
0.010 414.57 414.57 0.00
0.025 414.72 414.72 0.00
0.050 415.27 415.27 0.00
0.100 417.45 417.47 0.00
0.200 426.04 426.08 0.01
0.400 458.13 458.27 0.03
0.500 480.17 480.34 0.03
1.000 620.53 620.37 -0.03

a/h=5

0.000 653.81 653.81 0.00
0.010 653.82 653.82 0.00
0.025 653.88 653.87 0.00
0.050 654.09 654.08 0.00
0.100 654.95 654.91 -0.01
0.200 658.35 658.25 -0.01
0.400 671.57 671.01 -0.08
0.500 681.09 680.21 -0.13
1.000 750.14 746.48 -0.49

Table 20: Simply supported composite 90◦/0◦/90◦ spherical shell panel. First mode for m=1 and n=1,
frequency f in Hz. Effects of curvature a/Rα and thickness a/h. Error in percentage calculated as

∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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m=n=1 m=n=2 m=n=3
a/Rα 3D 3D(Hα,β=1) ∆(%) 3D 3D(Hα,β=1) ∆(%) 3D 3D(Hα,β=1) ∆(%)

a/h=100

0.000 62.790 62.790 0.00 214.75 214.75 0.00 402.99 402.99 0.00
0.010 63.301 63.301 0.00 214.90 214.90 0.00 403.07 403.07 0.00
0.025 65.919 65.920 0.00 215.69 215.69 0.00 403.48 403.48 0.00
0.050 74.519 74.525 0.01 218.46 218.47 0.00 404.97 404.97 0.00
0.100 101.88 101.90 0.02 229.21 229.24 0.01 410.85 410.88 0.01
0.200 172.13 172.17 0.02 267.92 268.01 0.03 433.58 433.69 0.02
0.400 325.02 325.10 0.02 385.36 385.62 0.07 514.46 514.82 0.07
0.500 402.02 402.13 0.03 453.63 453.97 0.07 567.51 568.02 0.09
1.000 771.66 771.82 0.02 821.36 822.06 0.08 892.51 893.75 0.14

a/h=50

0.000 107.38 107.38 0.00 301.47 301.47 0.00 509.27 509.27 0.00
0.010 107.68 107.68 0.00 301.57 301.58 0.00 509.33 509.33 0.00
0.025 109.23 109.23 0.00 302.13 302.13 0.00 509.66 509.66 0.00
0.050 114.61 114.62 0.01 304.11 304.12 0.00 510.83 510.84 0.00
0.100 133.96 134.01 0.04 311.88 311.94 0.02 515.48 515.54 0.01
0.200 192.68 192.81 0.07 341.20 341.40 0.06 533.70 533.93 0.04
0.400 335.96 336.24 0.08 439.04 439.67 0.14 600.96 601.78 0.14
0.500 410.68 411.03 0.08 499.76 500.61 0.17 646.75 647.94 0.18
1.000 775.30 775.83 0.07 846.38 848.24 0.22 943.73 946.88 0.33

a/h=20

0.000 161.64 161.64 0.00 387.50 387.50 0.00 669.76 669.76 0.00
0.010 161.84 161.84 0.00 387.59 387.59 0.00 669.81 669.81 0.00
0.025 162.87 162.88 0.01 388.02 388.03 0.00 670.06 670.06 0.00
0.050 166.50 166.54 0.02 389.55 389.59 0.01 670.94 670.98 0.01
0.100 180.28 180.42 0.08 395.61 395.77 0.04 674.46 674.61 0.02
0.200 227.07 227.48 0.18 418.97 419.59 0.15 688.36 688.95 0.09
0.400 356.13 357.13 0.28 501.40 503.44 0.41 741.30 743.45 0.29
0.500 426.94 428.20 0.29 555.03 557.88 0.51 778.58 781.75 0.41
1.000 782.47 784.46 0.25 878.64 885.22 0.75 1036.7 1045.7 0.87

a/h=10

0.000 193.75 193.75 0.00 513.21 513.21 0.00 994.85 994.85 0.00
0.010 193.92 193.92 0.00 513.27 513.27 0.00 994.88 994.87 0.00
0.025 194.77 194.79 0.01 513.59 513.60 0.00 995.04 995.01 0.00
0.050 197.80 197.89 0.04 514.74 514.77 0.01 995.62 995.50 -0.01
0.100 209.48 209.79 0.15 519.29 519.45 0.03 997.95 997.47 -0.05
0.200 250.70 251.72 0.41 537.11 537.70 0.11 1007.2 1005.3 -0.19
0.400 371.19 373.79 0.70 602.97 605.00 0.34 1043.2 1036.0 -0.69
0.500 439.32 442.61 0.75 647.81 650.68 0.44 1069.4 1058.5 -1.02
1.000 788.26 793.46 0.66 937.36 943.81 0.69 1264.6 1230.1 -2.73

a/h=5

0.000 256.60 256.60 0.00 823.65 823.65 0.00 1720.5 1720.5 0.00
0.010 256.73 256.73 0.00 823.69 823.66 0.00 1720.5 1720.4 -0.01
0.025 257.37 257.39 0.01 823.87 823.67 -0.02 1720.4 1719.8 -0.03
0.050 259.65 259.72 0.03 824.53 823.73 -0.10 1720.0 1717.7 -0.13
0.100 268.56 268.85 0.11 827.14 823.99 -0.38 1718.5 1710.0 -0.49
0.200 301.49 302.50 0.33 837.47 825.47 -1.43 1713.4 1686.8 -1.55
0.400 406.27 408.89 0.65 877.04 836.95 -4.57 1701.6 1638.7 -3.70
0.500 468.68 471.91 0.69 905.05 849.46 -6.14 1697.6 1619.9 -4.58
1.000 798.00 803.68 0.71 1096.7 995.44 -9.23 1712.8 1604.9 -6.30

Table 21: Simply supported sandwich spherical shell panel. First mode for several combinations of
half-wave numbers (m,n), frequency f in Hz. Effects of curvature a/Rα and thickness a/h. Error in

percentage calculated as ∆(%) =
3D(Hα,β=1)−3D

3D × 100.
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Shallow
(small a/R values)

Deep
(big a/R values)

Thin
(big R/h or a/h values)

Thick
(small R/h or a/h values)

Figure 1: Shell classifications: shallow and deep shells, thin and thick shells.

-

Figure 2: Reference system, geometrical parameters and notations for shells.

Figure 3: Reference systems and thickness coordinates z and z̃ for shells.
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