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Abstract
Systems with periodic nonlinearities, referred to as

pendulum–like systems or systems with cylindric phase
space, naturally arise in many applications. Consid-
ered in the Euclidean space, such systems are usually
featured by an infinite sequence of equilibria, none of
them being globally stable. Hence the system’s “sta-
bility”, understood as convergence of every solution to
one of the equilibria points (gradient-like behavior, or
phase locking), cannot be examined by standard tools
of nonlinear control, ensuring global asymptotic sta-
bility of a single equilibrium. Nevertheless, it appears
that a modification of absolute stability methods, orig-
inating from the works of V.M. Popov, allows to es-
tablish efficient criteria for gradient-like behavior of
pendulum-like system, which also imply the system’s
robustness against a broad class of disturbances.

Key words
Stability, integral equation, periodic nonlinearity, ro-

bustness, pendulum-like system, phase-locked loop.

1 Introduction
Systems with periodic nonlinearities arise in abun-

dance in nature and engineering applications and de-
scribe a broad class of phenomena, from the pendu-
lum’s swings to dynamics of vibrational units, elec-
tric machines and physical oscillators [Baker and
Blackburn, 2005, Stoker, 1950, Leonov et al., 1996b,

Blekhman, 2000]. An important example of system
with periodic nonlinearity is a phase locked loop (PLL)
and similar control circuits, providing synchroniza-
tion between the internal controlled oscillator or clock
and some exogenous signal [Gardner, 1966, Lindsey,
1972, Margaris, 2004, Best, 2003, Razavi, 2003]. PLL
circuits are used for carrier recovery, frequency syn-
thesis and time synchronization; periodic nonlinearities
in their mathematical models naturally represent the
nonlinear characteristics of phase detectors (compara-
tors). Motivated by engineering applications [Stoker,
1950, Blekhman, 2000, Czolczynksi et al., 2012] the
terms pendulum–like system or synchronization system
has been coined to denote systems with periodic non-
linearities [Lindsey, 1972, Leonov, 2006].

Systems with periodic nonlinearities typically have
infinite sequences of stable and unstable equilibria
points, as exemplified by the simplest model of mathe-
matical pendulum. In particular, such a system is mul-
tistable; it is often convenient to consider their state
spaces as toric or cylindric manifolds [Kudrewicz and
Wasowicz, 2007, Leonov et al., 1996a]. Many ef-
fects in such systems, e.g. oscillations, hidden at-
tractors and “cycle slipping” [Chicone and Heitzman,
2013, Leonov et al., 2015b, Leonov et al., 2015a, Best
et al., 2016,Dudkowski et al., 2016] are essentially non-
local in the sense that they cannot be analyzed via lin-
earization at equilibria points. One of the central prob-
lems, concerned with dynamics of synchronization sys-
tems, is the convergence of all solutions to equilibria
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points. This special type of stability is referred to as
the gradient-like behavior [Leonov, 2006, Duan et al.,
2007]; dealing with pendulum–like systems, it is also
called phase locking. it excludes, in particular, the pos-
sibility of limit cycles and chaotic attractors.

Dynamical properties and control of pendulum–like
systems have been extensively studied in the litera-
ture [Kudrewicz and Wasowicz, 2007, Seifullaev et al.,
2016, Leonov et al., 1996a, Leonov et al., 1996b, Gelig
et al., 2004, Leonov, 2006, Duan et al., 2007, Chicone
and Heitzman, 2013, Best et al., 2016]. Most of the
existing stability theorems here are based on Lyapunov
methods, in particular, the Kalman-Yakubovich-Popov
lemma [Popov, 1973, Gelig et al., 2004]. In this pa-
per, we develop an alternative approach that stems from
Popov’s method of “a priori integral indices” [Popov,
1973, Rasvan, 2006, Yakubovich, 2002] or “integral
quadratic constraints (IQC)” [Megretski and Rantzer,
1997]. Unlike Lyapunov method, this approach al-
lows to examine not only ordinary differential equa-
tions with periodic nonlinearities, but also a broad class
of distributed parameter synchronization systems, in-
cluding e.g. delays [Wischert et al., 1992, Buckwalter
and York, 2002] and non-rational filters [Tripathy et al.,
2015]. The prerequisite for the applicability of Popov’s
method is the possibility to decompose the system as
a feedback interconnection of a linear time-invariant
block and a nonlinearity (such a decomposition is also
known as the Lur’e form). Stability criteria reduce to
a frequency-domain condition, involving the transfer
function of the linear part, and some nonlinear alge-
braic conditions, restricting the periodic nonlinearity;
in this sense the criteria are “frequency-algebraic”.

Using Popov’s method, we obtain novel criteria of
phase-locking, extending the results from the previous
works [Leonov et al., 1992,Leonov et al., 1996b,Perkin
et al., 2009, Perkin et al., 2012, Smirnova et al., 2015,
Smirnova et al., 2016, Smirnova and Proskurnikov,
2016] in two directions. First, we introduce frequency-
domain conditions of a novel type, involving the val-
ues of the transfer function not on the imaginary axis
but rather on an arbitrary vertical line {α + ıω : ω ∈
R}. Second, we consider synchronization systems in
presence of uncertain disturbances. The mitigation
of disturbances is an important problem in design of
PLLs and other synchronization circuits, see e.g. [Hill
and Cantoni, 2000, Cataliotti et al., 2007, Schilling
et al., 2010], the existing mathematical results are how-
ever very limited and mainly deal with cancellation
of harmonic disturbances [Schilling et al., 2010] and
cycle slipping effects in presence of random excita-
tions [Tausworthe, 1967, Ascheid and Meyr, 1982]. In
this paper, we take an important step in analysis of
pendulum–like systems’ robustness against uncertain
non-stochastic disturbances, addressing the case of dis-
turbances with finite “energy”.

In this article we generalize the results of the paper

presented at the 8th International Scientific Conference
on Physics and Control (PhysCon 2017) [Smirnova
et al., 2017] .

2 Problem Setup. Preliminaries
Consider a control system described by integro–

differential equations

σ̇(t) = b(t) +R(ψ(σ(t− h)) + f(t− h))−

−
t∫

0

γ(t− τ)(ψ(σ(τ)) + f(τ)) dτ (t > 0).
(1)

Here σ(t) = (σ1(t), . . . , σl(t))
⊤, ψ : Rl → Rl and

ψ(σ) = (ψ1(σ1), . . . , ψl(σl))
⊤, f : [−h,+∞) → Rl,

b : [0,+∞) → Rl, γ : [0,+∞) → Rl×l, R ∈ Rl×l,
h ≥ 0. The solution of (1) is defined by initial condi-
tion

σ(t)|t∈[−h,0] = σ0(t). (2)

Assume that the following conditions are true:
1) the function b(·) is continuous and b(t) → 0 as t →
∞; the function γ(·) is piece–wise continuous with N
breaks;
2)

|b(t)|ert, |γ(t)|ert ∈ L2[0,+∞) (3)

for certain r > 0;
3)

lim
t→+∞

f(t) = L, (4)

where L = (L1, . . . , Ll)
⊤, Lj ∈ R;

4) the function σ0(·) is continuous and σ(0 + 0) =
σ0(0);
5) each map ψj is ∆j-periodic (ψj(σj + ∆j) =
ψj(σj)); it is C1-smooth with

α1j := inf
ζ∈[0,∆j)

ψ′
j(ζ);

α2j := sup
ζ∈[0,∆j)

ψ′
j(ζ)

(5)

(it is clear that α1jα2j < 0);
6) the functions

φj(ζ)
∆
= ψj(ζ) + Lj (6)

have simple isolated roots.



CYBERNETICS AND PHYSICS, VOL. 6, NO. 4 247

The goal of the paper is to establish the conditions for
convergence of the solutions of (1). We extend here the
frequency–algebraic criteria for gradient-like behavior
of pendulum-like systems without external disturbance
(f(t) ≡ 0) [Perkin et al., 2012].
The frequency–algebraic criteria we are going to

prove contain a frequency–domain inequality involv-
ing the transfer matrix of the linear part together with
varying parameters and nonlinear algebraic restrictions
on the varying parameters. So we need to introduce the
transfer matrix of the linear part of (1):

K(p) := −Re−ph +

∞∫
0

γ(t)e−pt dt (p ∈ C). (7)

Let

m1j ≤ α1j , m2j ≥ α2j . (8)

Notice that mij (i = 1, 2; j = 1, . . . , l) may
be either a certain number or ∞. In the
latter case we put m−1

ij = 0. Let Mi =

diag
{
m−1

i1 , . . . ,m
−1
il

}
(i = 1, 2). Intro-

duce diagonal matrices κ = diag {κ1, . . . ,κl},
ε = diag {ε1, . . . , εl}, τ = diag {τ1, . . . , τl} and
δ = diag {δ1, . . . , δl} and determine the frequency–
domain inequality

Πλ(ω)
∆
= ℜe{κK(ıω − λ)− (K(ıω − λ)+

+(ıω − λ)M1)
∗τ(K(ıω − λ) + (ıω − λ)M2)−

−K(ıω − λ)∗εK(ıω − λ)} − δ ≥ 0.

(9)

Here ı2 = −1, the symbol (∗) means Hermitian conju-
gation and

ℜeH ∆
=

1

2
(H +H∗), H ∈ Rl×l. (10)

In next two sections we present a number of theo-
rems which guarantee the convergence of any solution
of (1). In section 3 the case of arbitrary parameters
Mi (i = 1, 2) and τ is considered. In this case the in-
equality (9) with λ = 0 only can be used, which means
that the values of the transfer matrix ought to be cal-
culated on imaginary axis. The section 4 is devoted to
particular case of τM1M2 = 0 and the values of the
transfer matrix can be calculated on arbitrary line par-
allel to the imaginary axis.
By (4) and (6) one can rewrite the system (1) in the

form

σ̇(t) = b(t) +R(φ(σ(t− h)) + g(t− h))−

−
t∫

0

γ(t− τ)(φ(σ(τ)) + g(τ)) dτ (t > 0),
(11)

where
φ(σ) = (φ1(σ1), . . . , φl(σl))

⊤,
g(t) = f(t)− L.
Throughout the paper we shall use the functions

Φj(ζ)
∆
=

√(
1−m−1

1j φ
′
j(ζ)

) (
1−m−1

2j φ
′
j(ζ)

)
(12)

and

Pj(ζ;α, β)
∆
=

√
1 +

α

β
Φ2

j (ζ) (13)

where α > 0 and β > 0 are parameters.
We shall also need the constants

νj :=

∆j∫
0

φj(ζ)dζ

∆j∫
0

|φj(ζ)|dζ

, ν0j :=

∆j∫
0

φj(ζ)dζ

∆j∫
0

Φj(ζ)|φj(ζ)|dζ

.

(14)

ν1j(α, β) :=

∆j∫
0

φj(ζ) dζ

∆j∫
0

|φj(ζ)|Pj(ζ;α, β) dζ

. (15)

3 Frequency–algebraic Stability Conditions
In this section we assume in addition that function g(t)

is differentiable and the inclusions

|g(t)|, ġ(t)| ∈ L2[0,+∞) (16)

are satisfied.
Theorem 1. Suppose there exist positive definite ma-

trices κ, δ, τ, ε, matrices M1 and M2, and numbers
aj ∈ [0, 1] (j = 1, . . . , l) such that the following con-
ditions are fulfilled:
1) for λ = 0 and all ω ≥ 0 the frequency–domain in-
equality (9) is true, i.e. for all ω ≥ 0

Π0(ω) ≥ 0; (17)

2) the quadratic forms

Qj(x, y, z) := εjx
2 + δjy

2 + τjz
2 + κjajνjxy+

+κj(1− aj)ν0jyz (j = 1, . . . , l)
(18)
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are positive definite.
Then

σ̇(t) → 0 as t→ +∞ (19)

and

σj(t) → qj as t→ +∞, (20)

where ψj(qj) = −Lj (j = 1, . . . , l).

Proof. The proof is based on Popov’s method of a pri-
ori integral indices [Popov, 1961, Popov, 1973, Ras-
van, 2006, Yakubovich, 2002] which is traditionally
used for stability investigation of integral and integro–
differential equations. A prerequisite for Popov’s
method applicability is the existence of an integral
quadratic constraint, satisfied by the nonlinearities.
Let η(t) = φ(σ(t)) and ξ(t) = η(t) + g(t). Introduce

the auxiliary function

µ(t)
∆
=


0, t < 0,

t, 0 ≤ t ≤ 1,

1. t > 1.

(21)

For T ≥ 1 and a given solution of (1) consider the
functions

ξT (t)
∆
=

{
µ(t)ξ(t), t < T,

ξ(T )ec(T−t) t ≥ T (c > 0);
(22)

σ0(t) = b(t) +Rξ(t− h)(1− µ(t− h))−

−
t∫

0

(1− µ(τ))γ(t− τ)ξ(τ) dτ.
(23)

It is easy to see that

|σ0(t)|ert ∈ L2[0,+∞). (24)

Introduce the function

σT (t) = RξT (t− h)−
t∫

0

γ(t− τ)ξT (τ) dτ. (25)

It is clear that

σ̇(t) = σ0(t) + σT (t) for t ∈ [0, T ]. (26)

Consider a set of functionals (T ≥ 1)

JT
∆
=

∞∫
0

{σ∗
TκξT + ξ∗T δξT+

+σ∗
T εσT + (σT −M1ξ̇T )

∗τ(σT −M2ξ̇T )} dt.
(27)

Due to Plancherel theorem we have

JT = 1
2π

+∞∫
−∞

{F(σT )∗κF(ξT ) + F(ξT )
∗δF(ξT )+

+F(σT )
∗εF(σT ) + (F(σT )−M1F(ξ̇T ))

∗τ(F(σT )−
−M2F(ξ̇T ))} dω,

(28)
where F stands for the Fourier transform. Notice that

F(σT )(ıω) = −K(ıω)F(ξT )(ıω) (29)

and

F(ξ̇T )(ıω) = ıωF(ξT )(ıω). (30)

So

JT = − 1
2π

+∞∫
−∞

F∗(ξT )(ıω)Π0(ω)F(ξT )(ıω) dω

(31)
and by virtue of (17)

JT ≤ 0. (32)

On the other hand the following equality is true

JT = ρT + J0 + J1T + J2T + J3T , (33)

where

ρT
∆
=

T∫
0

{σ̇∗κξ + ξ∗δξ + σ̇∗εσ̇+

+(σ̇ −M1ξ̇)
∗τ(σ̇ −M2ξ̇)} dt;

(34)

J1T
∆
= −

T∫
0

{σ∗
0κξT + 2σ∗

0εσ̇−

−σ∗
0(ε+ τ)σ0 + σ∗

0τ(σ̇ −M2ξ̇T )+

+(σ̇ −M1ξ̇T )
∗τσ0} dt;

(35)
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J0
∆
=

1∫
0

{(µ− 1)σ̇∗κξ + (µ2 − 1)ξ∗δξ−

−(
˙̂
µξ − ξ̇)∗M1τ σ̇ − σ̇∗τM2(

˙̂
µξ − ξ̇)+

+
˙̂
µξ∗M1τM2

˙̂
µξ − ξ̇∗M1τM2ξ} dt;

(36)

J2T
∆
=

∞∫
T

{σ∗
Tκξ(T )ec(T−t) + ξ(T )∗δξ(T )e2c(T−t)+

+c2ξ(T )∗M1τM2ξ(T )e
2c(T−t)−

−cec(T−t)ξ(T )∗(M1 +M2)τσT } dt;
(37)

J3T
∆
=

∞∫
T

σ∗
T (ε+ τ)σT dt. (38)

Notice that from the assumptions 1)–5) it follows that
η(t), σ̇(t), η̇(t) are bounded on R+. Hence and from
the estimates (24) and (16) it follows that

|J1T | ≤ C2, (39)

where C2 does not depend on T . It is easy to see that

|J2T | < C3, (40)

where C3 does not depend on T . Then inequali-
ties (32), (39), (40) together with (33) imply that

ρT < C0, ∀T > 1, (41)

where C0 does not depend on T .
Let us evaluate the functional ρT from bellow. We

have

ρT ≥
T∫

0

G1(σ̇, η, η̇) dt+

T∫
0

G2(σ̇, η, η̇, g, ġ) dt.

(42)
where

G1(σ̇, η, η̇)
∆
= σ̇∗κη + η∗δη + σ̇∗εσ̇+

+(σ̇ −M1η̇)
∗τ(σ̇ −M2η̇);

(43)

G2(σ̇, η, η̇, g, ġ)
∆
= σ̇∗κg + 2g∗δη − ġ∗M1τ(σ̇ −M2η̇)−

−(σ̇ −M1η̇)
∗τM2ġ + ġ∗M1τM2ġ.

(44)

It is obvious that

ρT ≥
T∫

0

G1(σ̇, η, η̇) dt−
T∫

0

|G2(σ̇, η, η̇, g, ġ)| dt.

(45)
Notice that

T∫
0

|ġ∗M1τM2ġ| dt ≤ C4, ∀T > 0. (46)

On the other hand for any ε1 > 0 the following in-
equalities are valid:

|σ̇∗κg| ≤ ε1|σ̇|2 + 1
4ε1

( max
j=1,...,l

κ2
j )|g|2; (47)

|η∗δg| ≤ ε1|η|2 + 1
4ε1

( max
j=1,...,l

δ2j )|g|2; (48)

|(σ̇ −M1η̇)
∗τM2ġ| ≤ ε1|σ̇ −M1η̇|2+

+ 1
4ε1

( max
j=1,...,l

(τjm
−1
2j )

2)|ġ|2;
(49)

|g∗M1τ(σ̇ −M2η̇)| ≤ ε1|σ̇ −M2η̇|2+

+ 1
4ε1

( max
j=1,...,l

(τjm
−1
1j )

2)|ġ|2.
(50)

The identities

σ̇j −m−1
ij η̇j = σ̇j(1−m−1

ij
dφj(ζ)

dζ )

(i = 1, 2; j = 1, . . . , l)
(51)

imply that

|σ̇ −Miη̇|2 ≤ C5|σ̇|2. (52)

Introduce the functional

ρ0T
∆
=

T∫
0

{σ̇∗κη + ηδ0η + σ̇∗ε0σ̇+

+(σ̇ −M1η̇)
∗τ(σ̇ −M2η̇)} dt

(53)

with diagonal matrices ε0 = diag {ε01, . . . , ε0l},
δ0 = diag {δ01, . . . , δ0l} defined by the formulas

δ0 = δ − 2ε1El; ε0 = ε− (1 + 2C5)ε1El. (54)
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From estimate (45) and inequalities (46)– (52) and as-
sumption (16) it follows that

ρT ≥ ρ0T − C6, (55)

where a positive constant C6 depends on ε1 but does
not depend on T .
Let us choose ε1 > 0 so small that the quadratic forms

Q0j(x, y, z) := ε0jx
2 + δ0jy

2 + τjz
2+

+κjνjajxy + κjν0j(1− aj)yz (j = 1, . . . , l)
(56)

are positive definite. Once the number ε1 is defined,
the estimates (41) and (55) allow to affirm that

ρ0T ≤ C7, (57)

where C7 does not depend on T .
Now we can apply special technique destined for sta-

bility investigation of control systems with periodic
nonlinearities. Its main idea is to separate from peri-
odic functions in ρ0T the functions with null average
on the period. We repeat here the argument of pa-
per [Perkin et al., 2012]. New periodic functions are
determined:

Fj(ζ)
∆
= φj(ζ)− νj |φj(ζ)| ,

Ψj(ζ)
∆
= φj(ζ)− ν0j |φj(ζ)|Φj(ζ).

(58)

It is evident that

∆j∫
0

Fj(ζ)dζ =

∆j∫
0

Ψj(ζ)dζ = 0. (59)

The functional ρ0T is decomposed into two summands:

ρ0T =

T∫
0

l∑
j=1

Q0j(σ̇j , |ηj |,Φj(σj)σ̇j) dt+

+
l∑

j=1

κj

σj(T )∫
σj(0)

(ajFj(ζ) + (1− aj)Ψj(ζ))dζ

 .

(60)
It follows from (57) and (59) that

T∫
0

l∑
j=1

Q0j(σ̇j , |ηj |,Φ(σj)σ̇j) dt < C9, (61)

whereC9 does not depend on T . Since all the quadratic
forms Q0j are positive definite the estimate (61) im-
plies that

σ̇j(t) ∈ L2[0,+∞),
φj(σ(t)) ∈ L2[0,+∞) (j = 1, . . . , l).

(62)

Any φj(σ(t)) is uniformly continuous on [0,+∞). So
according to Barbalat lemma [Popov, 1973] it tends to
zero as t → +∞. Then σj(t) tends to a zero of φj(ζ)
as t → +∞. Since the functions σ̇j(t) are uniformly
continuous on [0,+∞), they tend to zero as t → +∞.
Theorem 1 is proved. �
Next we present a modification of Theorem 1. The

following assertion contains the same frequency–
domain condition but other algebraic requirements on
variable parameters.
Theorem 2. Suppose there exist positive definite ma-

trices κ, δ, τ , ε, matrices M1 and M2 such that for
all ω ≥ 0 frequency–domain inequality (17) holds and
algebraic inequalities

2
√
εjδj > |ν1j(τj , εj)|κj (j = 1, . . . , l) (63)

are true.
Then the conclusion of Theorem 1 is valid.

Proof. The proof of this theorem is based on the proof
of Theorem 1. We repeat all the argument of Theorem 1
up to the formula (55) and choose ε1 > 0 so small that
the inequalities

2
√
ε0jδ0j > |ν1j(τj , ε0j)|κj (j = 1, . . . , l) (64)

are true. The inequality (55) implies the inequal-
ity (57). Then we determine new periodic functions

Yj(ζ)
∆
= φj(ζ)− ν1j(τj , ε0j)|φj(ζ)|Pj(ζ; τj , ε0j).

(65)
Notice that

∆j∫
0

Yj(ζ) dζ = 0. (66)

With the help of Yj and the quadratic forms

Wj(x, y) = ε0jx
2 + δ0jy

2 + κjν1j(τj , ε0j)xy (67)

the functional ρ0T can be decomposed as follows

ρ0T =

T∫
0

l∑
j=1

Wj(σ̇jPj(σj ; τj , ε0j), |ηj |) dt+

+
l∑

j=1

σj(T )∫
σj(0)

κjYj(ζ) dζ.

(68)

It follows from (57) and (66) that

T∫
0

l∑
j=1

Wj(σ̇jPj(σj ; τj , ε0j), ηj) dt < C10, (69)



CYBERNETICS AND PHYSICS, VOL. 6, NO. 4 251

whereC10 does not depend on T . In virtue of (64) each
Wj is positive definite. Then (69) implies (62). Thus
Theorem 2 is proved. �

4 Generalized Frequency–algebraic Criteria
In this section we suppose that R is diagonal and
h = 0. We assume also that b(t) is differentiable on
[0,+∞), γ(t) is differentiable for t ∈ [0,+∞) with
the exception of discontinuity points and

|ḃ(t)|ert, |γ̇(t)|ert ∈ L2[0,+∞). (70)

As to g(t) it is sufficient to presuppose that it has a
bounded derivative and

g(t) ∈ L1[0,+∞). (71)

We also suppose that

φj(ζ) ∈ C2(R). (72)

Theorem 3. Suppose there exist positive definite ma-
trices κ, δ, ε, matrices Mi (i = 1, 2), matrix τ with
τj ≥ 0, and numbers aj ∈ [0, 1] such that the follow-
ing conditions are fulfilled:
1) for a certain λ ∈ [0; r

2 ) and all ω ≥ 0 the frequency–
domain inequality (9) is true;
2)

τjm
−1
1j m

−1
2j = 0, ∀j = 1, 2, . . . , l; (73)

3)

R∗τM2 +M1τR ≤ 0; (74)

4) the quadratic forms

Q̄j(x, y, z) := εjx
2 + δjy

2 + τjz
2 + κ̄jajνjxy+

+κ̄j(1− aj)ν0jyz (j = 1, . . . , l),
(75)

where κ̄j = κj + 2λτj(m
−1
1j + m−1

2j ) and aj = 1 if
τj = 0, are positive definite.
Then the conclusion of Theorem 1 is true.

Proof. Throughout the proof we use the notation

[f ]s(t)
∆
= f(t)est. (76)

We shall also use the functions defined in the previous
section. The whole scheme of the proof is alike that of

Theorem 1, though the ”cut–function” ξT (t) is changed
here for the ”cut–function”

ξ1T (t) =

{
µ(t)ξ(t), t ≤ T,

0, t > T.
(77)

Let

σ1
T (t) = Rξ1T (t)−

t∫
0

γ(t− τ)ξ1T (τ) dτ. (78)

Consider the functions [ξ1T ]
λ(t) and [σ1

T ]
λ(t). We have

[σ1
T ]

λ(t) = R[ξ1T ]
λ(t)−

t∫
0

[γ]λ(t− τ)[ξ1T ]
λ(τ) dτ.

(79)
It is obvious that

σ̇(t) = σ0(t) + σ1
T (t) for t ∈ [0, T ]. (80)

It is also clear that ∀T > 1

|[ξ1T ]λ|, |[σ1
T ]

λ(t)| ∈ L2[0,+∞) ∩ L1[0,+∞), (81)

and

|[σ̇1
T ]

λ(t)| ∈ L2[0,+∞) ∩ L1[0,+∞). (82)

It is easy to demonstrate that

|[σ̇0]λ(t)|, |[σ0]λ(t)| ∈ L2[0,+∞)∩L1[0,+∞). (83)

Notice that

F([σ1
T ]

λ) = −K(ıω − λ)F([ξ1T ]
λ) (84)

Consider the functional

J1
λT

∆
=

∞∫
0

{
([σ1

T ]
λ)∗(κ + λM1τ+

+λτM2)[ξ
1
T ]

λ + ([σ1
T ]

λ)∗(ε+ τ)[σ1
T ]

λ+
+( d

dt ([σ
1
T ]

λ −R[ξ1T ]
λ))∗τM2[ξ

1
T ]

λ+
+([ξ1T ]

λ)∗M1τ
d
dt ([σ

1
T ]

λ −R[ξ1T ]
λ)+

+ ([ξ1T ]
λ)∗δ([ξ1T ]

λ)
}
dt.

(85)

Due to Plancherel theorem

J1
λT = − 1

2π

∞∫
0

{F∗([ξ1T ]
λ)Πλ(ω)F([ξ

1
T ]

λ)} dω. (86)
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So it follows from condition 1) that

J1
λT ≤ 0. (87)

On the other hand we have

J1
λT = ρ1λT + J0

λT + J+
λT−

−
T∫

0

([ξ1T ]
λ)∗(R∗τM2 +M1τR) d([ξ

1
T ]

λ)+

+

∞∫
T

([σ1
T ]

λ)∗(ε+ τ)[σ1
T ]

λ dt

(88)

where

ρ1λT
∆
=

T∫
0

{
([σ̇]λ)∗(κ + λM1τ+

+λτM2)[ξ]
λ + ([σ̇]λ)∗(ε+ τ)[σ̇]λ+

+( d
dt ([σ̇]

λ))∗τM2)[ξ]
λ + ([ξ]λ)∗M1τ

d
dt ([σ̇]

λ)+
+ ([ξ]λ)∗δ([ξ]λ)

}
dt,

(89)

J0
λT

∆
= −

T∫
0

{([σ0]λ)∗(κ + λM1τ+

+λτM2)[ξ
1
T ]

λ − ([σ0]
λ)∗(ε+ τ)[σ0]

λ+
+2([σ0]

λ)∗(ε+ τ)[σ̇1
T ]

λ+
+( d

dt ([σ0]
λ))∗τM2[ξ

1
T ]

λ + ([ξ1T ]
λ)∗M1τ

d
dt ([σ0]

λ)} dt
(90)

and J+
λT can be obtained from J0 by replacing in (36)

κ by (κ+λM1τ +λτM2), ξ by [ξ]λ and σ̇ by [σ̇]λ. In
virtue of (83)

|J0
λT | ≤ C11, (91)

where C11 does not depend on T .
Notice also that the condition 3) of the theorem pro-

vides that the forth summand in right part of (88) is
positive. So it follows from (87), (88) and (91) that

ρ1λT ≤ C12, (92)

where C12 does not depend on T .
Consider now the functional

ρλT
∆
=

T∫
0

{σ̇∗(κ + 2λ(M1τ + τM2))ξ + ξ∗δξ+

+σ̇∗εσ̇ + (σ̇ −M1ξ̇)
∗τ(σ̇ −M2ξ̇)} dt

(93)

We have by virtue of (73)

ρλT =

T∫
0

{σ̇∗(κ + 2λ(M1τ + τM2))ξ + ξ∗δξ+

+σ̇∗(ε+ τ)σ̇ − σ̇∗τM2ξ̇ − ξ̇∗M1τ σ̇} dt.
(94)

With the help of equalities

T∫
0

σ̇∗τM2ξ̇ dt = σ̇∗τM2ξ
∣∣T
0
−

−
T∫

0

σ̈∗τM2ξ dt,

(95)

T∫
0

ξ̇∗M1τ σ̇ dt = ξ∗M1τ σ̇
∣∣T
0
−

−
T∫

0

ξ∗M1τ σ̈ dt

(96)

we get

ρλT ≤ IλT + C13, (97)

where

IλT =

T∫
0

{σ̇∗(κ + 2λ(M1τ + τM2))ξ + ξ∗δξ+

+σ̇∗(ε+ τ)σ̇ + σ̈∗τM2ξ + ξ∗M1τ σ̈} dt.
(98)

and C13 does not depend on T . Further

IλT =

T∫
0

e−2λt{([σ̇]λ)∗(κ + 2λ(M1τ + τM2))[ξ]
λ+

+([ξ]λ)∗δ[ξ]λ + ([σ̇]λ)∗(ε+ τ)[σ̇]λ+
+( d

dt ([σ̇]
λ)− λ([σ̇]λ))∗τM2[ξ]

λ+
+([ξ]λ)∗M1τ(

d
dt ([σ̇]

λ)− λ([σ̇]λ))} dt = ρ1λT ′ ,
(99)

where T ′ ∈ [0, T ]. From (92), (97) and (99) it follows
that

ρλT ≤ C14, (100)

where C14 does not depend on T .
The formula (100) is alike the formula (41). So from

this we can exploit the argument of Theorem 1. Let us
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evaluate the functional ρλT :

ρλT ≥
T∫

0

Ḡ1(σ̇, η, η̇) dt− |
T∫

0

Ḡ2(σ̇, η, η̇, g, ġ) dt|,

(101)
where

Ḡ1(σ̇, η, η̇)
∆
= σ̇∗κ̄η + η∗δη + σ̇∗εσ̇+

+(σ̇ −M1η̇)
∗τ(σ̇ −M2η̇);

(102)

Ḡ2(σ̇, η, η̇, g, ġ)
∆
= σ̇∗κ̄g + 2g∗δη−

−ġ∗M1τ(σ̇ −M2η̇)− (σ̇ −M1η̇)
∗τM2ġ.

(103)

Let us consider the second summand in right part of
(101). In virtue of (3), (4), (71) we have

T∫
0

|σ̇∗κ̄g| dt < C15, (104)

T∫
0

|g∗δη| dt < C16, (105)

where C15 and C16 do not depend on T . On the other
hand

|
T∫

0

(σ̇ −M1η̇)
∗τM2ġ dt| ≤

≤ |
T∫

0

(σ̈ −M1η̈)
∗τM2g dt|+

+|(σ̇ −M1η̇)
∗τM2g

∣∣T
0
|

(106)

and

|
T∫

0

(σ̇ −M2η̇)
∗M1τ ġ dt| ≤

≤ |
T∫

0

(σ̈ −M2η̈)
∗M1τg dt|+

+|(σ̇ −M2η̇)
∗M1τg

∣∣T
0
|.

(107)

The assumptions (3), (70), (71) and (72) imply that
the right parts of equalities (106) and (107) are bounded

by constants that do not depend on T . So it follows
from (100) and (104)– (107) that

ρ0λT
∆
=

T∫
0

Ḡ1(σ̇, η, η̇) dt (108)

is bounded by a constant which does not depend on T :

ρ0λT ≤ C17. (109)

No we can use functions (58) and repeat the proof of
Theorem 1 replacing ρ0T by ρ0λT and Q0j by Q̄j .

�
Theorem 4. Suppose there exist positive definite ma-

trices κ, δ, ε, matrices M1 and M2, and nonnegative
matrix τ such that following conditions are fulfilled:
1) for a certain λ ∈ [0; r

2 ) and all ω ≥ 0 the frequency–
domain inequality (9) is true;
2) τjm−1

1j m
−1
2j = 0, ∀j = 1, 2, . . . , l;

3)

2
√
εjδj > |ν1j(τj , εj)|κ̄j (j = 1, . . . , l), (110)

where κ̄j = κj + 2λτj(m
−1
1j +m−1

2j ).
Then the conclusion of Theorem 1 is valid.
The proof of Theorem 4 follows from that of Theo-

rem 3 and of Theorem 2.

5 Systems with Lumped Parameters
Let now a pendulum–like system be described by or-

dinary differential equations:

ż(t) = Az(t) +B(ψ(σ(t)) + f(t)),
σ̇(t) = C∗z(t) +R(ψ(σ(t)) + f(t))
(t > 0).

(111)

Here R ∈ Rl×l, A ∈ Rn×n, B ∈ Rn×l,C ∈ Rn×l;
z : [0,+∞) → Rn; functions ψ and f are described
in section 2. The solution of (111) is defined by initial
conditions

z(0) = z0, (112)

σ(0) = σ0. (113)

We assume that A is a Hurwitz matrix and the condi-
tions 3), 5) and 6) of section 2 remain valid.
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System (111), (112) can be easily reduced to the sys-
tem of Volterra equations

z(t) = eAtz0 +

t∫
0

eA(t−τ)B(ψ(σ(τ))+

+f(τ)) dτ (t > 0),

(114)

σ̇(t) = C∗eAtz0 +R(ψ(σ(t)) + f(t))+

+

t∫
0

C∗eA(t−τ)B(ψ(σ(τ)) + f(τ)) dτ (t > 0).

(115)
The equation (115) coincides with the equation (1)

with

h = 0, b(t) = C∗eAtz0, γ(t) = −C∗eAtB. (116)

Since A is a Hurwitz matrix the assumptions 1), 2) of
section 2 as well as the inclusions (70) are true for b(t)
and γ(t). So all the four theorems proved in the previ-
ous sections can be applied to the equation (114). The
frequency–algebraic conditions of either of the theo-
rems guarantee that

|ψ(σ(t)) + f(t)| ∈ L2[0,+∞), (117)

|σ̇(t)| → 0 as t→ +∞. (118)

σj → qj as t→ +∞ (j = 1, 2, . . . , l), (119)

where ψj(qj) = −Lj . As |eA(t)B| ∈ L2[0,+∞) it
follows from (117) [Gelig, 1966] that

|z(t)| → 0 as t→ +∞. (120)

Example. Theorem 1 was applied to the phase–locked
loop (PLL) with integrating filter and sine–shaped char-
acteristic of phase detector. For the system l = 1,
n = 1,

K(p) =
T

Tp+ 1
(T > 0), (121)

ψ1(ζ) = sin ζ − β (β ∈ (0, 1)). (122)

The mathematical description of this PLL coincides
with that of mathematical pendulum

σ̈ + aσ̇ + (sinσ − β) = 0 (a =
1

T
). (123)

By computer simulation, for various coefficients T the
values βT such that the system (121), (122) with β ≤
βT is stable were established. The latter were com-
pared with frontier values of stability domain on the
plane {T 2, β} computed by qualitatively–numerical
methods [Belyustina et al., 1970]. It turned out that
Theorem 1 guarantees no less than 80% of genuine sta-
bility domain.

6 Conclusion
In this paper we consider the infinite–dimensional

synchronization system with uncertain disturbances.
The system has a denumerable set of stable and unsta-
ble equilibria. We offer a number of novel frequency–
domain criteria which guarantee that any solution of the
system converges to one of equilibria. The techniques
used stem from Popov’s method of “a priori integral
indices”. New types of Popov functionals destined for
systems with periodic nonlinearities are exploited.
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