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A MEASURE THEORETIC APPROACH TO TRAFFIC FLOW
OPTIMIZATION ON NETWORKS

SIMONE CACACE, FABIO CAMILLI, RAUL DE MAIO, AND ANDREA TOSIN

Abstract. We consider a class of optimal control problems for measure-valued nonlin-
ear transport equations describing traffic flow problems on networks. The objective is
to minimise/maximise macroscopic quantities, such as traffic volume or average speed,
controlling few agents, for example smart traffic lights and automated cars. The measure
theoretic approach allows to study in a same setting local and nonlocal drivers interactions
and to consider the control variables as additional measures interacting with the drivers
distribution. We also propose a gradient descent adjoint-based optimization method, ob-
tained by deriving first-order optimality conditions for the control problem, and we provide
some numerical experiments in the case of smart traffic lights for a 2-1 junction.

1. Introduction

During the last years, the study of vehicular and pedestrian traffic flow problems has
become a very active area and an opportunity of information exchange between math-
ematical investigation and applied research. From a mathematical point of view, these
phenomena have been largely studied due to their high complexity and the literature of-
fers a broad variety of models devoted to their description in a wide range of scenarios, see
[4, 13, 15] for reviews. On the other side, from an engineering point of view, it is important
to model, simulate, predict, control and optimize vehicular and pedestrian traffic in our
society. These issues become more and more central with the fast technological progress
and it is of particular interest to understand how the latest technologies, such as smart
traffic lights, self-driving cars or big data, can be used to improve the quality of movement
for drivers or pedestrians on road networks and urban roads, see [8, 20].

In this paper we propose a model to simulate and optimize traffic flow on networks
based on the theory of measure-valued transport equations. In this approach, the pop-
ulation is represented by a probability distribution which evolves according to a velocity
field depending on the position of the other individuals. In this way short and long range
interaction mechanisms are readily taken into account into the dynamics of the problem.
Moreover the measure approach easily catches the multi-scale nature of vehicular traffic,
composed both by a continuous distribution of indistinguishable cars and by some special
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individuals such as automated cars and traffic lights. With respect to other models consid-
ering transport equations with nonlocal interactions (see [1, 7, 11, 17]), the peculiarity of
our model is to be defined on a network, posing additional difficulties for the interpretation
in a measure-theoretic sense of the transition conditions at the vertices. Existence, unique-
ness and continuous dependence results for the corresponding measure-valued transport
equation were provided in [5, 6].

In [3, 9, 10], the authors consider optimal control problems for measure transport equa-
tions in the Euclidean space. Relying on a similar approach, we consider a model where,
besides the driver distributions, the velocity field depends also on an external distribution
which interacts with the original population in order to optimize, for example, traffic vol-
ume or average speed on the road network. As in [2, 20], our aim is to show that a small
number of external agents can improve the global behavior of the population and, indeed,
the typical examples of control variables we consider and investigate are smart traffic lights
and automated cars. Since the external distribution is described by a measure evolving
according to an appropriate dynamics, other control variables, such as information about
the behavior of the traffic on the global network, can be considered.

The paper is organized as follows. In Section 2 we introduce the control problem from
a theoretical point of view: network structure, transport equation and cost functional.
Section 3 is devoted to two examples of control problem: traffic lights and self-driving cars
as controls for vehicular traffic. Section 4 focuses on numerical analysis for these problems:
description and properties of the chosen scheme and numerical tests on some case studies.
In the Appendix we report the proofs of some theoretical results contained in the previous
sections.

2. Problem Formulation and theoretical setting

In this section we describe the main components of the traffic flow model, i.e. the struc-
tural components (roadway and priority rules at the junctions), the dynamics of drivers
motion (velocity, interaction with other drivers, influence of the structural components)
and the control problem which has to be solved in order optimize the traffic flow on the
network.

2.1. Structural components. Traffic routes are mathematically described by a network
Γ = (V , E) where E = {e1, e2, . . . , e|E|} is the set of arcs/roads while the crossroads are
represented by the set of the vertexes V = {V1, . . . , V|V|}. The network is oriented and we
write ek → ej and, respectively, x → y for x, y ∈ Γ to mean that ek comes before ej and,
respectively, x before y in the orientation of the network. We assume that Γ is endowed
with the minimum path distance dΓ and each arc ej ∈ E is parametrised by a continuous
bijective map πj : [0, Lj] → ej, Lj ∈ (0,+∞], which complies with the orientation of Γ,
i.e. if V,W ∈ V are the vertexes of the arc ej oriented from V to W , then πj(0) = V and
πj(Lj) = W .
For every V ∈ V , we denote by Inc(V ) the set of arcs in E whose end point is V and by
Out(V ) the set of arcs in E whose starting point is V . Then, we divide the set of the
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vertexes respectively in the sets of sources, sinks and junctions

S = {V ∈ V| Inc(V ) = ∅},
W = {V ∈ V|Out(V ) = ∅},

J = {V ∈ V|Out(V ) 6= ∅, Inc(V ) 6= ∅}.
Since the velocity term depends on the distribution of the cars on all the network, in order
to simplify the notations we prefer to consider a network without sinks, i.e. the set W is
empty and the terminal arcs always have infinite length. We also denote by L0 the minimal
length of the edges in E , i.e.

(2.1) L0 = min
j=1,...,|E|

Lj.

A convenient framework to study transport problems is given by the measure theoretic
one, since it allows to consider in a same setting macroscopic quantities such as a contin-
uous distribution of drivers and microscopic ones such as traffic lights and other elements
of the model. We set ΓT = Γ × [0, T ] and we consider the metric space (ΓT , d) where
d((x, t), (y, s)) = dΓ(x, y) + |t− s|. For a function φ : ΓT → R we define the norm

‖φ‖BL = ‖φ‖∞ + sup
(x,t), (y,s)∈ΓT

x 6=y
t6=s

|φ(x, t)− φ(y, s)|
d((x, t), (y, s))

,

and we consider the Banach space BL(ΓT ) of bounded and Lipschitz continuous functions
equipped with norm ‖ · ‖BL. Denoted by M(ΓT ) the space of finite measure on ΓT , we
define a dual norm on this space by

‖µ‖∗BL = sup
φ∈BL(ΓT )
‖φ‖BL≤1

|〈µ, ϕ〉|.

Similar notations and definitions are employed for the Banach spaceM(Γ) andM([0, T ]).
In the following we will always consider measures inM+(ΓT ), the cone of positive measures
inM(ΓT ). By the Disintegration Theorem, we consider measures µ ∈M+(ΓT ) which can
be decomposed as

µ(dxdt) = dµt(x)dt,

where µt ∈M+(Γ) represents the distribution at time t ∈ [0, T ]. We remark that through-
out the paper we only consider measures without Cantorian part, since this kind of measure
does not have any significant interpretation for traffic flow problems. To model the behav-

ior of drivers at junctions we assign a distribution matrix P (t) = (pkj(t))
|E|
k,j=1, for t ∈ [0, T ],

satisfying the following properties

(2.2)

pkj ∈ BV ([0, T ]), pkj(t) ∈ [0, 1],∑|E|
j=1 pkj(t) = 1, ∀t ∈ [0, T ], ∀k = 1, . . . , |E|,
pkj(t) = 0 if either ek ∩ ej = ∅ or ej → ek.

Here pkj(t) represents the fraction of drivers which at time t flows from an arc ek to an arc
ej. Hence, for every arc ek, we have a discrete probability distribution Pk(t) = {pkj(t)}j
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which describes the behaviour of drivers at the junction at time t. This quantity is defined
on the basis of the knowledge of the statistical behavior of the traffic at a given day time
(see [16, 19]). The assumptions in (2.2) imply the mass cannot concentrate at the vertexes
and therefore the total mass is conserved at the internal junctions. Since we consider
measures µ ∈ M+(ΓT ) without Cantorian part, we assume that pkj ∈ BV ([0, T ]) so that
for a measure µ ∈M+(ΓT ) the product pkj · µ still has no Cantorian part.

2.2. Driver motion. We now describe the nonlinear transport system which models the
evolution of the traffic on the network. The components of the system are the differential
equations governing the evolution of the traffic inside the arcs and the transition conditions
at the vertices regulating the distribution of the traffic flow at the junctions. It is important
to remark that the velocity term is nonlocal since drivers usually have a local knowledge
of the traffic distribution in a visual area in front of them; moreover they may have a
global knowledge of the traffic distribution on the entire network thanks to appropriate
navigation equipments.

We prescribe the initial mass distribution over Γ

m0 =
∑
ej∈E

mj
0 ∈M+(Γ),

where mj
0 is restriction of m0 to ej, and the incoming traffic measure at the source nodes

σ0 =
∑
Vi∈S

σi0, σi0 ∈M+({Vi} × [0, T ]),

where σi0 is the restriction of σ0 to Vi, representing the flow of cars entering in the road
network at the vertex Vi. We consider the following system of measure-valued differential
equations on ΓT for the unknown measure m =

∑
ej∈E m

j ∈M+(ΓT )

(2.3)

∂tm
j + ∂x(v

j[mt, µt]m
j) = 0 x ∈ ej, t ∈ (0, T ], j = 1, . . . , |E|,

mj
t=0 = mj

0 x ∈ ej, j = 1, . . . , |E|,

mj
Vi=πj(0) =


∑

ek∈Inc(Vi)

pkj(t)m
k
Vi=πk(1) if Vi ∈ I

σi0 if Vi ∈ S,
j = 1, . . . , |E|.

Observe that, for each arc ej, if the initial vertex Vi = πj(0) is internal, then the boundary
condition at Vi is given by a measure representing the mass flowing in ej from the arcs
incident to the vertex according to the distribution matrix P (t); if the initial vertex Vi =
πj(0) is an incoming traffic vertex, the inflow measure is the prescribed datum σi0. The
outflow measure, i.e. the part of the mass leaving the arc from the final vertex Vk = πj(1),
is not given a priori but depends on the evolution of the measure m inside the arc.

The velocity v = (vj)
|E|
j=1 depends on the solution mt itself, as well as on another distribution

µt ∈ M+(Γ), representing external forces acting on the drivers such as traffic lights and
autonomous vehicles (more details will be given in the next section where we consider
specific models). We assume that
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(H1) v is non-negative and bounded by vmax > 0;
(H2) v is Lipschitz with respect to the state variables, i.e. there exists L > 0 such that

for every ej ∈ E , ∀x, y ∈ ej, mi, µi ∈M+(Γ), for i = 1, 2

|vj[m1, µ1](x)− vj[m2, µ2](y)| ≤ L(|x− y|+ ‖m1 −m2‖∗BL + ‖µ1 − µ2‖∗BL).

For the definition of measure-valued solution to the system (2.3), we refer to [6]. The next
theorem summarize the main results concerning existence, uniqueness and regularity of the
measure-valued solution to (2.3) in case of a fixed µ ∈M+(ΓT ).

Theorem 2.1. There exists a unique m ∈M+(ΓT ) which is a measure-valued solution to
(2.3). Moreover,

i) There exists a positive constant C = C(T ) such that

‖mt −mt′‖∗BL ≤ C |t− t′|+ σ0((t′, t])

for all t′, t ∈ [0, T ] with t′ < t.
ii) Given initial data m0,1,m0,2 ∈ M+(Γ) and boundary data σ0,1, σ0,2 ∈ M+([0, T ])

and denoted by m1,m2 ∈ M+(ΓT ) the corresponding solutions, there exists a con-
stant C = C(T ) > 0 such that

‖mT,2 −mT,1‖∗BL ≤ C
(
‖m0,2 −m0,1‖∗BL + ‖σ0,2 − σ0,1‖∗BL

)
.

We will consider a velocity field of the form

(2.4) v[m,µ](x) := max{vf (x)− vI [m](x)− vE[µ](x), 0}
where vf : Γ→ R+ is the desired velocity representing the speed of a car over a free road,
vI [m](x) is the interaction term due to the presence of other cars on the roads and vE[µ]
is the interaction term with an external distribution µ. Here we describe the velocities
vf and vI , while in the next section we will consider velocities vE[µ] corresponding to the
specific models discussed.
Concerning the free flow speed vf (x), which depends only on the state variable x, we
assume that this function is positive, bounded and Lipschitz continuous on each arc ej of
the network Γ. Hence (H1)-(H2) are easily verified for vf .
We consider a interaction velocity vi given by the functional

vI [m](x) :=

∫
Γ

K(x, y)dm(y).

The interaction kernel K is defined as

(2.5) K(x, y) = k(dΓ(x, y))χD(x)(y)

where k is a Lipschitz continuous, non increasing, bounded function representing the
strength of interaction among cars in dependence on their distance and χD(x) is the char-
acteristic function of the set D(x) representing the visual field of the driver. We assume
that a driver has only the knowledge of the distribution of cars on the roads adjacent to
the current position and therefore we define the visual field as

D(x) = {y ∈ Γ : x→ y, dΓ(x, y) ≤ R}
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with R < L0 and L0 defined in (2.1). Hence it follows that, given x ∈ ek, if V = πk(Lk) ∈ V
we have D(x) ⊂ ek ∪ (

⋃
ej∈Out(Vi) ej). We prescribe for any ej ∈ Out(V ) a weight αkj

satisfying

0 ≤ αkj ≤ 1,

|E|∑
j=1

αkj = 1,

αkj = 0 if either ek ∩ ej = ∅ or ej → ek.

where the coefficients αkj represent the priority of a given route in the choice of the driver
depending on the basis of the observed traffic distribution. In conclusion, the interaction
velocity at x ∈ ek is given

vI [m](x) =

|E|∑
j=1

αkj

∫
Γ

k(dΓ(x, y))χD(x)∩(ek∪ej)(y)dm(y).

Since the function K defined in (2.5) is nonnegative and bounded, then there exists a
constant C > 0 such that

0 ≤ vI [m](x) ≤ Cm(Γ), ∀x ∈ Γ,

|vI [m1](x)− vI [m2](x)| ≤ C‖m1 −m2‖∗BL, ∀x ∈ Γ, ∀m1,m2 ∈M+(Γ),

and therefore (H1) and (H2) are satisfied. The Lipschitz continuity with respect to x is
more delicate and for its proof we refer to [6, Sect.5]. A specific example of function k is
given by

k(x, y) =
ρ2

(ρ1 + dΓ(x, y))β

which is inspired by a Cucker-Smale nonlocal interaction kernel (see [14]).

2.3. Mobility optimization. We introduce a class of optimization problems on networks
involving the distribution m, given by the solution of (2.3), the external distribution µ
and a control variable u which has to be designed in order to minimize/maximize a given
objective functional.
We assume that the set of the admissible controls is given by a Banach space (U , ‖ · ‖U).
We also denote by M+

M(ΓT ) the set of the measures µ ∈ M+(ΓT ) such that ‖µ‖∗BL ≤ M .
Then the state space of the control problem is given by the space (X , ‖ · ‖X ) where

X =M+
M(ΓT )×M+

M(ΓT )× U ,
‖ · ‖X = ‖ · ‖∗BL + ‖ · ‖∗BL + ‖ · ‖U .

For a given initial distribution m0 ∈ M+(Γ) and an incoming traffic distribution σ0 ∈
M+([0, T ]), we consider the optimization problem

(2.6)

{
min{J(m,µ, u) : (m,µ, u) ∈ X},
subject to the state equation (2.3).
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It is convenient to rewrite the previous minimization problem in the following equivalent
form

(2.7) min{J(m,µ, u) + 1A(m,µ, u) : (m,µ, u) ∈ X},
where A := {(m,µ, u) ∈ X ; m solves (2.3)} and 1A is the indicator function of the set A
defined as

1A(x) :=

{
0, x ∈ A,
+∞ otherwise.

A straightforward application of the direct method in Calculus of Variations gives the
following existence result for the minima of (2.7).

Theorem 2.2. Assume that

• J : X → R ∪ {+∞} is bounded from below;
• J is lower semicontinuous in X , i.e. for any (mn, µn, un) ⊂ X such that (mn, µn, un)→

(m,µ, u), it holds J(m,µ, u) ≤ lim infn→∞ J(mn, µn, un);
• the set A is closed under the topology induced by ‖ · ‖X .

Then the minimization problem (2.6) has a solution.

A typical example of functional to be minimized is of the form

(2.8) J(m,µ, u) := −
∫ T

0

∫
Γ

v[mt, µt]dmt(y)dt+

∫
Γ×[0,T ]

f(x, t, u)dm(x, t),

where the first term in (2.8) represents the mean velocity on the network, while the second
one is a feedback term which depends on the choice of f . For example, if f(t, x, u) = χB(x),
where B ⊂ Γ is closed, the functional minimizes the amount of mass mt in a closed region
B during the time interval [0, T ]. Another interesting class of control problems is the
Minimum Time control introduced, in a measure theoretic setting, in [9, 10].

3. Model examples: traffic lights and autonomous cars

This section is devoted to some applications of the abstract setting previously described
with the discussion of two significative problems in traffic flow optimization. In the first
example, we optimize the duration of traffic lights in order to improve the circulation on
the road network; in the second example, we aim to regulate the traffic flow by a fleet of
autonomous car.
For both these models we assume that the control variable u influences the traffic flow
distribution m only by means of an external distribution µ = µ[u]. Hence the functional
to be minimized in (2.7) is of the form J(m,u) with m subject to (2.3) and µ determined
by another dynamical system for a given initial configuration µ0.

3.1. Smart traffic lights. An important element of a road network model is given by
traffic lights : they influence the behavior of the drivers near the junction and can be used
as an external control to regulate the traffic flow. To model a traffic light, we follow the
approach in [18]. Relying on the measure-theoretic setting, we describe a traffic light as
a measure θ ∈ M+(ΓT ), which is a Dirac measure in space and a density with bounded
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variation in time.
We assume that there is at most one traffic light for each road and that it is located closed
to the terminal vertex V ∈ V of the arc ej. Since the position is fixed a priori while the
activity changes in time, a traffic light can be represented, with an abuse of notation, as
the measure

(3.1)
∑

j∈Inc(V )

∫ T

0

uj(t)δV (y)dt,

where uj ∈ BV ([0, T ], {0, 1}) is a function representing the state of the traffic light: uj(t) =
1 if the light is red, uj(t) = 0 if green (for simplicity, we do not consider a yellow phase
since the corresponding driver reaction is strongly influenced by drivers’ culture).

Concerning the light phases, in order to exclude unrealistic scattering phenomena, we
fix two positive times TR, TG > 0 and we assume that the red phase cannot last more then
TRi and, analogously, the green phase must last at least TG to guarantee a proper traffic
flow. Hence denoted by τ1, τ2 ∈ [0, T ] two consecutive switching times of the traffic light
on the arc ej (corresponding to jump discontinuities of uj), we assume that

if uj(τ
+
1 ) = 1, then |τ1 − τ2| < TR,

if uj(τ
+
1 ) = 0, then |τ1 − τ2| > TG.

(3.2)

Moreover we assume that a traffic light can be green only for one of the incoming roads in
a junction, i.e.

(3.3)

∑
j∈Inc(V ) uj + 1 = N

TR ≥ (N − 1)TG

where N = #(Inc(V )).
Denote by F ⊂ E the set of the arcs containing a traffic light. Recalling (3.1), we consider

the measure dµ(x, t) =
∑|E|

j=1 uj(t)dµ
j(x, t) on ΓT where dµj(x, t) ≡ 0 if ej 6∈ F and

dµj(x, t) = δV (x)dt if ej ∈ F ∩ Inc(Vi). The term uj, the phase duration of the traffic light
on the road ej, can be interpreted as the control variable. The set of admissible controls
is given by

(3.4) U = {u = {uj}j=1,...,|F| : uj ∈ BV ([0, T ], {0, 1}) and satisfies (3.2), (3.3) }
To describe the interaction of the drivers with the traffic lights, we define an external
velocity term vE[µ] in (2.4). Fixed an arc ej ∈ F ∩ Inc(V ), then the restriction of vE[µ] to
the arc ej is given by

vjE[µ](x) :=

∫
Γ

H(x, y)dµt(y) = uj(t)H(x, V )δej(x).

We assume that the interaction kernel H is given by

(3.5) H(x, y) =

{
vf max

{(
1− dΓ(x,y)

R

)
, 0
}
, if x→ y, dΓ(x, y) ≤ R,

0 otherwise,
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where vf is the desired velocity and R ≤ L0, for L0 as in (2.1), is the visibility radius. The
driver interaction with the traffic light, tuned by the signal uj, occurs only if the driver is
sufficiently close to the junction and becomes stronger getting closer.
We need to show that the chosen set of control (3.4) satisfies the hypotheses of Theorem
2.2 for X =M+

M(ΓT )×M+
M(ΓT )× U .

Lemma 3.1. The set of positive measures with bounded mass M+
M(ΓT ) is compact with

respect to ‖ · ‖∗BL.

Lemma 3.2. The set U defined in (3.4) is compact in (BV |E|([0, T ]), ‖ · ‖L1).

Lemma 3.3. Assume X =M+
M(ΓT )×M+

M(ΓT )× U , where U satisfies the hypothesis of
Lemma 3.2. The set A is closed under the topology induced by ‖ · ‖X .

The proofs of the previous results are given in Appendix.

3.2. Regulating traffic flow by means of autonomous cars. In this second applica-
tion, we aim to optimize the traffic flow by exploiting another distribution of cars, possibly
given by autonomous vehicles, of which we can control the velocity. Indeed some experi-
ments (see [20]) have shown that it is possible to avoid stop-and-go phenomena regulating
the interactions among drivers by means of external agents (autonomous vehicles, traffic
light, signaling panels,etc.). The approach in this section is inspired to [3] where the au-
thors present an optimization problem for a transport equation in the euclidean space with
the control represented by a second distribution µ evolving according to another transport
equation.
The dynamics of the autonomous cars is similar to the one of rest of the drivers, with the
difference that it can be controlled in order to minimize the objective functional. Hence
for a given initial distribution µ0 (typically µ0 =

∑
x∈Γa

δx for some finite set Γa ⊂ Γ), the
measure µ ∈ ΓT representing the distribution of the fleet of the autonomous car satisfies
the nonlinear transport equation
(3.6)

∂tµ
j + ∂x(u · vj[mt, µt]µ

j) = 0 x ∈ ej, t ∈ (0, T ], j = 1, . . . , |E|

µjt=0 = µj0 x ∈ ej, j = 1, . . . , |E|

µjV=πj(0) =


∑

ek∈Inc(V )

qkj(t)µ
k
V=πk(1) if V ∈ I

0 if V ∈ S,
j = 1, . . . , |E|

We assume that the velocity fields v[mt, µt] in (3.6) is the same of problem (2.3) and it is
defined as in (2.4). Moreover we assume that the drivers are not able to discern between
not-autonomous and autonomous cars and therefore vI = vE. Hence we can rewrite the
velocity field (2.4) as

v[η] = max{0, vf − vI [η]},
where, in our setting, η = m+ µ.
On the other side, since we want to regulate the velocity of the distribution µ we add a
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control term u and we assume that the control set is given by

(3.7) U = LipL(ΓT , [0, 1]),

i.e. the set of Lipschitz functions from Γ × [0, T ] to [0, 1] with Lipschitz constant L > 0.
In this way, if v[mt, µt] satisfies the assumptions of Theorem 2.1, then also u · v[mt, µt] sat-
isfies the same assumptions and therefore system (3.6), given (mt)t∈[0,T ], admits a unique
measure-valued solution. Moreover, since we require that u(x, t) ∈ [0, 1], then the au-
tonomous cars can only slow the traffic distribution. Observe that system (3.6) also differs

from (2.3) for the distribution matrix Q = (qkj(t))
|E|
k,j=1 at the junctions. Actually it is

reasonable to assume that Q does not coincide with the distribution matrix P since the
autonomous cars can behave differently from the rest of the drivers at the junctions and
adopt different routes. We assume that the matrix Q satisfies the assumptions in (2.2).
Existence of a solution (m,µ) to the coupled transport system (2.3)-(3.6) can be proved
by a fixed point argument.
Given m ∈ C([0, T ],M+(Γ)), consider the map

Φ1 : C([0, T ],M+(Γ))→ C([0, T ],M+(Γ))

which associates to m the unique solution of (3.6). Similarly, given µ ∈ C([0, T ],M+(Γ)),
define a map

Φ2 : C([0, T ],M+(Γ))→ C([0, T ],M+(Γ))

which associates to µ the solution Φ2(µ) of (2.3). Hence, defined a map Φ := (Φ1,Φ2), the
solution of the coupled system (2.3)-(3.6) is given by a fixed point of Φ. By an argument
similar to the one already used in [12, 13] for analogous results, it is possible to prove that
Φ is a contraction and therefore existence of a unique solution to the system (2.3)-(3.6) is
obtained.
We conclude this section with the following lemma, which allows to apply Theorem 2.2 to
the present case .

Lemma 3.4. Assume X =M+
M(ΓT )×M+

M(ΓT )× U , where U is defined by (3.7). Then,
the set A is closed under the topology induced by ‖ · ‖X .

4. Numerical solution via optimality conditions

In this section we formally derive first-order optimality conditions for the optimization
problem (2.6) in the case of a traffic light for a 2-1 junction. Then we build a gradient
descent adjoint-based method to approximate the solution of the discretized optimality
system and present some numerical experiments.

4.1. Optimality conditions. We consider a network Γ composed of a junction with two
roads converging in a single one, namely we have E = {e1, e2, e3}, V = {V0, V1, V2, V3} and
J = {V0}, S = {V1, V2}, W = {V3}, Inc(V0) = {e1, e2} and Out(V0) = {e3}, as shown in
Figure 1.

To simplify the presentation, we neglect the drivers interaction term, since the com-
putation in the general case is similar but more involved. We place a traffic light at V0

in order to maximize the average speed on the network. In this setting a single control
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Figure 1. Example of 2-1 junction

u ∈ BV ([0, T ], {0, 1}) is enough to describe the system, indeed we define edge-wise the
velocity v by

v1[u](x, t) = max{v1
f (x)− u(t)H(x, V0), 0} ,

v2[u](x, t) = max{v2
f (x)− (1− u(t))H(x, V0), 0} ,

v3(x, t) = v3
f (x) ,

where for j = 1, 2, 3, vjf is the free flow speed on ej and H is defined as in (3.5).
Since the switching of the traffic light is intrinsically a discrete process, we translate the
control problem into a finite dimensional setting. More precisely, we consider a vector
s = (s1, ..., sS) ∈ RS, whose components represent the durations of S − 1 successive
switches, where the integer number S > 1 is fixed a priori. Then the control u(t) is easily
reconstructed from a given value u(0) = u0 ∈ {0, 1} at initial time and from the switching

times τi =
∑i

k=1 si for i = 1, ..., S. Defining recursively ui = 1 − ui−1 for i = 1, ..., S and
τ0 = 0 we set (see Figure 2)

u(t) = us(t) =
S−1∑
i=0

uiχ[τi,τi+1)(t)

Figure 2. Reconstruction of control u from switching durations s = (s1, ..., sS)
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Following this approach we avoid several difficulties. Indeed, BV ([0, T ], {0, 1}) is not
even a vector space and taking admissible variations of a given control or imposing con-
straints on the switching durations is in practice not easy at all. One could work instead
with the convex subset BV ([0, T ]; [0, 1]) of L2(0, T ) and look for bang-bang controls. This
can prevent unrealistic mixing of mass at the junction, due to the additional yellow phase
for the traffic light (intermediate values in (0, 1)), but chattering phenomena can occur.
In our setting we just work in RS, chattering is not allowed by construction, and we can
easily apply variations/constraints to the switching durations being sure that the control
always remains in BV ([0, T ], {0, 1}).
Assuming that the measure m has a density, i.e. dm = m(x, t)dx dt for some function
m : Γ× [0, T ]→ R, we want to minimize the cost functional

(4.1) J(m,us) = −
∫ T

0

∫
Γ

v[us](x, t)m(x, t) dxdt ,

subject to

(4.2)

{
∂tm

j + ∂x(v
jmj) = 0 in ej × (0, T ), j = 1, 2, 3

mj(·, 0) = mj
0 in ej

We also assume null incoming traffic in the network during the whole evolution, imposing

(4.3) m1
x=V1

= 0, m2
x=V2

= 0, t ∈ [0, T ] ,

and the mass conservation condition at the internal vertex V0

(4.4) m3
x=V0

= m1
x=V0

+m2
x=V0

.

We formally apply the method of Lagrange multipliers in order to derive first-order opti-
mality conditions. We define the Lagrangian as

L(m,us, λ) := J(m,us) +

∫ T

0

∫
Γ

(−∂tλ− v∂xλ)mdxdt

+

∫
Γ

(λ(x, T )m(x, T )− λ(x, 0)m0(x)) dx

+
∑
j=1,2,3

∫ T

0

(λj(V E
j , t)v

j(V E
j , t)m

j(V E
j , t)− λj(V I

j , t)v
j(V I

j , t)m
j(V I

j , t)) dt ,

where V I
j and V E

j denote the initial and, respectively, the final vertex of the arc ej. Observe
that the terms involving the Lagrange multiplier λ derive from the weak formulation of
the transport equation on Γ.
We evaluate the derivates of the Lagrangian with respect to m and s (recall that u = us).
We first consider an admissible increment w for m which preserves the boundary and
transition conditions, i.e.

(4.5) w1(V1, t) = 0 , w2(V2, t) = 0 , w3(V0, t) = w1(V0, t)+w2(V0, t) t ∈ [0, T ] ,
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and we compute

〈∂mL,w〉 =

∫ T

0

∫
Γ

(−∂tλ− v∂xλ− v)w dxdt+

∫
Γ

λ(x, T )w(x, T ) dx

+

∫ T

0

∑
j=1,2,3

(λj(V E
j , t)v

j(V E
j , t)w

j(V E
j , t)− λj(V I

j , t)v
j(V I

j , t)w
j(V I

j , t)) dt .
(4.6)

Imposing 〈∂mL,w〉 = 0 for any admissible w, we get the following time-backward advection
equation with a source term

(4.7) −∂tλj − vj∂xλj = vj in ej × (0, T ), j = 1, 2, 3,

and the final condition

λj(x, T ) = 0 in ej, j = 1, 2, 3.

Note that for (4.7), V3 is an inflow vertex where a boundary condition has to be prescribed,
while V1 and V2 are outflow ones. Writing explicitly the remaining boundary terms in (4.6),
we have ∫ T

0

(λ1v1w1(V0, t)− λ1v1w1(V1, t) + λ2v2w2(V0, t)

−λ2v2w2(V2, t) + λ3v3w3(V3, t)− λ3v3w3(V0, t)) dt = 0 .

By taking w compactly supported in a neighborhood of V3, we get the boundary condition

λ3(V3, t) = 0 in [0, T ] ,

whereas for w compactly supported in a neighborhood of V0, recalling (4.5), we get

(4.8)

∫ T

0

{(λ1v1 − λ3v3)w1(V0, t) + (λ2v2 − λ3v3)w2(V0, t)} dt = 0 .

The mass conservation condition (4.4) can be rewritten as

v3(V0, t)m
3(V0, t) = v1(V0, t)m

1(V0, t) + v2(V0, t)m
2(V0, t) t ∈ [0, T ] ,

since the control law u models a traffic light which bring to halt the speed of the drivers
at V0 in e1 and, alternatively, in e2, in such a way that there is mass flow either from e1

to e3 or from e2 to e3. If I1 ⊆ [0, T ] is an interval where u(t) = 1 (red light for e1), then
in this interval the speed v1(V0, t) is null and therefore m1(V0, t) = 0 (recall that mass
concentration at the vertices is not admitted). Similarly if u(t) = 0 for t ∈ I2 (red light
for e2), we get m2(V0, t) = 0 for t ∈ I2. An admissible increment, in order to preserve the
transition condition for m, has to satisfy the same property and by (4.8) we get

λ3(V0, t)v
3(V0, t) = λ1(V0, t)v

1(V0, t) + λ2(V0, t)v
2(V0, t),

or, more explicitly,

λ1(V0, t)v
1(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {v1(V0, t) 6= 0} ,

λ2(V0, t)v
2(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {v2(V0, t) 6= 0} .
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We now compute the derivative of L with respect to us for an increment ϕ ∈ RS

〈∂sL, ϕ〉 = −
∫ T

0

∫
Γ

∂sv · ϕ(∂xλ+ 1)mdxdt+

∫ T

0

{
∑
j=1,2,3

λj(V E
j , t)∂sv

j(V E
j , t) · ϕmj(V E

j , t)

− λj(V I
j , t)∂sv

j(V I
j , t) · ϕmj(V I

j , t)} dt .

Recalling (4.3) and since v3 is independent of us, we get

〈∂sL, ϕ〉 =

∫ T

0

{
−
∫
e1

∂sv
1 · ϕ(∂xλ

1 + 1)m1 dx−
∫
e2

∂sv
2 · ϕ(∂xλ

2 + 1)m2 dx

+λ1(V0, t)∂sv
1(V0, t) · ϕm1(V0, t) + λ2(V0, t)∂sv

2(V0, t) · ϕm2(V0, t)
}
dt,

where

∂sv
1(x, t) · ϕ = −H(x, V0)∇su

s(t) · ϕ , ∂sv
2(x, t) · ϕ = H(x, V0)∇su

s(t) · ϕ

and

∇su
s(t) · ϕ =

S∑
i=1

(−1)ui−1δτi(t)ϕi .

We conclude

〈∂sL, ϕ〉 =
S∑
i=1

(−1)ui−1

{∫
e1

H(x, V0)(∂xλ
1(x, τi) + 1)m1(x, τi) dx− λ1(V0, τi)H(V0, V0)m1(V0, τi)

−
∫
e2

H(x, V0)(∂xλ
2(x, τi) + 1)m2(x, τi) dx+ λ2(V0, τi)H(V0, V0)m2(V0, τi)

}
ϕi .

Summarizing, the dual problem for (4.2)-(4.3)-(4.4) is{
−∂tλj − vj∂xλj = vj in ej × (0, T ), j = 1, 2, 3,
λj(·, T ) = 0 in ej,

with the boundary condition

λ3(V3, t) = 0, in [0, T ],

and the transmission condition

λj(V0, t)v
j(V0, t) = λ3(V0, t)v

3(V0, t) if t ∈ {vj 6= 0}, j = 1, 2 .

Finally, if we impose box constraints TG < si < TR for i = 1, ..., S, the optimal solution
(m,us, λ) should satisfy, for all s̄ ∈ RS such that TG < s̄i < TR, the variational inequality

(4.9) 〈∂sL(m,us, λ), s̄− s〉 ≥ 0.
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Remark 4.1. If the velocity field contains the drivers interaction term, then the dual prob-
lem for (4.2)-(4.3)-(4.4) is given by{

−∂tλj − vj∂xλj − ν ∗ (m∂xλ) = vj + ν ∗m in ej × (0, T ), j = 1, 2, 3
λj(·, T ) = 0 in ej

with the same boundary and transition conditions, where (ν ∗ φ)(x) =
∫

Γ
K(y, x)φ(y)dy.

The additional terms in the equation represent a time-backward counterpart of the nonlocal
term in the forward equation. Indeed, note that the kernel K is not symmetric by definition
and the integration is here performed with respect to the first variable, looking at y → x
and not x→ y as in (2.5) .

4.2. Discretization. The above optimality system can be discretized using, for instance,
finite difference schemes and solved by some root-finding algorithm. Here we do not solve
the whole discrete system at once, we instead obtain an approximate solution splitting the
problem in three simple steps. With a fixed control, we first solve the forward equation
in m, then we solve the backward equation in λ, and finally update the control using the
expression we obtained for the gradient ∂sL, iterating up to convergence. The resulting
procedure is a gradient descent method, summarized in the following algorithm.

Algorithm [Forward-Backward system with Gradient Descent]

Step 0. Choose ε > 0, β > 0 and set J (0) = 0;
Step 1. Fix an initial guess for s(0) ∈ RS, u0 ∈ {0, 1} and set k = 0;
Step 2. Use s(k) to build the control u(k);
Step 3. Solve the forward problem for m(k) with control u(k);
Step 4. Solve the backward problem for λ(k) with control u(k);
Step 5. Compute J (k+1) = J(m(k), s(k)).

If |J (k+1) − J (k)| < ε go to Step 8, otherwise update J (k) ← J (k+1) and continue;
Step 6. Compute ∂sL at (m(k), u(k), λ(k));
Step 7. Update s(k) ← Π{TG,TR}

(
s(k) − β∂sL(m(k), u(k), λ(k))

)
, k ← k + 1 and go to Step 2

(Π{TG,TR} denotes the component-wise projection on the interval [TG, TR]);

Step 8. Accept (m(k), u(k), λ(k)) as an approximate solution of the optimal control problem
for (4.1).

In the actual implementation of the algorithm, we employ a standard scheme for conser-
vation laws with a superbee flux limiter, to solve the forward equation in m. On the other
hand, the adjoint advection equation in λ is solved by means of a standard time-backward
upwind scheme. We choose the numerical grid in space and time subject to a sharp CFL
condition, in order to mitigate the numerical diffusion and better observe the nonlocal
interactions. Moreover, we compute all the integrals appearing in the functional J , in the
nonlocal terms and in the expression of the gradient ∂sL, by means of a rectangular quad-
rature rule. We also employ a simple inexact line search technique to compute a suitable
step β for the gradient update in Step 7. Finally, the application of control constraints is
easily obtained by projection. More precisely, given compatible durations 0 < TG < TR

and the updated s(k) in Step 7, we set s
(k)
i ← max{TG,min{s(k)

i , TR}} for i = 1, ..., S.
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4.3. Numerical experiments. As a preliminary test we compare the local and the non-
local case. We consider only the evolution of the density m along the edge e1 and we set
the control u(t) ≡ 1 to keep the traffic light at the end of the road activated (red) during
the whole simulation. We choose the length `(e1) = 1 and R1 = 1

8
for the visibility radius

of the traffic light. On the other hand, we choose the nonlocal interaction kernel (2.5)
with k(r) = 25

1+r
and visibility radius R = 15dx, where dx is the step size of the space

grid. Finally, we set the final time T = 1.25, the free flow speed v1
f ≡ 1 and the initial

distribution m0(x) = χ[0.1,0.15](x).
Figure 3 shows the evolution of m and v at different times for both local and nonlo-

cal cases. Note that the velocity v decreases from v1
f to zero with a linear ramp while

approaching the traffic light, according to the definition (3.5) for H.
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Figure 3. Red traffic light: local case vs nonlocal case

In the local case v does not depend on time, since u is constant. The density m proceeds
without changing profile (except some numerical diffusion at the boundary of its support),
then starts concentrating close to the traffic light. At the final time, all the mass is
concentrated at the point closest to the traffic light.

In the nonlocal case, drivers interactions are clearly visible both in m and v. The initial
density readily activates the nonlocal term in v, and m starts assuming the well known
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triangle-shaped profile. Close to the traffic light we observe a slowing-down, that propa-
gates backward up to the beginning of the queue, preventing mass concentration. At final
time the profile becomes stationary, we observe that v is zero in the whole support of m.

We proceed with a test for validating the proposed numerical method. We consider the
case of a single switching time τ ∈ [0, T ], namely we choose s = (s1, s2) = (τ, T − τ)
without constraints and u0 = 1, so that the corresponding control is just us(t) = χ[0,τ ](t)
(red light on e1 for t ≤ τ). This reduces the optimization problem to a minimization in
dimension one, that can be analyzed by an exaustive search in τ and then compared with
our adjoint-based algorithm. We set all the parameters as in the previous test, in particular
we choose constant free flow speeds vf1 = vf2 = vf3 ≡ 1. We also assume that, apart from
m0, no additional mass enters or leaves the network for all t ∈ [0, T ].

We start with m0 = (m1
0,m

2
0,m

3
0) = (χ[0.1,0.15](x), χ[0.6,0.65](x), 0), i.e. two distributions

of equal mass on e1 and e2 that arrive at the traffic light at different times (m2 first and
then m1). In Figure 4(a) we plot the corresponding (normalized) mean velocity v̄(τ) =

−J(m,us)/M as a function of τ , where M =
∫ T

0

∫
Γ
m(x, t)dx dt.
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Figure 4. Mean velocity for a single switch of the traffic light: well sepa-
rated (a) vs overlapping (b) densities

The scenario is pretty clear. If the switch occurs before m2 reaches the traffic light, then
only m1 will move from e1 to e3 and the mean velocity cannot improve. For larger values
of τ , also m2 will gradually move to e3, and v̄(τ) increases. If now the switch is placed
just after m2 leaves e2 and before m1 approaches the traffic light, v̄ exhibits a plateau and
we get the best performance, both distributions move as they are on a free road. Note
that, due to the nonlocal interactions, the maximum of v̄ is less than the free flow speed.
Finally, as τ keeps increasing up to T , m1 starts getting stuck at the traffic light, and v̄(τ)
decreases.

Now let us repeat the exaustive computation of the mean velocity v̄(τ) with m0 =
(m1

0,m
2
0,m

3
0) = (χ[0.6,0.65](x), χ[0.6,0.65](x), 0), two distributions of equal mass on e1 and e2,

starting at the same distance from the traffic light. Figure 4(b) shows the shape of the
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corresponding v̄. We observe that the maximum of v̄ is lower than in the previous test, and
it is achieved at a single point instead of an interval. This clearly depends on the fact that
the two densities are not well separated as before and it is not possible to place a switch
without penalizing the overall traffic flow. Moreover, note that an absolute minimum
appears just after the initial plateau. Interestingly, this means that if the switch occurs
too early both densities slowdown, whereas the optimal choice corresponds to switch just
after m2 leaves e2 (see Figure 6 below).

These two simple examples show that, in general, the numerical optimization of the
traffic light is a very challenging problem, since there is a wide number of local extrema
where the gradient descent algorithm can stop. To overcome this issue, we perform several
runs with random initial guesses for the controls, and we select the solution obtaining the
best result.

Figure 5 shows the optimal solution at different times in the case of well separated. The
solution is computed by the gradient descent method and achieves the absolute maximum
of the corresponding mean velocity.
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Figure 5. Optimal solution for well separated densities

Similarly, Figure 6 refers to the case of overlapping densities. We clearly observe that
on e1 the traffic is stopped until m2 leaves e2.
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Figure 6. Optimal solution for overlapping densities

We conclude with a more complete example, also including control constraints. All the
parameters are the same of the previous tests, but we fix to S = 5 the number of switching
durations (corresponding to 4 switching times) and we start with u0 = 0, i.e. green light
on e1. Moreover, we set the constraints TG = 0.15, TR = 0.3, and m0 is given edge-wise
by

m1
0(x) = χ[0.1,0.15](x) + χ[0.4,0.45](x) , m2

0(x) = χ[0.1,0.15](x) + χ[0.6,0.65](x) , m3
0(x) = 0 .

Note that, with this choice, we are mixing together the two cases analyzed before. In-
deed, the initial density consists of four blocks which are, respectively, pairwise overlapped
and well separated. The optimal solution produced by the gradient descent algorithm is
s∗ = (0.227, 0.251, 0.259, 0.3, 0.21). Figure 7 shows the corresponding evolution at different
times. We observe that the first switch occurs before m2 approaches the traffic light. This
allows the first block of m2 to proceed without slowdowns from e2 to e3. The second switch
occurs immediately after this block leaves e2, so that also the first block of m1 can leave
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Figure 7. Optimal solution for a traffic light with 4 switches

e1 almost undisturbed before the traffic light switches again. Now, the remaining densities
on e1 and e2 are in overlapping configuration, m2 goes first, while m1 stops. Finally, the
last switch occurs just after m2 leaves e2, so that also m1 can move to e3 for the remaining
time.

Appendix A. Some complementary results for the variational problems

Proof of Lemma 3.1. Assume without loss of generality that M = 1. It is well known that
for µ ∈M+

M(ΓT ), |µ|TV = µ(ΓT ) ≤ 1.
By Banach-Alaoglu Theorem it follows the compactness with respect to the weak*-convergence,
which implies the same property with respect to the ‖ · ‖∗BL convergence. �

Lemma 3.2. Since (3.3) is just a condition which defines the dependence among the com-
ponents of u ∈ U , we prove the compactness of

U = {u ∈ BV ([0, T ], {0, 1}) andu satisfies (3.2),}.
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Let {un}n∈N ⊂ U . Denote by τni the switching times of un. By (3.2), for every two
consecutive switching times τnk , τ

n
k+1 ∈ [0, T ], if un(τnk ) = 1, then

|τnk − τnk+1| < TR,

otherwise,

|τnk − τnk+1| > TG.

Since un(t) ∈ {0, 1}, we can assume that there exists a subsequence, still denoted by un,
such that either un(0) = 1 or un(0) = 0 for every n ∈ N. Assume now that, w.l.o.g.,
un(0) = 1 for every n ∈ N and denote by In the set of switching times of un. It follows
that

T

TR
≤ #(In) ≤ T

TG
.

As before, we can assume, w.l.o.g., that that there exists N ∈ N such that #(In) = N for
all n ∈ N. Since In ⊂ [0, T ], applying the Cantor diagonal procedure, it follows that there
exists a subsequence (Ink

)k∈N such that τnk
i → τi for i = 1, . . . , N . In this way, we define a

candidate u as limit for the subsequence unk
from the switching times set {τ1, . . . , τN} and

u(0) = 1. To conclude, we only need to show that unk
→ u in L1. By construction,

‖unk
− u‖L1 =

N∑
i=1

|τnk
i − τi| ≤ N sup

i=1,...,N
|τnk
i − τi| →k→∞ 0

�

Proof of Lemma 3.3 (traffic lights). In this case, the distirbution µ has no role since it de-
pends exclusively on u. Hence, we reduce on X =M+(ΓT )×U , where U defined by (3.4).
Let (mn, un)n∈N ⊂ A such that (mn, un)→ (m,u) with respect the norm ‖ · ‖∗BL + ‖ · ‖L1 .
The closure on the first component derives from the proof of Lemma 4.1 in [3] and the
results in [6].
Instead, the closure on the second component derives from the compactness of U . Indeed,
there exists a subsequence (unk

)k∈N which converges to ũ ∈ U , but it also converges to u
by assumption. Then, it follows that u = ũ ∈ U .

�

Proof of Lemma 3.4 (autonomous cars). It follows adopting the argument in the previous
proof, for X =M+

M(ΓT )×M+
M(ΓT )×U endowed with the norm ‖ · ‖∗BL + ‖ · ‖∗BL + ‖ · ‖∞.

�
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