# POLITECNICO DI TORINO Repository ISTITUZIONALE

Erratum to: "Elasticity and permeability of porous fibre-reinforced materials under large deformations [Mech. Mater., 44, 58–71, 2012]"

Original

Erratum to: "Elasticity and permeability of porous fibre-reinforced materials under large deformations [Mech. Mater., 44, 58–71, 2012]" / Federico, Salvatore; Grillo, Alfio. - In: MECHANICS OF MATERIALS. - ISSN 0167-6636. - 126:(2018), pp. 86-87. [10.1016/j.mechmat.2018.07.015]

Availability:

This version is available at: 11583/2831892 since: 2020-06-03T13:32:14Z

Publisher: Elsevier

Published

DOI:10.1016/j.mechmat.2018.07.015

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

Elsevier postprint/Author's Accepted Manuscript

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at: http://dx.doi.org/10.1016/j.mechmat.2018.07.015

(Article begins on next page)

#### Erratum to:

# "Elasticity and Permeability of Porous Fibre-Reinforced Materials Under Large Deformations"

Published in 2012, Mechanics of Materials, 44, 58-71, DOI: 10.1016/j.mechmat.2011.07.010

Salvatore Federico<sup>a,\*</sup>, Alfio Grillo<sup>b,c</sup>

<sup>a</sup>Department of Mechanical and Manufacturing Engineering, The University of Calgary 2500 University Drive NW, Calgary, Alberta, T2N1N4, Canada Tel: +1-403-220-5790, Fax: +1-403-282-8406

Email: salvatore.federico@ucalgary.ca

<sup>b</sup>DISMA - Dept Mathematical Sciences "G.L. Lagrange", Politecnico di Torino Corso Duca degli Abruzzi 24, 10124, Torino, Italy Tel: +39-011-090-7531, Fax: +39-011-090-7599

Email: alfio.grillo@polito.it

<sup>c</sup>Former Affiliation: G-CSC, Goethe Universität Frankfurt am Main

Kettenhofweg 139, D-60325 Frankfurt am Main, Germany

DOI: 10.1016/j.mechmat.2018.07.015. Available online: July 29, 2018

Journal: Mechanics of Materials (Elsevier)

# 1. Introduction

We would like to correct a few points in our previously published paper (Federico and Grillo, 2012): an equation reported incorrectly, which however does not affect the subsequent calculations (Section 2), a formally incorrectly chosen argument of certain constitutive functions (Section 3), and a few plain mistypings (Section 4).

#### 2. Transformation of the probability density

In our paper (Federico and Grillo, 2012), three lines after Eq. (5.27), we stated

Note also that, since the reorientation of the fibres is driven by the deformation gradient F, the *current* probability distribution  $\psi_{curr}$ :  $\mathbb{S}^2_x \to \mathbb{R}^+_0$  for the orientation of the fibres at the spatial point  $x = \chi(X, t)$ , is entirely determined in terms of the referential probability  $\psi$  and F [...]

This means that, since the current normalised direction m is obtained from the referential direction M as  $m = \|FM\|^{-1}FM$ , the current probability  $\psi_{curr}: \mathbb{S}_x^2 \to \mathbb{R}_0^+$  is expressible in terms of the referential probability  $\psi: \mathbb{S}_x^2 \to \mathbb{R}_0^+$ . In our paper (Federico and Grillo, 2012), following the statement above, we reported Eq. (5.28):

$$\psi_{curr}(\mathbf{m}) = \psi_{curr}(\|\mathbf{F}\mathbf{M}\|^{-1}\mathbf{F}\mathbf{M}) = \psi(\mathbf{M}).$$
 (5.28)

However, Eq. (5.28) as reported above is incorrect. Indeed, what is preserved is *not* the value of the probability but, rather, the fraction of fibres contained in an infinitesimal referential solid angle dS, which is mapped by the deformation into the infinitesimal current solid angle ds. Therefore, always based on  $m = ||FM||^{-1}FM$ , the correct form of Eq. (5.28) is

$$\psi_{curr}(\mathbf{m}) ds = \psi(\mathbf{M}) dS.$$
 (5.28 corr.)

We remark that the remainder of the procedure for the evaluation of the permeability is correct, since it in fact does follow Eq. (5.28 corr.), as is clear from Eq. (5.27) in Federico and Grillo (2012).

#### 3. Spatial constitutive functions

In Eqs. (5.26), (5.27), (5.29) and. (5.30), we expressed the constitutive functions  $\hat{k}_{REV}$ ,  $\hat{k}$  and  $\hat{z}$  as depending on the right Cauchy-Green deformation  $C = \frac{2020-6-3}{200}$ 

<sup>\*</sup>Corresponding Author

Preprint submitted to Mechanics of Materials

 $F^T$ . F. However, these constitutive functions depend on the deformation gradient F, i.e.,

$$k_{\text{REV}}(A) = \hat{k}_{\text{REV}}(F, A)$$

$$= J^{-2}k_{0}.[(J - \phi_{1R})\phi_{1R}[C : A]^{-1}FAF^{T}$$

$$+ (J - \phi_{1R})^{2}g^{-1}], \qquad (5.26 \text{ corr.}) \quad {}_{70}$$

$$k = \hat{k}(F) = \int_{\mathbb{S}_{X}^{2}} \psi(M)\hat{k}_{\text{REV}}(F, A(M)) \, dS, \quad (5.27 \text{ corr.}) \quad {}_{71}$$

$$k = \hat{k}(F) = J^{-2}k_{0}.[(J - \phi_{1R})\phi_{1R}\hat{z}(F) + (J - \phi_{1R})^{2}g^{-1}], \quad {}_{73}$$

$$(5.29 \text{ corr.})$$

$$\hat{z}(F) = F \left[ \int_{\mathbb{S}_{X}^{2}} \psi(M)[C : A(M)]^{-1}A(M) \, dS \right] F^{T}.$$

Consequently, in the text immediately following Eq. (5.26), the wording "explicitly dependent on the deformation C" should read "explicitly dependent on the deformation F". Also, in Eqs. (5.31) and (5.32), reporting the calculations in the absence of deformation, the constitutive functions  $\hat{k}$  and  $\hat{z}$  should not be evaluated at the material metric tensor G (the value attained by the right Cauchy-Green deformation C in the undeformed configuration), but at the shifter C (the value attained by the deformation gradient C in the absence of deformation). Therefore, Eqs. (5.31) and (5.32) should read

$$\hat{\boldsymbol{z}}(\mathbf{1}) = \mathbf{1} \left[ \int_{\mathbb{S}_X^2} \psi(\boldsymbol{M}) \boldsymbol{A}(\boldsymbol{M}) \, \mathrm{d}S \right] \mathbf{1}^T = \mathbf{1} \boldsymbol{A}_{avg} \mathbf{1}^T = \boldsymbol{a}_{avg},$$

$$(5.31 \text{ corr.})$$

$$\hat{\boldsymbol{k}}(\mathbf{1}) = \boldsymbol{k}_0 \cdot [(1 - \phi_{1R})\phi_{1R}\boldsymbol{a}_{avg} + (1 - \phi_{1R})^2 \boldsymbol{g}^{-1}].$$

$$(5.32 \text{ corr.})$$

# 53 4. Various mistypings

We take this chance to correct some mistypings. Due to an incautious copy-and-paste operation on our part, Eq. (5.12) erroneously reports a coefficient  $\phi_{1R}$  before the integral sing. The correct equation is

$$V_e(\mathbf{C}) = \int_{\mathbb{S}_X^2} \psi(\mathbf{M}) \, V_1(\mathbf{C}, \mathbf{A}(\mathbf{M})) \, dS, \qquad (5.12 \text{ corr.})$$

Two more obvious mistypings are in Eqs. (4.2b), (4.3), (4.6b) and (4.7), in which  $\partial V^2/\partial J^2$  should have been, naturally,  $\partial^2 V/\partial J^2$ , and in Eq. (4.5c), where  $\partial U^2/\partial J^2(1) = 0$  should have been  $\partial^2 U/\partial J^2(1) = 0$ .

### 62 Acknowledgements

The authors gratefully acknowledge Dr. Mohsen Maleki (formerly at the University of Calgary) for pointing out the incorrectness of (5.28). This work has been partially supported by the New Faculty Programme (Alberta Innovates - Technology Futures, Canada) and the NSERC Discovery Programme (Natural Sciences and Engineering Research Council of Canada) [SF].

#### References

Federico, S., Grillo, A., 2012. Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mat. 44, 58-71.